	TEST REPOR	т			
FCC ID :	2BFEP-CAM5				
Test Report No:	TCT250117E004				
Date of issue:	Jan. 24, 2025	S S			
Testing laboratory::	SHENZHEN TONGCE TESTIN	G LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China				
Applicant's name::	CONVERGE BEAUTY LIMITED				
Address:	FLAT/RM C 22/F FORD GLOR STREET LAI CHI KOK KOWLO				
Manufacturer's name :	CONVERGE BEAUTY LIMITED				
Address:	FLAT/RM C 22/F FORD GLORY PLAZA 37 WING HONG STREET LAI CHI KOK KOWLOON HONG KONG, China				
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2020				
Product Name::	Wi-Fi 1080p Battery Camera with Solar Panel				
Trade Mark:	N/A				
Model/Type reference :	Q50, Q10, Q20, Q30, Q40, Q60 Q54, Q55, Q50 pro, Q50 plus	, Q70, Q80, Q90, Q51, Q52, Q53			
Rating(s):	Rechargeable Li-ion Battery DC	3.7V			
Date of receipt of test item	Jan. 17, 2025				
Date (s) of performance of test:	Jan. 17, 2025 ~ Jan. 24, 2025				
Tested by (+signature) :	Onnado YE	Onnado JENGCE A			
Check by (+signature) :	Beryl ZHAO	BoyCom TCT)			
Approved by (+signature):	Tomsin	Jomsmes 33			
TONGCE TESTING LAB. Th	his document may be altered or link, and shall be noted in the revis	e written approval of SHENZHEN revised by SHENZHEN TONGCE sion section of the document. The			

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	General Proc							
	1.1. EUT descr	iption						3
	1.2. Model(s) li	st						3
	1.3. Operation	Frequency						4
2.	Test Result	Summary	<u>ke)</u>		<u>(60)</u>		<u>(6)</u>	5
3.	General Info	rmation						6
	3.1. Test envir	onment and	d mode					6
	3.2. Descriptio	n of Suppo	ort Units					7
4.	Facilities and	d Accredi	tations .					8
	4.1. Facilities				<u> </u>			8
	4.2. Location							8
	4.3. Measurem	ent Uncert	ainty					8
5.	Test Results	and Mea	suremei	nt Data		(\mathbf{c})		9
	5.1. Antenna re	equirement						9
	5.2. Conducted	d Emission						10
	5.3. Maximum	Conducted	(Peak) O	utput Pow	/er		<u>(6)</u>	14
	5.4. Emission							
	5.5. Power Spe	ectral Dens	ity					16
	5.6. Conducted	d Band Edg	je and Sp	urious Em	ission Me	easuremei	nt	17
	5.7. Radiated S	Spurious Ei	mission M	leasureme	ent			19
Ap	opendix A: Te	st Result	of Cond	ducted To	est			
Α	opendix B: Pł	notograph	ns of Tes	st Setup				
A	ppendix C: Pl	notograph	ns of EU	T				

1. General Product Information

1.1. EUT description

Product Name:	Wi-Fi 1080p Battery Camera with Solar Panel			
Model/Type reference:				
Sample Number	TCT250117E003-0101			
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))			
Channel Separation:	5MHz			
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20)			
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n: Orthogonal Frequency Division Multiplexing (OFDM)			
Data speed:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps 802.11n: Up to 150Mbps			
Antenna Type:	Internal Antenna			
Antenna Gain:	2.99dBi			
Rating(s):	Rechargeable Li-ion Battery DC 3.7V			

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with				
1	Q50	\square				
Other models	Q10, Q20, Q30, Q40, Q60, Q70, Q80, Q90, Q51, Q52, Q53, Q54, Q55, Q50 pro, Q50 plus					
Note: Q50 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of Q50 can represent the remaining models.						
KO)		KO)				

Page 3 of 68

1.3. Operation Frequency

For 802.11b/g/n(HT20)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
N	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n(HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

802.11n(HT20)

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	24.1 °C	23.5 °C			
Humidity:	47 % RH	53 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			
Test Software:					
Software Information:	RDTool				
Power Level:	Default				
Test Mode:					
Engineer mode:	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery.				
polarities were performed. I the EUT continuously work axis (X, Y & Z) and cor manipulating interconnectin from 1m to 4m in both	Bm chamber. Measurements in During the test, each emission ing, investigated all operating insidered typical configuration og cables, rotating the turnta horizontal and vertical po wn in Test Results of the follow	n was maximized by: having g modes, rotated about all 3 n to obtain worst position ble, varying antenna heigh larizations. The emissions			
were carried out with the EL report and defined as follow	uction and function in typical o JT in transmitting operation, w s: ate in lowest channel, and fo	hich was shown in this test			
was worst case.					
was worst case. Mode	(c [*])	Data rate			
was worst case. Mode 802.11b 802.11g		Data rate 1Mbps 6Mbps			

6.5Mbps

TCT 通测检测 TCT 通测检测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	ETA0U82CBC	RT10206CS/AE	/	SAMSUNG
Mobile Phone	SM-G9350	R28HA2ER3GT	/	SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Antenna

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

8

2

3

9

8

2

80

40 50

30

33

8

8

50 60 70

\$

3

20

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is internal antenna which permanently attached, and the best case gain of the antenna is 2.99dBi.

0 mm 01 02 05 04 03 03 07 08 06 00101 02 05 04 02 03 07 08 0

30 50 10 500 ao 80 10 eo 20 40 30 50 10 100 ao 80 10 eo 20 40 30 50 =

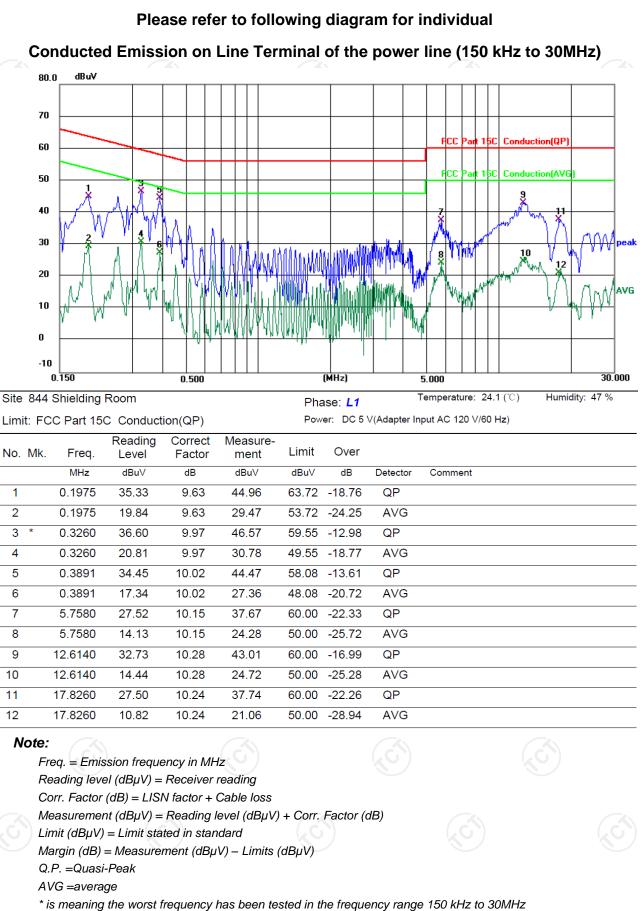
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2020					
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto			
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Referenc	e Plane				
Test Setup: Test Mode:	40cm E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN Line Impedence Stabilization No Test table height=0.8m Charging + Transmittin	EMI Receiver	- AC power			
Test Procedure:	 The E.U.T is conneline impedance staprovides a 500hm/5 measuring equipme The peripheral device power through a Ll coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables and the interface cables and the interface cables. 	bilization network 50uH coupling im nt. ces are also conne SN that provides with 50ohm term diagram of the line are checkence. In order to fir e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum nd the maximum ipment and all of ed according to			
	ANSI C63.10:2020 d					

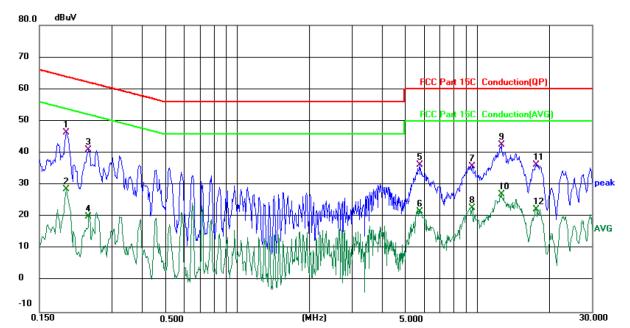
Page 10 of 68

5.2.2. Test Instruments


Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025		
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025		
Attenuator	N/A	10dB	164080	Jun. 26, 2025		
Line-5	тст	CE-05	/	Jun. 26, 2025		
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1		
y k			S			

Page 11 of 68

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



5.2.3. Test data

Humidity: 47 %

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

TCT通测检测 TCT通测检测

Limit: FCC Part 15C Conduction(QP)

Phase: N Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

Temperature: 24.1 (°C)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	*	0.1932	36.76	9.65	46.41	63.90	-17.49	QP	
2		0.1932	18.84	9.65	28.49	53.90	-25.41	AVG	
3		0.2403	31.21	9.65	40.86	62.09	-21.23	QP	
4		0.2403	10.31	9.65	19.96	52.09	-32.13	AVG	
5		5.7700	25.93	10.22	36.15	60.00	-23.85	QP	
6		5.7700	11.48	10.22	21.70	50.00	-28.30	AVG	
7		9.5180	25.53	10.32	35.85	60.00	-24.15	QP	
8		9.5180	12.35	10.32	22.67	50.00	-27.33	AVG	
9		12.5937	32.14	10.30	42.44	60.00	-17.56	QP	
10		12.5937	16.82	10.30	27.12	50.00	-22.88	AVG	
11		17.5975	26.05	10.29	36.34	60.00	-23.66	QP	
12		17.5975	12.01	10.29	22.30	50.00	-27.70	AVG	

Note 1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note 2: Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode (Highest channel and 802.11b) was submitted only.

5.3. Maximum Conducted (Peak) Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	Power meter EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the power meter by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the Peak output power and record the results in the test report.
Test Result:	PASS

5.3.2. Test Instruments

	Name	Manufacturer	Model No.	Serial Number	Calibration Due
(Power Sensor	Agilent	8184A	MY41096530	Jun. 26, 2025
~	Power Meter	Agilent	E4418B	MY45100357	Jun. 26, 2025

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	<u> </u>	

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	KDB 558074 D01 v05r02					
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report. 					
Test Result:	PASS					

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		/

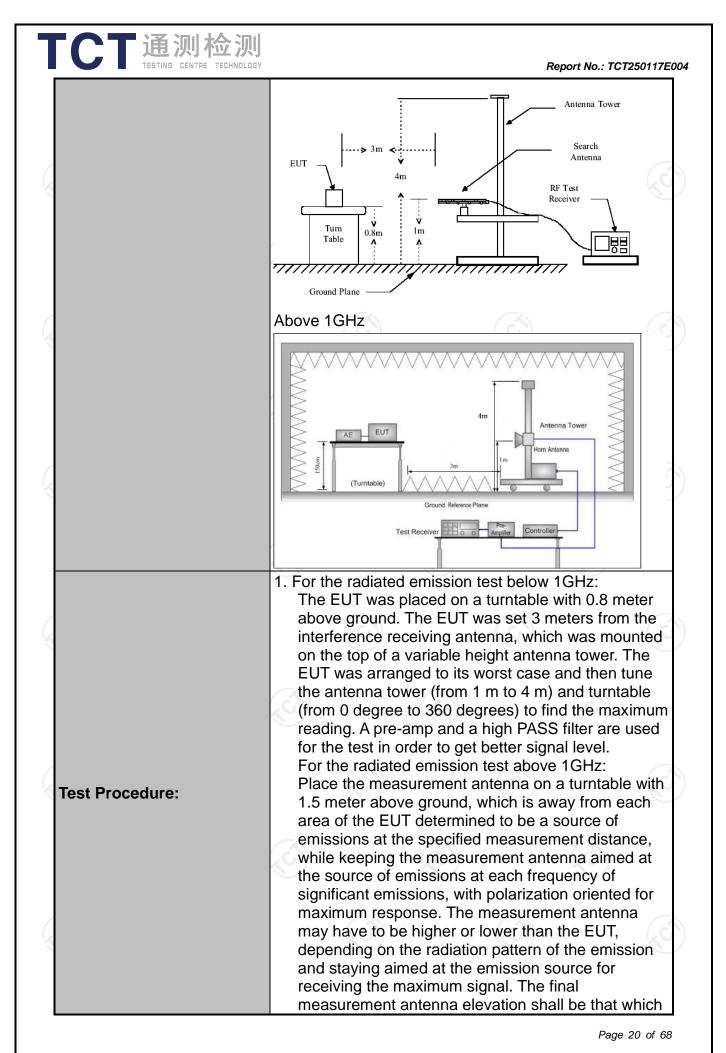
5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	KDB558074 D01 v05r02				
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 20 dB instead of 20 dB per 				
	 paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 				

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025	
Combiner Box	Ascentest	AT890-RFB	1	/	
				Page 18 of 68	
Hotline: 400-6611-1	40 Tel: 86-755-276	73339 Fax: 86-	755-27673332 http	://www.tct-lab.com	



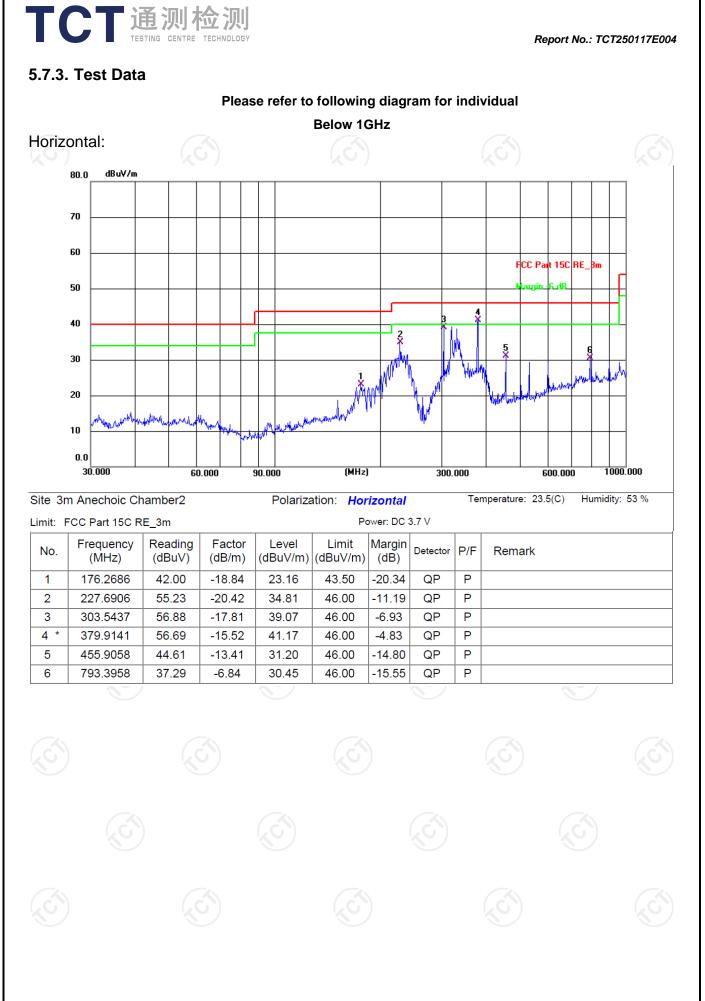
5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

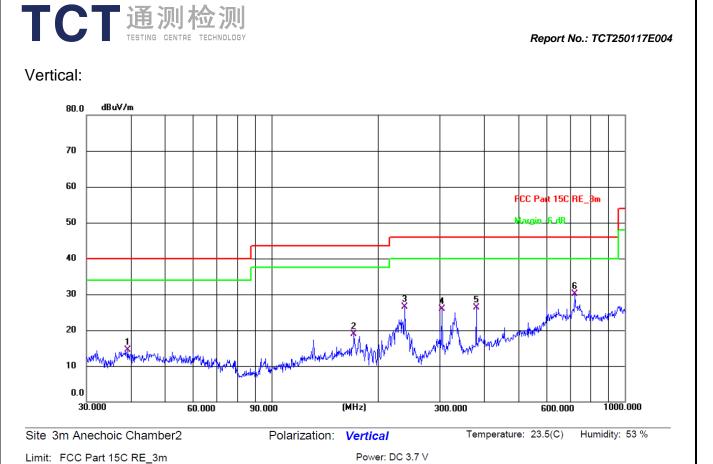
Test Requirement:	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10:2020					
Frequency Range:	9 kHz to 25 GHz					
Measurement Distance:	3 m	(<u>(</u>)			
Antenna Polarization:	Horizontal &	Vertical				
Operation mode:	Transmitting	mode wit	h modulat	ion	(
	Frequency	Detector	RBW	VBW	Remark	
	9kHz- 150kHz	Quasi-peal		1kHz	Quasi-peak Value	
Receiver Setup:	150kHz- 30MHz	Quasi-peal		30kHz	Quasi-peak Value	
	30MHz-1GHz	Quasi-peal	120KHz	300KHz	Quasi-peak Value	
		Peak	1MHz	3MHz	Peak Value	
	Above 1GHz	Peak	1MHz	10Hz	Average Value	
	Frequen	су	Field Stre (microvolts		Measurement Distance (meters)	
	0.009-0.4	190	2400/F(I		300	
	0.490-1.705		24000/F(KHz)		30	
	1.705-30		30		30	
	30-88		100		3	
	88-216		150		3	
Limit:	216-96	0	200		3	
	Above 9	60	500	3		
			teld Strength crovolts/meter) Measure Distar (meter) 500 3		ce Detector	
	Above 1GHz	z	5000 3		Peak	
	For radiated	emission: stance = 3m	s below 30	_	Computer	
Test setup:	EUT 0.8m Ground Plane					
	30MHz to 10	Hz				

Page 19 of 68

TCT通测检测	
TESTING CENTRE TECHNOLOGY	Report No.: TCT250117E004
	 maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings:
	 (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when
	duty cycle is no less than 98 percent. VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS



5.7.2. Test Instruments

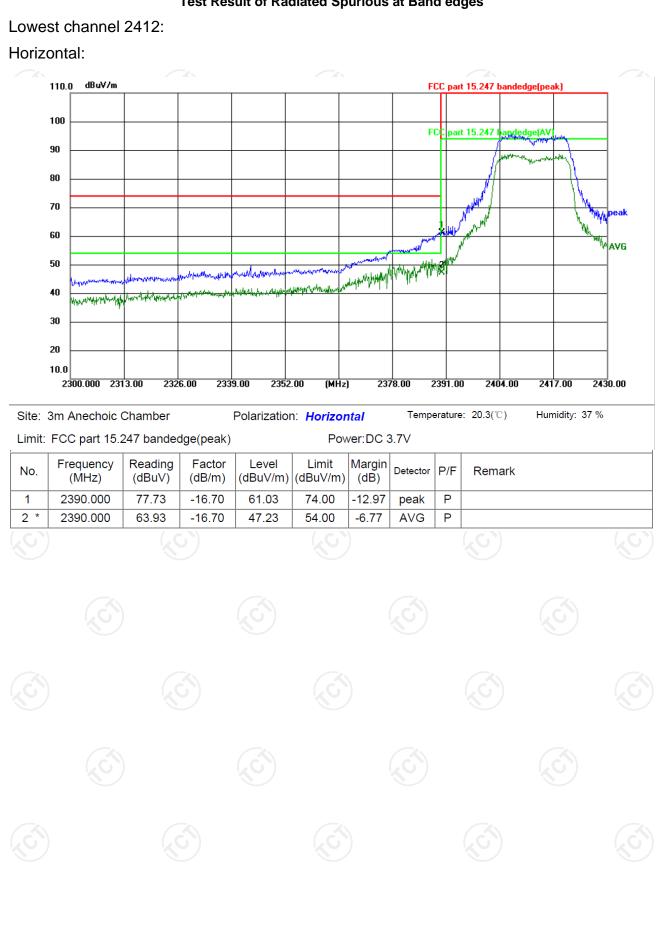

Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025			
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025			
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025			
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025			
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025			
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025			
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025			
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025			
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025			
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025			
Coaxial cable	SKET	RE-03-M	1	Jun. 26, 2025			
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025			
Coaxial cable	SKET	RE-04-D	1	Jun. 26, 2025			
Coaxial cable	SKET	RE-04-M	KG)	Jun. 26, 2025			
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025			
Antenna Mast	Keleto	RE-AM	1				
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2				

Page 22 of 68

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

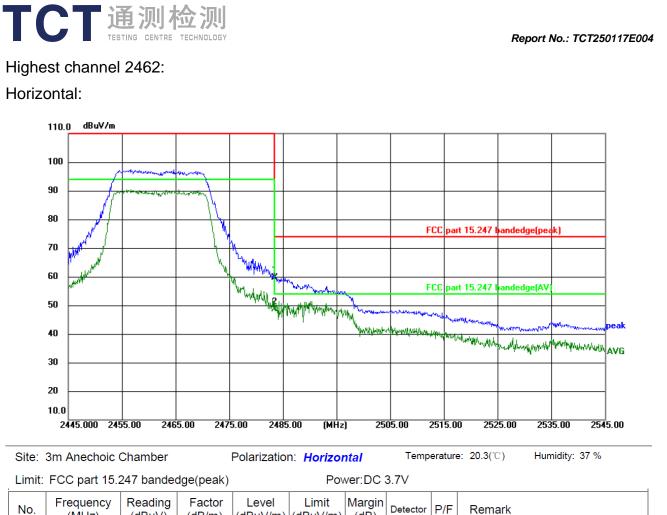
Page 23 of 68

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	39.2991	32.91	-18.44	14.47	40.00	-25.53	QP	Ρ	
2	171.3925	36.85	-18.01	18.84	43.50	-24.66	QP	Ρ	
3	238.3101	46.21	-19.78	26.43	46.00	-19.57	QP	Ρ	
4	303.5437	43. <mark>6</mark> 4	-17.81	25.83	46.00	-20.17	QP	Ρ	
5	379.9141	41.78	-15.52	26.26	46.00	-19.74	QP	Ρ	
6 *	721.7258	38.33	-8.26	30.07	46.00	-15.93	QP	Ρ	


Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode (Highest channel and 802.11b) was submitted only.
- 3. Freq. = Emission frequency in MHz
- Measurement $(dB\mu V/m) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$
- Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- Limit $(dB\mu V/m) = Limit$ stated in standard
- Margin (dB) = Measurement (dB μ V/m) Limits (dB μ V/m)

* is meaning the worst frequency has been tested in the test frequency range.


Test Result of Radiated Spurious at Band edges

Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com Hotline: 400-6611-140

Page 25 of 68

			TECHNOLOGY							Repo	rt No.: TC	T250117E0
ertic	al:											
	110.0 dBuV/m	1					F	CC part	15.247 E	oandedge	peak)	_
	100											
	90						F	CC part	15.247 1	andedge(
	80								J	anthermoderate	warding }	
								-	1		- Mu	
	70								Π		1	N.
	60								1		- W	peak
	50					man	un norther or over the	المرادية الم	r ^r			AVG
	40 Whenthe Martily	and a second	and a standard and a	her som her her som her The south her som her s	Marythere manufiller	WHAT WAR AND A MARKED	webs. www.	ad a la de la d				_
	30 4/1/1/1/1/1/1/4/4/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ANN AND AND A LEAD		1994 - C.						_	_
	20											_
	10.0											
	2300.000 23	13.00 232	6.00 233	9.00 2352	2.00 (MHz) 23	78.00 2	391.00	240	4.00	2417.00	2430.00
Site: 🤇	3m Anechoic	Chamber		Polarizatio				erature	20.3(°C	C) H	Humidity: 37	%
.imit:	FCC part 15.	1		1	1	ver:DC (
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)		Limit (dBuV/m)		Detector	P/F	Rema	ark		
1 *	2390.000	65.90	-16.70	49.20	74.00	-24.80	peak	P			<u>\</u>	
ote:	Measuremen 802.11n(HT									dulatior	a (802.11	b, 802.11

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	76.24	-16.65	59.59	74.00	-14.41	peak	Ρ	
2 *	2483.500	65.20	-16.65	48.55	54.00	-5.45	AVG	Ρ	

Page 27 of 68

ГС		も 加 オ で ENTRE	<mark>金测</mark> TECHNOLOGY							Rej	port No.: T	CT250117E
'ertical	:											
110).0 dBuV/m											
100												
90	- Con	maria and a second a	-umment									
80			N.	_			F	CC par	t 15.247 t	anded	ge(peak)	
70			<u> </u>	Why.								
60							F	CC par	t 15.247 l	anded	ge(AV]	
50	1 million			My Work	an product	how many	an man		man	****	mon manual to had	www.millipeak
40					www.wyw.wyww.wy	MAN MAN	Mar Wayan	KWWWWWW	my when when the	W WAR	WINHAWAWAA	Minim AVG
30							1	11. 1.	a nah	111	····	F TRAVG
20												_
10. :	0 2445.000 245	5.00 246	5.00 247	5.00 248	5.00 (MHz	2) 25	05.00 3	2515.00) 252	5.00	2535.00	2545.00
Site: 3m	Anechoic (Chamber		Polarizatio	n: Vertica	1	Temp	erature	: 20.3(°C	2)	Humidity:	37 %
	CC part 15.2			r olanzatio		ver:DC (,	,	,	
NO.	requency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Rema	ark		
1 * 2 Note:	2483.500	66.55	-16.65	49.90	74.00	-24.10	peak	P				
2.	Peak Final Correction Measurem 802.11n(H	Factor=Ar ents were o	ntenna Fac conducted	ctor + Cabl I in all mod	le loss – Pr	e-amplifi	ier	302.11	n(HT20))), ar	nd the wo	rst case M
											Pa	ge 28 of 68

Above 1GHz Modulation Type: 802.11b

	Low channel: 2412 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
4824	Н	53.91		-9.48	44.43		74	54	-9.57				
7236	Н	45.02		-1.34	43.68		74	54	-10.32				
	Н												
4824	V	53.73	(4	-9.48	44.25		74	54	-9.75				
7236	V	46.54		-1.34	45.20	<u> </u>	74	54	-8.80				
	V				2								

	Middle channel: 2437MHz												
Frequency (MHz)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
4874	Н	54.85		-9.37	45.48		74	54	-8.52				
7311	Н	45.49		-1.17	44.32		74	54	-9.68				
	H				(
			ž)	X	6							
4874	V	53.12		-9.37	43.75		74	54	-10.25				
7311	V	44.63		-1.17	43.46		74	54	-10.54				
	V												
				((

			H	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	53.27		-9.26	44.01		74	54	-9.99
7386	H /	44.68		-1.01	43.67		74	54	-10.33
	Н								
4924	V	55.14		-9.26	45.88		74	54	-8.12
7386	V	44.70		-1.01	43.69		74	54	-10.31
	V			0					

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

	TESTI	NG CENTRE TEC	HNOLOGY				Reµ	oort No.: TCT2	250117E004
			Μ	odulation T	ype: 802.11	lg			
			L	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	55.85		-9.48	46.37		74	54	-7.63
7236	Н	44.73		-1.34	43.39		74	54	-10.61
	Н			(· · · ·		<u> </u>		
4824	V	55.09		-9.48	45.61		74	54	-8.39
7236	V	45.52		-1.34	44.18	~	74	54	-9.82
	V		1 20	°)		G`)		(2G)	

	Middle channel: 2437MHz												
Frequency (MHz)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)										
4874	Н	53.79		-9.37	44.42		74	54	-9.58				
7311	Н	45.06		-1.17	43.89		74	54	-10.11				
	Н												
				2	(
4874	V	52.57		-9.37	43.20		74	54	-10.80				
7311	V	43.29		-1.17	42.12		74	54	-11.88				
	V												

(\mathbf{c})		(6)	Н	ligh channe	el: 2462 MH	z	(c)		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissio Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H_	52.63		-9.26	43.37		74	54	-10.63
7386	H	43.24		-1.01	42.23		74	54	-11.77
	H			/	X				
					1	1	1		
4924	V	54.01		-9.26	44.75		74	54	-9.25
7386	V	44.83		-1.01	43.82		74	54	-10.18
$(-\Theta)$	V	U d		(, (
Mada									

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

ГСТ通测检测

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

	TESTI	NG CENTRE TEC	HNOLOGY				Rep	oort No.: TCT2	:50117E004
			Modu	lation Type	: 802.11n(H	HT20)			
			L	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	54.10		-9.48	44.62		74	54	-9.38
7236	Н	44.69		-1.34	43.35		74	54	-10.65
	Н			()	· · · ·				L.
4824	V	53.43		-9.48	43.95		74	54	-10.05
7236	V	43.50	()	-1.34	42.16		74	54	-11.84
	V		(_C			G`)		(, G)	

	Middle channel: 2437MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
4874	Н	53.74		-9.37	44.37		74	54	-9.63				
7311	Н	44.12		-1.17	42.95		74	54	-11.05				
	Н												
				2	(
4874	V	52.03		-9.37	44.37		74	54	-9.63				
7311	V	43.75		-1.17	42.95		74	54	-11.05				
	V												

(.c.)		()	F	ligh channe	el: 2462 MH	Z	(\mathbf{c})		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	53.58		-9.26	44.32		74	54	-9.68
7386	Н	45.11		-1.01	44.10	<u> </u>	74	54	-9.90
	H			/	`			· · · ·	
4024	1/	50.70		0.00	40.47		74	54	40.50
4924	V	52.73		-9.26	43.47		74	54	-10.53
7386	V	44.59		-1.01	43.58		74	54	-10.42
	V			(, (\mathcal{S}^{2}		
Madai			7						

Note:

TCT通测检测

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Appendix A: Test Result of Conducted Test

n Mode b b g g g g n20 n20 n20	Frequenc (MHz) 2412 2437 2462 2412 2437 2462 2412 2437 2462	ty Cycle (%) 100 100 100 100 100 100 100 100 100	tion Factor (dB) 0 0 0 0 0 0 0 0 0 0	
b b g g g n20 n20	2412 2437 2462 2412 2437 2462 2412 2412 2437	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	0 0 0 0 0 0 0 0 0 0	
b g g g n20 n20	2462 2412 2437 2462 2412 2437	100 100 100 100 100 100 100 100	0 0 0 0 0 0	
g g g n20 n20	2412 2437 2462 2412 2437	100 100 100 100 100	0 0 0 0 0	
g g n20 n20	2437 2462 2412 2437	100 100 100 100	0 0 0 0	
g n20 n20	2462 2412 2437	100 100 100	0 0 0	
n20 n20	2412 2437	100 100	0 0	
n20	2462		0	

Duty Cycle NVNT b 2437MHz

	um Ana	lyzer - Swept SA										
X/R Center F	RF rea 2	50Ω AC .43700000	0 GHz	SE	NSE:PULS			ALIO	INAUTO Avg Type	: RMS		D3 AM Jan 18, 202 TRACE <mark>1 2 3 4 5</mark>
			F	PNO: Fast 🔸		Free F en:40 e						
10 dB/div		Offset 7.12 dE 30.00 dBm									Mkr1 1	50.00 m 2.19 dBr
- og 20.0							.1—					
10.0												
0.00												
10.0												
20.0												
30.0												
40.0												
50.0												
60.0												
enter 2. tes BW 8		00000 GHz		#VB	W 8.0	MHz*	;			Sw	eep 100.0 m	Span 0 H s (1001 pt
IKR MODE TE		;	< 50.00 ms	Y		FUNC	TION	FUNCTIO	ON WIDTH		FUNCTION VALUE	
2			50.00 ms	12.19	авт							
3												
5												
8												
9												
11												>

STATUS

0000 000

Test Graphs Duty Cycle NVNT b 2412MHz

ULSE SOURCE OFF

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 40 dB AVG Type: RMS

<mark>u</mark> R

10 dB/div Log

MSG

gilent Spectrum Analyzer - Swept SA

Center Freq 2.412000000 GHz

Ref Offset 6.88 dB Ref 30.00 dBm

Report No.: TCT250117E004

:56:51 AMJan 18, 2025 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET A N N N N N

Mkr1 50.00 ms 12.22 dBm

Page 33 of 68

LXI R	n Analyzer - Swept SA RF 50 Ω AC	9		ALIGNAUTO AVG Type: RMS	10:01:57 A	M Jan 18, 2025 CE 112 3 4 5 6
	eq 2.462000000 GH:	Z PNO: Fast ↔ IFGain:Low		Avg Type: KMS		CE 123456 PE WWWWWWW
10 dB/div	Ref Offset 7.23 dB Ref 30.00 dBm				Mkr1 5 12.	0.00 ms 57 dBm
20.0			1			
0.00						
-10.0 -20.0						
-30.0						
-50.0						
Center 2.46	62000000 GHz				\$	Span 0 Hz
Res BW 8	SCL X	Y	BW 8.0 MHz*	FUNCTION WIDTH	Sweep 100.0 ms ((1001 pts)
1 N 1 2 3	t 50.0	00 ms 12.5	7 dBm			
4 5 6						
7 8 9						
10 11			ш			~
MSG	X 🗸 /			STATUS	<u>x ~ 7</u>	
	n Analyzer - Swept SA			2412MHz		
LX/R	RE 50.0 AC 1					
Center Fre	RF 50 Ω AC eq 2.412000000 GH	Z PNO: Fast ↔	ENSE: PULSE SOURCE OFF	ALIGNAUTO Avg Type: RMS	TRA TY	M Jan 18, 2025 CE 1 2 3 4 5 6 PE WWWWWWW ET A N N N N N
	eq 2.412000000 GH: Ref Offset 6.88 dB	z			۳۲۹ ۲۷ ۳۵	CE 123456 PE WWWWWWW DET A N N N N N 0.00 ms
	eq 2.412000000 GH:	Z PNO: Fast ↔			۳۲۹ ۲۷ ۳۵	CE 123456 PE WWWWWWW DET ANNNNN
10 dB/div Log 20.0	eq 2.412000000 GH: Ref Offset 6.88 dB	Z PNO: Fast ↔			۳۲۹ ۲۷ ۳۵	CE 123456 PE WWWWWWW DET A N N N N N 0.00 ms
10 dB/div 20.0 10.0 -10.0	eq 2.412000000 GH: Ref Offset 6.88 dB	Z PNO: Fast ↔			۳۲۹ ۲۷ ۳۵	CE 123456 PE WWWWWWW DET A N N N N N 0.00 ms
10 dB/div 20.0 10.0 	eq 2.412000000 GH: Ref Offset 6.88 dB	Z PNO: Fast ↔			۳۲۹ ۲۷ ۳۵	CE 123456 PE WWWWWWW DET A N N N N N 0.00 ms
10 dB/div 20.0 10.0 -10.0 -20.0	eq 2.412000000 GH: Ref Offset 6.88 dB	Z PNO: Fast ↔			۳۲۹ ۲۷ ۳۵	CE 123456 PE WWWWWWW DET A N N N N N 0.00 ms
10 dB/div Log 20.0 10.0 -10.0 -20.0 -30.0 -30.0 -60.0	eq 2.412000000 GH:	Z PNO: Fast ↔			Mkr1 5 9.	0.00 ms 61 dBm
10 dB/div cog 20.0 10.0 -0.0 -10.0 -20.0 -30.0 -30.0 -30.0 -40.0 -50.0 -60.0 Center 2.47 Res BW 8 F	eq 2.412000000 GH: Ref Offset 6.88 dB Ref 30.00 dBm	Z PNO: Fast → IFGain:Low #VE	Trig: Free Run #Atten: 40 dB	Avg Type: RMS	Mkr1 5 9.	C: 02 3 4 5 6 ewww
10 dB/div 200	eq 2.412000000 GH: Ref Offset 6.88 dB Ref 30.00 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z PNO: Fast IFGain:Low #VE	Trig: Free Run #Atten: 40 dB		Mkr1 5 9.	C: 02 3 4 5 6 ewww
10 dB/div 20.0	eq 2.412000000 GH: Ref Offset 6.88 dB Ref 30.00 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z PNO: Fast IFGain:Low #VE	Trig: Free Run #Atten: 40 dB	Avg Type: RMS	Mkr1 5 9.	C: 02 3 4 5 6 ewww
10 dB/div 20.0	eq 2.412000000 GH: Ref Offset 6.88 dB Ref 30.00 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z PNO: Fast IFGain:Low #VE	Trig: Free Run #Atten: 40 dB	Avg Type: RMS	Mkr1 5 9.	C: 02 3 4 5 6 ewww
10 dB/div 20.0 10.0 0.00 -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -60.0 -58.0 -68.0 -68.0 -78.0 -68.0 -68.0 -79.0 -80.0 -90.0 -90.0 <td>eq 2.412000000 GH: Ref Offset 6.88 dB Ref 30.00 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td> <td>Z PNO: Fast IFGain:Low #VE</td> <td>Trig: Free Run #Atten: 40 dB</td> <td>Avg Type: RMS</td> <td>Mkr1 5 9.</td> <td>Ce DI 23 4 5 6 e WANNAN 61 dBm 61 dBm Span 0 Hz (1001 pts)</td>	eq 2.412000000 GH: Ref Offset 6.88 dB Ref 30.00 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z PNO: Fast IFGain:Low #VE	Trig: Free Run #Atten: 40 dB	Avg Type: RMS	Mkr1 5 9.	Ce DI 23 4 5 6 e WANNAN 61 dBm 61 dBm Span 0 Hz (1001 pts)
10 dB/div 200	eq 2.412000000 GH: Ref Offset 6.88 dB Ref 30.00 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z PNO: Fast IFGain:Low #VE	Trig: Free Run #Atten: 40 dB	Avg Type: RMS	Mkr1 5 9.	C: 02 3 4 5 6 ewww
10 dB/div Log 200 100 -000 -100 -200 -300 -300 -400 -50	eq 2.412000000 GH: Ref Offset 6.88 dB Ref 30.00 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z PNO: Fast IFGain:Low #VE	Trig: Free Run #Atten: 40 dB	Avg Type: RMS	Mkr1 5 9.	Ce DI 23 4 5 6 e WANNAN 61 dBm 61 dBm Span 0 Hz (1001 pts)
10 dB/div 10 dB/div 10 0 10 0 10 0 20 0 10 0 20 0 10 0 20 0 2	eq 2.412000000 GH: Ref Offset 6.88 dB Ref 30.00 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z PNO: Fast IFGain:Low #VE	Trig: Free Run #Atten: 40 dB	Avg Type: RMS	Mkr1 5 9.	Ce DI 23 4 5 6 e WANNAN 61 dBm 61 dBm Span 0 Hz (1001 pts)
10 dB/div 200 100 000 100 000 -100 -200 -300 -400 -500 -600 -600 -600 -700 -600 -700 -600 -700 -600 -700 -600 -700 -600 -700 <	eq 2.412000000 GH: Ref Offset 6.88 dB Ref 30.00 dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Z PNO: Fast IFGain:Low #VE	Trig: Free Run #Atten: 40 dB	Avg Type: RMS	Mkr1 5 9.	Ce DI 23 4 5 6 e WANNAN 61 dBm 61 dBm Span 0 Hz (1001 pts)

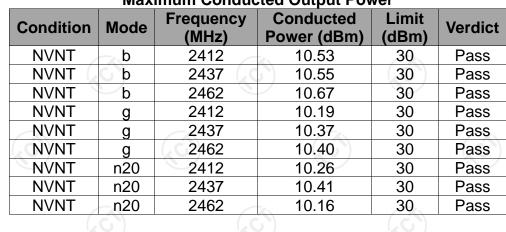
TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 34 of 68

Report No.: TCT250117E004

Agilent Spectrum Analyzer - Swept SA (¥] R RF 50 Ω AC Center Freq 2.4370000000 GH	SE	IE NVNT g 2	ALIGNAUTO Avg Type: RMS	09:50:28 AM Jan : TRACE 1	18, 2025 2 3 4 5 6
	PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 40 dB		TRACE 1 2 TYPE DET A N	
Ref Offset 7.12 dB 10 dB/div Ref 30.00 dBm Log				Mkr1 50.00 10.25 (0 ms dBm
20.0		1			
0.00					
-20.0					
-30.0					
-60.0					
Center 2.437000000 GHz Res BW 8 MHz	 #VB	W 8.0 MHz*		Span Sweep 100.0 ms (100	0 Hz 1 pts)
MKR MODE TRC SCL ×	Y		JNCTION WIDTH	FUNCTION VALUE	· pts)
5 6 7					
8 9 10					
MSG		Ш	STATUS		>
	Duty Cvc	le NVNT g 2		KY/	
Agilent Spectrum Analyzer - Swept SA LXI R RF 50 Ω AC		ENSE: PULSE SOURCE OFF	ALIGNAUTO	09:54:16 AM Jan 1	18, 2025
Center Freq 2.462000000 GH	Z PNO: Fast ↔ IFGain:Low	. Trig: Free Run #Atten: 40 dB	Avg Type: RMS	TRACE 1 2 TYPE W DET A N	2 3 4 5 6 WWWW I N N N N
Ref Offset 7.23 dB 10 dB/div Ref 30.00 dBm				Mkr1 50.00 10.28	0 ms dBm
20.0		1			
0.00					
-10.0					
0.00 -10.0 -20.0 -30.0 -40.0 -50.0					
0 00 -10.0 -20.0 -20.0 -30.0 -40.0 -60.0 -70					10 Hz
0.00 -10.0 -20.0 -	Y			Spar Sweep 100.0 ms (100 FUNCTION VALUE	1 0 Hz 1 pts)
000 -10.0 -20.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.	Y			weep 100.0 ms (100	1 0 Hz 1 pts)
0.00 -10.0 -20.0 -30.0 -30.0 -30.0 -40.0 -50	Y	FUNCTION F		weep 100.0 ms (100	10 Hz 1 pts)
000 -100 -200 -200 -300 -300 -400 -500 -	Y	FUNCTION F		weep 100.0 ms (100	1 0 Hz 1 pts)
000 -100 -200 -200 -300 -300 -400 -500 -	Y	FUNCTION F		weep 100.0 ms (100	0 Hz 1 pts)
000 -10.0 -20.	Y	FUNCTION F		weep 100.0 ms (100	1 pts)
000 -100 -200 -200 -300 -300 -400 -500 -	Y	FUNCTION F		weep 100.0 ms (100	1 pts)
000 -100 -200 -200 -300 -300 -400 -500 -	Y	FUNCTION F		weep 100.0 ms (100	1 pts)
000 -100 -200 -200 -300 -300 -400 -500 -	Y	FUNCTION F		weep 100.0 ms (100	1 pts)

TCT通测检测 TESTING CENTRE TECHNOLOGY


Report No.: TCT250117E004

LXI R	pectrum Analyzer - Swept So RF 50 Ω AC F Freq 2.4120000	00 GHz	S⊟ NO: Fast Gain:Low	- Trig: Free #Atten: 40	Run	ALIGNAUTO Avg Type	RMS		L8 AM Jan 18, 2025 IRACE 1 2 3 4 5 TYPE WWWWWW DET A N N N N	6 ₩ N
10 dB/	Ref Offset 6.88 di div Ref 30.00 dBn	B n						Mkr1	50.00 ms 9.22 dBm	
20.0 - 10.0 - 0.00 -					↓ ¹					
-10.0 -20.0 -30.0										
-40.0										
Cente	r 2.412000000 GHz W 8 MHz		#VB	SW 8.0 MH2	<u>z</u> *		Swee	p 100.0 m	Span 0 Hz s (1001 pts)	
1 N 2	DE TRC SCL	× 50.00 ms	Y			CTION WIDTH		UNCTION VALUE		
3 4 5 6 7										đ
8										
10 11										
		Dute			T = 20.4	STATUS	X	97	~	
11 MSG	pectrum Analyzer - Swept St	A				2437M	Hz	09:41:	18 AM Jan 18, 2025	
Agilent S	pectrum Analyzer - Swept S RF 50 Q AC Pr Freq 2.43700000	A 00 GHz P		ENSE:PULSE SOU	RCE OFF A				08 AM Jan 18, 2025 TRACE 1 2 3 4 5 TYPE WWWWWW DET A N N N N	6 ₩ N
Agilent S Agilent S Center 10 dB/i	RF 50 Ω AC Freq 2.4370000 Ref Offset 7.12 dl	A 00 GHz IF(S⊟ NO: Fast ↔	ENSE:PULSE SOU	RCE OFF A	2437M		Mkr1	18 AM Jan 18, 2025	6 ₩ N
11 MSG Agilent S 02 R Cente 10 dB/ 20 0 10 0	RF 50 Ω AC Freq 2.4370000 Ref Offset 7.12 dl	A 00 GHz IF(S⊟ NO: Fast ↔	ENSE:PULSE SOU	RCE OFF A	2437M		Mkr1	18 AM Jan 18, 2025 ПРАСЕ ТУРЕ ФИТАТИТИ БЕТ А N N N N 50.00 ms	6 ₩ N
Agilent S Agilent S Center 10 dB/ 20 0	RF 50 Ω AC Freq 2.4370000 Ref Offset 7.12 dl	A 00 GHz IF(S⊟ NO: Fast ↔	ENSE:PULSE SOU	RCE OFF A	2437M		Mkr1	18 AM Jan 18, 2025 ПРАСЕ ТУРЕ ФИТАТИТИ БЕТ А N N N N 50.00 ms	6 ₩ N
11 MSG Agitent S 021 R Cente 10 dB/ 20 0 10 0 0 000 -10 0 -20 0 -30 0 -40 0	RF 50 Ω AC Freq 2.4370000 Ref Offset 7.12 dl	A 00 GHz IF(S⊟ NO: Fast ↔	ENSE:PULSE SOU	RCE OFF A	2437M		Mkr1	18 AM Jan 18, 2025 ПРАСЕ ТУРЕ ФИТАТИТИ БЕТ А N N N N 50.00 ms	6 ₩ N
Aglient S MSG Aglient S MR Center 10 dB/ 200 - 100 - 200 - -00	Ref Offset 7.12 dl	A 00 GHz P IF(B m 1 1 1 1 1 1 1 1 1 1 1 1 1	S⊟ NO: Fast ↔	ENSE:PULSE SOU	RCE OFF A	2437M		Mkr1	08 AM Jan 18, 2025 TRACE 1 2 3 4 5 TYPE WWWWW DET ANNIN 50.00 ms 9.91 dBm	
Aglient S Aglient S M R Center 10 dB/ 200 - 100 - 100 - 200 - -00 - -	r 2.437000000 GHz W 8 MHz	A 00 GHz P IF4 B n - - - - - - - - - - - - -	NO: Fast Gain:Low #VB	Trig: Free #Atten: 40	RCE OFF A	2437M	RMS	Mkr1	18 AM Jan 18, 2025 ПРАСЕ ТУРЕ ФИТАТИТИ БЕТ А N N N N 50.00 ms	
11 MSG Agilent S XI Center 10 dB/ 20 0 10 0 0 0 -10 0 -20 0 -30 0 -40 0 -60 0 Center Res E MKR ME 1 X	r 2.437000000 GHz	A 00 GHz P IF(B m 1 1 1 1 1 1 1 1 1 1 1 1 1	SE Sain:Low #VB	Trig: Free #Atten: 40	RCE OFF A	AUGNAUTO Avg Type	RMS	Mkr1	28 AMJan 18, 2025 TRACE 12 3 4 5 1 TYPE WWWWWW 50.00 ms 9.91 dBm	
11 MSG Agitent S 00 200 100 200 100 -000	Ref Offset 7.12 dl Ref Offset 7.12 dl div Ref 30.00 dBn	A 00 GHz P IF4 B n - - - - - - - - - - - - -	SE Sain:Low #VB	Trig: Free #Atten: 40	RCE OFF A	AUGNAUTO Avg Type	RMS	Mkr1	28 AMJan 18, 2025 TRACE 12 3 4 5 1 TYPE WWWWWW 50.00 ms 9.91 dBm	
11 MSG Agilent S 10 dB/ 10 dB/ 20 0 10 0 0 0 -10 0 -20 0 -30 0 -40 0 -50 0 -60 0 Center MKR 1 2 3 4 5 6	Ref Offset 7.12 dl Ref Offset 7.12 dl div Ref 30.00 dBn	A 00 GHz P IF4 B n - - - - - - - - - - - - -	SE Sain:Low #VB	Trig: Free #Atten: 40	RCE OFF A	AUGNAUTO Avg Type	RMS	Mkr1	28 AM Jan 16, 2025 TRACE 12 3 4 5 TYPE WWWWW Det ANNNU 50.00 ms 9.91 dBm 50.00 ms 9.91 dBm 50.00 ms 9.91 dBm	
11 MSG Agitent S 10 dB/ 200 100 -000	Ref Offset 7.12 dl Ref Offset 7.12 dl div Ref 30.00 dBn	A 00 GHz P IF4 B n - - - - - - - - - - - - -	SE Sain:Low #VB	Trig: Free #Atten: 40	RCE OFF A	AUGNAUTO Avg Type	RMS	Mkr1	28 AMJan 18, 2025 TRACE 12 3 4 5 1 TYPE WWWWWW 50.00 ms 9.91 dBm	
11 MSG Agilent S XI R Centor 10 dBJ 200 -100 -200 -300 -400 -600 Center Rese MKR MKR 0 1 2 3 9 10 2 3 9 10 2 3 9 10 2 3 9 10 2 3 9 10 2 3 1 1	Ref Offset 7.12 dl Ref Offset 7.12 dl div Ref 30.00 dBn	A 00 GHz P IF4 B n - - - - - - - - - - - - -	SE Sain:Low #VB	Trig: Free #Atten: 40	RCE OFF A		RMS	Mkr1	28 AM Jan 16, 2025 TYPE WWWWW Det ANNNU 50.00 ms 9.91 dBm Span 0 Hz s (1001 pts)	

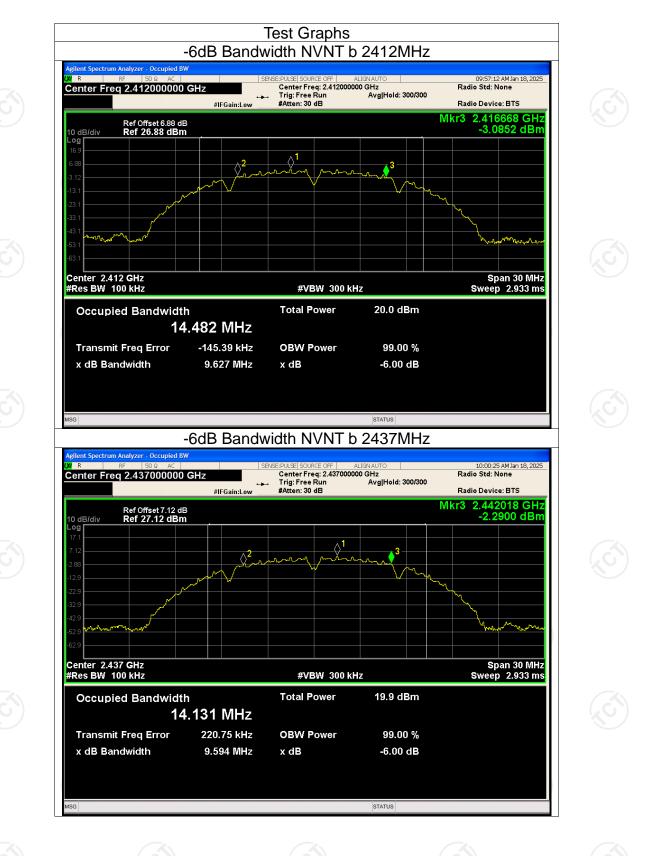
	n Analyzer - Swept SA	Duty Cycle	e NVNT n20) 2462MHz			
Center Fre	RF 50 Ω AC eq 2.462000000 C	SHZ PNO: Fast IFGain:Low	- Trig: Free Run #Atten: 40 dB	ALIGNAUTO Avg Type: RMS		6:46 AM Jan 18, 2025 TRACE 1 2 3 4 5 6 TYPE WWWWW DET A N N N N N	
10 dB/div Log 20.0	Ref Offset 7.23 dB Ref 30.00 dBm		1		Mkr	1 50.00 ms 9.58 dBm	
10.0 0.00 -10.0							
-20.0 -30.0 -40.0							
-50.0 -60.0	62000000 GHz					Span 0 Hz	
Res BW 8 M MKR MODE TRC 1 N 1 2	SCL X	Y	FUNCTION	FUNCTION WIDTH	Sweep 100.0 I	ms (1001 pts)	
3 4 5 6 7							
8 9 10 11			ш			>	
MSG	NC I		Ø	STATUS	S		

Report No.: 161250117E004	Report	No.:	TCT250117E004
---------------------------	--------	------	---------------

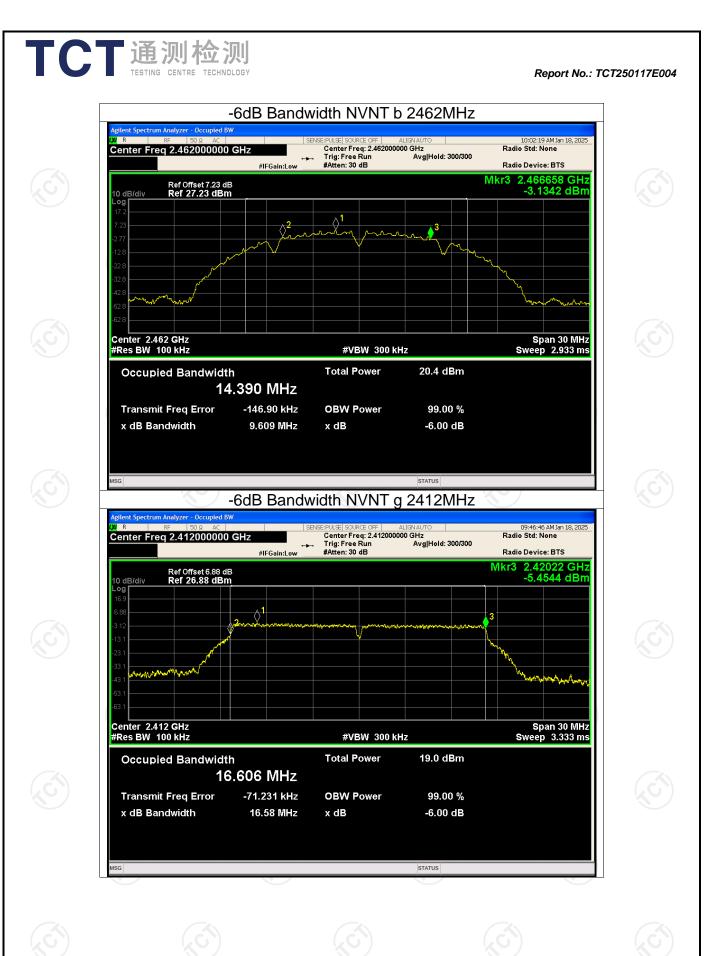
Page 38 of 68

Maximum Conducted Output Power

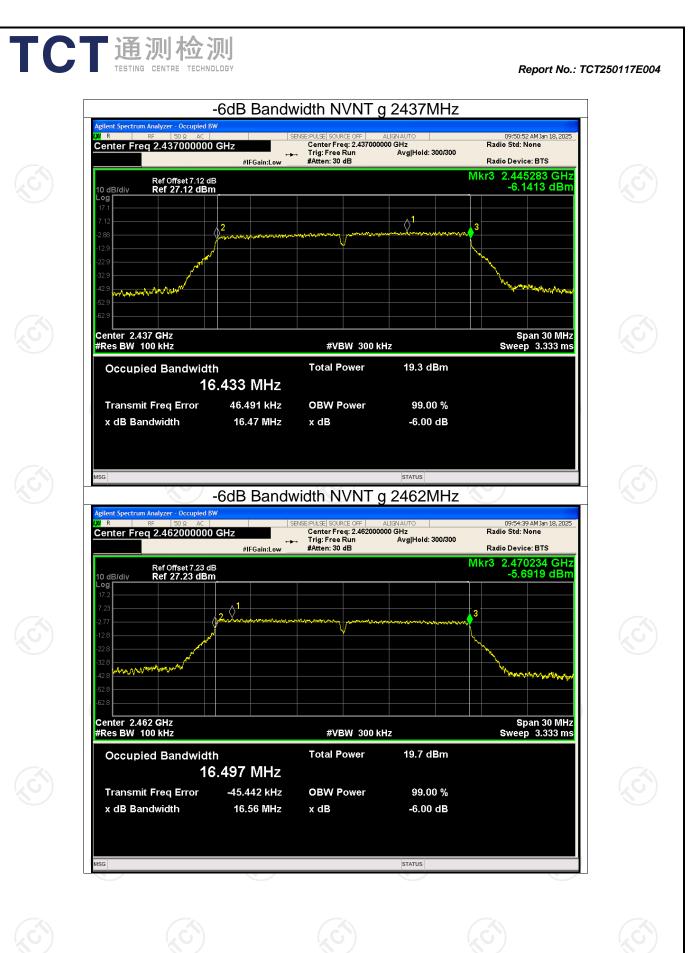
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

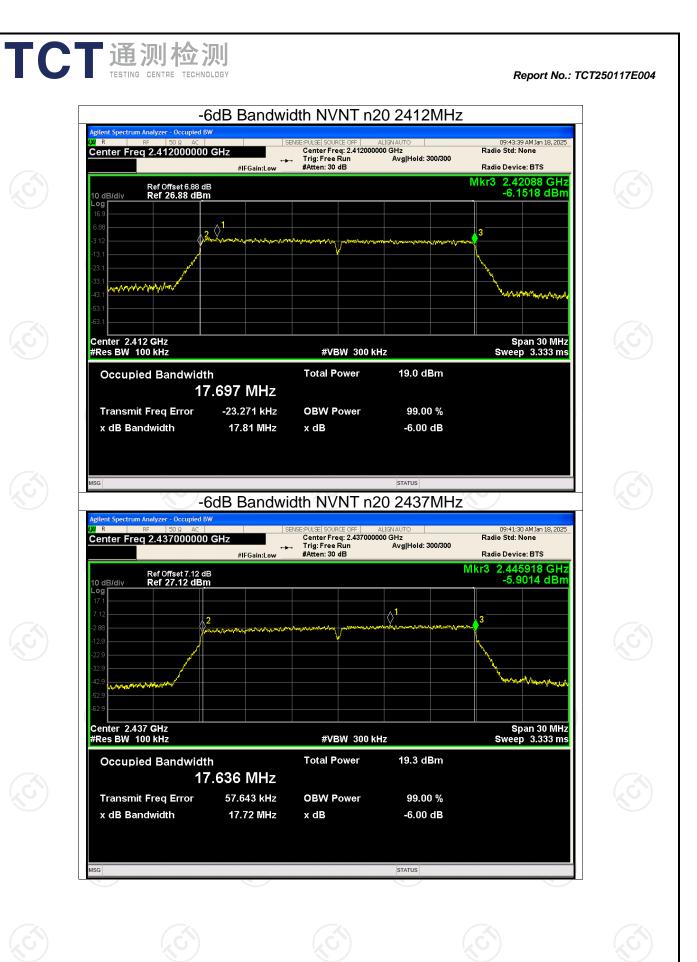

Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	9.627	0.5	Pass
NVNT	b	2437	9.594	0.5	Pass
NVNT	b	2462	9.609	0.5	Pass
NVNT	g	2412	16.582	0.5	Pass
NVNT	g	2437	16.474	0.5	Pass
NVNT	g	2462	16.559	0.5	Pass
NVNT	n20	2412	17.807	0.5	Pass
NVNT	n20	2437	17.721	0.5	Pass
NVNT	n20	2462	17.786	0.5	Pass
(G)		$(\dot{\mathbf{G}})$	$(\mathcal{L}\mathcal{L})$	(\mathcal{G})	(.C)

G CENTRE TECHNOLOGY



Report No.: TCT250117E004


Page 39 of 68

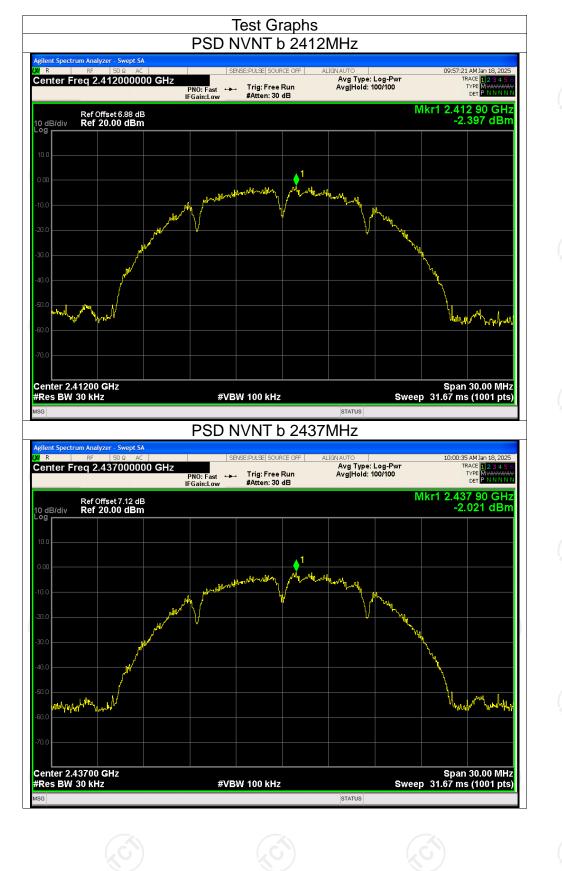


Page 40 of 68

Page 41 of 68

Page 43 of 68

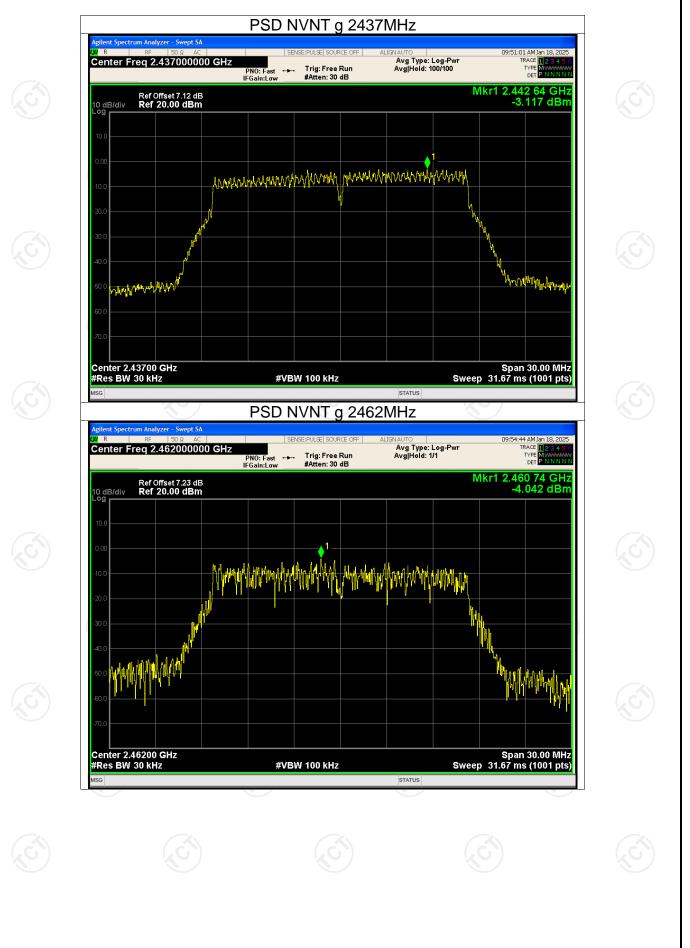
	Analyzer - Occupied BV RF 50 \Qaa AC	/				06 AM Jan 18, 2025	
Center Fre	q 2.462000000	GHz #IFGain:Low	Center Freq: 2.46200		Radio Std:	None	
10 dB/div	Ref Offset 7.23 dB Ref 27.23 dBm				Mkr3 2.47 -6.	0865 GHz 3267 dBm	
Log 17.2 7.23							
-2.77 -12.8	^2	and the second	and and a state of the state of	www.comenter.com	v.,		
-22.8	nan na the second s						
-52.8						www.www.www.http	
-62.8 Center 2.4			#VBW 3001		S	pan 30 MHz	
#Res BW 1 Occupi	ed Bandwidth	1	Total Power	19.2 dBm	Swee	ep 3.333 ms	
	17	.673 MHz					
x dB Ba	t Freq Error ndwidth	-28.082 kHz 17.79 MHz	OBW Power x dB	99.00 % -6.00 dB			
MSG				STATUS	1201		

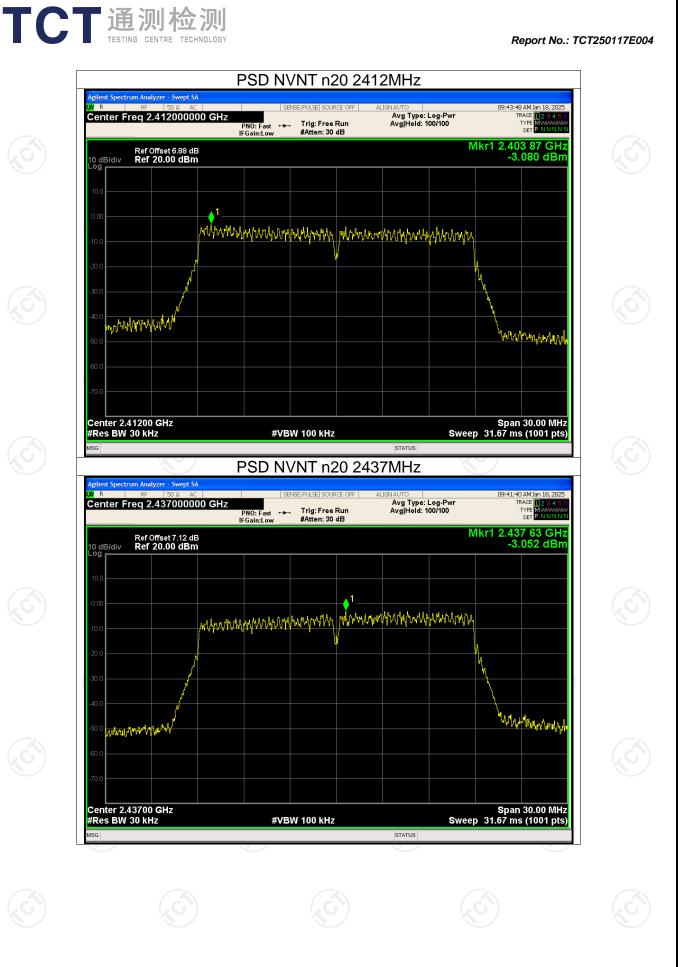

Maximum Power Spectral Density Level

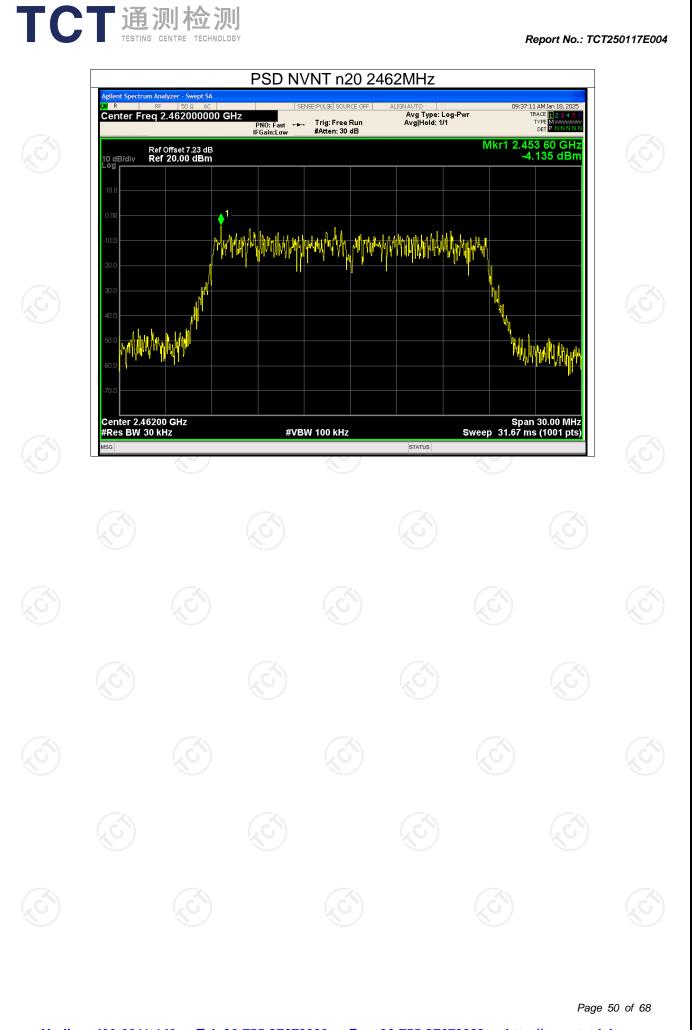
Conditio	on Mode	Frequency (MHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict		
NVNT	b	2412	-2.40	8	Pass		
NVNT	b	2437	-2.02	8	Pass		
NVNT	b b	2462	-1.87	8	Pass		
NVNT	g	2412	-3.50	8	Pass		
NVNT	g g	2437	-3.12	8	Pass		
NVNT	g	2462	-4.04	8	Pass		
NVNT	n20	2412	-3.08	8	Pass		
NVNT	n20	2437	-3.05	8	Pass		
NVNT	n20	2462	-4.14	8	Pass		
NVNT	n20	2412 2437 2462	-3.05	8	Pass Pass		

Note: Result[dBm/3kHz] = Result[dBm/30kHz] +10log(3kHz/30kHz)

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

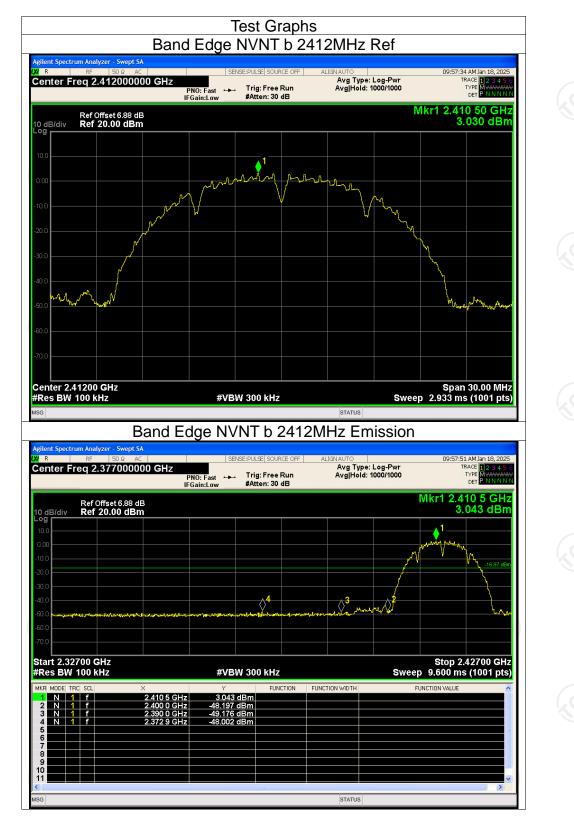



Page 46 of 68


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TCT通测检测 TESTING CENTRE TECHNOLOGY

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


TCT 通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250117E004

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-51.03	-20	Pass
NVNT	b	2462	-51.24	-20	Pass
ONVNT	g	2412	-45.10	-20	Pass
ŃVNT	g	2462	-44.54	-20	Pass
NVNT	n20	2412	-43.72	-20	Pass
NVNT	n20	2462	-45.13	-20	Pass
(.0			(\mathbf{G})	$(\dot{\mathbf{G}})$	

Band Edge

Page 51 of 68

Page 52 of 68

Band Edge NVNT b 2462MHz Ref gilent Spectrum Analyze ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000 SENSE:PULSE SOURCE OFF :44 AM Jan 18, : TRACE 1 2 3 Center Freq 2.462000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.460 50 GHz 3.588 dBm Ref Offset 7.23 dB Ref 20.00 dBm 10 dB/div 1 -١L Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS

TCT通测检测 TESTING CENTRE TECHNOLOGY

U F

Center Freq 2.497000000 GHz

Band Edge NVNT b 2462MHz Emission

SENSE:PULSE SOURCE OFF

ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000 09:47:08 AM Jan 18,3 TRACE 123 Center Freq 2.412000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.405 37 GHz -0.603 dBm Ref Offset 6.88 dB Ref 20.00 dBm 10 dB/div ø And Arm MM Wallow and howlos Center 2.41200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT g 2412MHz Emission U F SENSE:PULSE SOURCE OFF i AM Jan 18.0 TRACE TYPE Center Freq 2.377000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.405 4 GHz -0.568 dBm Ref Offset 6.88 dB Ref 20.00 dBm 10 dB/di Log \Rightarrow Start 2.32700 GHz #Res BW 100 kHz Stop 2.42700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE -0.568 dBm -35.843 dBm -46.851 dBm -45.704 dBm N 1 f N 1 f N 1 f .400 0 GHz 9 GH 2 39 10 11 STATUS ISG

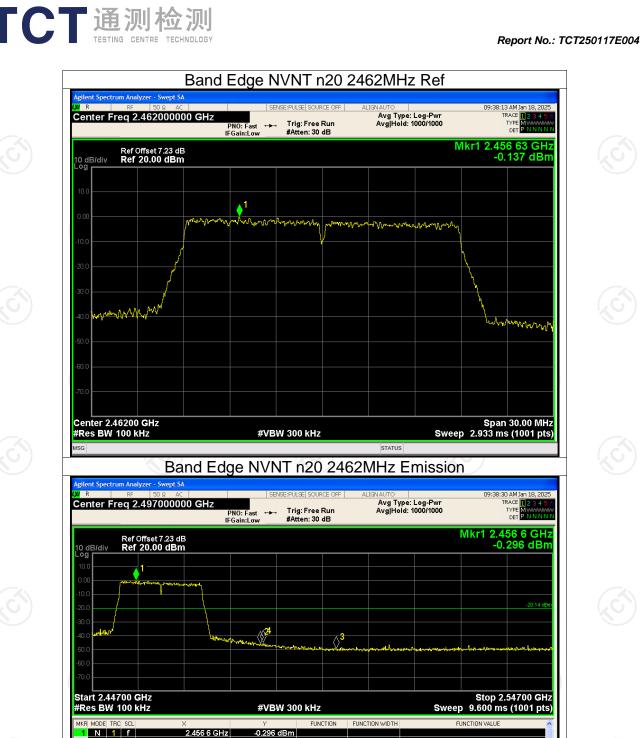
Band Edge NVNT g 2412MHz Ref

SENSE:PULSE SOURCE OFF

TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectrum Analyze

gilent Spectrum Analyze ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000 SENSE:PULSE SOURCE OFF :57 AM Jan 18, 20 TRACE 1234 Center Freq 2.462000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.454 80 GHz -0.051 dBm Ref Offset 7.23 dB Ref 20.00 dBm 10 dB/div **≜**¹ WWW Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT g 2462MHz Emission 14 AM Jan 18, 2 TRACE 1 2 3 4 TYPE M U F SENSE:PULSE SOURCE OFF Center Freq 2.497000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.457 4 GHz -0.082 dBm Ref Offset 7.23 dB Ref 20.00 dBm 10 c Log 02 \Diamond^3 Start 2.44700 GHz #Res BW 100 kHz Stop 2.54700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE -0.082 dBm -44.929 dBm -48.988 dBm -44.593 dBm N 1 f N 1 f N 1 f GHz 2 483 9 GH 10 11 STATUS ISG


Band Edge NVNT g 2462MHz Ref

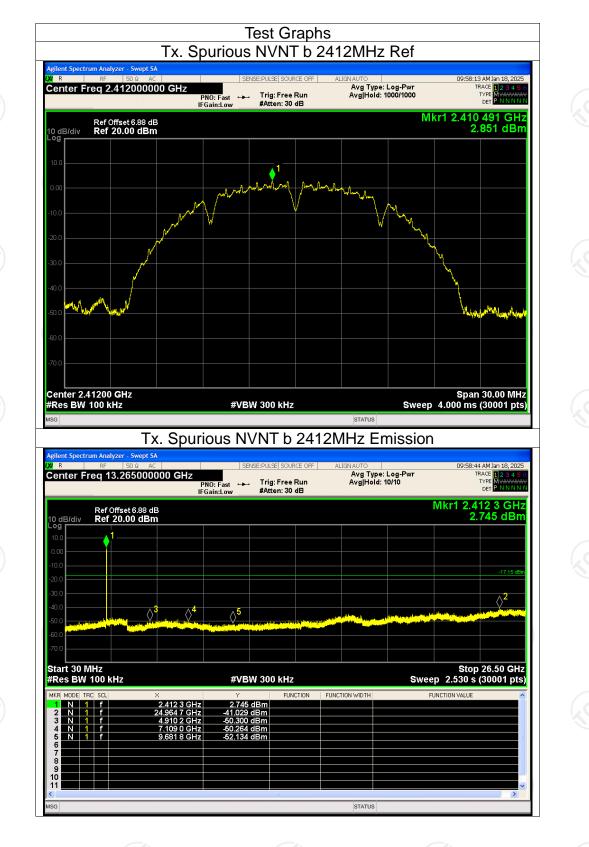
TCT通测检测 TESTING CENTRE TECHNOLOGY

FCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT250117E004

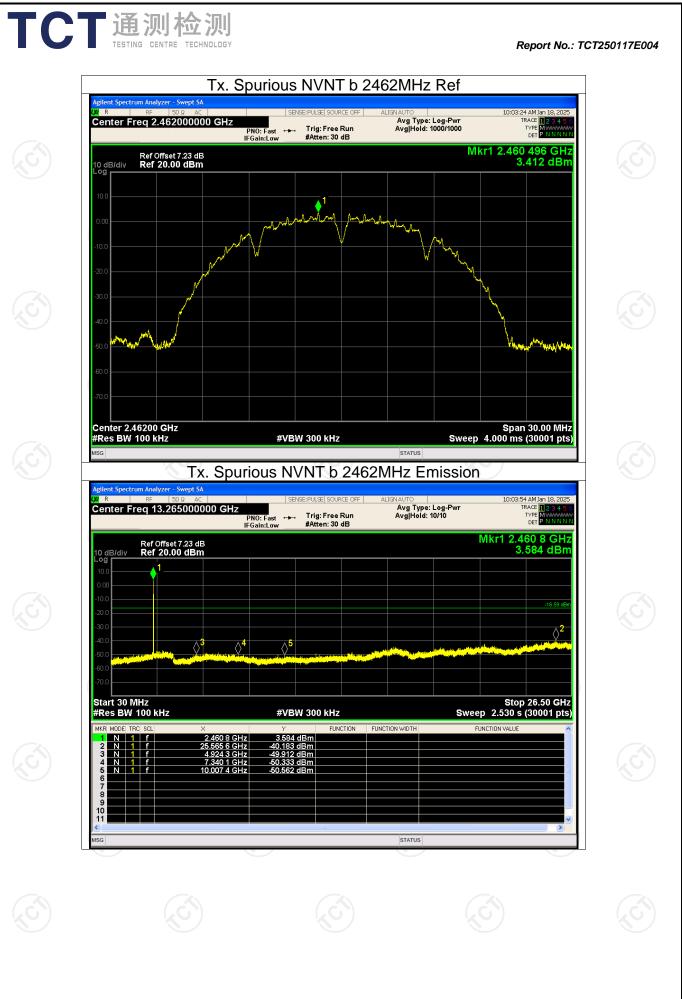
Page 58 of 68

http://www.tct-lab.com


Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-43.87	-20	Pass
NVNT	b	2437	-42.55	-20	Pass
NVNT	b	2462	-43.59	-20	Pass
NVNT	g	2412	-39.77	-20	Pass
NVNT	g	2437	-38.60	-20	Pass
NVNT	g	2462	-49.66	-20	Pass
NVNT 🔍	n20	2412	-39.74	-20	Pass
NVNT 🔍	n20	2437	-40.42	-20	Pass
NVNT	n20	2462	-49.48	-20	Pass

Tel: 86-755-27673339


Hotline: 400-6611-140

Fax: 86-755-27673332

Page 59 of 68

Page 60 of 68

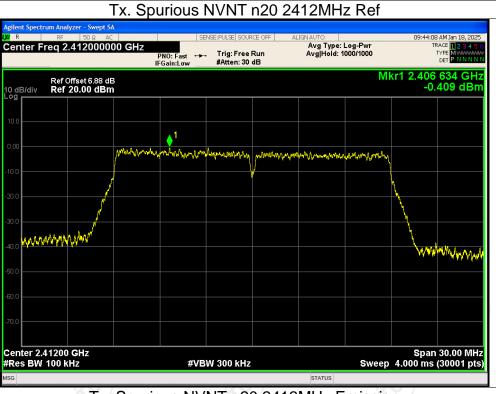
Page 61 of 68

Tx. Spurious NVNT g 2412MHz Ref

TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectr

Page 62 of 68



Page 63 of 68

gilent Spectrum Analyz ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000 SENSE:PULSE SOURCE OFF 35 AM Jan 18, 20 TRACE 1 2 3 4 Center Freq 2.462000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 20 dB TYPE DET Mkr1 2.457 399 GHz -0.308 dBm Ref Offset 7.23 dB Ref 17.23 dBm 10 dB/div Ø mmm .A MAN Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 4.000 ms (30001 pts) #VBW 300 kHz STATUS

Tx. Spurious NVNT g 2462MHz Ref

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 65 of 68

Tx. Spurious NVNT n20 2437MHz Ref

SENSE:PULSE SOURCE OFF

gilent Spectr

 Applied
 RF
 09:37:30 M/brit 10, 202

 Center Freq 2.462000000 GHz
 FN0: Fast
 Trig: Free Run
 Arg Type: Log-Pur Arg[Heid: 1000/1000
 The Purce of Purce

Tx. Spurious NVNT n20 2462MHz Ref

TCT通测检测 TESTING CENTRE TECHNOLOGY

Appendix B: Photographs of Test Setup

Please refer to document Appendix No.: TCT250117E003-A

Appendix C: Photographs of EUT

Please refer to document Appendix No.: TCT250117E003-B & TCT250117E003-C

*****END OF REPORT*****