

Report No:	CHTEW19060129	Report verificaiton:	
Project No:	SHT1905091802EW		
FCC ID	2AGRS-RS36M		
Applicant's name:	QuanzhouRisenElectro	nicsCo.,Ltd	
Address	No.26, Zishan Rd, Jiangr Quanzhou, Fujian	nan High-tech Zone, Licheng District,	
Manufacturer	QuanzhouRisenElectroni	icsCo.,Ltd	
Address	No.26, Zishan Rd, Jiang Quanzhou, Fujian	nan High-tech Zone, Licheng District	
Test item description	VHF Marine Handheld F	Radio	
Trade Mark	Recent, Radioddity, rugg	ed radios	
Model/Type reference:	RS-36M		
Listed Model(s)	RV6, VMR-5H		
Standard:	FCC 47 CFR Part2.109 IEEE Std C95.1, 1999 I IEEE 1528: 2013		
Date of receipt of test sample	Jun. 11, 2019		
Date of testing	Jun. 12, 2019- Jun. 19, 2019		
Date of issue:	Jun. 20, 2019		
Result:	PASS		
Compiled by (position+printed name+signature):	File administrators:Xiaod	long Zhao	
Supervised by (position+printed name+signature):	Test Engineer: Xiaod	long Zhao	
Approved by		Hans Hu Hamsty	
(position+printed name+signature):	Manager:	Hans Hu	
Testing Laboratory Name:	Shenzhen Huatongwei	International Inspection Co., Ltd	
Address 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China			

Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely correspond to the test sample.

Contents

<u>1.</u>	Test Standards and Report version	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	Summary	4
2.1.	Client Information	4
2.2.	Product Description	4
2.3.	Test frequency list	5
<u>3.</u>	Test Environment	6
3.1.	Test laboratory	6
3.2.	Test Facility	6
3.3.	Environmental conditions	6
<u>4.</u>	Equipments Used during the Test	7
<u>5.</u>	Measurement Uncertainty	8
<u>6.</u>	SAR Measurements System Configuration	9
6.1.	SAR Measurement Set-up	9
6.2.	DASY5 E-field Probe System	10
6.3.	Phantoms	11
6.4.	Device Holder	11
<u>7.</u>	SAR Test Procedure	12
7.1.	Scanning Procedure	12
7.2.	Data Storage and Evaluation	14
<u>8.</u>	Position of the wireless device in relation to the phantom	16
8.1.	Front-of-face	16
8.2.	Body Position	16
<u>9.</u>	Dielectric Property Measurements & System Check	17
9.1.	Tissue Dielectric Parameters	17
9.2.	SAR System Validation	18
9.3.	SAR System Verification	19
<u>10.</u>	SAR Exposure Limits	23
<u>11.</u>	Conducted Power Measurement Results	24
<u>12.</u>	Maximum Tune-up Limit	24
<u>13.</u>	SAR Measurement Results	25
<u>14.</u>	Test Setup Photos	26
<u>15.</u>	External and Internal Photos of the EUT	26

1. Test Standards and Report version

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC 47 Part 2.1093:</u> Radiofrequency Radiation Exposure Evaluation:Portable Devices <u>IEEE Std C95.1, 1999 Edition:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

<u>IEEE Std 1528™-2013:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC published RF exposure KDB procedures:

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

<u>KDB 865664 D02 RF Exposure Reporting v01r02</u>: RF Exposure Compliance Reporting and Documentation Considerations

<u>KDB 447498 D01 General RF Exposure Guidance v06:</u> Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

1.2. Report version

Revision No.	Date of issue	Description
N/A	2019-06-20	Original

2. <u>Summary</u>

2.1. Client Information

Applicant:	QuanzhouRisenElectronicsCo.,Ltd
Address:	No.26, Zishan Rd, Jiangnan High-tech Zone, Licheng District, Quanzhou, Fujian
Manufacturer:	QuanzhouRisenElectronicsCo.,Ltd
Address:	No.26, Zishan Rd, Jiangnan High-tech Zone, Licheng District, Quanzhou, Fujian

2.2. Product Description

Name of EUT:	VHF Marine Handheld Radio			
Trade mark:	Recent, Radioddity, rugged radios			
Model/Type reference:	RS-36M			
Listed model(s):	RV6, VMR-5H			
Accessories:	Belt Clip			
Device Category:	Portable			
Product stage:	Production uni	t		
RF Exposure Environment:	General Popul	ation/Uncontrolled		
Power supply:	DC 3.7V			
Device Dimension:	Overall (Length x Width x Thickness):130 x 65 x 40mm Antenna(Length):165mm			
Maximum SAR Value				
Concretion Distance	Front-of-face:	25mm		
Separation Distance:	Body-worn: 0mm			
Maximum CAD Value(4 a)	Front-of-face: 0.211 W/kg			
Maximun SAR Value(1g):	Body-worn: 0.226 W/kg			
RF Specification				
Operation Frequency Range:	156.025-157.4	156.025-157.425MHz		
Rated Output Power:	High Power	High Power: 5W(36.99dBm)		
Modulation Type:	FM(Analog)			
Channel Separation:	Analog:25kHz			
Antenna Type:	Rubber spiral antenna			
Remark: 1 The FLIT battery must be	e fully charged	and checked periodical	ly during the test to ascertain unifo	

1. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power.

2.3. Test frequency list

When the frequency channels required for SAR testing are not specified in the published RF exposure KDB procedures, the following should be applied to determine the number of required test channels. The test channels should be evenly spread across the transmission frequency band of each wireless mode:

$$N_{\rm c} = Round \left\{ \left[100 \left(f_{\rm high} - f_{\rm low} \right) / f_{\rm c} \right]^{0.5} \times \left(f_{\rm c} / 100 \right)^{0.2} \right\},\$$

 $N_{\rm c}$ is the number of test channels, rounded to the nearest integer,

 F_{high} and f_{low} are the highest and lowest channel frequencies within the transmission band,

 $F_{\rm c}$ is the mid-band channel frequency,

all frequencies are in MHz.

ModulationTurne	Channel Test Channel		Test Frequency(MHz)
ModulationType	Separation	Test Channel	Тх
Analog	25kHz	CH16	156.800

3. Test Environment

3.1. Test laboratory

Laboratory:Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

3.2. Test Facility

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 762235

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 762235.

IC-Registration No.: 5377B-1

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B-1.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Ambient temperature		18 °C to 25 °C
	Ambient humidity	30%RH to 70%RH
	Air Pressure	950-1050mbar

4. Equipments Used during the Test

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date (YY-MM-DD)	Due date (YY-MM-DD)
•	Data Acquisition Electronics DAEx	SPEAG	DAE4	1549	2019/03/19	2020/03/18
•	E-field Probe	SPEAG	EX3DV4	3842	2019/01/30	2020/01/29
0	Universal Radio Communication Tester	R&S	CMW500	137681	2018/07/11	2019/07/10
• Ti	ssue-equivalent liquids Va	lidation				
0	Dielectric Assessment Kit	SPEAG	DAK-3.5	1267	N/A	N/A
•	Dielectric Assessment Kit	SPEAG	DAK-12	1130	N/A	N/A
•	Network analyzer	Keysight	E5071C	MY46733048	2018/09/19	2019/09/18
• S	ystem Validation					
•	System Validation Antenna	SPEAG	CLA-150	4024	2018/02/21	2021/02/20
0	System Validation Dipole	SPEAG	D450V3	1102	2018/02/23	2021/02/22
0	System Validation Dipole	SPEAG	D750V3	1180	2018/02/07	2021/02/06
0	System Validation Dipole	SPEAG	D835V2	4d238	2018/02/19	2021/02/18
0	System Validation Dipole	SPEAG	D1750V2	1164	2018/02/06	2021/02/05
0	System Validation Dipole	SPEAG	D1900V2	5d226	2018/02/22	2021/02/21
0	System Validation Dipole	SPEAG	D2450V2	1009	2018/02/05	2021/02/04
0	System Validation Dipole	SPEAG	D2600V2	1150	2018/02/05	2021/02/04
0	System Validation Dipole	SPEAG	D5GHzV2	1273	2018/02/21	2021/02/20
•	Signal Generator	R&S	SMB100A	114360	2018/08/21	2019/08/20
•	Power Viewer for Windows	R&S	N/A	N/A	N/A	N/A
•	Power sensor	R&S	NRP18A	101010	2018/08/21	2019/08/20
•	Power sensor	R&S	NRP18A	101011	2018/08/21	2019/08/20
•	Power Amplifier	BONN	BLWA 0160-2M	1811887	2018/11/15	2019/11/14
•	Dual Directional Coupler	Mini-Circuits	ZHDC-10-62-S+	F975001814	2018/11/15	2019/11/14
•	Attenuator	Mini-Circuits	VAT-3W2+	1819	2018/11/15	2019/11/14
•	Attenuator	Mini-Circuits	VAT-10W2+	1741	2018/11/15	2019/11/14

Note:

1. The Probe, Dipole and DAE calibration reference to the Appendix B and C.

2. Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justificatio. The dipole are also not physically damaged or repaired during the interval.

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

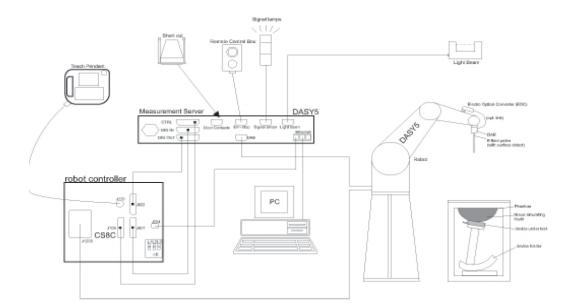
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

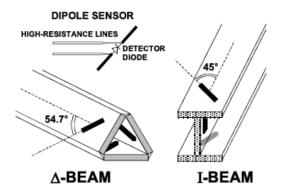
6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

• Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.


Frequency	10 MHz to 10 GHz; Linearity: ± 0.2 dB (30 MHz to 10 GHz)
Directivity	\pm 0.1 dB in TSL (rotation around probe axis) \pm 0.3 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 10 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

• Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6.3. Phantoms

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI isfully compatible with standard and all known tissuesimulating liquids. ELI has been optimized regarding its performance and can beintegrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurementgrids, by teaching three points. The phantom is compatible with all SPEAGdosimetric probes and dipoles.

ELI4 Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

7. SAR Test Procedure

7.1. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1 mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space.

They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publ				504 001004
			\leq 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \mathrm{mm} \pm 0.5 \mathrm{mm}$	
Maximum probe angle surface normal at the r			$30^{\circ} \pm 1^{\circ}$	$20^{\circ}\pm1^{\circ}$
			$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 – 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \text{GHz:} \leq 12 \ \text{mm} \\ 4-6 \ \text{GHz:} \leq 10 \ \text{mm} \end{array}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: $\Delta z_{Zoom}(n)$	\leq 5 mm	$3-4 \text{ GHz:} \le 4 \text{ mm}$ $4-5 \text{ GHz:} \le 3 \text{ mm}$ $5-6 \text{ GHz:} \le 2 \text{ mm}$
	graded	$\Delta z_{Z_{com}}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm
	grid Δz _{Zoom} (n>1): between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoc}$	om(n-1) mm
Minimum zoom scan volume	m x, y, z		≥ 30 mm	$3-4$ GHz: ≥ 28 mm $4-5$ GHz: ≥ 25 mm $5-6$ GHz: ≥ 22 mm

Table 1: Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v04

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	Sensitivity:	Normi, ai0, ai1, ai2
	Conversion factor:	ConvFi
	Diode compression point:	Dcpi
Device parameters:	Frequency:	f
	Crest factor:	cf
Media parameters:	Conductivity:	σ
	Density:	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter)

dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H – fieldprobes :
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

Vi:	compensated signal of channel ($i = x, y, z$)
Normi:	sensor sensitivity of channel ($i = x, y, z$),
	[mV/(V/m)2] for E-field Probes
ConvF:	sensitivity enhancement in solution
aij:	sensor sensitivity factors for H-field probes
f:	carrier frequency [GHz]
Ei:	electric field strength of channel i in V/m
Hi:	magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

SAR: local specific absorption rate in mW/g

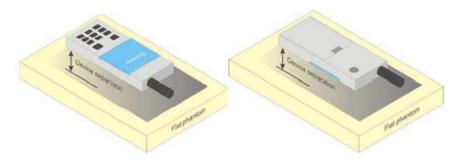
Etot: total field strength in V/m

σ: conductivity in [mho/m] or [Siemens/m]


ρ: equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

8. <u>Position of the wireless device in relation to the phantom</u>


8.1. Front-of-face

A typical example of a front-of-face device is a two-way radio that is held at a distance from the face of the user when transmitting. In these cases the device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions. If the intended use is not specified, a separation distance of 25 mm between the phantom surface and the device shall be used.

8.2. Body Position

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.

9. Dielectric Property Measurements & System Check

9.1. Tissue Dielectric Parameters

It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664 D01. Targets for tissue simulating liquid

	Tissue dielectric p	arameters for head	and body	
Target Frequency	He	ad		Body
(MHz)	٤r	σ(s/m)	٤r	σ(s/m)
150	52.3	0.76	61.9	0.80

CheckResult:

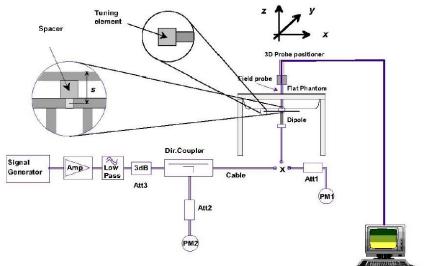
		Dielectric	c perform	ance of Head	d tissue s	imulating	liquid		
Frequency		٤r	σ((s/m)	Delta	Delta	Lingit	Temp	Data
(MHz)	Target	Measured	Target	Measured	(ɛr)	(σ)	Limit	(°C)	Date
150	52.30	53.22	0.76	0.75	1.76%	-0.92%	±5%	22.5	2019-06-17

		Dielectric	c perform	ance of Bod	y tissue si	imulating	liquid		
Frequency (MHz)	Target	εr Measured	σ(Target	(s/m) Measured	Delta (εr)	Delta (σ)	Limit	Temp (°C)	Date
150	61.90	61.45	0.80	0.81	-0.72%	1.13%	±5%	22.5	2019-06-17

9.2. SAR System Validation

Per FCC KDB 865664 D02,SAR system validadion status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB 865664 D01 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.


Test	Probe	Calibr	ation	Dielectric P	arameters	C'	W Validatio	n	Modula	tion Valid	ation
Date	S/N	Po	int	Conductivity	Permittivity	Sensitivity	Probe linearity	Probe Isotropy	Moduation type	Duty factor	PAR
2019-04-01	3842	Head	150	0.75	53.22	PASS	PASS	PASS	FM	PASS	PASS
2019-04-01	3842	Body	150	0.81	61.45	PASS	PASS	PASS	FM	PASS	PASS

9.3. SAR System Verification

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system $(\pm 10\%)$.

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

System Performance Check Setup

Photo of Dipole Setup

Check Result:

					Неа	d					
Frequency		1g SAR			10g SAR		Delta	Delta		Temp	
(MHz)	Target 1W	Normalize to 1W	Measured 1W	Target 1W	Normalize to 1W	Measured 1W	(1g)	(10g)	Limit	(℃)	Date
150	3.68	3.86	3.86	2.45	2.56	2.56	4.89%	4.49%	±10%	22.5	2019-06-17

					Bod	ly					
Frequency		1g SAR			10g SAR		Delta	Delta		Temp	
(MHz)	Target 1W	Normalize to 1W	Measured 1W	Target 1W	Normalize to 1W	Measured 1W	(1g)	(10g)	Limit	(℃)	Date
150	3.75	3.98	3.98	2.50	2.59	2.59	6.13%	3.60%	±10%	22.5	2019-06-17

Note:

1. the graph results see follow.

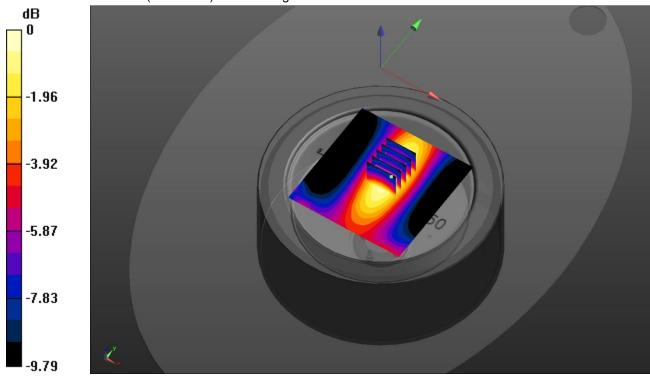
Plots of System Performance Check

SystemPerformanceCheck-Head 150MHz

DUT: Antenna 150 MHz; Type: CLA150; Serial: 4024 Date: 2019-06-17 Communication System: UID 0, A-CW (0); Frequency: 150 MHz;Duty Cycle: 1:1 Medium parameters used: f = 150 MHz; σ = 0.753 S/m; ϵ_r = 53.218; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN3842; ConvF(11.88, 11.88, 13.88) @ 150 MHz; Calibrated: 1/30/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.1(1476); SEMCAD X 14.6.12(7450)


Head/d=0mm, Pin=1W/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500

mm

Maximum value of SAR (interpolated) = 5.50 W/kg

Head/d=0mm, Pin=1W/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm Reference Value = 81.34 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 6.87 W/kg SAR(1 g) = 3.86 W/kg; SAR(10 g) = 2.56 W/kg Maximum value of SAR (measured) = 5.52 W/kg

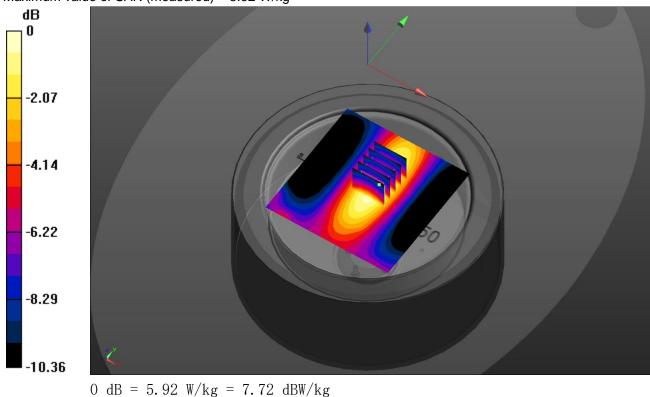
0 dB = 5.52 W/kg = 7.42 dBW/kg

Page: 22 of 26

SystemPerformanceCheck-Body 150MHz

DUT: Antenna 150 MHz; Type: CLA150; Serial: 4024 Date: 2019-06-17 Communication System: UID 0, A-CW (0); Frequency: 150 MHz;Duty Cycle: 1:1 Medium parameters used: f = 150 MHz; σ = 0.809 S/m; ϵ_r = 61.453; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY Configuration:


- Probe: EX3DV4 SN3842; ConvF(11.13, 11.13, 11.13) @ 150 MHz; Calibrated: 1/30/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.1(1476); SEMCAD X 14.6.12(7450)

Body/d=0mm, Pin=1W/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 5.89 W/kg

Body/d=0mm, Pin=1W/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm Reference Value = 80.36 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 7.76 W/kg SAR(1 g) = 3.98 W/kg; SAR(10 g) = 2.59 W/kg Maximum value of SAR (measured) = 5.92 W/kg

10. SAR Exposure Limits

SAR assessments have been made in line with the requirements of FCC 47 CFR § 2.1093.

	Limit (\	N/kg)
Type Exposure	General Population / Uncontrolled Exposure Environment	Occupational / Controlled Exposure Environment
Spatial Average SAR (whole body)	0.08	0.4
Spatial Peak SAR (1g cube tissue for head and trunk)	1.6	8.0
Spatial Peak SAR (10g for limb)	4.0	20.0

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

11. Conducted Power Measurement Results

		PMR		
Mode	Channel	Frequ	lency	Conducted power
Mode	Separation	Channel	MHz	(dBm)
Analog	25KHz	CH16	156.800	36.81

12. Maximum Tune-up Limit

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01

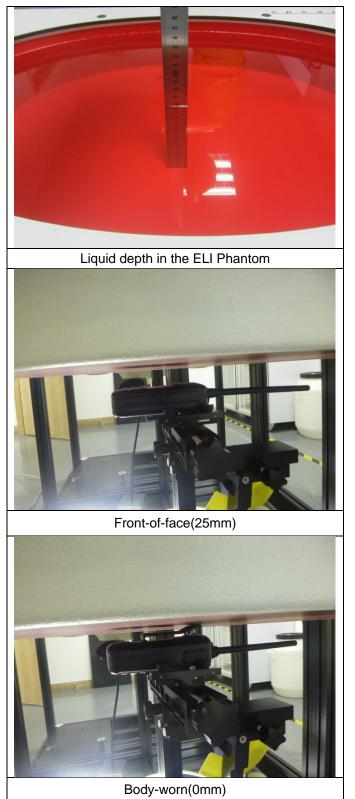
		PMR	
Mode	Channel Separation	Operation Frequency Range (MHz)	Maximum tune-up power (dBm)
Analog	25KHz	156.025-157.425MHz	36.99

13. SAR Measurement Results

					Front-o	of-face					
Mode	Channel	Free	quency	Conducted Power	Tune-	Tune-up	Power	Measured SAR(1g)	Report SAR(1g)	50% Duty factor SAR	Test
Mode	Separation	СН	MHz	(dBm)	up limit (dBm)	scaling factor	Drift(dB)	(W/kg)	(W/kg)	(W/kg)	Plot
Analog	25KHz	CH16	156.800	36.81	36.99	1.04	-0.18	0.405	0.421	0.211	1

				Bo	dy-worı	n (Rear)					
Mode	Channel	Fre	equency	Conducted Power	Tune- up limit	Tune-up scaling	Power	Measured SAR(1g)	Report SAR(1g)	50% Duty factor SAR	Test
	Separation	СН	MHz	(dBm)	(dBm)	factor	Drift(dB)	(W/kg)	(W/kg)	(W/kg)	Plot
Analog	25KHz	CH16	156.800	36.81	36.99	1.04	-0.08	0.434	0.451	0.226	2

Note:


1. Batteries are fully charged at the beginning of the SAR measurements.

2. The distance of the Body-worn test is 0mm; the distance of the face-of-face test is 25mm.

3. The Body-worn SAR evaluation was performed with the Leather Case body-worn accessory attached to the DUT and touching the outer surface of the planar phantom.

SAR Test Data Plots to the Appendix A.

14. Test Setup Photos

15. External and Internal Photos of the EUT

Please refer to the test report No.: CHTEW19060141

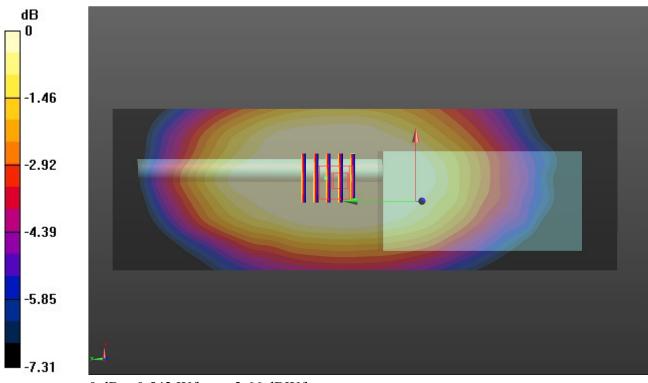
-----End of Report-----

Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab Date: 6/17/2019

Anolog-Front of face

Communication System: UID 0, Analog (0); Frequency: 156.8 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 156.8 MHz; $\sigma = 0.81$ S/m; $\varepsilon_r = 61.303$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:22.0°C;Liquid Temperature:21.8°C;

DASY Configuration:


- Probe: EX3DV4 SN3842; ConvF(11.13, 11.13, 11.13) @ 156.8 MHz; Calibrated: 1/30/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear/CH 16/Area Scan (71x221x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.729 W/kg

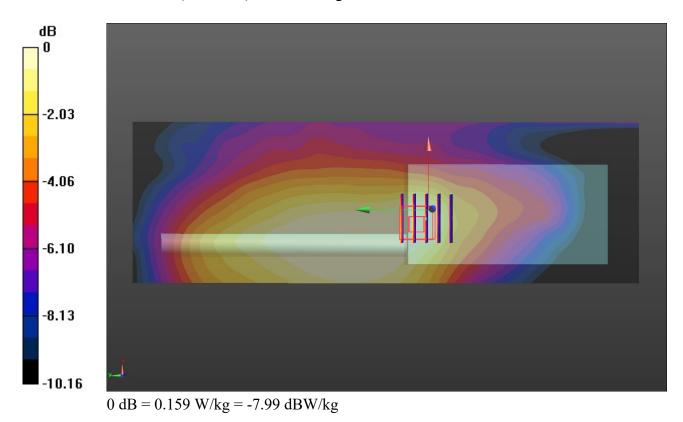
Rear/CH 16/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 35.98 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.664 W/kg SAR(1 g) = 0.405 W/kg; SAR(10 g) = 0.305 W/kg

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.542 W/kg

0 dB = 0.542 W/kg = -2.66 dBW/kg

Test Laboratory: Huatongwei International Inspection Co., Ltd., SAR Lab Date: 6/17/2019

Anolog-Body


Communication System: UID 0, Analog (0); Frequency: 156.8 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 156.8 MHz; $\sigma = 0.81$ S/m; $\varepsilon_r = 61.303$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Ambient Temperature:21.9°C;Liquid Temperature:21.6°C;

DASY Configuration:

- Probe: EX3DV4 SN3842; ConvF(11.13, 11.13, 11.13) @ 156.8 MHz; Calibrated: 1/30/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1549; Calibrated: 3/19/2019
- Phantom: ELI V8.0 ; Type: QD OVA 004 AA ; Serial: 2078
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Rear/CH 16/Area Scan (71x221x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.790 W/kg

Rear/CH 16/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 39.40 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.740 W/kg SAR(1 g) = 0.434 W/kg; SAR(10 g) = 0.327 W/kg Maximum value of SAR (measured) = 0.759 W/kg

1.1. DAE4 Calibration Certificate

		ATION LABORATORY	HIC MR	ξ CNA	校准
Add: No.51 Xu Tel: +86-10-62 E-mail: cttl@cl	ueyuan Road, Haidian I 304633-2512 Faz	District, Beijing, 100191, China x: +86-10-62304633-2504 tp://www.chinattl.cn	- Andrew Andrew		CALIBRAT CNAS L05
Client : HT	W	Ce	ertificate N	No: Z19-60066	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
CALIBRATION	CERTIFICA	ATE			
Object	DAE	4 - SN: 1549			0
Calibration Procedure(s)		14 000 04			
		11-002-01 ration Procedure for the Da x)	ata Acquisiti	ion Electronics	
Calibration date:	Marc	h 19, 2019			
pages and are part of the All calibrations have be humidity<70%.	e certificate. een conducted in	nd the uncertainties with confid			n the following
pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us	e certificate. een conducted in sed (M&TE critical	the closed laboratory facili	ty: environn		n the following re(22±3)℃ and
pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards	e certificate. een conducted in sed (M&TE critical	n the closed laboratory facili I for calibration)	ty: environn ate No.)	nent temperatur	n the following re(22±3)℃ and libration
pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards	e certificate. een conducted in sed (M&TE critical ID # C	n the closed laboratory facili I for calibration) al Date(Calibrated by, Certific	ty: environn ate No.)	nent temperatur Scheduled Cal	re(22±3)°C and
pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	e certificate. een conducted in sed (M&TE critical ID # C 1971018 Name	n the closed laboratory facili I for calibration) al Date(Calibrated by, Certific	ty: environn ate No.)	nent temperatur Scheduled Cal	n the following re(22±3)℃ and libration
pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753	e certificate. een conducted in sed (M&TE critical ID # C 1971018	n the closed laboratory facili I for calibration) al Date(Calibrated by, Certific 20-Jun-18 (CTTL, No.J18X0	ty: environn ate No.)	nent temperatur Scheduled Cal June-	n the following re(22±3)℃ and libration
pages and are part of the	e certificate. een conducted in sed (M&TE critical ID # C 1971018 Name	h the closed laboratory facili I for calibration) cal Date(Calibrated by, Certific 20-Jun-18 (CTTL, No.J18XC	ty: environn ate No.)	nent temperatur Scheduled Cal June-	n the following re(22±3)℃ and libration
pages and are part of the All calibrations have be humidity<70%. Calibration Equipment us Primary Standards Process Calibrator 753 Calibrated by:	e certificate. een conducted in sed (M&TE critical ID # C 1971018 Name Yu Zongying	h the closed laboratory facili I for calibration) Cal Date(Calibrated by, Certific 20-Jun-18 (CTTL, No.J18XC Function SAR Test Engineer	ty: environn ate No.)	nent temperatur Scheduled Cal June-	n the following re(22±3)℃ and libration

Certificate No: Z19-60066

Page 1 of 3

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z19-60066

Page 2 of 3

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2512Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comHttp://www.chinattl.cn

DC Voltage Measurement A/D - Converter Resolution nominal

Calibration Factors	х	Y	z
High Range	$406.354 \pm 0.15\%$ (k=2)	406.056 ± 0.15% (k=2)	$406.182 \pm 0.15\%$ (k=2)
Low Range	3.98644 ± 0.7% (k=2)	$3.99365 \pm 0.7\%$ (k=2)	3.99469 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	18º ± 1 º

Certificate No: Z19-60066

Page 3 of 3

1.2. Probe Calibration Certificate-3842

Calibration Laborato Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zur		S C S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredit The Swiss Accreditation Servi	ce is one of the signatories	to the EA	creditation No.: SCS 0108
Multilateral Agreement for the	recognition of calibration c	ertificates	
Client CIQ (Auden)		Certificate No:	EX3-3842_Jan19
CALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:384	2	
Calibration procedure(s)	STATISTICS AND ADDRESS OF A DECEMBER OF A	A CAL-12.v9, QA CAL-23.v5, QA lure for dosimetric E-field probes	CAL-25.v7
Calibration date:	January 30, 2019		
		nal standards, which realize the physical units bability are given on the following pages and	
All calibrations have been condu Calibration Equipment used (M&		facility: environment temperature (22 ± 3)°C	and humidity < 70%.
Drimon (Standarda	ID	Onl Date (On the starts No.)	
Primary Standards Power meter NRP	SN: 104778	Cal Date (Certificate No.)	Scheduled Calibration
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19 Dec-19
	514. 5015	31-Dec-18 (140. E33-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	7202
Approved by:	Katja Pokovic	Technical Manager	blag
			Issued: February 1, 2019
This calibration certificate shall r	not be reproduced except in fu	ull without written approval of the laboratory.	

Certificate No: EX3-3842_Jan19

Page 1 of 10

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst S
- Service suisse d'étalonnage С
 - Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system **Connector Anale**

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-
- b) held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices c) used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x, y, z = NORMx, y, z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y.z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3842_Jan19

Page 2 of 10

EX3DV4 - SN:3842

January 30, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.34	0.51	0.41	± 10.1 %
DCP (mV) ^B	104.3	98.1	102.3	

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Max dev.	Unc ^E (k=2)
0	CW	X 0	0.0	0.0	1.0	0.00	147.5	±2.5 %	± 4.7 %
		Y	0.0	0.0	1.0		159.1		
		Y	0.0	0.0	1.0		147.1		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3842_Jan19

Page 3 of 10

EX3DV4- SN:3842

January 30, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

Other Probe Parameters

Triangular
59.9
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
1.4 mm

Certificate No: EX3-3842_Jan19

Page 4 of 10

EX3DV4- SN:3842

January 30, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150 52.3 0.76	150 52.3 0.76	50 52.3 0.76	11.88	11.88	11.88	0.00	1.00	± 13.3 %
450	43.5	0.87	10.30	10.30	10.30	0.13	1.20	± 13.3 %

Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3842_Jan19

Page 5 of 10

EX3DV4-SN:3842

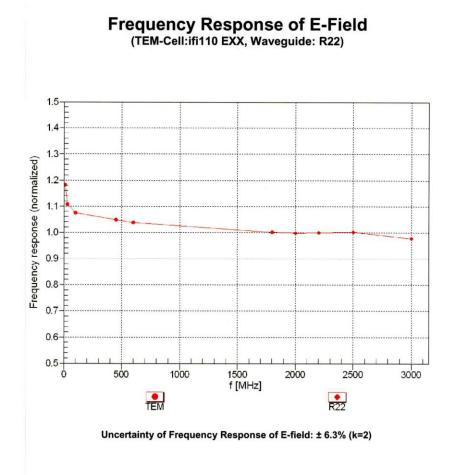
January 30, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3842

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	11.13	11.13	11.13	0.00	1.00	± 13.3 %
450	56.7	0.94	10.39	10.39	10.39	0.06	1.20	± 13.3 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 8 MHz is 4-9 MHz, and ConvF assessed at 8 MHz is 4-9 MHz, and be extended to ± 110 MHz.
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the compensation formula is applied to the top of the top

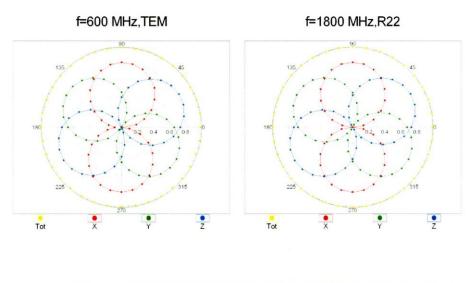

A inequencies below 3 Gra, the validity of itssue parameters (ε and σ) can be relaxed to ± 10% in inquic compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3842_Jan19

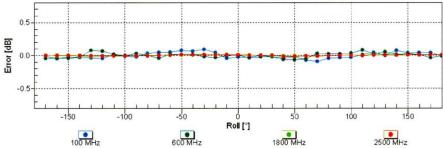
Page 6 of 10

EX3DV4- SN:3842

January 30, 2019



Certificate No: EX3-3842_Jan19

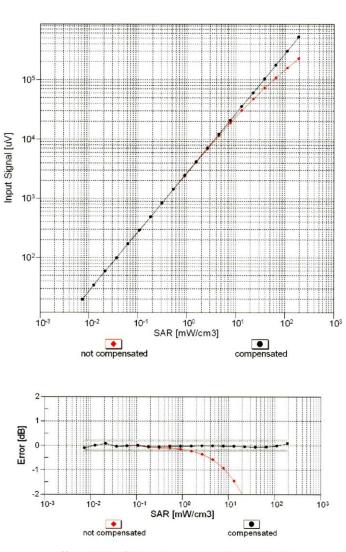

Page 7 of 10

EX3DV4- SN:3842

January 30, 2019

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

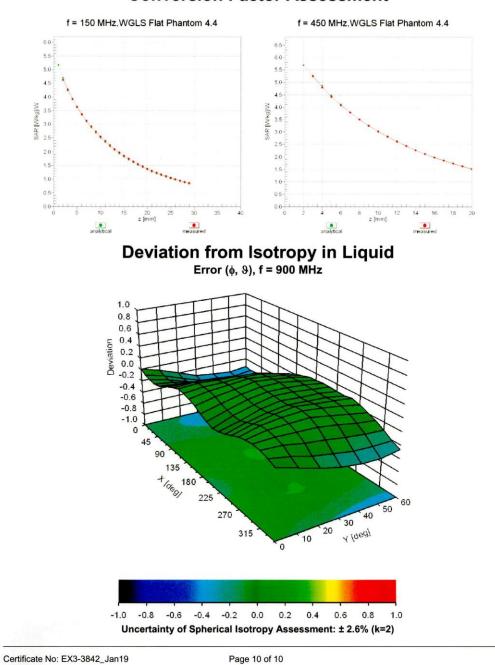

Certificate No: EX3-3842_Jan19

Page 8 of 10

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

EX3DV4- SN:3842

January 30, 2019


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3842_Jan19

Page 9 of 10

EX3DV4- SN:3842

January 30, 2019

Conversion Factor Assessment

1.1. 150 Dipole Calibration Certificate

redited by the Swiss Accredita swiss Accreditation Service Itilateral Agreement for the re	is one of the signatories	to the EA	reditation No.: SCS 0108
CCIC-HTW (Au	den)	Certificate No:	CLA150-4024_Feb18
ALIBRATION C	ERTIFICATE		Section 19
bject	CLA150 - SN: 402	24	
We want the state of the state	QA CAL-15.v8		
alibration procedure(s)	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	dure for system validation source	es below 700 MHz
alibration date:	February 21, 2018	3	
he measurements and the unce Il calibrations have been condu	rtainties with confidence pr	snal standards, which realize the physical unit obability are given on the following pages and y facility: environment temperature $(22 \pm 3)^{\circ}$ C	d are part of the certificate.
re measurements and the unce Il calibrations have been condu alibration. Equipment used (M&	rtainties with confidence pr cted in the closed laborator, TE critical for calibration}	obability are given on the following pages and y facility: environment temperature $(22 \pm 3)^{\circ}$ C	d are part of the certificate.
e measurements and the unce I calibrations have been condu alibration. Equipment used (M& rimary Standards	rtainties with confidence pr cted in the closed laboratory TE critical for calibration}	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.)	d are part of the certificate. and humidity < 70%. Scheduled Calibration
e measurements and the unce I calibrations have been condu alibration Equipment used (M& timary Standards ower meter NRP	rtainties with confidence pr cted in the closed laboratory TE critical for calibration}	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	d are part of the certificate.
e measurements and the unce I calibrations have been condu alibration Equipment used (M& imary Standards ower meter NRP ower sensor NRP-291	rtainties with confidence pr cted in the closed laboratory TE critical for calibration) ID # SN: 104778 SN: 103244	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	d are part of the certificate: c and humidity < 70%. Scheduled Calibration Apr-18
e measurements and the unce I calibrations have been condu- alibration Equipment used (M& dimary Standards ower meter NRP ower sensor NRP-291 ower sensor NRP-291	rtainties with confidence pr cted in the closed laboratory TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522)	d are part of the certificate: and humidity < 70%. Scheduled Calibration Apr-18 Apr-18
e measurements and the unce I calibrations have been condu- alibration Equipment used (M& rimary Standards ower meter NRP ower sensor NRP-291 ower sensor NRP-291 ieference 20 dB Attenuator	rtainties with confidence pr cted in the closed laboratory TE critical for calibration) ID # SN: 104778 SN: 103244	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522)	d are part of the certificate: and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18
he measurements and the unce I calibrations have been condu- alibration Equipment used (M& rimary Standards ower meter NRP ower sensor NRP-291 ower sensor NRP-291 leference 20 dB Attenuator ype-N mismatch combination	rtainties with confidence pr cted in the closed laboratory TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x)	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528)	d are part of the certificate. and humidity < 70%, Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18
e measurements and the unce I calibrations have been condu- alibration Equipment used (M& rimary Standards ower meter NRP ower sensor NRP-291 ower sensor NRP-291 ieference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4	rtainties with confidence pr cted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5037 (20x) SN: 5047.2 / 06327	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C O4-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529)	5 and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
e measurements and the unce I calibrations have been condu- alibration Equipment used (M& himary Standards ower rester NRP ower sensor NRP-291 ower sensor NRP-291 ower sensor NRP-291 ieference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 IAE4	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 654	obability are given on the following pages and y facility: environment temperature (22 ± 3)°C O4-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3877_Dec17)	d are part of the certificate. and humidity < 70%, Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18
e measurements and the unce I calibrations have been condu- alibration Equipment used (M& <u>many Standards</u> ower rister NRP ower sensor NRP-291 ower sensor NRP-291 ieference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 (AE4 iecondary Standards	rtainties with confidence pr cted in the closed laboratory TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5047.2 / 06327 SN: 5877	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C O4-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3877_Dec17) 24-Jul-17 (No. DAE4-654_Jul17)	d are part of the certificate: and humidity < 70%; Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Jul-18 Scheduled Check In house check: Jun-18
he measurements and the unce alibrations have been condu- alibration Equipment used (M& <u>many Standards</u> ower noter NRP ower sensor NRP-291 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 iAE4 secondary Standards Power meter E44198	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5277 (20x) SN: 5047.2 / 06327 SN: 654 ID #	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C Od-Apr-17 (No. 217-02521/02522) Od-Apr-17 (No. 217-02521) Od-Apr-17 (No. 217-02522) O7-Apr-17 (No. 217-02528) O7-Apr-17 (No. 217-02528) O7-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3877_Dec17) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house)	d are part of the certificate: and humidity < 70%; Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
he measurements and the unce alibration Equipment used (M& mimary Standards trimary Standards tower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 JAE4 Secondary Standards Power meter E4419B Power sensor E4412A	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5277 (20x) SN: 5647.2 / 06327 SN: 654 ID # SN: GB41293874	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C Od-Apr-17 (No. 217-02521/02522) Od-Apr-17 (No. 217-02521) Od-Apr-17 (No. 217-02522) Of-Apr-17 (No. 217-02522) Of-Apr-17 (No. 217-02522) Of-Apr-17 (No. 217-02528) Of-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-3877_Dec17) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284)	5 and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
he measurements and the unce alibration Equipment used (M& mimary Standards tower meter NRP tower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination seference Probe EX3DV4 JAE4 Secondary Standards Power meter E44198 Power meter E44198 Power sensor E4412A Power sensor E4412A	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103245 SN: 103245 SN: 5277 (20x) SN: 50472 / 06327 SN: 654 ID # SN: GB41293874 SN: MY41498067	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C O4-Apr-17 (No. 217-02521/02522) O4-Apr-17 (No. 217-02521) O4-Apr-17 (No. 217-02522) O7-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. 217-02529) 30-Dec-17 (No. 217-02529) 30-Dec-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284) 06-Apr-16 (No. 217-02284) 06-Apr-16 (No. 217-02284) 06-Apr-16 (No. 217-02284)	5 and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
he measurements and the unce alibration Equipment used (M& wimary Standards lower meter NRP lower sensor NRP-Z91 lower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 JAE4 Secondary Standards Power meter E44198 Power meter E44198 Power sensor E4412A Power sensor E44	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 5877 SN: 654 ID # SN: GB41293874 SN: MY41498067 SN: 000110210	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C O4-Apr-17 (No. 217-02521/02522) O4-Apr-17 (No. 217-02521) O4-Apr-17 (No. 217-02523) O7-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. 217-02529) 30-Dec-17 (No. EX3-3877_Dec17) 24-Jul-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 05-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284	5 and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
he measurements and the unce alibration Equipment used (M& wimary Standards lower meter NRP lower sensor NRP-Z91 lower sensor NRP-Z91 leference 20 dB Attenuator ype-N mismatch combination leference Probe EX3DV4 JAE4 Secondary Standards Power meter E44198 Power meter E44198 Power sensor E4412A Power sensor E44	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # SN: 6841293874 SN: GB41293874 SN: MY41498067 SN: 000110210 SN: US3642U01700	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C O4-Apr-17 (No. 217-02521/02522) O4-Apr-17 (No. 217-02521) O4-Apr-17 (No. 217-02522) O7-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. 217-02529) 30-Dec-17 (No. 217-02529) 30-Dec-17 (No. DAE4-654_Jul17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 06-Apr-16 (No. 217-02284) 06-Apr-16 (No. 217-02284) 06-Apr-16 (No. 217-02284) 06-Apr-16 (No. 217-02284)	5 and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
he measurements and the unce al calibrations have been condu- calibration Equipment used (M& himary Standards hower meter NRP hower sensor NRP-Z91 hower sensor NRP-Z91 heterence 20 dB Attenuator fype-N mismatch combination heterence Probe EX3DV4 DAE4 Secondary Standards hower meter E44198 hower meter E44198 hower sensor E4412A Regenerator HP 8648C Network Analyzer HP 8753E	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 5047.2 / 06327 SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # SN: 6841293874 SN: 6841293874 SN: MY41499067 SN: 000110210 SN: US3642U01700 SN: US37390585	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C O4-Apr-17 (No. 217-02521/02522) O4-Apr-17 (No. 217-02521) O4-Apr-17 (No. 217-02522) O7-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. 217-02529) 30-Dec-17 (No. 217-02529) 30-Dec-17 (No. EX3-3877_Dec17) 24-Juli-17 (No. DAE4-654_Juli17) Check Date (in house) 06-Apr-16 (No. 217-02285/02284) 06-Apr-16 (No. 217-02285) 05-Apr-16 (No. 217-02284) 04-Apr-16 (No. 217-02284) 05-Apr-16 (No. 217-02284) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Jun-17)	d are part of the certificate: and humidity < 70%; Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18
he measurements and the unce	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103245 SN: 103245 SN: 5277 (20x) SN: 5047.2 / 06327 SN: 3877 SN: 654 ID # SN: 664 SN: 664 SN: 00110210 SN: US3642U01700 SN: US37390585 Name	obability are given on the following pages and y facility: environment temperature (22 ± 3)*C O4-Apr-17 (No. 217-02521/02522) O4-Apr-17 (No. 217-02521) O4-Apr-17 (No. 217-02522) O7-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. 217-02285/02284) 06-Apr-16 (No. 217-02284 04-Aug-99 (in house check Jun-15) 18-Oct-01 (in house check Oct-17) Function	d are part of the certificate: and humidity < 70%; Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Jul-18 Scheduled Check In house check: Jun-18 In house check: Jun-18

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrase 43, 8004 Zurich, Switzerland

- S Schweizerischer Kalibrierdienst Service suisse d'étalonnage
- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured
NUM.	not applicable of not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CLA150-4024_Feb18

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	dx, dy = mm, dz = mm	Graded Ratio = 1.4 (Z direction)
Frequency	150 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	52.3	0.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	50.3 ± 6 %	0.76 mho/m ± 8 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	1 W input power	3.71 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.68 W/kg ± 18.4 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 1 W input power	2.47 W/kg

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	61.9	0.80 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	62.1 ± 6 %	0.81 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	1 W input power	3.78 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.75 W/kg ± 18.4 % (k=2)
SAR averaged over 10 cm ³ (10 o) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 1 W input power	2.52 W/kg

Certificate No: CLA150-4024_Feb18

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	44.4 Ω + 3.2 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.7 Ω + 7.0 jΩ	
Return Loss	- 22.9 dB	

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 10, 2017

Certificate No: CLA150-4024_Feb18

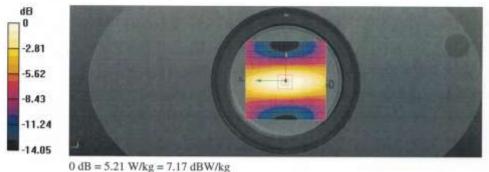
Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 21.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4024

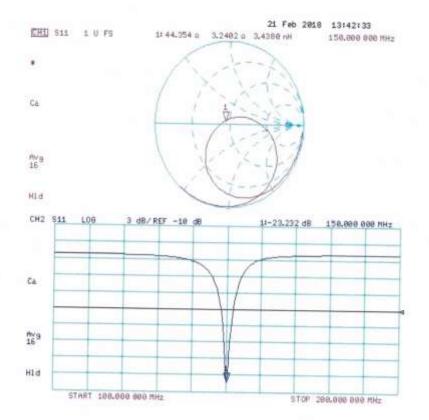

Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; σ = 0.76 S/m; ϵ_r = 50.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(12.12, 12.12, 12.12); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 24.07.2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 5.21 W/kg

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 82.22 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 6.91 W/kg SAR(1 g) = 3.71 W/kg; SAR(10 g) = 2.47 W/kg Maximum value of SAR (measured) = 5.18 W/kg



oub-our mag- un ub mag

Certificate No: CLA150-4024_Feb18

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: CLA150-4024_Feb18

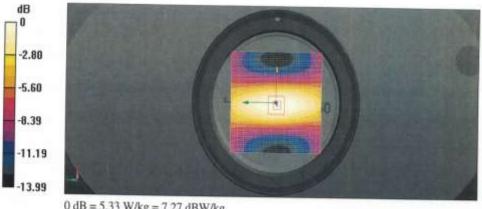
Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 21.02.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4024

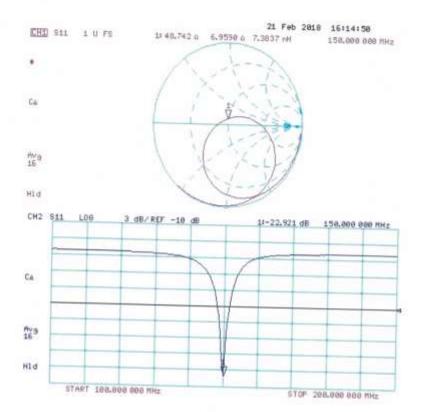

Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; σ = 0.81 S/m; ϵ_r = 62.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(11.57, 11.57, 11.57); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 24.07.2017
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 5.33 W/kg

CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 80.56 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 7.08 W/kg SAR(1 g) = 3.78 W/kg; SAR(10 g) = 2.52 W/kg Maximum value of SAR (measured) = 5.28 W/kg



0 dB = 5.33 W/kg = 7.27 dBW/kg

Certificate No: CLA150-4024_Feb18

Page 7 of 8

Impedance Measurement Plot for Body TSL

Certificate No: CLA150-4024_Feb18

Page 8 of 8

Extended Dipole Calibrations

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

			Head			
Date of measurement	Return-loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary impedance (ohm)	Delta (ohm)
2018-02-21	-23.2		44.4		3.2	
2019-02-20	-22.9	1.31	44.7	0.3	2.8	0.4

Body						
Date of measurement	Return-loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary impedance (ohm)	Delta (ohm)
2018-02-23	-22.9		48.7		7.0	
2019-02-20	-23.3	1.75	48.2	0.5	6.5	0.5

The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration.