

FCC Certification Test Report

Product Evaluated

Alcatel-Lucent B25 RRH 4x30 (FCC ID: AS5BBTRX-22)

<u>Customer</u>

Alcatel-Lucent USA, Inc

600-700 Mountain Avenue Murray Hill, New Jersey 07974-0636 USA

Test Laboratory

Global Product Compliance Laboratory

Alcatel-Lucent USA, Inc 600-700 Mountain Avenue, Rm 5B-108 Murray Hill, New Jersey 07974-0636 USA

Date: May 20, 2016

Date	Revision	Section	Change
5/20/16	0		Initial Release

Revisions

Nokia Global Product Compliance Laboratory represents to the client that testing was done in accordance with standard procedures as applicable, and that reported test results are accurate within generally accepted commercial ranges of accuracy in accordance with the scope of our NVLAP Accreditation. Nokia Global Product Compliance reports only apply to the specific samples tested. This report is the property of the client. This report shall not be reproduced except in full without the written approval of the Nokia Global Product Compliance Laboratory.

Nokia Global Product Compliance Laboratory is accredited with the US Department of Commerce National Institute of Standards and Technology's National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with criteria established in Title 15, Part 7 Code of Federal Regulations for offering test services for selected test methods in Electromagnetic Compatibility; Voluntary Control Council for Interference (VCCI), Japan; Australian Communications and Media Authority (ACMA). The laboratory is ISO 9001:2008 Certified.

Nokia Global Product Compliance Laboratory represents to the client that the laboratory's accreditation or any of its calibration or test reports in no way constitutes or implies product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Prepared By:

Michael P. Farina

Approved By: Ray Johnson

Signed:

Michal A. Farina 5/20/2016 Signed: Kaynord Johnson

5/20/2016

Page 2 Of 37

Alcatel-Lucent USA Inc. - Proprietary

Table of Contents

1.	ATT	ESTATION OF TEST RESULTS	4
2.	SUN	1MARY OF THE TEST RESULTS	5
	2.1 2.2	MEASUREMENT UNCERTAINTY MEASUREMENT UNCERTAINTY FOR ANTENNA PORT TESTING:	5 5
3.	GEN	IERAL INFORMATION	6
	3.1 3.2	PRODUCT DESCRIPTIONS	6 7
4.	REC	QUIRED MEASUREMENTS AND RESULTS	7
	4.1 <i>4.1.</i> 4.2 4.3	SECTION 2.1046 MEASUREMENT REQUIRED: RF POWER OUTPUT	8 . <i> 8</i> . 11 . <i>11</i> S
	4.3. 4.3.	1 Measurement of Occupied Bandwidth	. 17 . 19
	4.4 <i>4.4.</i>	SECTION 2.1051 MEASUREMENT REQUIRED: SPURIOUS EMISSIONS AT THE ANTENNA TERMINALS <i>1 Results:</i>	. 30 . <i>30</i>
	4.5 <i>4.5.</i>	SECTION 2.1055 MEASUREMENT REQUIRED: FREQUENCY STABILITY	. 32 . <i>32</i>
	4.6 4.7	SECTION 2.1053 MEASUREMENT REQUIRED: FIELD STRENGTH OF SPURIOUS RADIATION LIST OF TEST EQUIPMENT	. 32 . 35
	4.8	FACILITIES AND ACCREDITATION	. 36

1. ATTESTATION OF TEST RESULTS

Company Name	Alcatel-Lucent USA, Inc.
FCC ID	AS5BBTRX-22
Product Name	B25 RRH 4x30
Model Name	B25 RRH 4x30
Part No	3JR53349ABAA-01-M
Serial Number(s)	LBALLU-YD160603Q6H
Test Standard(s)	47 CFR FCC Part 24
Reference(s)	 47 CFR FCC Part 2 and Part 24 FCC KDB 971168 D01 (October 17, 2014) ANSI C63.4 - 2009 3GPP TS 36.104 v12.7.0 (2015-04)
Operating Frequency Band	PCS: Tx1930 - 1995 MHz and Rx 1850 – 1915 MHz, E-UTRAN Band 25
Technology	LTE
Test Frequency Range	10 MHz – 20 GHz
Operation Mode(s)	2x2 MIMO
Submission Type	Class II Permissive Change
FCC Part 15 Subpart B Compliance	Compliance with Class B
Test Date	April 20 – May 3, 2016
Test Laboratory	Global Product Compliance Laboratory 600-700 Mountain Avenue, Rm 5B-108 Murray Hill, New Jersey 07974-0636 USA

This is to certify that the above product has been evaluated and found to be in compliance with the Rules and Regulations set forth in the above standard(s). The data and the descriptions about the test setup, procedures and configuration presented in this report are accurate. The results of testing in this report apply only to the product/system which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Per the requirement of Section 2.911(d) Certification of Technical Test Data, I hereby certify that the technical test data are the results of tests either performed or supervised by me.

Michael P. Farina Member of Technical Staff Global Product Compliance Laboratory Alcatel-Lucent USA, Inc

Alcatel-Lucent USA Inc. - Proprietary

2. SUMMARY OF THE TEST RESULTS

47 CFR FCC Sections	Description of Tests	Compliance Results	Notes
2.1046	RF Power Output	Yes	
2.1047	Modulation Characteristics	Yes	
2.1049, 24.238	(a) Occupied Bandwidth (b) Out-of-Band Emissions	Yes	
2.1051, 24.238	Spurious Emissions at Antenna Terminals	Yes	
2.1053, 24.238	Field Strength of Spurious Radiation	Yes	
2.1055, 24.235	Measurement of Frequency Stability	NR	

NR: Not Required

NA: Not Applicable

2.1 Measurement Uncertainty

The results of the calculations to estimate uncertainties for the several test methods and standards are shown in the Table below. These are the worst-case values.

Worst-Case Estimated Measurement Uncertainties

Standard, Method or Procedure		Condition	Frequency MHz	Expanded Uncertainty (k=2)
a.	Classical Emissions, (<i>e.g.</i> , ANSI C63.4, CISPR 11, 14, 22, <i>etc.</i> , using ESHS 30,	Conducted Emissions	0.009 - 30	±2.0 dB
		Radiated Emissions (AR-9 Semi-Anechoic Chamber)	30 MHz – 200MHz 200 MHz – 1000 MHz	±5.1 dB ±4.7 dB

2.2 Measurement uncertainty for Antenna Port Testing:

- 9 kHz to 20 MHz: Frequency = 10 Hz, Amplitude = 0.5 dB
- 20 MHz to 1 GHz: Frequency = 100Hz, Amplitude = 0.5 dB
- 1 GHz to 10 GHz: Frequency = 10 kHz, Amplitude = 0.5 dB

Page 5 0f 37

Alcatel-Lucent USA Inc. - Proprietary

3. GENERAL INFORMATION

3.1 **Product Descriptions**

The equipment under test (EUT) has the following specifications.

Specification Items	Description
Product Type	B25 RRH 4x30
Radio Type	Intentional Transceiver
Power Type	- 48 Vdc
Modulation	QPSK, 16QAM, 64QAM
Operating Frequency Range	Tx 1930 - 1995 MHz/Rx 1850 - 1915 MHz
Channel Bandwidth	5, 10, 15 and 20 MHz
Max Conducted Power (Rated)	43dBm per carrier for 3 carrier operation, and 47.8 dBm total
	composite per port 2x60 MIMO 2T4R operation
Min Conducted Power (Rated)	25dBm per chain and 28dBm total (can be deleted for
	licensed Tx)
Max EIRP Power (Rated)	47.8 dBm per chain and 50.8 dBm total for 2 Tx
Min EIRP Power (Rated)	43.0 dBm per chain and 46.0 dBm total for 2 Tx
Software Version	LR_15.1.
Hardware Version	195052 LR 16.1 Multicarrier B25 RRH AR1.0 2T (LTE RF-
	Assets)
Antenna(s)	Refer to Section 3.2

Table 3.1.1 Product Specifications

The EUT supports the following carrier configurations:

Carrier Bandwidth (MHz)	Maximum No of Carriers per Path	Technology	Supported?
1.23		CDMA	
1.25		CDMA	
5	3	LTE	\checkmark
10	1	LTE	\checkmark
15	1	LTE	\checkmark
20	1	LTE	\checkmark

Table 3.1.2 EUT Supported Configurations

Alcatel-Lucent USA Inc. - Proprietary

The operating band consists of the following blocks and spectrum:

Blocks	Tx Frequency (MHz)	Rx Frequency (MHz)	Bandwidth (MHz)
А	1930 – 1945	1850 – 1865	15
D	1945 – 1950	1865 – 1870	5
В	1950 – 1965	1870 – 1885	15
E	1965 – 1970	1885 – 1890	5
F	1970 – 1975	1890 – 1895	5
С	1975 – 1990	1895 – 1910	15
G	1990 – 1995	1910 – 1915	5

Table 3.1.3 EUTRAN 25, PCS Band

3.2 Antenna Information

The product does not incorporate integrated antennas.

4. **REQUIRED MEASUREMENTS AND RESULTS**

This is a Class II Permissive Change to add 3-carrier operation to the EUT. Per 47CFR FCC Section 2.1033(c)(14), the following certification tests are required by Section 2.1046 through Section 2.1057. The measurement was conducted in accordance with the procedures set out in Section 2.1041.

47 CFR FCC Sections	Description of Tests	Required	Notes
2.1046	RF Power Output	Yes	
2.1047	Modulation Characteristics	Yes	
2.1049, 24.238	(a) Occupied Bandwidth (b) Out-of-Band Emissions	Yes	
2.1051, 24.238	Spurious Emissions at Antenna Terminals	Yes	
2.1053, 24.238	Field Strength of Spurious Radiation	Yes	
2.1055, 24.238	Measurement of Frequency Stability	NR	

NR = Not Required

Alcatel-Lucent USA Inc. - Proprietary

4.1 Section 2.1046 MEASUREMENT REQUIRED: RF POWER OUTPUT

This test is a measurement of the total RF power level transmitted at the antenna-transmitting terminal, as shown in the accompanying test set-up diagram. The radio was tuned to a channel which is transmitting continuously in its operating frequency band. The power level of the base station was calibrated to allow the base station to operate at the manufacturer's maximum rated mean power level, i.e., +47.78 dBm (60 W) per LTE antenna-transmitting terminal. Each of the 3 carriers were set +43.01 dBm (20 W).

4.1.1 **RF Power Output Measurement**

Power measurements were conducted with a broadband Power Meter in the average mode per KDB 971168 D01. Before the testing was started, the Base Station was given a sufficient "warm-up" period as required.

The maximum rated mean power per carrier, per port and per unit at the antenna transmitting terminal was measured for LTE carriers at the minimum and maximum carrier bandwidths with QPSK, 16QAM and 64QAM modulation across the entire operating frequency band, respectively.

The maximum rated mean RF power outputs of the EUT measured are given in Table 4.1.1. The RF power output measured for each configuration was also shown as "Ref Lvl" in the plots provided in Sections 4.3 and 4.4.

Transmit Configuration	Measurement Configuration	Maximum RF Ou Pov	Average utput ver	Maximum Derivation
		Watts	dBm	dB
2xMIMO	Per Carrier	20	43.0	
2xMIMO	Per Antenna Port	60	47.8	≤±1
2xMIMO	Per Unit	120	50.8	

Table 4.1.1 The Maximum Average RF Output Power of the EUT- Measured

4.1.1.1 RF Power Output Results:

The maximum mean RF power outputs of the EUT measured at its antenna transmitting terminals were measured in full compliance with the Rules of the Commission and are listed above.

4.1.2 Peak-to-Average Power Ratio Measurement

The Peak-to-Average Power Ratio (PAPR) of the EUT has also been measured per KDB 971168 D01 procedures for both 5 MHz and 10 MHz carriers at the lowest, middle and highest available channels of the operating band for QPSK, 16QAM and 64QAM, respectively. The PAPR values (0.1% probability) of the EUT measured are all below 13dB. The maximum PAPR value measured is given in Table 4.1.2 and the plot below.

Configuration	Maximum PAPR Value at 0.1% probability (dB)
Ch 1932.5 MHz, QPSK, BW 5 MHz	< 10 dB

4.1.2.1 Peak-to-Average Power Ratio Results:

The maximum Peak-to-Average Power Ratio (PAPR) of the EUT measured at its antenna transmitting terminals were measured to be in full compliance with the <13 dB Rules of the Commission and are listed above.

As stated in KDB 971168 D01 Power Meas License Digital Systems v02r02, the peak power of a digitallymodulated signal is predictable only on a statistical basis. Thus, for these types of signals, a statistical measurement of the peak power is necessary. The power complementary cumulative distribution function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth.

Plots of the CCDF curves are shown in the following Fig. 4.1.2

Figure 4.1.1 Test Set-Up for Measurement of **Radio Frequency Power Output**

Figure 4.1.2 PAPR Plot Measured with the Maximum Value

Ch 1932.5 MHz, QPSK, BW 5 MHz

Alcatel-Lucent USA Inc. - Proprietary

4.2 Section 2.1047 MEASUREMENT REQUIRED: MODULATION CHARACTERISTICS

The EUT supports LTE technology only. The LTE utilizes Orthogonal Frequency Division Multiplexing (OFDM) which splits the carrier frequency bandwidth into many small subcarriers. Each individual subcarrier is modulated with QPSK, 16QAM and 64QAM digital modulation formats.

In QPSK, there are 4 possible symbol states and each symbol carries 2 bits of information. In 16QAM, there are 16 possible symbol states and each 16-QAM symbol carries 4 bits of information. While in 64QAM, there are 64 possible symbol states and each 64-QAM symbol carries 6 bits of information. Higher-order modulation, where the constellations become more dense, is more sensitive to poor channel conditions than the lower-order modulation.

The modulation characteristics measurement of LTE carriers measures the difference between the ideal symbols and the measured symbols after the equalization. The measurement was performed for QPSK, 16QAM and 64QAM, respectively, where the carrier power level was adjusted to the maximum rated mean power at the antenna terminal.

4.2.1 Modulation Characteristics Measurement

The measurements were performed at the antenna transmitting terminal of the base station system with a signal analyzer, which was calibrated in accordance with ISO 9001 process. The test set-up diagram is given in the Figure 4.2.1, where the signal analyzer used the external signals from the base station as its trigger source and time reference. Figures 4.2.2 and 4.2.3 show representative screen plots of the modulation measurement for 5 MHz and 10 MHz LTE carriers in QPSK and 64QAM modulations, respectively. Modulation at 16QAM was demonstrated with the original filing and need not be repeated for this Class II filing.

4.2.1.1 Modulation Measurements Results:

The modulation characteristics of the EUT measured are in full compliance with the Rules of the Commission.

Figure 4.2.1 Test Set-Up for Measurement of Modulation Characteristics, Occupied Bandwidth and Out-of-Band Emissions

Trigger

FIGURE 4.2.2 Modulation Measurement for a 5 MHz LTE Carrier at 1932.5 MHz with QPSK and 64QAM, and 1957.5 MHz with 16QAM Modulations

BW 5 MHz, 1932.5 MHz, QPSK

BW 5 MHz, 1957.5 MHz, 16QAM

Alcatel-Lucent USA Inc. - Proprietary

BW 5 MHz, 1932.5 MHz, 64QAM

FIGURE 4.2.3 Modulation Measurement for a 10 MHz LTE Carrier at 1935 MHz with QPSK, 1955 MHz with 16QAM and 1990 MHz with 64QAM Modulations

BW 10 MHz, 1935 MHz, QPSK

BW 10 MHz, 1955 MHz, 16QAM

Alcatel-Lucent USA Inc. - Proprietary

BW 10 MHz, 1990 MHz, 64QAM

4.3 Section 2.1049 MEASUREMENT REQUIRED: OCCUPIED BANDWIDTH AND OUT-OF-BAND EMISSIONS

This test measures the Occupied Bandwidth of the transmitting carrier and the Out-of Band Emissions in the frequency spectrum immediately outside and adjacent to the transmitting carrier(s).

The occupied bandwidth (OBW) is usually defined either as the 99% power OBW or a relative OBW. The 99% OBW is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated or conducted are each equal to 0.5 percent of the total mean power radiated or conducted by a given emission. The relative OBW is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated by at least X dB below the transmitter power, where the value of X is typically specified as 26.

Per KDB 971168 D01 v02r02, the relative OBW must be measured and reported when it is specified in the applicable rule part; otherwise, the 99% OBW shall be measured and reported. The OBW shall be measured when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment is operated.

4.3.1 Measurement of Occupied Bandwidth

The operating blocks and carrier configurations supported are provided in Section 3.1 Product Descriptions. The EUT transmitting band for wireless communication is governed by the FCC rules in CFR 47, Part 24, Subpart E. The minimum emission requirements and the setting of measurement equipment for the out-of-band emissions measurement of carriers were specified in FCC Part 24.238. The FCC's requirements are tabulated in the following table:

Frequency	Required Minimum	Measurement Resolution
	Attenuation below the Mean	Bandwidth of Spectrum
	Carrier Power P	Analyzer
1MHz Bands Immediately	(43 + 10 log P watts) dBc =	30 kHz for BW 5 MHz
Outside the Transmitting	-13dBm*	100kHz for BW 10MHz
Frequency Band		
Outside the above Frequency	(43 + 10 log P watts) dBc =	1MHz
Range	-13dBm*	

Table 4.3.1 FCC Part 24.238 Transmitter Unwanted Emission Limits

*For Nx MIMO, the limit is reduced by 10. log(N) dB.

The above requirement was used as the required emission limit mask in the out-of-band emissions measurement. The occupied bandwidth and out-of-band emissions measurements were made at the antenna transmitting terminal for QPSK and 64QAM modulations, respectively. The appropriate E-UTRA test model specified in 3GPP TS 36.141 and TS 36.104 was used for LTE carriers.

The measurements were performed with a spectrum analyzer, consistent with ANSI C63.26. The test setup diagram is same as the one shown in the Figure 4.3.1. The 99% occupied bandwidth measurement of an LTE carrier was measured per FCC KDB 971168, using an Agilent Technologies N9020A MXA Signal Analyzer. For the out-of-band emissions measurement, the spectrum analyzer is normally set with a resolution bandwidth which is equal to at least 1% of carrier bandwidth (Part 24.238) and a video bandwidth which is equal to at least 3xRBW as shown in the plots of the occupied bandwidth measurement attached in the following pages. The emissions outside the above spans were evaluated in Measurement Required: Out-of-block Spurious Conducted Emissions. The top of the carrier measured with a resolution bandwidth greater than the carrier bandwidth (if available) or a wideband power meter. This 20dB offset was due to the fact that 10 log (BW/1% *BW) = 20 dB. The RMS average detector was used in all above measurements. The measurement met the requirements of ANSI C63.26 paragraphs 5.2.4.4.1 and 5.7 which requires that the number of points in the sweep be > 2 × Span/RBW.

For this Three-Carrier Operation, subject of this Class II Permissive Change application, measurements were made for 3 contiguous carriers 5+5+5 MHz, 10+5+5 MHz, and 5+5+10 MHz at the low end (lowest settable), mid-band and the high end (highest settable) of the 1930 – 1995 MHz spectrum, for both QPSK and 64QAM test modulations. For non-contiguous operation, the 3 individual carriers were positioned at the low end, mid-band and high end. Each carrier was set to 20 W (43.0 dBm), for a total composite power of 60 W (47.8 dBm) at each of the 2 transmit antenna ports/terminals. The emission masks and measurement resolution bandwidths (RBW) were consistent with 3GPP TS 36.104 Table 6.6.3.3-2. The out-of-band emissions were measured using Total Integrated Laboratory Environment (TILE) EMI test software, by ETS-Lindgren. The carrier configurations evaluated are tabulated below.

Test Number	Configuration	Rational	Band	DL Carrier Center Frequencies (MHz)	Modulation
1	Tx1 - Contiguous 5+5+5	Low End	A	1932.5 +1937.5+1942.5	QPSK
2	Tx1 – Contiguous 5+5+5	Mid-Band	B+E	1957.5+1962.5+1967.5	16QAM
3	Tx1 - Contiguous 5+5+5	High End	C+G	1982.5+1987.5+1992.5	64QAM
4	Tx1 - Non-Contiguous 5+5+5	Low End Weighted	A+B+G	1932.5+1952.5+1992.5	QPSK
5	Tx1 - Non-Contiguous 5+5+5	High End Weighted	A+C+G	1932.5+1977.5+1992.5	64QAM
6	Tx1 - Contiguous 10+5+5	Low End	A+D	1935+1942.5+1947.5	64QAM
7	Tx1 - Contiguous 10+5+5	Mid-Band	B+E	1955+1962.5+1967.5	16QAM
8	Tx1 – Contiguous 5+5+10	High End	C+G	1977.5+1982.5+1990	QPSK
9	Tx1 - Non-Contiguous 10+5+5	BW 10 MHz Low	A+C+G	1935+1962.5+1992.5	QPSK
10	Tx1 - Non-Contiguous 5+5+10	BW 10 MHz High	A+B+C+G	1932.5+1962.5+1990	64QAM
11	Tx2 - Non-Contiguous 10+5+5	BW 10 MHz Low	A+C+G	1935+1962.5+1992.5	QPSK
12	Tx2 - Non-Contiguous 5+5+10	BW 10 MHz High	A+B+C+G	1932.5+1962.5+1990	64QAM

Table 4.3.2 Channels Tested for Occupied Bandwidth and Out-of-Band

4.3.1.1 Mask Parameters

The emission mask parameters are specified in Part 24.238, as follows:

§24.238 Emission limitations for Broadband PCS equipment.

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

(a) *Out of band emissions.* The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

(b) *Measurement procedure.* Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

4.3.2 Results:

The occupied bandwidth plots which gave the widest occupied bandwidth for each bandwidth with QPSK, 16QAM and 64 QAM were submitted, respectively. The result is summarized below:

Test Number	Bandwidth (BW)	Carrier Center	Modulation	99% Power Occupied
	MHz	Frequency (MHz)		Bandwidth (MHz)
1	5	1932.5	QPSK	4.4804
1	5	1937.5	QPSK	4.4799
1	5	1942.5	QPSK	4.4794
2	5	1957.5	16QAM	4.4530
2	5	1962.5	16QAM	4.4592
2	5	1967.5	16QAM	4.4628
3	5	1982.5	64QAM	4.4732
3	5	1987.5	64QAM	4.4831
3	5	1992.5	64QAM	4.4784
6	10	1935	64QAM	8.9310
7	10	1955	16QAM	8.9615
8	10	1990	QPSK	8.9306

 Table 4.3.3 Occupied Bandwidth Measurement Results (99% Power Occupied Bandwidth)

FIGURE 4.3.1 99% OCCUPIED BANDWIDTH PLOTS

Test #1 Carrier 1932.5 MHz, QPSK

Alcatel-Lucent USA Inc. - Proprietary

Keysight Spectr	rum Analyzer - Occupied B	W/						
UM L	RF 50 Ω AC		SENSE:INT		ALIGN AUTO	02:53:22 A	M Apr 22, 2016	Snan
Span 5.00	00 MHz		Center Freq: 1.	932500000 GHz		Radio Std:	None	opan
		-+	Trig: Free Run	Avg Hold	1: 10/10	Dealle Deal	In DTO	
		#IFGain:Low	#Atten: 6 dB			Radio Dev	ICE: BTS	Span
								5 0000 MHz
	Ref Offset 60 dE	3						0.0000 111 12
10 dB/div	Ref 43.01 dB	m						
LOG								
33.0								
23.0	www.	metalantera	www.www.	mon	m malanta	w man	CUMP .	
12.0		a diama dia man	And the second second					
13.0								
3.01							- t.	
s 99							N N	Full Span
per la construcción de la constr							1.	i an opan
-17.0							¥.,	
-27.0							~	
-37.0								
-47.0								
Center 19	33 GHz				_	Sn	an 5 MHz	
#Pac BIA	20 14		#\/D\A(4	00 247		Swaap	6 967 mc	
#Res DW	JU KHZ		#VDVV	OO KHZ		aweep	0.807 1115	Last Span
					10			
Occup	ied Bandwid	th	101	al Power	43.4	dBm		
		4004 ML	1-					
	4	4004 101	12					
-		075				00.01		
Transm	It Freq Error	-2/5	HZ OB	w Power	99	.00 %		
v dB Ba	ndwidth	4 692 M	Hz vd	=	-26	00 dB		
A GD Da		4.032 W	112 X U	-	-20.			
MSG					STATUS	5		

Test #2 Carrier 1967.5 MHz, 16QAM

Keysight Spi	ectrum Analyzer - Occupi	ed BW	451.45					
Contor E	rog 1 967500		Center Freq:	1.967500000 GHz	ALIGN AUTO	Radio Std	None	Frequency
Center P	164 1.307300		Trig: Free Ru	n Avg Hole	1: 10/10			
		#IFGain:Low	#Atten: 6 dB			Radio Dev	ice: BTS	
	B-640.04	1 D						
10 dB/div	Ref 43.01	aBm			_			
33.0								Conter From
								GenterFreq
23.0	MrMrdanMan	marrow	and a contraction of the	Any have been all	M.M.M.M.M.	milmoulou	mm	1.967500000 GHz
13.0								
3.01								
1 99 3.							<u>\</u>	
N.								
-17.0							- L	
-27.0								
-37.0								
-47.0								
Center 1	062 CH7						ap 5 MHz	
#Pas Bill	30 6 4 4 7		#VBM	100 kHz		Sween	6 967 me	CF Step
WINES DW	50 KH2		# V D V V	100 KH2		Sweep	0.007 1115	500.000 kHz
Occu	nied Bandw	idth	Т	tal Power	43.3	dBm		Auto Man
Occu	pieu Banuw	luul	-					
		4.4628 MI	Ηz					Fred Offset
								0 Ll-
Trans	mit Freq Erro	r 419	Hz O	BW Power	99	0.00 %		0 112
V dD E	andwidth	4 650 M	U	d D	-26			
XUBE	Sanuwiuun	4.050 N		uв	-20.	UU UB		
1100					07471			
MSG					STATU	S		

Test #3 Carrier 1987.5 MHz, 64QAM

Keysight Spectrum Ana	alyzer - Occupied BW								<u> </u>
L RF	50 Q AC		SENSE:INT	A	LIGN AUTO	11:52:23 Pf	4 Apr 22, 2016	Erequeneu	
Center Freq 1.	987500000 0	SHz 9	Center Freq: 1.9875	00000 GHz		Radio Std:	None	Frequency	
		HH .	rig: Free Run	Avg Hold:	10/10				
	1	IFGain:Low	Atten: 6 dB			Radio Dev	ICE: BTS		
a sector D	6 60 00 dBm								
	er 50.00 aBm						<u> </u>		
40.0									
40.0								Center F	eq
30.0								1.987500000 0	Hz
mon	howener	Manshow	mannahm	mann	mon	m	www		
20.0			v				- N		
10.0									
0.00									
							<u>۱</u>		
-10.0							5		
-20.0 👭							W		
20.0									
-30.0									
-40.0									
Center 1.988 G	Hz					Spa	an 5 MHz	CES	an
#Res BW 30 kH	iz		#VBW 100	kHz		Sweep	6.867 ms	500,000 1	ep
						· ·		Auto A	dan.
Occupied	Randwidth		Total F	ower	43.2	dBm		<u>Auto</u> "	10.11
occupieu	Danawiatin								
	4.4	831 MHz	2					Erea Off	E of
								Fiequi	SEL
Transmit Fr	ea Error	-2.265 kH	Z OBW F	ower	99.	00 %		0	Hz
x dB Bandw	/idth	4.674 MH	z xdB		-26.0	0 dB			
1100					074710				_
DGW					STATUS				

Test #6 BW 10 MHz, 1935 MHz, 64QAM

Test #7, BW 10 MHz, 1955 MHz, 16QAM

Keysight Spectrum Analyzer - Occupied BV		CENCE-INT	ALIGN ALITO	04-26-08 AM Apr 26, 20	116	
VBW 300.00 kHz	Cer	ter Freq: 1.955000000	GHz	Radio Std: None		BW
	Trig	: Free Run Av	g Hold: 10/10	Dadia Davias BTS		Dec PW
	#IFGain:Low #At	ten: 10 dB		Radio Device: BTS	_	100.00 kHz
Ref Offset 60 dB					Auto	Man
10 dB/div Ref 43.01 dBr	n					
Log						Video BW
33.0		0.00				300.00 kHz
23.0 Many Artan	and Wheneyer	~ WWWWWW	and the for the second	monor	Auto	Man
13.0						
3.01						
-6.99					Λ	
-17.0				\	4	
					Y	
-27.0						
-37.0						
-47.0						
				0		
HERE BW 100 KHZ		#VRW 300 KH7		Span 10 M	HZ	Filter Type
#Res BW TOO KH2		#VBVV 300 KH2		Sweep 1.20/1	115	Gaussian
Occupied Bandwidt	h	Total Powe	er 43.2	2 dBm		
occupied Ballawid						
8.	9615 MHZ					
Transmit Fred Error	3 257 kHz	OBW Powe	or 00	0.00 %		
fransmit Freq Error	3.237 KHZ	OBW FOW	31 35	.00 %		
x dB Bandwidth	9.285 MHz	x dB	-26.	00 dB		
1100						
Mata			STATU	8		

Test #8 BW 10 MHz, 1990 MHz, QPSK

Alcatel-Lucent USA Inc. - Proprietary

Out-of-Band Emission Mask Compliance

The emission mask limits are defined by:

For the 1 MHz adjacent to the upper and lower edge of the measurement block/band:

43.01 - [43 + 10 log 20W] - 10 log (Meas RBW/1% BW) - 10 log N

For greater than 1 MHz from the upper and lower edge of the measurement block/band:

43.01 - [43 + 10 log 20W] - 10 log (Meas RBW/1 MHz) - 10 log N

The carriers are offset from the top of the emission mask by:

43.01 - 10 log (Meas RBW/ BW)

The data plots that follow show compliance of both the contiguous and non-contiguous carrier configurations. From the out-of-band emissions plots attached below, it can be seen that all the emissions are under the required FCC emission masks for MIMO operation.

Test #1 Contiguous 5 + 5 + 5 MHz at QPSK and 20 W/C

Test #6 Contiguous 10 + 5 + 5 MHz at 64QAM and 20 W/C

Test #9 Non-Contiguous 10 + 5 + 5 MHz at QPSK and 20 W/C

Test #10 Non-Contiguous 5 + 5 + 10 MHz at 64QAM and 20 W/C

The measurement results of the occupied bandwidth and the out-of-band emissions demonstrate the full compliance with the Rules of the Commission for the operating band.

4.4 Section 2.1051 MEASUREMENT REQUIRED: SPURIOUS EMISSIONS AT THE ANTENNA TERMINALS

This test measures the emissions of spurious signals which may come from harmonic, parasitic, intermodulation and frequency conversion products and are outside the necessary bandwidth but exclude out-of-band emissions. The spurious emissions at the transmit antenna terminal were investigated from 10 MHz to the 10th harmonic of the carrier, per Section 2.1057(a)(1). The emission limit is as previously stated in Part 24.238, as :

For greater than 1 MHz from the upper and lower edge of the measurement block/band:

43.01 - [43 + 10 log 20W] – 10 log (Meas RBW/1 MHz) – 10 log N Where, Meas RBW = 1 MHz and N = 2

The measurement configurations and carrier setup were same as in Section 4.3. The out-of-band emissions were measured using Total Integrated Laboratory Environment (TILE) EMI test software, by ETS-Lindgren.

The emission limits and the setting of measurement equipment for the unwanted emissions measurement were given in Table 4.3.3 and provided in Table 4.4.1, where per FCC CFR 47, Sections 2.1051 and 2.1057(c), the spurious emissions attenuated more than 20 dB below the permissible value need not be reported.

Frequency of Emission (MHz)Required Limit (2x2 MIMO) (dBm)10-20.000-16		Reportable Limit (dBm)	Detector/RBW
10-20,000	-16	-36	Average/1MHz

 Table 4.4.1 Conducted Spurious Emissions Limit

The measurements were performed with a spectrum analyzer, which was calibrated in accordance with ISO 9001 process. The carrier power level at the antenna transmitting terminal was calibrated before the conducted spurious emissions testing for each test. The spectrum analyzer was set to a 1MHz resolution bandwidth. The RMS average detector was used. The measurement met the requirements in ANSI C63.26 which requires in 5.2.4.4.1 and 5.7 that the number of points in the sweep be > 2 × Span/RBW. The measurement met the requirements of ANSI C63.26 paragraphs 5.2.4.4.1 and 5.7 which requires that the number of points in the sweep be > 2 × Span/RBW.

The spurious emissions in the frequency range measured are well under the required reportable emission limit for all carrier bandwidth with QPSK, 16QAM and 64QAM modulations evaluated. Therefore, there are no reportable emissions.

4.4.1 Results:

Over the required frequency spectrum investigated for the EUT, no reportable out-of-block spurious emissions were detected. The out-of-block spurious emissions in the entire spectrum investigated are under the required reportable emission limit. The measurement results demonstrate that the subject of the application is in full compliance with the Rules of the Commission. A sample measurement is displayed in the following data plot.

Page 30 Of 37

Alcatel-Lucent USA Inc. - Proprietary

Test #10 Non-Contiguous 5 + 5 + 10 MHz at 64QAM and 20 W/C

Page 31 Of 37

Alcatel-Lucent USA Inc. - Proprietary

4.5 Section 2.1055 MEASUREMENT REQUIRED: FREQUENCY STABILITY

This measurement evaluates the frequency difference between the actual transmit carrier frequency and the specified transmit frequency assignment. Only the portion of the transmitter system containing the frequency determining and stabilizing circuitry need be put in an environmental chamber and subjected to the temperature variation test per FCC Section 2.1055. The unit which provides baseband signals, such as BBU (baseband unit), can be located outside the chamber if it is a separated unit.

The subject of this Class II Permissive Change application is Three-Carrier Operation, which is a software only change. Since there is no change to the frequency determining and stabilization circuitry, there is also no change to the original Frequency Stability Measurements. As such, it is not necessary to repeat these measurements.

4.5.1 Frequency Stability Results:

The maximum frequency derivations measured at the antenna terminal of the EUT due to temperature and primary supply voltage changes are within the ± 0.05 ppm requirement. Since there is no change to the frequency determining and stabilization circuitry, there is also no change to the original Frequency Stability Measurements. As such, it is not necessary to repeat these measurements.

4.6 Section 2.1053 MEASUREMENT REQUIRED: FIELD STRENGTH OF SPURIOUS RADIATION

This measurement evaluates the spurious emissions that may be radiated directly from the EUT cabinet, circuits or power leads under normal conditions of installation and operation. The EUT shall be investigated from 30 MHz to the 10th harmonic of the carrier, per Section 2.1057(a)(1).

The EUT transmits in the 1930 – 1995 MHz frequency band with LTE technology and 2x2 MIMO. It was configured as in the normal mode of the installation and operation with the maximum power output per Table 4.6.1. The test model used for configuring the LTE carrier was described in Section 4.3. All carriers were transmitting to non-radiating 50 Ω resistive loads.

Config No	No of Carriers/Port	Tx1 (CH/freq)	Tx2 (CH/freq)	Power/c (dBm)	Carrier BW (MHz)	Modulations
1	3	1935 + 1977.5 + 1992.5 MHz	1935 + 1977.5 + 1992.5 MHz	43	10 + 5 + 5 Non- Contiguous	64QAM
2						

The emission limits and the setting of measurement equipment for the spurious emissions measurement were given in Section 4.3. FCC sections 2.1051 and 2.1057(c) specify that the **spurious emissions attenuated more than 20 dB below the permissible value need not be reported.** By using the relation between the electric field strength of an ideal dipole and its excitation power given in Reference Data for

Page 32 Of 37

Alcatel-Lucent USA Inc. - Proprietary

Radio Engineers, page 676, 4th edition, ITT Corp., the emission limit calculated for electric field strength and its reportable limit equal:

Frequency	Measurement	Required E Limit	Reportable E	Detector/RBW
Range	Distance	(2x2 MIMO)	Limit	
(MHz)	(m)	(dBµV/m)	(dBµV/m)	
10-20,000	3	81.1	61.1	Average/1MHz

Table 4.6.2 Calculated Radiated Spurious Emission Limit in Electrical Field Strength

The field strength of radiated spurious emissions measured was determined by

 $E(dB\mu V/m) = V_{meas}(dB\mu V) + Cable Loss (dB) + Antenna Factor (dBi/m).$

Field strength measurements of radiated spurious emissions were made at a semi anechoic room of Global Product Compliance Laboratories of Alcatel-Lucent Murray Hill which was detailed in Section 6. The recommendations of ANSI C63.4 and ANSI C63.26 were followed for EUT testing setup, cabling, and measurement approach and procedures. All the measurement equipment used, including antennas, were calibrated in accordance with ISO 9001 process. The EUT setup diagram is given in the Figure 4.6.1. The minimum margin measured per Table 4.6.2 is more than 20dB.

4.6.1 Field Strength of Radiated Emissions Results:

Over the frequency spectrum investigated **no reportable radiated spurious emissions** were detected. The measurement results of the EUT, subject of this application, demonstrate the full compliance with the Rules of the Commission.

4.7 LIST OF TEST EQUIPMENT

Table 5.1 List of Test Equipment Used

Antenna Port Measurement Equipment

Manufacturer	Model	Serial Number	Туре	Description	GPCL ID	Last Cal	Interval	Status
Extech	SD700	Q774046	Temperature/Humidity Recorder	Barometric Preasure/Humd/Temp Logger	E1188	6/2/2014	24	Active
Rohde & Schwarz	FSEM30	835533/002	Spectrum Analyzer	20 Hz - 26.5 GHz	E927	5/23/2014	24	Active
Agilent Technologies	N9020A	MY48011791	MXA Signal Analyzer	20Hz-26.5GHz	E831	2/23/2016	24	Active
Agilent Technologies	N1921A	MY45101984	Power Meter	P-Series	E950	2/19/2016	24	Active
Agilent Technologies	N1921A	MY45242502	Power Sensor	-35 - +20 dBm 50 MHz -18 GHz	E949	7/31/2015	12	Active
ТДК	GEN-60- 25	14H9764AA	Power Supply	DC Power Supply 60 Volts 25 Amps	E1203		0	Active

Manufacturer	Model	Serial	Туре	Description	GPCL	Last Cal	Interval	Status
		Number			טו			
Trilithic	5HC2850/1805	PCS-HPF-10	High Pass	PCS	E1132		ICO	Active
	0-1.8-KK		Filter		E987			
Trilithic	10LC1790-3-	PCS-LPF-10	Low Pass	PCS	E979		ICO	Active
	AA		Filter					
Agilent	772D	MY29586115	Directional	Dual 2-18 GHz	E1003		ICO	
Technologies			Coupler					
Weinschel	6530-6-34-LIM	BN3217	Attenuator	6dB DC-18GHz	E1021		ICO	Active
			DDC Test	25 W				
			Port					
Weinschel	46-10-34-LIM	BN3118	Attenuator	10dB DC-	E1022		ICO	Active
			DDC Test	18GHz 25 W				
			Port					
Weinschel	6528-30-34-	BN4172	Attenuator	30 dB DC-	E1006		ICO	Active
	LIM		DDC Input	18GHz 150 W				
Hewlett Packard	8495B	MY41110681	Attenuator,	Step DC-4GHz	E1045		ICO	Active
			Variable Step	0-100dB				
Hewlett Packard	8494B	MY42140030	Attenuator,	Step DC-	E1046		ICO	Active
			Variable Step	18GHz 0-11dB				
Weinschel Corp.	23-6-34	BC0689	Attenuator	6dB, DC-			ICO	
			DDC Incident	18GHz, 10 W				
			Port					
Weinschel	7003	CC0647	DC Block	9kHz - 18.6	E1101	3/4/2013	ICO	
				GHz				

ICO = Initial Calibration Only. These components are calibrated with a Network Analyzer before each test.

Page 35 Of 37

Alcatel-Lucent USA Inc. - Proprietary

FCC Certification Test Report FCC ID: AS5BBTRX-22

Manufacturer	Model	Serial Number	Туре	Description	GPCL	Last Cal	Interval	Status
Sunol Sciences Corp	SC99V	32802-1	System Controller		E588		0	Active
Agilent Technologies	E7405A	MY44210223	Spectrum Analyzer	EMC 100Hz - 26.5GHz	E692	5/29/2014	24	Active
Sonoma Instrument Co.	310N	185785	Amplifier	9kHz-1GHz	E494	12/3/2015	24	Active
A.H. Systems Inc.	SAS-521-2	457	Bilogical Antenna	25 - 2000 MHz	E766	12/29/2014	24	Active
Weinschel	2-6	BW2239	Attenuator	6 dB DC-18GHz 5 Watt	E890	6/9/2015	24	Active
Trilithic	5HC2850/18050- 1.8-KK	PCS-HPF-5	High Pass Filter	PCS	E986		12	Active
Hewlett Packard	8449B	3008A01384	Pre- Amplifier	Preamplifier 1- 26.5 GHz	E447	12/17/2015	24	Active
Rohde & Schwarz	ESIB40	100119	Test Receiver	EMI (20Hz to 40 GHz)-150 +30dBM	E936	6/2/2015	24	Active
ETS Lindgren	3117	00135194	Horn Antenna	Double-Ridged Waveguide Horn 1-18 GHz	E1074	11/25/2014	24	Active
EMC Test Systems	3116	2539	Horn Antenna	Double Ridged Horn 18-40 GHz	E513	3/19/2015	24	Active

Radiated Emissions: AR4/RE/2016-0069

4.8 FACILITIES AND ACCREDITATION

All measurement facilities at Alcatel-Lucent Global Product Compliance Laboratory (GPCL) used to collect the measurement data in the test report are located at 600-700 Mountain Avenue, Murray Hill, New Jersey 07974-0636 USA.

The field strength measurements of radiated spurious emissions are made in a FCC and IC registered three meter semi-anechoic chamber AR7 (FCC Site Registration Number: 995653, IC Filing Number: 6933F-7) which is maintained by Alcatel-Lucent in Murray Hill, New Jersey. The sites were constructed and are continuously in conformance with the requirements of ANSI C63.4 and CISPR Publication 22.

Alcatel-Lucent Global Product Compliance Laboratory is accredited with the US Department of Commerce National Institute of Standards and Technology's National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with criteria established in Title 15, Part 7 Code of Federal Regulations for offering test services for selected test methods in Electromagnetic Compatibility; Voluntary Control Council for Interference (VCCI), Japan; Australian Communications and Media Authority (ACMA). The laboratory is ISO 9001:2008 Certified.

