

Page 1 of 75

FCC SAR EVALUATION REPORT

In accordance with the requirements of FCC 47 CFR Part 2(2.1093) and IEEE Std 1528-2013

Product Name : Tablet Trademark : OUKITEL Model Name : OT9 Family Model : OT9 S, OT9 Pro, OT9 Ultra Report No. : S24071803805001 FCC ID : 2ANMU-OT9

Prepared for

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA,SHENZHEN CHINA

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA,SHENZHEN CHINA
Manufacturer's SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address
Product description
Product nameTablet
TrademarkOUKITEL
Model NameOT9
Family ModelOT9 S, OT9 Pro, OT9 Ultra
FCC 47 CFR Part 2(2.1093)
StandardsIEEE Std 1528-2013
Published RF exposure KDB procedures
This device described above has been tested by Shenzhen NTEK. In accordance with the measurement
methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that

this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093). The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK, this document may be altered or revised by Shenzhen NTEK, personal only, and shall be noted in the revision of the document.

Test Sample Number S240718038006

Date of Test

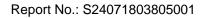
Date (s) of performance of tests ... Jul. 30, 2024 ~ Aug. 07, 2024

Date of Issue Aug. 21, 2024

Test Result Pass

Prepared . By

Joe.Yan Joe Yan (Project Engineer)


Reviewed By: <u>Aaron Cheng</u> (Ourservicer) Approved <u>Alex Li</u> (Manager)

(Manager)

※ ※ Revision History ※ ※

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	Aug. 21, 2024	Joe Yan

Page 4 of 75

ACCREDITED

Certificate #4298.01

NTEK 北测

1.	General Information	6
	1.1. RF exposure limits	
	1.2. Statement of Compliance	7
	1.3. EUT Description	7
	1.4. Test specification(s)	8
	1.5. Ambient Condition	
2.	SAR Measurement System	
	2.1. SATIMO SAR Measurement Set-up Diagram	9
	2.2. Robot	
	2.3. E-Field Probe	.11
	2.3.1. E-Field Probe Calibration	
	2.4. SAM phantoms	.12
	2.4.1. Technical Data	.13
	2.5. Device Holder	
	2.6. Test Equipment List	
3.	SAR Measurement Procedures	
	3.1. Power Reference	
	3.2. Area scan & Zoom scan	
	3.3. Description of interpolation/extrapolation scheme	
	3.4. Volumetric Scan	
	3.5. Power Drift	
4.	System Verification Procedure	
	4.1. Tissue Verification	
	4.1.1. Tissue Dielectric Parameter Check Results	
	4.2. System Verification Procedure	
	4.2.1. System Verification Results	
5.	SAR Measurement variability and uncertainty	
	5.1. SAR measurement variability	
	5.2. SAR measurement uncertainty	
6.	RF Exposure Positions	
	6.1. Tablet PC host platform exposure conditions	
7.	RF Output Power	
	7.1. WLAN & Bluetooth Output Power	
	7.1.1. Output Power Results Of WLAN	
	7.1.2. Output Power Results Of BT	
8.	Antenna Location	
9.	Stand-alone SAR test exclusion	
10		
	10.1. SAR measurement results	.31

Page 5 of 75

	10.1.1.	SAR measurement Result of WLAN 2.4G	31
	10.1.2.	SAR measurement Result of WLAN 5.2G	32
	10.1.3.	SAR measurement Result of WLAN 5.8G	32
	10.2. Sin	nultaneous Transmission Analysis	32
11.	Appendix	A. Photo documentation	33
12.	Appendix	B. System Check Plots	34
13.	Appendix	C. Plots of High SAR Measurement	41
14.	Appendix	D. Calibration Certificate	48

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: *Whole-Body SAR* is averaged over the entire body, *partial-body SAR* is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. *SAR for hands, wrists, feet and ankles* is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE TRUNK LIMIT 1.6 W/kg APPLIED TO THIS EUT

Page 7 of 75

1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for OT9 are as follows.

	Max Reported SAR Value(W/kg)
Band	1-g Body
	(Separation distance of 0mm)
WLAN 2.4G	0.285
WLAN 5.2G	0.284
WLAN 5.8G	0.786
Max Simultaneous Tx	0.953

Note: This device is in compliance with Specific Absorption Rate (SAR) for general population / uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093), and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

1.3. EUT Description

Device Information						
Product Name	Tablet	Tablet				
Trade Name	OUKITEL	OUKITEL				
Model Name	OT9					
Family Model	OT9 S, OT9 Pro, OT9 Ultr	а				
Madal Difference	All models are the same c	ircuit and RF modul	e, except for			
Model Difference	model names.					
FCC ID	2ANMU-OT9					
Device Phase	Identical Prototype					
Exposure Category	General population / Unco	General population / Uncontrolled environment				
Antenna Type	FPCB Antenna					
Battery Information	DC 3.85V, 8000mAh, 30.8Wh					
Hardware version	W30-T606-V1.0					
Software version	V03					
Device Operating Configurations						
Supporting Mode(s)	WLAN 2.4G/5G, BT					
Test Modulation	WLAN(DSSS/OFDM), BT(GFSK, π/4-DQPSK	, 8DPSK)			
Device Class	В					
	Band	Tx (MHz)	Rx (MHz)			
	WLAN 2.4G	2412-2462				
Operating Frequency Range(s)	WLAN 5.2G	WLAN 5.2G 5180-5240				
	WLAN 5.8G					
	BT	2402-2480				

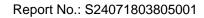
1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)

IEEE Std 1528-2013

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting

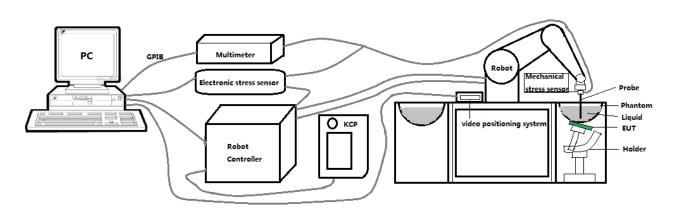

KDB 447498 D01 General RF Exposure Guidance

KDB 248227 D01 802.11 Wi-Fi SAR

KDB 616217 D04 SAR for laptop and tablets

1.5. Ambient Condition

Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%



Page 8 of 75

NTEK LO

2. SAR Measurement System

2.1. SATIMO SAR Measurement Set-up Diagram

Page 9 of 75

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ± 0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

Page 10 of 75

EDITED

ertificate #4298.01

NTEK 北测[®]

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

NTEK LW

2.3. E-Field Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

For the measurements the Specific Dosimetric E-Field Probe 3423-EPGO-426 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter : 2.5 mm
- Distance between probe tip and sensor center: 1 mm

- Distance between sensor center and the inner phantom surface: 2 mm (repeatability better than ±1 mm).

- Probe linearity: ±0.06 dB
- Axial isotropy: ±0.01 dB
- Hemispherical Isotropy: ±0.01 dB
- Calibration range: 650MHz to 5900MHz for head & body simulating liquid.
- Lower detection limit: 8mW/kg

Angle between probe axis (evaluation axis) and surface normal line: less than 30°.

2.3.1. E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

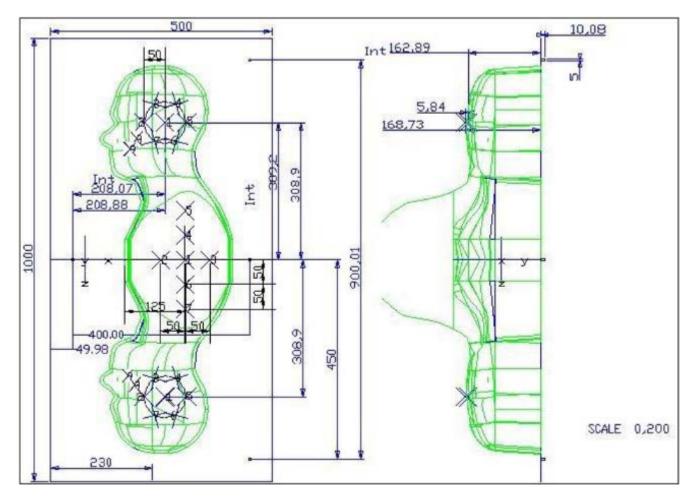
NTEK 北测[®]

Page 12 of 75

2.4. SAM phantoms

Photo of SAM phantom SN 16/15 SAM119

ACCREDITED

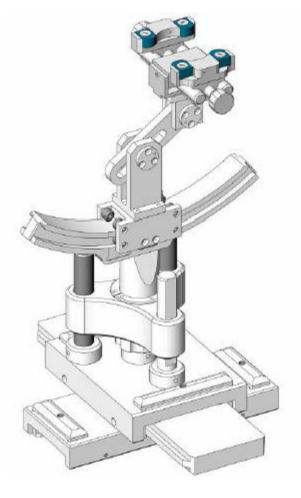

Certificate #4298.01

The SAM phantom is used to measure the SAR relative to people exposed to electro-magnetic field radiated by mobile phones.

NTEK LIM

2.4.1. Technical Data

Serial Number	Shell thickness	Filling volume	Dimensions	Positionner Material	Permittivity	Loss Tangent
SN 16/15 SAM119	2 mm ±0.2 mm	27 liters	Length:1000mm Width:500mm Height:200mm	Gelcoat with fiberglass	3.4	0.02


Serial Number	Left Head(mm)		Right Head(mm)		Flat Part(mm)	
	2	2.02	2	2.08	1	2.09
	3	2.05	3	2.06	2	2.06
	4	2.07	4	2.07	3	2.08
	5	2.08	5	2.08	4	2.10
SN 16/15 SAM119	6	2.05	6	2.07	5	2.10
	7	2.05	7	2.05	6	2.07
	8	2.07	8	2.06	7	2.07
	9	2.08	9	2.06	-	-

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 μ m.

2.5. Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 degree.

Serial Number	Holder Material	Holder Material Permittivity	
SN 16/15 MSH100	Delrin	3.7	0.005

2.6. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Page 15 of 75

Devices used during the test described are marked ${\ensuremath{\boxtimes}}$

Manufacturer Equipment Type/Model Serial Number Last Due Date MVG E FIELD PROBE SSE2 3423-EPGO-426 Sep. 18, 2023 Sep. 17, 2023 Sep. 17, 2023 MVG 750 MHz Dipole SID750 SN 03/15 DIP Feb. 21, GG835-347 Feb. 20, 2024 Feb. 20, 2027 MVG 835 MHz Dipole SID835 SN 03/15 DIP Feb. 21, GG835-347 Feb. 20, 2024 Feb. 20, 2027 MVG 900 MHz Dipole SID900 SN 03/15 DIP Feb. 21, Feb. 20, 0G800-348 Feb. 21, 2027 Feb. 20, 2027 MVG 1800 MHz SID1800 SN 03/15 DIP Feb. 21, Feb. 20, 1G800-349 Feb. 21, 2027 Feb. 20, 2027 MVG 1900 MHz SID1900 SN 03/15 DIP Feb. 21, Feb. 20, 2024 Feb. 20, 2027 MVG 2000 MHz SID2000 SN 03/15 DIP Feb. 21, Feb. 20, 2024 Feb. 20, 2027 MVG 2450 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2024 Feb. 20, 2027 MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, 2024 Feb.			Name of			Calib	ration
MVG E FIELD PROBE SSE2 3423-EPGO-426 Sep. 18, 2023 Sep. 17, 2024 MVG 750 MHz Dipole SID750 SN 03/15 DIP 0G750-355 Feb. 21, 2024 Feb. 21, 2027 MVG 835 MHz Dipole SID835 SN 03/15 DIP 0G835-347 Feb. 21, 2024 Feb. 21, 2027 MVG 900 MHz Dipole SID900 SN 03/15 DIP 0G800-348 Feb. 21, 2024 Feb. 20, 2027 MVG 900 MHz Dipole SID1800 SN 03/15 DIP 1600-348 Feb. 21, 2024 Feb. 20, 2027 MVG 1800 MHz Dipole SID1800 SN 03/15 DIP 16800-349 Feb. 21, 2024 Feb. 20, 2027 MVG 1900 MHz Dipole SID2000 SN 03/15 DIP 20204 Feb. 21, 2027 Feb. 20, 2024 2027 MVG 2000 MHz Dipole SID2000 SN 03/15 DIP 20200-351 Feb. 21, 2024 Feb. 20, 2027 MVG 2450 MHz Dipole SID2600 SN 03/15 DIP 20600-356 Feb. 21, 2024 Feb. 20, 2027 MVG 2500 MHz Dipole SID2600 SN 03/15 DIP 20600-356 Feb. 21, 2024 Feb. 20, 2024 2027 MVG </td <td></td> <td>Manufacturer</td> <td></td> <td>Type/Model</td> <td>Serial Number</td> <td>Last</td> <td>Due</td>		Manufacturer		Type/Model	Serial Number	Last	Due
MVG E FIELD PROBE SSE2 3423-EPGO-426 2023 2024 MVG 750 MHz Dipole SID750 SN 03/15 DIP Feb. 21, Feb. 20, 0G750-355 2024 2027 MVG 835 MHz Dipole SID750 SN 03/15 DIP Feb. 21, Feb. 20, 0G835-347 2024 2027 MVG 900 MHz Dipole SID900 SN 03/15 DIP Feb. 21, Feb. 20, 0G900-348 2024 2027 MVG 1800 MHz SID1000 SN 03/15 DIP Feb. 21, Feb. 20, 0G900-348 2024 2027 MVG 1800 MHz SID1800 D18000-349 2024 2027 MVG 1900 MHz SID1900 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG 1900 MHz SID2000 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG 2000 MHz SID2000 SN 03/15 DIP Feb. 21, Feb. 20, 2027 2024 2027 MVG 2450 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2027 2024 2027 MVG 2600 MHz SID2600			Equipment			Cal.	Date
Image: constraint of the second sec				88E2	2422 EDCO 426	Sep. 18,	Sep. 17,
MVG 750 MHz Dipole SID750 0G750-355 2024 2027 MVG 835 MHz Dipole SID835 SN 03/15 DIP Feb. 21, Feb. 20, 0G835-347 2024 2027 MVG 900 MHz Dipole SID900 SN 03/15 DIP Feb. 21, Feb. 20, 0G900-348 2024 2027 MVG 1800 MHz SID1900 SN 03/15 DIP Feb. 21, Feb. 20, 0G900-348 2024 2027 MVG 1800 MHz SID1900 SN 03/15 DIP Feb. 21, Feb. 20, 1G800-349 2024 2027 MVG 1900 MHz SID1900 SN 03/15 DIP Feb. 21, Feb. 20, 2027 2024 2027 MVG 1900 MHz SID2000 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG 2450 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2027 2024 2027 MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2027 2024 2027 MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG Dip		IVI V G		33E2	3423-EFGO-420	2023	2024
MVG 835 MHz Dipole SID835 SN 03/15 DIP OG750-355 2024 2027 MVG 900 MHz Dipole SID835 SN 03/15 DIP OG835-347 Feb. 21, 2024 Feb. 20, 2024 MVG 900 MHz Dipole SID900 SN 03/15 DIP OG900-348 Feb. 21, 2024 Feb. 20, 2024 MVG 1800 MHz Dipole SID1800 SN 03/15 DIP IG800-348 Feb. 21, 2024 Feb. 20, 2024 MVG 1900 MHz Dipole SID1800 SN 03/15 DIP IG900-350 Feb. 21, 2024 Feb. 20, 2027 MVG 1900 MHz Dipole SID2000 SN 03/15 DIP IG900-350 Feb. 21, 2024 Feb. 20, 2027 MVG 2000 MHz Dipole SID2000 SN 03/15 DIP 2024 Feb. 21, 2024 Feb. 20, 2027 MVG 2450 MHz Dipole SID2600 SN 03/15 DIP 2660-352 Feb. 21, 2024 Feb. 20, 2027 MVG 2600 MHz Dipole SID2600 SN 03/15 DIP 2660-356 Feb. 21, 2024 Feb. 20, 2024 MVG 5000 MHz Dipole SWG5500 SN 13/14 WGA 33 Feb. 21, 2024 Feb. 20, 2024 2027 MVG Liquid measurement		MVC	750 MHz Dipolo	SID750	SN 03/15 DIP	Feb. 21,	Feb. 20,
MVG 835 MHz Dipole SID835 0G835-347 2024 2027 MVG 900 MHz Dipole SID900 SN 03/15 DIP Feb. 21, Feb. 20, 0G900-348 2024 2027 MVG 1800 MHz SID1800 IG800-349 2024 2027 MVG 1900 MHz SID1800 IG800-349 2024 2027 MVG 1900 MHz SID1900 IG800-349 2024 2027 MVG 1900 MHz SID1900 IG900-350 2024 2027 MVG 2000 MHz SID2000 SN 03/15 DIP Feb. 21, Feb. 20, 2027 2024 2027 MVG 2000 MHz SID2000 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG 2450 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG Dipole SWG5500 <td></td> <td>WIV G</td> <td></td> <td>310750</td> <td>0G750-355</td> <td>2024</td> <td>2027</td>		WIV G		310750	0G750-355	2024	2027
Image: constraint of the sector of		MVC	825 MHz Dipolo	SID925	SN 03/15 DIP	Feb. 21,	Feb. 20,
MVG 900 MHz Dipole SID900 0G900-348 2024 2027 MVG 1800 MHz SID1800 SN 03/15 DIP Feb. 21, Feb. 20, 1G800-349 2024 2027 MVG 1900 MHz SID1900 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG 1900 MHz SID1900 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG 2000 MHz SID2000 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG 2450 MHz SID2000 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG 26600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG Dipole SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 MVG Dipole SWG5500 SN 13/14 WGA 33 Feb. 21, Feb. 20, 2024 2027 MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR MV		WVG		310035	0G835-347	2024	2027
Image: constraint of the sector of		MVC	000 MHz Dinala	SID000	SN 03/15 DIP	Feb. 21,	Feb. 20,
Image: MVG Dipole SID1800 1G800-349 2024 2027 Image: MVG 1900 MHz SID1900 SIN 03/15 DIP Feb. 21, Feb. 20, 1G900-350 2024 2027 Image: MVG 2000 MHz SID2000 SIN 03/15 DIP Feb. 21, Feb. 20, 2027 2024 2027 Image: MVG 2000 MHz SID2000 SIN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 Image: MVG 2450 MHz SID2450 SIN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 Image: MVG 2600 MHz SID2600 SIN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 Image: MVG 2600 MHz SID2600 SIN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 Image: MVG 2600 MHz SID2600 SIN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 Image: MVG 5000 MHz SWG5500 SIN 13/14 WGA 33 Feb. 21, Feb. 20, 2024 2027 Image: MVG Liquid SCLMP SIN 21/15 OCPG 72 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 <td></td> <td>IVI V G</td> <td></td> <td>310900</td> <td>0G900-348</td> <td>2024</td> <td>2027</td>		IVI V G		310900	0G900-348	2024	2027
Dipole 1G800-349 2024 2027 MVG 1900 MHz SID1900 SN 03/15 DIP Feb. 21, Feb. 20, MVG 2000 MHz SID2000 SN 03/15 DIP Feb. 21, Feb. 20, MVG 2000 MHz SID2000 2G000-351 2024 2027 MVG 2450 MHz SID2000 2G000-351 2024 2027 MVG 2450 MHz SID2450 SN 03/15 DIP Feb. 21, Feb. 20, MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, MVG 5000 MHz SWG5500 SN 13/14 WGA 33 Feb. 21, Feb. 20, MVG Liquid SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR KEITHLEY Millivoltm		MVC	1800 MHz	SID1000	SN 03/15 DIP	Feb. 21,	Feb. 20,
Image: MVG Dipole SID1900 1G900-350 2024 2027 Image: MVG 2000 MHz SID2000 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 Image: MVG 2450 MHz SID2000 2G000-351 2024 2027 Image: MVG 2450 MHz SID2450 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 Image: MVG 2600 MHz SID2450 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 Image: MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 Image: MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 Image: MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 Image: MVG 5000 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2024 2027 Image: MVG 5000 MHz SWG5500 SN 13/14 WGA 33 Feb. 21, Feb. 20, 2024 2027 Image: MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR <td></td> <td>WIV G</td> <td>Dipole</td> <td>3101000</td> <td>1G800-349</td> <td>2024</td> <td>2027</td>		WIV G	Dipole	3101000	1G800-349	2024	2027
Dipole Dipole 1G900-350 2024 2027 MVG 2000 MHz SID2000 SN 03/15 DIP Feb. 21, Feb. 20, MVG 2450 MHz SID2450 SN 03/15 DIP Feb. 21, Feb. 20, MVG 2450 MHz SID2450 SN 03/15 DIP Feb. 21, Feb. 20, MVG 2600 MHz SID2600 2G450-352 2024 2027 MVG 2600 MHz SID2600 2G600-356 2024 2027 MVG 5000 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, MVG 5000 MHz SWG5500 SN 13/14 WGA 33 Feb. 21, Feb. 20, MVG Liquid SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR MVG		MVC	1900 MHz	SID1000	SN 03/15 DIP	Feb. 21,	Feb. 20,
Image: MVG Dipole SID2000 2G000-351 2024 2027 Image: MVG 2450 MHz SID2450 SN 03/15 DIP Feb. 21, Eeb. 20, 2024 2027 Image: MVG 2600 MHz SID2600 2G450-352 2024 2027 Image: MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Eeb. 20, 2024 2027 Image: MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Eeb. 20, 2024 2027 Image: MVG 25000 MHz SUB2600 SN 13/14 WGA 33 Feb. 21, Eeb. 20, 2024 2027 Image: MVG 5000 MHz SWG5500 SN 13/14 WGA 33 Feb. 21, Eeb. 20, 2024 2027 Image: MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR Image:		WIV G	Dipole	3101900	1G900-350	2024	2027
Dipole Dipole 2G000-351 2024 2027 MVG 2450 MHz SID2450 SN 03/15 DIP Feb. 21, 2024 2027 MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, 2024 2027 MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, 2024 2027 MVG 5000 MHz SID2600 SN 13/14 WGA 33 Feb. 21, Feb. 20, 2024 2027 MVG 5000 MHz SWG5500 SN 13/14 WGA 33 Feb. 21, Feb. 20, 2024 2027 MVG Liquid measurement Kit SCLMP SN 21/15 OCPG 72 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR KEITHLEY Millivoltmeter 2000 4072790 NCR NCR R&S Universal radio communication CMU200 105747 Apr. 26, 2024 2025 R&S Wideband radio communication CMW500 103917 <td< td=""><td></td><td>MVC</td><td>2000 MHz</td><td>SID2000</td><td>SN 03/15 DIP</td><td>Feb. 21,</td><td>Feb. 20,</td></td<>		MVC	2000 MHz	SID2000	SN 03/15 DIP	Feb. 21,	Feb. 20,
Image: MVG Dipole SID2450 2G450-352 2024 2027 Image: MVG 2600 MHz SID2600 SN 03/15 DIP Feb. 21, Feb. 20, 2G600-356 2024 2027 Image: MVG 5000 MHz SWG5500 SN 13/14 WGA 33 Feb. 21, 2024 2027 Image: MVG 5000 MHz SWG5500 SN 13/14 WGA 33 Feb. 21, 2024 2027 Image: MVG Liquid SCLMP SN 21/15 OCPG 72 NCR NCR Image: MVG Power Amplifier N.A AMPLISAR_28/14_003 NCR NCR Image: MVG <t< td=""><td></td><td>IVI V G</td><td>Dipole</td><td>3102000</td><td>2G000-351</td><td>2024</td><td>2027</td></t<>		IVI V G	Dipole	3102000	2G000-351	2024	2027
$\begin{tabular}{ c c c c c c c c c c c } \hline Dipole & Dipole & SID2600 & SN 03/15 DIP & Feb. 21, & Feb. 20, \\ \hline Dipole & SID2600 & SN 03/15 DIP & Feb. 21, & Feb. 20, \\ \hline 2024 & 2027 & 2024 & 2027 & \\ \hline \hline & MVG & Dipole & SWG5500 & SN 13/14 WGA 33 & Feb. 21, & Feb. 20, \\ \hline & Dipole & SWG5500 & SN 13/14 WGA 33 & Feb. 21, & Feb. 20, \\ \hline & 2024 & 2027 & \\ \hline & MVG & Liquid & SCLMP & SN 21/15 OCPG 72 & NCR & NCR & \\ \hline & MVG & Power Amplifier & N.A & AMPLISAR_28/14_003 & NCR & NCR & \\ \hline & MVG & Power Amplifier & N.A & AMPLISAR_28/14_003 & NCR & NCR & \\ \hline & MVG & Power Amplifier & 2000 & 4072790 & NCR & NCR & \\ \hline & KEITHLEY & Millivoltmeter & 2000 & 4072790 & NCR & NCR & \\ \hline & R\&S & communication & CMU200 & 105747 & Apr. 26, & Apr. 25, & \\ \hline & R\&S & communication & CMW500 & 103917 & Apr. 26, & Apr. 25, & \\ \hline & HP & Network & \\ \hline & HP & Network & \\ \hline & HP & Network & \\ \hline & Analyzer & 8753D & 3410J01136 & Apr. 26, & Apr. 25, & \\ \hline & 2024 & 2025 & \\ \hline \end{tabular}$		MVC	2450 MHz	SID2450	SN 03/15 DIP	Feb. 21,	Feb. 20,
$\begin{tabular}{ c c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		WIV G	Dipole	3ID2400	2G450-352	2024	2027
DipoleDipole2G600-35620242027MVG5000 MHz DipoleSWG5500SN 13/14 WGA 33Feb. 21, 2024Feb. 20, 20242027MVGLiquid measurement KitSCLMPSN 21/15 OCPG 72NCRNCRMVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRMVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRKEITHLEYMillivoltmeter20004072790NCRNCRR&SUniversal radio communication testerCMU200105747Apr. 26, 2024Apr. 25, 20242025R&SWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 20242025HPNetwork Analyzer8753D3410J01136Apr. 26, 2024Apr. 25, 2024Apr. 25, 2024		MVC	2600 MHz	SID3600	SN 03/15 DIP	Feb. 21,	Feb. 20,
MVGDipoleSWG5500SN 13/14 WGA 3320242027MVGLiquid measurement KitSCLMPSN 21/15 OCPG 72NCRNCRMVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRKEITHLEYMillivoltmeter20004072790NCRNCRR&SUniversal radio communication testerCMU200105747Apr. 26, 2024Apr. 25, 2025R&SWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2025R&SNetwork Analyzer8753D3410J01136Apr. 26, 2024Apr. 25, 2025		WIV G	Dipole	3102000	2G600-356	2024	2027
DipoleDipole20242027MVGLiquid measurement KitSCLMPSN 21/15 OCPG 72NCRNCRMVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRKEITHLEYMillivoltmeter20004072790NCRNCRR&SUniversal radio communication testerCMU200105747Apr. 26, 2024Apr. 25, 20242025R&SWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2024Apr. 25, 2025R&SHPNetwork Analyzer8753D3410J01136Apr. 26, 2024Apr. 25, 2024Apr. 25, 2024			5000 MHz	SWC5500	CN 42/44 W/CA 22	Feb. 21,	Feb. 20,
Image: MVGMVGmeasurement KitSCLMPSN 21/15 OCPG 72NCRNCRImage: MVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRNCRImage: MVGKEITHLEYMillivoltmeter20004072790NCRNCRImage: MVGKEITHLEYMillivoltmeter20004072790NCRNCRImage: MVGUniversal radio communication testerCMU200105747Apr. 26, 2024Apr. 25, 2024Apr. 25, 2025Image: MVGR&SWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2025Image: MVGHPNetwork Analyzer8753D3410J01136Apr. 26, 2024Apr. 25, 2024		IVI V G	Dipole	300000	SIN 13/14 WGA 33	2024	2027
ImageImageImageImageImageImageMVGPower AmplifierN.AAMPLISAR_28/14_003NCRNCRImageKEITHLEYMillivoltmeter20004072790NCRNCRImageR&SUniversal radio communication testerCMU200105747Apr. 26, 2024Apr. 25, 2024Apr. 25, 2025ImageR&SWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2025ImageHPNetwork Analyzer8753D3410J01136Apr. 26, 2024Apr. 25, 2024		MVC	Liquid				
KEITHLEYMillivoltmeter20004072790NCRNCRR&SUniversal radio communication testerCMU200105747Apr. 26, 2024Apr. 25, 2024Apr. 25, 2025R&SWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2025R&SWideband radio communication testerCMW500103917Apr. 26, 2024Apr. 25, 2024HPNetwork Analyzer8753D3410J01136Apr. 26, 2024Apr. 25, 2024		WVG	measurement Kit	SCLIVIE	SN 21/15 OCPG 72	NCR	NCR
$\begin{tabular}{ c c c c c c } \hline $101 \ 1	\square	MVG	Power Amplifier	N.A	AMPLISAR_28/14_003	NCR	NCR
$\begin{tabular}{ c c c c c c } \hline $R\&S$ & communication & CMU200 & 105747 & Apr. 26, & Apr. 25, \\ \hline 2024 & 2025 \\ \hline 2024 & 2025 \\ \hline 2024 & 2025 \\ \hline 2024 & 2025 \\ \hline $R\&S$ & communication & CMW500 & 103917 & Apr. 26, & Apr. 25, \\ \hline 2024 & 2025 & 2025 \\ \hline $K\&S$ & HP$ & Network & $8753D$ & $3410J01136$ & Apr. 26, & Apr. 25, \\ \hline 2024 & 2025 & 2024 & 2025 & 2025 & 2024 & 2025 & 2025 & 2024 & 2025 & 2025 & 2024 & 2025 & 2025 & 2024 & 2025 & 2025 & 2025 & 2025 & 2024 & 2025 $	\square	KEITHLEY	Millivoltmeter	2000	4072790	NCR	NCR
$\begin{tabular}{ c c c c c c c } \hline $\mathbf{R} & \mathbf{X} & \mathbf{C} & \mathbf{C} & \mathbf{C} & \mathbf{M} & \mathbf{U} &$			Universal radio				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		R&S	communication	CMU200	105747	•	-
R&S communication CMW500 103917 Apr. 26, 2024 Apr. 25, 2025 MP Network 8753D 3410J01136 Apr. 26, 2024 Apr. 25, 2025			tester			2024	2025
Image: Name Rase communication CMW500 103917 2024 2025 Image: Communication tester Network 8753D 3410J01136 Apr. 26, 2025 Apr. 25, 2024 2025			Wideband radio				
tester Apr. 26, Apr. 25, HP Network 8753D 3410J01136 Apr. 26, Apr. 25, Analyzer Analyzer 2024 2025		R&S	communication	CMW500	103917	•	-
Image: HP 8753D 3410J01136 1 2024 2025			tester			2024	2025
Analyzer 2024 2025			Network	07505	0.440.10.4400	Apr. 26,	Apr. 25,
			Analyzer	8753D	3410J01136	•	•
Agilent MXG Vector N5182A MY47070317 Apr. 25, Apr. 24,	\square	Agilent	-	N5182A	MY47070317		Apr. 24,

		Signal Generator			2024	2025
	Agilent	Power meter	E4419B	MY45102538	Apr. 25,	Apr. 24,
	, ignorit	Fower meter	E4419D	MT45102556	2024	2025
\boxtimes	Agilent	Power sensor	E9301A MY41495644		Apr. 25,	Apr. 24,
		F Ower Serisor	LUUIA	10141493044	2024	2025
\square	Agilent	Power sensor	E9301A	US39212148	Apr. 25,	Apr. 24,
		F Ower Serisor	LUUIA	00000012140	2024	2025
\boxtimes	MCLI/USA	Directional	CB11-20	0D2L51502	Apr. 26,	Apr. 25,
		Coupler	CDTI-20	002131302	2024	2024
\square	N/A	Thermometer	N/A	LES-085	Mar. 27,	Mar. 26,
		mermometer	IN/A	LE3-000	2023	2026
\square	MVG	SAM Phantom	SSM2	SN 16/15 SAM119	NCR	NCR
\square	MVG	Device Holder	SMPPD	SN 16/15 MSH100	NCR	NCR
	Shenzhen Tianxu Communication Technology Co., Ltd.	Human Simulating Liquid	Head 2450	Head 2450	NCR	NCR
	Shenzhen Tianxu Communication Technology Co., Ltd.	Human Simulating Liquid	Head 5200	Head 5200	NCR	NCR
	Shenzhen Tianxu Communication Technology Co., Ltd.	Human Simulating Liquid	Head 5800	Head 5800	NCR	NCR

Measurement Software

Manufacturer	Software Name	Software Version
SATIMO	OpenSAR	V4_02_31

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

NTEK 北测

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Page 17 of 75

(b) Read the WWAN RF power level from the base station simulator.

(c) For WLAN/Bluetooth power measurement, use engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power in each supported wireless interface and frequency band.

(d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/Bluetooth output power.

<SAR measurement>

(a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/Bluetooth continuously transmission, at maximum RF power, in the highest power channel.

- (b) Place the EUT in the positions as Appendix A demonstrates.
- (c) Set scan area, grid size and other setting on the OPENSAR software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band.

(f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan above the hot spot to calculate the 1g and 10g SAR value.

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Page 18 of 75

ACCREDITED

Certificate #4298.01

AC-MR

NTEK 北测

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz			
Maximum distance from (geometric center of pr			$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$			
Maximum probe angle surface normal at the m			$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$			
			\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm			
Maximum area scan sp	atial resolu	ition: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d measurement point on the test	on, is smaller than the above, must be \leq the corresponding evice with at least one			
Maximum zoom scan s	patial reso	lution: Δx_{Zoom} , Δy_{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$			
	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm			
Maximum zoom scan spatial resolution, normal to phantom surface	graded	graded	oraded	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$				
Minimum zoom scan volume	x, y, z	1	\geq 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm			

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

Page 19 of 75

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

NTEK 北测

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

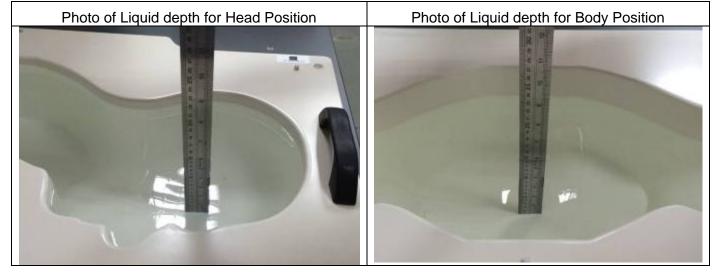
3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than ±5%, the SAR will be retested.

4. System Verification Procedure

4.1. Tissue Verification

NTEK 北测[®]


The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

ertificate #4298.01

Page 20 of 75

Ingredients (% of weight)					Head	Tissue				
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87	65.53	65.53
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97	24.24	24.24
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00	10.23	10.23
Ingredients (% of weight)	Body Tissue									
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	50.30	50.30	50.30	69.91	69.91	71.88	71.88	71.88	79.54	79.54
NaCl	0.60	0.60	0.60	0.13	0.13	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	49.10	49.10	49.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	9.99	9.99	19.97	19.97	19.97	11.24	11.24
DGBE	0.00	0.00	0.00	19.97	19.97	7.99	7.99	7.99	9.22	9.22

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm.

4.1.1. Tissue Dielectric Parameter Check Results

NTEK 北测[®]

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.

Page 21 of 75

DITED

ertificate #4298.01

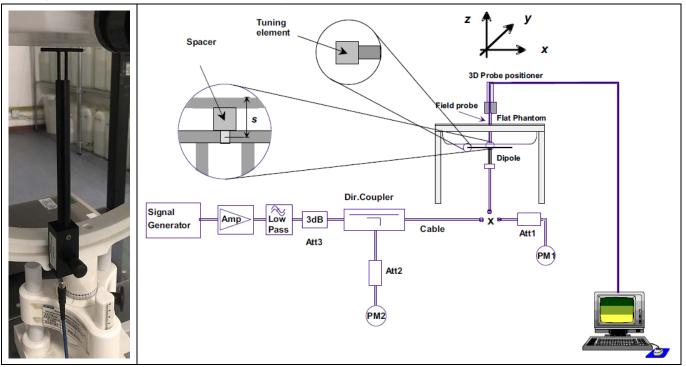
	Measured	Target Tissue		Measured Tissue				
Tissue Type	Frequency (MHz)	εr (±5%)	σ (S/m) (±5%)	٤r	σ (S/m)	Liquid Temp.	Test Date	
Head 2450	2450	39.20 (37.24~41.16)	1.80 (1.71~1.89)	37.91	1.79	21.7 °C	Aug. 07, 2024	
Head 5200	5200	36.00 (34.20~37.80)	4.66 (4.43~4.89)	34.48	4.50	21.4 °C	Jul. 30, 2024	
Head 5800	5800	35.30 (33.54~37.07)	5.27 (5.01~5.53)	33.91	5.14	21.2 °C	Jul. 31, 2024	

NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

Page 22 of 75

4.2. System Verification Procedure

Iac-MR


ACCREDITED

Certificate #4298.01

NTEK 北测

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

The system verification is shown as below picture:

4.2.1. System Verification Results

NTEK 北测[®]

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of $\pm 10\%$. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

Page 23 of 75

ACCREDITED

Certificate #4298.01

System	Target SA (±10	Measured SAR (Normalized to 1W)		Liquid	Toot Doto	
Verification	1-g (W/Kg)	10-g (W/Kg)	1-g (W/Kg)	10-g (W/Kg)	Temp.	Test Date
2450MHz	50.05 (45.05~55.06)	23.80 (21.42~26.18)	50.72	23.91	21.7 °C	Aug. 07, 2024
5200MHz	162.59 (146.33~178.85)	56.21 (50.59~61.83)	170.42	60.50	21.4 °C	Jul. 30, 2024
5800MHz	182.20 (163.98~200.42)	61.32 (55.19~67.45)	188.28	55.25	21.2 °C	Jul. 31, 2024

5. SAR Measurement variability and uncertainty

5.1. SAR measurement variability

NTEK 北测

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

ertificate #4298.01

Page 24 of 75

 Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

5.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

6. RF Exposure Positions

NTEK 北测[®]

6.1. Tablet PC host platform exposure conditions

B Hac-MR

Refer to KDB616217 D04, when the modular approach is used, transmitters and modules must be initially tested for standalone operations in generic host conditions according to the following minimum test separation distance and antenna installation requirements for incorporation in the tablet platform. The separation distance required for incorporation in qualified hosts is described in KDB 447498; item 5) of section 4.1 and item 1) of section 5.2.2 etc.

Page 25 of 75

• ≤ 5 mm between the antenna and user for both back surface and edge exposure conditions

rtificate #4298.01

- the antennas used by the host must have been tested for equipment approval or qualify for SAR test exclusion
- the antenna polarization, physical orientation, rotation and installation configurations used by the host must have been tested for compliance or qualify for test exclusion
- when the *SAR Test Exclusion Threshold* in KDB 447498 applies, a *test separation distance* of 5 mm is required to determine test exclusion for the tablet platform

The antennas embedded in tablets are typically ≤ 5 mm from the outer housing. The required antenna to user test separation distance is a "not to exceed test" distance required to apply the modular approach. Instead of the typical zero gap tablet edge test requirement between the edge of a tablet and the user, when an antenna has been tested at ≤ 5 mm according to the modular approach it can be incorporated into tablets with at least twice the tested distance from the outer housing of the tablet edge; otherwise, the tablet edge zero gap test requirement applies. When the dedicated host approach is applied, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom.

NTEK 北测

7. RF Output Power

7.1. WLAN & Bluetooth Output Power

7.1.1. Output Power Results Of WLAN

Mode	Channel	Frequency (MHz)	Tune-up (dBm)	Output Power (dBm)
	1	2412	15.50	15.45
802.11b	6	2437	15.50	14.83
-	11	2462	15.50	14.52
	1	2412	15.50	14.98
802.11g	6	2437	15.50	15.35
	11	2462	15.50	15.25
	1	2412	15.50	15.15
802.11n HT20	6	2437	15.50	15.39
-	11	2462	15.50	15.20
	3	2422	15.50	14.72
802.11n HT40	6	2437	15.50	15.41
	9	2452	15.50	15.10

ACCREDITED Certificate #4298.01 Page 26 of 75

NOTE: Power measurement results of WLAN 2.4G.

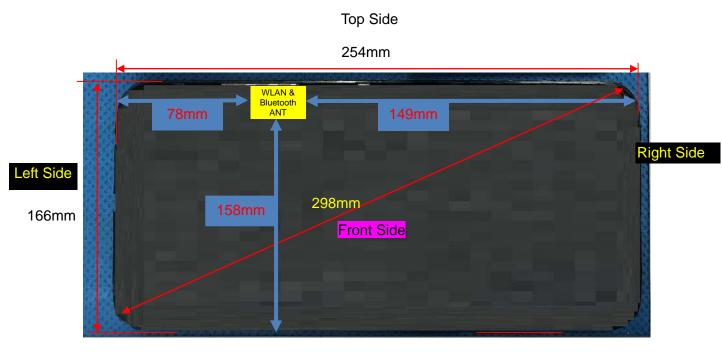
Mode	Channel	Frequency (MHz)	Tune-up (dBm)	Output Power (dBm)
	36	5180	13.00	12.07
802.11a	40	5200	13.00	12.20
	48	5240	13.00	12.50
	36	5180	12.50	11.86
802.11n HT20	40	5200	12.50	12.12
	48	5240	12.50	12.41
802.11n HT40	38	5190	13.00	12.47
002.1111H140	46	5230	13.00	12.79
	36	5180	12.50	12.07
802.11ac VHT20	40	5200	12.50	12.26
	48	5240	12.50	12.42
802.11ac VHT40	38	5190	13.00	12.48
002.1180 11140	46	5230	13.00	12.75
802.11ac VHT80	42	5210	13.00	12.50

NOTE: Power measurement results of WLAN 5.2G.

Mode	Channel Frequency (MH		Tune-up (dBm)	Output Power (dBm)
	149	5745	13.00	11.94
802.11a	157	5785	13.00	11.84
	165	5825	13.00	11.97
	149	5745	13.00	11.84
802.11n HT20	157	5785	13.00	11.92
	165	5825	13.00	11.89
000 44 - 11740	151	5755	13.00	12.09
802.11n HT40	159	5795	13.00	12.66
	149	5745	13.00	11.92
802.11ac VHT20	157	5785	13.00	11.94
	165	5825	13.00	12.00
000 11 \// IT 10	151	5755	13.00	12.15
802.11ac VHT40	159	5795	13.00	12.68
802.11ac VHT80	155	5775	13.00	12.24

NOTE: Power measurement results of WLAN 5.8G.

7.1.2. Output Power Results Of BT


	Output Power (dBm)							
	Channel	Tune-up	Tune-up Data Rates					
BR+EDR	Channel	(dBm)	1M	2M	3M			
DR+EDR	0CH	5.00	3.26	4.03	3.66			
	39CH	6.00	4.62	5.62	5.48			
	78CH	5.00	4.22	4.84	4.68			

	Ohaanad	T	Output Po	wer (dBm)
BLE	Channel	Tune-up	1M	2M
	0CH	1.00	-0.50	-0.65
	19CH	1.50	1.26	1.07
	39CH 1.50		0.87	0.70

NOTE: Power measurement results of BT.

8. Antenna Location

NTEK 北测[®]

ACCREDITED

Certificate #4298.01

Page 28 of 75

Bottom Side

Front View

Note: Since the confidentiality request of EUT, the antenna location example diagram see as above.

Distance of the Antenna to the EUT surface/edge										
Antennas Front Side Back Side Left Side Right Side Top Side Bottom Side										
WLAN & BT	5	5	78	149	5	158				

Note: When the minimum separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

	Positions for SAR tests	
Test separation distances \leq	50 mm	
Exposure Positions		oower of WLAN 2.4G 0 dBm
	Antenna to user(mm)	5
Front Side	SAR exclusion threshold	10
	SAR testing required?	YES
	Antenna to user(mm)	5
Back Side	SAR exclusion threshold	10
	SAR testing required?	YES
	Antenna to user(mm)	5
Top Side	SAR exclusion threshold	10
	SAR testing required?	YES
Exposure Positions		power of WLAN 5.2G
	13.00) dBm

Antenna to user(mm)	5					
SAR exclusion threshold	8.45					
SAR testing required?	YES					
Antenna to user(mm)	5					
SAR exclusion threshold	8.45					
SAR testing required?	YES					
Antenna to user(mm)	5					
SAR exclusion threshold	8.45					
SAR testing required?	YES					
Tune-up Maximum power of WLAN 5.8G						
13.00 dBm						
Antenna to user(mm)	5					
SAR exclusion threshold	7.78					
SAR testing required?	YES					
Antenna to user(mm)	5					
SAR exclusion threshold	7.78					
SAR testing required?	YES					
Antenna to user(mm)	5					
SAR exclusion threshold	7.78					
SAR testing required?	YES					
	SAR exclusion threshold SAR testing required? Antenna to user(mm) SAR exclusion threshold SAR testing required? Antenna to user(mm) SAR exclusion threshold SAR exclusion threshold SAR exclusion threshold SAR exclusion threshold SAR testing required? Tune-up Maximum p 13.00 Antenna to user(mm) SAR exclusion threshold SAR exclusion threshold SAR testing required? Antenna to user(mm) SAR exclusion threshold SAR testing required? Antenna to user(mm) SAR exclusion threshold SAR testing required? Antenna to user(mm) SAR testing required? Antenna to user(mm) SAR testing required? Antenna to user(mm) SAR exclusion threshold					

NOTE: Refer to section 4.3.1 of KDB 447498 D01.

	Positions for SAR tests			
Test separation distances > 50	mm			
Evennure Desitions	Tune-up Maximum p	oower of WLAN 2.4G		
Exposure Positions	15.50 dBm	35.48 mW		
	Antenna to user(mm)	78		
Left Side	SAR exclusion threshold(mW)	296		
	SAR testing required?	NO		
	Antenna to user(mm)	149		
Right Side	SAR exclusion threshold(mW)	996		
	SAR testing required?	NO		
	Antenna to user(mm)	158		
Bottom Side	SAR exclusion threshold(mW)	1096		
	SAR testing required?	NO		
For some Destitions	Tune-up Maximum p	oower of WLAN 5.2G		
Exposure Positions	13.00 dBm	19.95 mW		
	Antenna to user(mm)	78		
Left Side	SAR exclusion threshold(mW)	266		
	SAR testing required?	NO		
Right Side	Antenna to user(mm)	149		

	SAR exclusion threshold(mW)	966
	SAR testing required?	NO
	Antenna to user(mm)	158
Bottom Side	SAR exclusion threshold(mW)	1066
	SAR testing required?	NO
Exposure Positions	Tune-up Maximum p	oower of WLAN 5.8G
	13.00 dBm	19.95 mW
	Antenna to user(mm)	
Left Side	SAR exclusion threshold(mW)	262
	SAR testing required?	NO
	Antenna to user(mm)	149
Right Side	SAR exclusion threshold(mW)	962
	SAR testing required?	NO
	Antenna to user(mm)	158
Bottom Side	SAR exclusion threshold(mW)	1062
	SAR testing required?	NO

NOTE: Refer to section 4.3.1 of KDB 447498 D01.

9. Stand-alone SAR test exclusion

NTEK 北测[®]

Refer to FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

Page 31 of 75

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{(GHZ)}}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR, where:

- $f_{(GHZ)}$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mada	Iode P _{max} P _{max} [(dBm) (mW)		Distance	f	Calculation	SAR Exclusion	SAR test
Mode			(mm)	(GHz)	Result	threshold	exclusion
BT	6.00	3.98	5	2.480	1.25	3	Yes

NOTE: Standalone SAR test exclusion for BT

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] * $[\sqrt{f_{(GHZ)}}/x]$ W/kg for test separation distances \leq 50mm, where x = 7.5 for 1-g SAR and x = 18.75 for 10-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	Position	P _{max} (dBm)	P _{max} (mW)	Distance (mm)	f (GHz)	x	Estimated SAR (W/Kg)
BT	Body	6.00	3.98	5	2.48	7.5	0.167

NOTE: Estimated SAR calculation for BT

10. SAR Results

10.1. SAR measurement results

10.1.1. SAR measurement Result of WLAN 2.4G

Test Position of Body	Test channel /Freg	Mode	SAR (W/		Power Drift(%)	Conducted Power (dBm)	Tune-up Power (dBm)	Scaled SAR 1-g	Date	Plot
with 0mm	/Freq.		1-g	io-g		(ubiii)	(ubiii)	(W/Kg)		
Front Side	6/2437	802.11b	0.174	0.071	2.25	14.83	15.50	0.203	2024/8/07	

Back Side	6/2437	802.11b	0.244	0.102	-3.70	14.83	15.50	0.285	2024/8/07	3#
Top Side	6/2437	802.11b	0.189	0.076	-3.42	14.83	15.50	0.221	2024/8/07	

Page 32 of 75

NOTE: Body SAR test results of WLAN 2.4G

10.1.2. SAR measurement Result of WLAN 5.2G

Test Position of	Test	Mode		Value /kg)	Power	Conducted Power	Tune-up Power	Scaled SAR	Date	Plot
Body with 0mm	/Freq		10-g	Drift(%)	(dBm)	(dBm)	1-g (W/Kg)	Date	1 101	
Front Side	40/5200	802.11a	0.156	0.058	0.07	12.20	13.00	0.188	2024/7/30	
Back Side	40/5200	802.11a	0.236	0.092	4.26	12.20	13.00	0.284	2024/7/30	1#
Top Side	40/5200	802.11a	0.196	0.076	-3.46	12.20	13.00	0.236	2024/7/30	

NOTE: Body SAR test results of WLAN 5.2G

10.1.3. SAR measurement Result of WLAN 5.8G

Test Position of Body with	with Test channel /Freq	Mode	_	Value ′kg)	Power	Conducted	Tune-up Power	Scaled SAR 1-g	Date	Plot
0mm			1-g	10-g	Drift(%)	Power (dBm)	(dBm)	(W/Kg)		
Front Side	157/5785	802.11a	0.414	0.140	0.43	11.84	13.00	0.541	2024/7/31	
Back Side	157/5785	802.11a	0.602	0.220	1.88	11.84	13.00	0.786	2024/7/31	2#
Top Side	157/5785	802.11a	0.476	0.158	-2.08	11.84	13.00	0.622	2024/7/31	

NOTE: Body SAR test results of WLAN 5.8G

10.2. Simultaneous Transmission Analysis

Per KDB 447498 D01, simultaneous transmission SAR is compliant if,

1) Scalar SAR summation < 1.6W/kg.

2) SPLSR = $(SAR_1 + SAR_2)^{1.5}$ / (min. separation distance, mm), and the peak separation distance is determined from the square root of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$, where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. If SPLSR ≤ 0.04 , simultaneously transmission SAR measurement is not necessary.

Test Pos	aition	Scaled	SAR _{MAX}	Σ 1-g SAR	SPLSR	Remark	
Test Fo	SILION	NII	DSS	(W/Kg)	SFLOR		
	Front Side	0.541	0.167	0.708	N/A	N/A	
	Back Side	0.786	0.167	0.953	N/A	N/A	
Body	Left Side	/	/	/	N/A	N/A	
	Right Side	/	/	/	N/A	N/A	
	Top Side	0.622	0.167	0.789	N/A	N/A	

NTER	く北测『	ACCRED Certificate #4		f 75 I	Report No.: S24	071803805001	
	Bottom Side	/	/	/	N/A	N/A	

NO simultaneous transmissions are possible for this device of BT and 2.4G Wi-Fi.
NO simultaneous transmissions are possible for this device of 2.4G Wi-Fi and 5G Wi-Fi.

11. Appendix A. Photo documentation

Refer to appendix Test Setup photo---SAR

12. Appendix B. System Check Plots

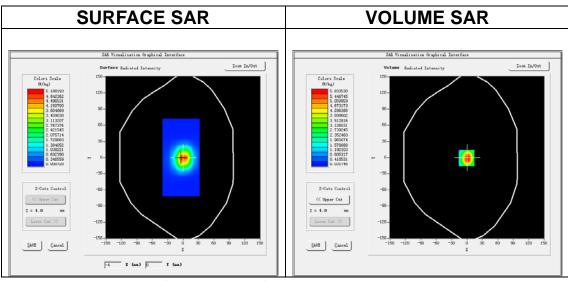
Table of contents

MEASUREMENT 1 System Performance Check - 2450MHz

MEASUREMENT 2 System Performance Check - 5200MHz

MEASUREMENT 3 System Performance Check - 5800MHz

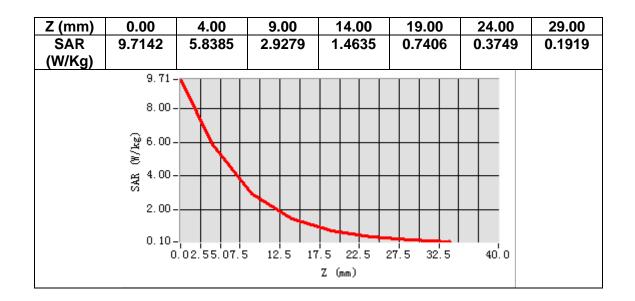
MEASUREMENT 1


Date of measurement: 7/8/2024

A. Experimental conditions.

Area Scan	dx=12mm dy=12mm, h= 5.00 mm	
ZoomScan	<u>7x7x7,dx=5mm dy=5mm dz=5mm</u>	
Phantom Phantom	Validation plane	
Device Position	Dipole	
Band	<u>CW2450</u>	
<u>Channels</u>	Middle	
Signal	CW (Crest factor: 1.0)	
<u>ConvF</u>	<u>2.85</u>	

B. SAR Measurement Results


Frequency (MHz)	2450.000000	
Relative permittivity (real part)	37.910986	
Relative permittivity (imaginary part)	13.158279	
Conductivity (S/m)	1.790988	
Variation (%)	-3.640000	

Maximum location: X=-1.00, Y=-1.00 SAR Peak: 9.83 W/kg

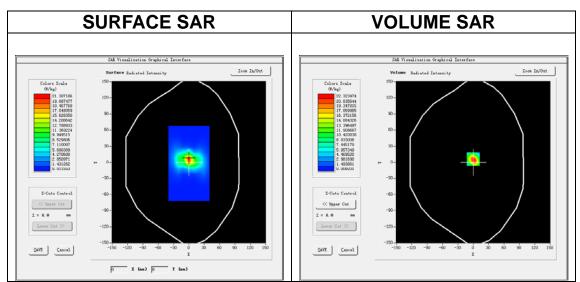
SAR 10g (W/Kg)	2.391231
SAR 1g (W/Kg)	5.072129

3D screen shot	Hot spot position

Certificate #4298.01

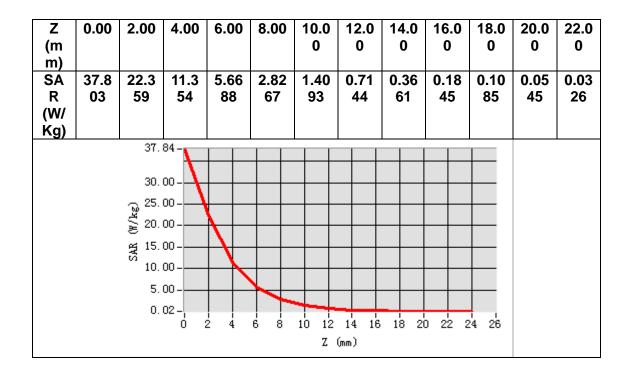
ACCREDITED Page 37 of 75

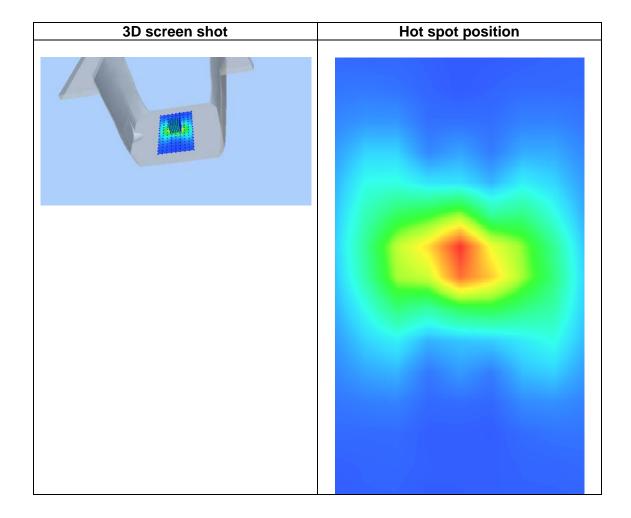
Date of measurement: 30/7/2024


NTEK 北测

A. Experimental conditions.

Area Scan	<u>dx=10mm dy=10mm, h= 2.00 mm</u>
ZoomScan	<u>7x7x12,dx=4mm dy=4mm dz=2mm</u>
Phantom	Validation plane
Device Position	Dipole
Band	<u>CW5200</u>
<u>Channels</u>	Middle
Signal	CW (Crest factor: 1.0)
ConvF	2.07


B. SAR Measurement Results


Frequency (MHz)	5200.000000
Relative permittivity (real part)	34.481364
Relative permittivity (imaginary part)	15.578307
Conductivity (S/m)	4.500400
Variation (%)	-2.960000

Maximum location: X=0.00, Y=6.00 SAR Peak: 40.06 W/kg

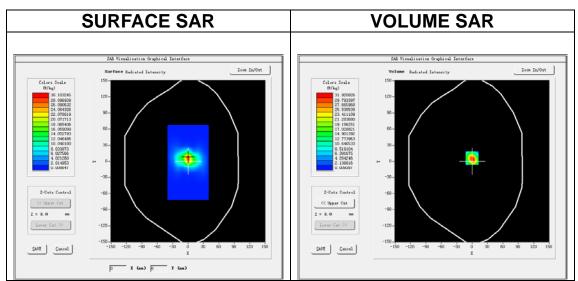
SAR 10g (W/Kg)	6.050168
SAR 1g (W/Kg)	17.042132

Page 38 of 75

Certificate #4298.01

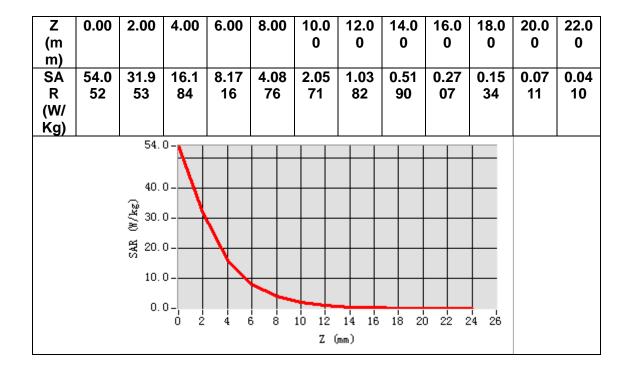
ACCREDITED Page 39 of 75

Date of measurement: 31/7/2024


NTEK 北测

A. Experimental conditions.

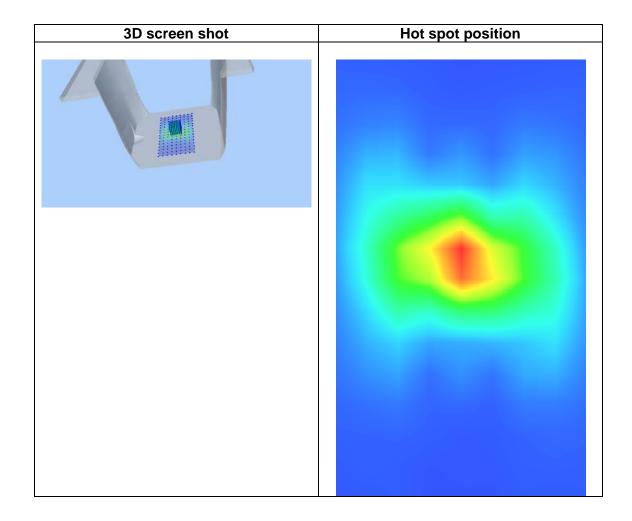
Area Scan	<u>dx=10mm dy=10mm, h= 2.00 mm</u>
<u>ZoomScan</u>	<u>7x7x12,dx=4mm dy=4mm dz=2mm</u>
Phantom Phantom	Validation plane
Device Position	Dipole
Band	<u>CW5800</u>
<u>Channels</u>	Middle
<u>Signal</u>	CW (Crest factor: 1.0)
<u>ConvF</u>	<u>2.04</u>


B. SAR Measurement Results

Frequency (MHz)	5800.000000
Relative permittivity (real part)	33.912514
Relative permittivity (imaginary part)	15.965078
Conductivity (S/m)	5.144303
Variation (%)	-2.800000

Maximum location: X=0.00, Y=6.00 SAR Peak: 57.37 W/kg

SAR 10g (W/Kg)	5.525255
SAR 1g (W/Kg)	18.828047



ACCREDITED

Certificate #4298.01

Page 40 of 75

NTEK 北测[®]

13. Appendix C. Plots of High SAR Measurement

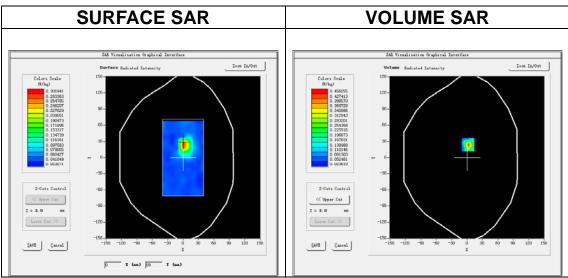
Table of contents

MEASUREMENT 1 WLAN 5.2G Body

MEASUREMENT 2 WLAN 5.8G Body

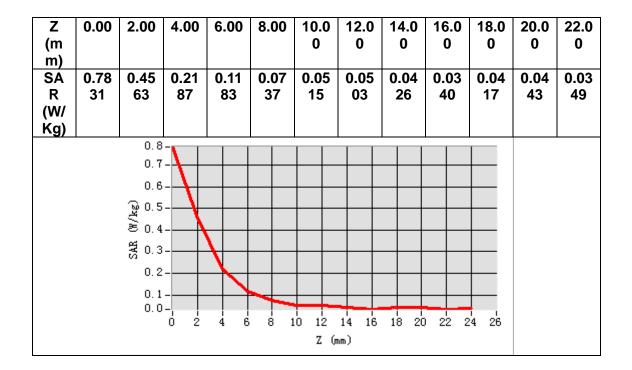
MEASUREMENT 3 WLAN 2.4G Body

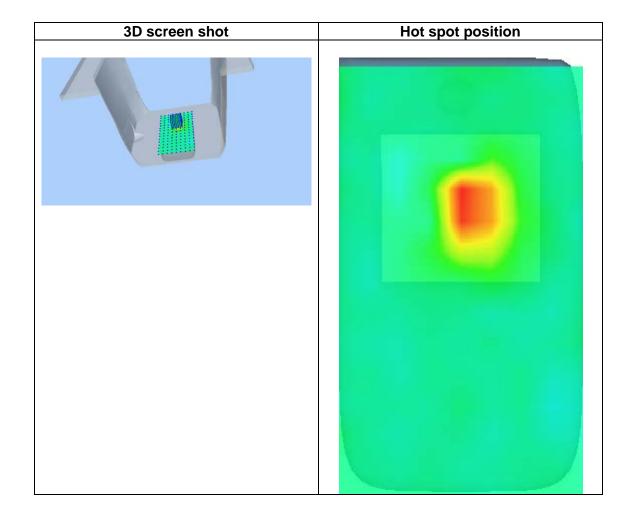
MEASUREMENT 1


Date of measurement: 30/7/2024

A. Experimental conditions.

Area Scan	<u>dx=10mm dy=10mm, h= 2.00 mm</u>
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom	Validation plane
Device Position	Body
Band	IEEE 802.11a U-NII
<u>Channels</u>	Mid
<u>Signal</u>	IEEE802.11a (Crest factor: 1.0)
<u>ConvF</u>	2.07


B. SAR Measurement Results

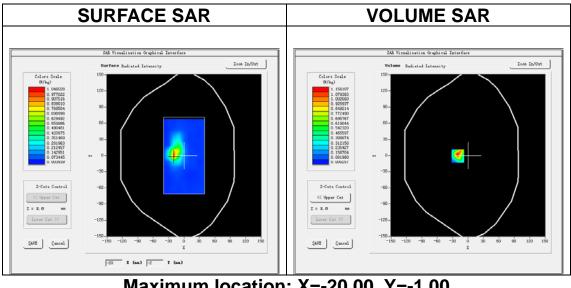

Frequency (MHz)	5200.000000
Relative permittivity (real part)	34.481364
Relative permittivity (imaginary part)	15.578307
Conductivity (S/m)	4.500400
Variation (%)	4.260000

Maximum location: X=2.00, Y=24.00 SAR Peak: 0.82 W/kg

SAR 10g (W/Kg)	0.092370
SAR 1g (W/Kg)	0.236176

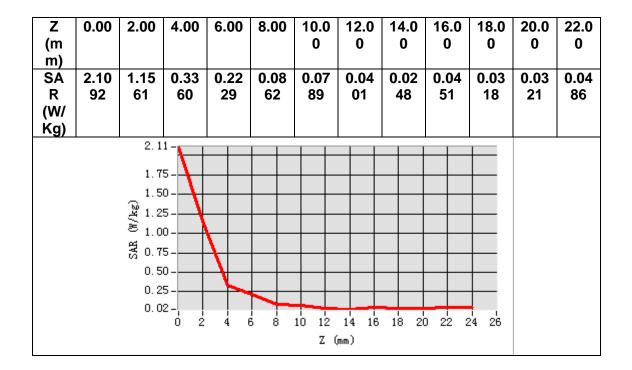
Page 43 of 75

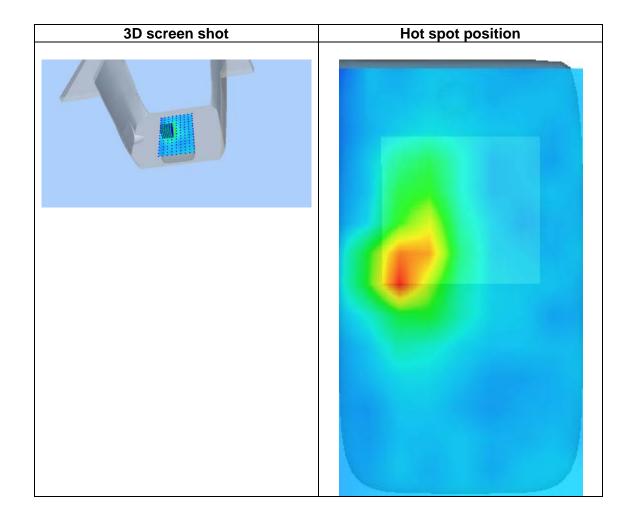
MEASUREMENT 2


Date of measurement: 31/7/2024

A. Experimental conditions.

Area Scan	<u>dx=10mm dy=10mm, h= 2.00 mm</u>
ZoomScan	7x7x12,dx=4mm dy=4mm dz=2mm
Phantom Phantom	Validation plane
Device Position	Body
Band	IEEE 802.11a U-NII
<u>Channels</u>	Mid
<u>Signal</u>	IEEE802.11a (Crest factor: 1.0)
<u>ConvF</u>	<u>2.04</u>


B. SAR Measurement Results

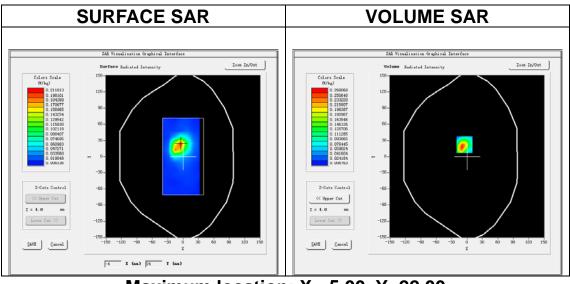

Frequency (MHz)	5785.000000
Relative permittivity (real part)	33.988465
Relative permittivity (imaginary part)	15.840635
Conductivity (S/m)	5.091004
Variation (%)	1.880000

waximum location	: X=-20.00,	T = -1.00
SAR Peak:	2.23 W/kg	

SAR 10g (W/Kg)	0.220459
SAR 1g (W/Kg)	0.602177

Page 45 of 75

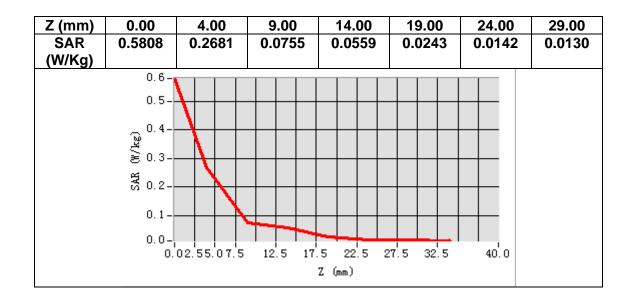
MEASUREMENT 3

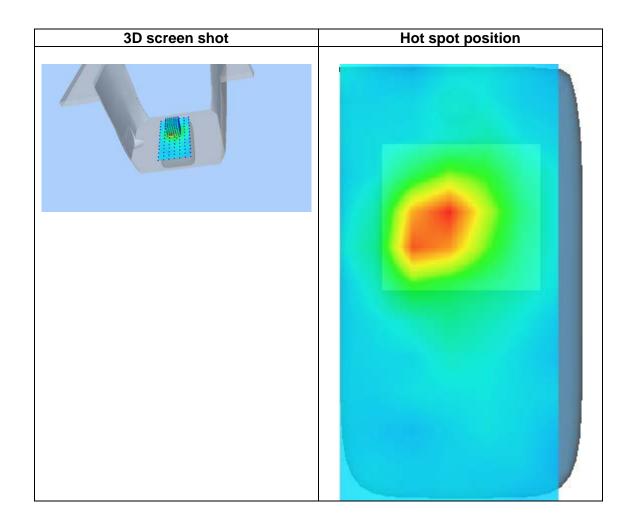

Date of measurement: 7/8/2024

A. Experimental conditions.

Area Scan	<u>dx=12mm dy=12mm, h= 5.00 mm</u>
ZoomScan	7x7x7,dx=5mm dy=5mm dz=5mm
Phantom	Validation plane
Device Position	Body
Band	IEEE 802.11b ISM
<u>Channels</u>	Low
<u>Signal</u>	IEEE802.11b (Crest factor: 1.0)
<u>ConvF</u>	<u>2.85</u>

B. SAR Measurement Results


Frequency (MHz)	2437.000000
Relative permittivity (real part)	37.963086
Relative permittivity (imaginary part)	13.076779
Conductivity (S/m)	1.770450
Variation (%)	-3.700000



Maximum location: X=-5.00, Y=22.00 SAR Peak: 0.48 W/kg

SAR 10g (W/Kg)	0.101674	
SAR 1g (W/Kg)	0.244014	

14. Appendix D. Calibration Certificate

Table of contents

E Field Probe - 3423-EPGO-426

2450 MHz Dipole - SN 03/15 DIP 2G450-352

5000-6000 MHz Dipole - SN 13/14 WGA 33

Page 49 of 75

COMOSAR E-Field Probe Calibration Report

Ref : ACR.261.11.23.BES.A

SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD. BUILDING E, FENDA SCIENCE PARK, SANWEI COMMUNITY, XIXIANG STREET, BAO'AN DISTRICT, SHENZHEN GUANGDONG, CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: 3423-EPGO-426

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 09/18/2023

Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/10

ACCREDITED Page 50 of 75

Report No.: S24071803805001

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.11.23.BES.A

	Name	Function	Date	Signature
Prepared by :	Cyrille ONNEE	Measurement Responsible	9/18/2023	A
Checked & approved by:	Jérôme Luc	Technical Manager	9/18/2023	J 35
Authorized by:	Yann Toutain	Laboratory Director	9/19/2023	Yann TOUTRAN
				Yann Signature

Yann Yann Toutain ID Toutain ID Date : 2023.09.19 09:08:14 +02'00'

	Customer Name
Distribution :	SHENZHEN NTEK TESTING TECHNOLOGY CO., LTD.

Issue	Name	Date	Modifications
А	Cyrille ONNEE	9/18/2023	Initial release

Page: 2/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

Ref: ACR.261.11.23.BES.A

TABLE OF CONTENTS

Page 51 of 75

1	Dev	ice Under Test	
2	Proc	luct Description	
	2.1	General Information	4
3	Mea	surement Method	
	3.1	Sensitivity	4
	3.2	Linearity	
	3.3	Isotropy	5
	3.4	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Cali	bration Results	
	5.1	Calibration in air	6
	5.2	Calibration in liquid	7
6	Veri	fication Results	
7	List	of Equipment9	

Page: 3/10

Page 52 of 75

COMOSAR E-FIELD PROBE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

Ref: ACR 261.11.23 BES A

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	3423-EPGO-426	
Product Condition (new / used)	New	
Frequency Range of Probe	0.15 GHz-7.5GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.261 MΩ	
52 	Dipole 2: R2=0.213 MΩ	
	Dipole 3: R3=0.233 MΩ	

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 <u>SENSITIVITY</u>

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

Page: 4/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL

Page 53 of 75

NTEK 北测

COMOSAR E-FIELD PROBE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

Iac-MR/

Ref: ACR.261.11.23.BES.A

LINEARITY 3.2

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

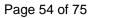
3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{\rm he}$ + d_{step} along lines that are approximately normal to the surface:


$SAR_{uncertainty}$ [%] = ∂SAR_{be}	$\frac{(d_{\rm be} + d_{\rm step})^2}{2d_{\rm step}}$	$\frac{\left(e^{-d_{bc}/(\delta/2)}\right)}{\delta/2}$	for $\left(d_{be} + d_{step}\right) < 10 \text{ mm}$
where			

where	
SARuncertainty	is the uncertainty in percent of the probe boundary effect
d _{be}	is the distance between the surface and the closest zoom-scan measurement
	point, in millimetre
Δ_{step}	is the separation distance between the first and second measurement points that
	are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible
δ	is the minimum penetration depth in millimetres of the head tissue-equivalent
	liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;
⊿SAR _{be}	in percent of SAR is the deviation between the measured SAR value, at the
	distance $d_{\rm be}$ from the boundary, and the analytical SAR value.

The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL

NTEK 北测

COMOSAR E-FIELD PROBE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

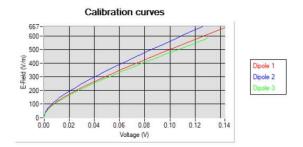
Ref: ACR.261.11.23.BES.A

4 MEASUREMENT UNCERTAINTY

Hac-MR

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-11% for the frequency range 150-450MHz.


The estimated expanded uncertainty (k=2) in calibration for SAR (W/kg) is +/-14% for the frequency range 600-7500 MHz.

5 CALIBRATION RESULTS

Ambient condition			
Liquid Temperature	20 +/- 1 °C		
Lab Temperature	20 +/- 1 °C		
Lab Humidity	30-70 %		

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^{2} = \sum_{i=1}^{3} \frac{V_{i} \left(1 + \frac{V_{i}}{DCP_{i}}\right)}{Norm_{i}}$$

where

Vi=voltage readings on the 3 channels of the probe DCPi=diode compression point given below for the 3 channels of the probe Normi=dipole sensitivity given below for the 3 channels of the probe

Page: 6/10

Template_ACR.DDD.N.YY.MVGBJSSUE_COMOSAR Probe vL

Page 55 of 75

Report No.: S24071803805001

NTEK 北测

COMOSAR E-FIELD PROBE CALIBRATION REPORT

ACCREDITED

Certificate #4298.01

Iac-MR

Ref: ACR.261.11.23.BES.A

	Normy dipole	
$1 (\mu V / (V/m)^2)$	$2 (\mu V / (V/m)^2)$	$3 (\mu V/(V/m)^2)$
0.78	0.62	0.85

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
105	108	107

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula.

$$E_{liquid}^2 = \frac{\rho SAR}{\sigma}$$

where

 σ =the conductivity of the liquid

ρ=the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where c=the specific heat for the liquid dT/dt=the temperature rises over the time

For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4P_W}{ab\delta}e^{\frac{-2z}{\delta}}$$

where

a=the larger cross-sectional of the waveguide b=the smaller cross-sectional of the waveguide δ =the skin depth for the liquid in the waveguide Pw=the power delivered to the liquid

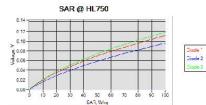
Page: 7/10

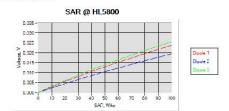
Template_ACR.DDD.N.YY.MVGBJSSUE_COMOSAR Probe vL

Page 56 of 75

COMOSAR E-FIELD PROBE CALIBRATION REPORT

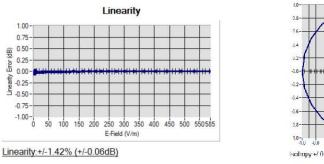
ACCREDITED

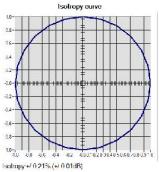

Certificate #4298.01


Ref: ACR.261.11.23.BES.A

The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.

<u>Liquid</u>	<u>Frequency</u> (MHz*)	<u>Con∨F</u>
HL750	750	2.37
HL850	835	2.32
HL900	900	2.23
HL1800	1800	2.45
HL1900	1900	2.63
HL2000	2000	2.83
HL2300	2300	2.81
HL2450	2450	2.85
HL2600	2600	2.65
HL3300	3300	2.21
HL3500	3500	2.20
HL3700	3700	2.11
HL3900	3900	2.40
HL4200	4200	2.40
HL4600	4600	2.33
HL4900	4900	2.37
HL5200	5200	2.07
HL5400	5400	2.11
HL5600	5600	2.20
HL5800	5800	2.04


(*) Frequency validity is +/-50 MHz below 600 MHz, +/-100 MHz from 600 MHz to 6GHz and +/-700 MHz above 6GHz



6 VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is $\pm/-0.2$ dB for linearity and $\pm/-0.15$ dB for axial isotropy.

Page: 8/10

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.11.23.BES.A

7 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2023
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Fluoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025
Coaxial cell	MVG	SN 32/16 COAXCELL_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG2_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G600_1	Validated. No cal required.	Validated. No cal required.

Page: 9/10

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.261.11.23.BES.A

		16	·	A1
Wa∨eguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	and the state of t	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_1	Validated. No cal required.	Validated. No cal required.
Wa∨eguide	MVG	SN 32/16 WG14_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_7G000_1	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Page: 10/10