Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1177_Feb21 Page 6 of 6 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com CCIS Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn > **Certificate No:** Z19-60176 # CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d175 Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 11, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | DAE4 | SN 1556 | 20-Aug-18(SPEAG,No.DAE4-1556_Aug18) | Aug-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是礼 | | Reviewed by: | Lin Hao | SAR Test Engineer | The obo | | Approved by: | Qi Dianyuan | SAR Project Leader | 338 | Issued: June 14, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60176 Page 1 of 8 lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60176 Page 2 of 8 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY52 | 52.10.2.1504 | |--------------------------|--| | Advanced Extrapolation | | | Triple Flat Phantom 5.1C | | | 10 mm | with Spacer | | dx, dy, dz = 5 mm | | | 1900 MHz ± 1 MHz | | | | Advanced Extrapolation Triple Flat Phantom 5.1C 10 mm dx, dy, dz = 5 mm | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.2 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | 2424 | # SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.4 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.4 W/kg ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 1.50 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.5 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.23 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 W/kg ± 18.7 % (k=2) | Certificate No: Z19-60176 Page 3 of 8 Bao'an District, Shenzhen, Guangdong, People's Republic of China. # Appendix (Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 51.7Ω+ 5.93jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.3dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.8Ω+ 5.24jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 24.7dB | | #### General Antenna Parameters and Design | | 1 | |----------|----------| | 1.064 ns | | | | 1.064 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------|--| Certificate No: Z19-60176 Page 4 of 8 Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com Date: 06.10.2019 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d175 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.387$ S/m; $\varepsilon_r = 40.2$; $\rho = 1000$ kg/m³ Wiedium parameters used: I = 1900 MHz; $\delta = 1.387$ S/m; $\varepsilon_r = 40.2$; $\rho = 1000$ kg/m. Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7514; ConvF(7.73, 7.73, 7.73) @ 1900 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) #### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.94 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 9.79 W/kg; SAR(10 g) = 5.07 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg Certificate No: Z19-60176 Page 5 of 8 # Impedance Measurement Plot for Head TSL Certificate No: Z19-60176 Page 6 of 8 ### **DASY5 Validation Report for Body TSL** Date: 06.11.2019 Test Laboratory: CTTL, Beijing, China **DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d175** Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.499$ S/m; $\varepsilon_r = 52.18$; $\rho = 1000$ kg/m3 Phantom section: Right Section **DASY5** Configuration: - Probe: EX3DV4 SN7514; ConvF(7.53, 7.53, 7.53) @ 1900 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470) # System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.67 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.23 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg Certificate No: Z19-60176 Page 7 of 8 # Impedance Measurement Plot for Body TSL Certificate No: Z19-60176 Page 8 of 8 # **Dipole Impedance and Return Loss calibration Report** D1900V2 - SN: 5d175 **Object:** **Calibration Date:** June 11, 2020 IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 Calibration reference: D01 Tanet Wei (Janet Wei, SAR project engineer) Winner Thona Tophologies Tophologies Calibrated By: **Reviewed By:** (Winner Zhang, Technical manager) # **Environment of Test Site** | Temperature: | 18 ~ 25°C | |-----------------------|-----------| | Humidity: | 50~60% RH | | Atmospheric Pressure: | 1011 mbar | # **Test Data** # Measurement Plot for Head TSL In 2020 # Measurement Plot for Body TSL In 2020 # **Comparison with Original report** | Items | Calibrated By CTTL | Calibrated By JYT
In 2020 | Deviation | Limit | |--------------------------|--------------------|------------------------------|--------------|--------------------------| | Impendence for Head TSL | 51.7Ω+5.93 jΩ | 52.36Ω+3.62 jΩ | 0.66Ω-2.31jΩ | ±5Ω | | Return Loss for Head TSL | -24.3dB | -24.93dB | 2.59% | ±20%(No less than 20 dB) | | Impendence for Body TSL | 47.8Ω+5.24 jΩ | 48.42Ω+3.03 jΩ | 0.62Ω-2.21jΩ | ±5Ω | | Return Loss for Body TSL | -24.7dB | -26.45dB | 7.09% | ±20%(No less than 20 dB) | # Result Compliance **Certificate No:** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com CCIS Fax: +86-10-62304633-2504 http://www.chinattl.cn Z19-60177 # CALIBRATION CERTIFICATE Object D2450V2 - SN: 910 Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: June 10, 2019 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Power sensor NRP8S | 104291 | 20-Aug-18 (CTTL, No.J18X06862) | Aug-19 | | Reference Probe EX3DV4 | SN 7514 | 27-Aug-18(SPEAG,No.EX3-7514_Aug18) | Aug-19 | | DAE4 | SN 1556 | 20-Aug-18(SPEAG,No.DAE4-1556_Aug18) | Aug-19 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336) | Jan-20 | | NetworkAnalyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547) | Jan-20 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是礼 | | Reviewed by: | Lin Hao | SAR Test Engineer | # 1 %b | | Approved by: | Qi Dianyuan | SAR Project Leader | 200 | Issued: June 14, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z19-60177 Page 1 of 8 S D C A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Glossarv: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - *Measurement Conditions*: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z19-60177 Page 2 of 8 S D E A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.2.1495 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.83 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.6 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % | 1.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | # SAR result with Body TSL | Condition | | |--------------------|--| | 250 mW input power | 12.8 W/kg | | normalized to 1W | 50.9 W/kg ± 18.8 % (k=2) | | Condition | | | 250 mW input power | 5.94 W/kg | | normalized to 1W | 23.7 W/kg ± 18.7 % (k=2) | | | 250 mW input power normalized to 1W Condition 250 mW input power | Certificate No: Z19-60177 Page 3 of 8 Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com S D C A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 54.1Ω+ 2.51 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 26.8dB | | #### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 52.3Ω+ 3.40 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 27.9dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.020 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z19-60177 Page 4 of 8 Date: 06.10.2019 In Collaboration with S D C A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.825$ S/m; $\epsilon_r = 39.75$; $\rho = 1000$ kg/m³ Phantom section: Right Section **DASY5** Configuration: - Probe: EX3DV4 SN7514; ConvF(6.95, 6.95, 6.95) @ 2450 MHz; Calibrated: 8/27/2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 8/20/2018 - Phantom: MFP_V5.1C; Type: QD 000 P51CA; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.66 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (measured) = 22.3 W/kg 0 dB = 22.3 W/kg = 13.48 dBW/kg Certificate No: Z19-60177 Page 5 of 8