

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: Fax: Website:

+86-755-26648640 +86-755-26648637 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

	al the FIIT equality in the standards are slited above
Test Result:	PASS*
Date of Issue:	2024-12-26
Date of Test:	2024-11-13 to 2024-11-18
Date of Receipt:	2024-11-13
	ANSI C63.10:2013
	KDB558074 D01 15.247 Meas Guidance v05r02
Standards:	47 CFR Part 15, Subpart C
FCC ID:	2AHFT865
Brand Name:	VERFIT
Test Model No.:	verfit watch 01
Model No.:	IDW26-FY, verfit watch 01
Product:	Smart Watch
Equipment Under Test (E	UT):
Applicant: Address of Applicant:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China
Report No.:	CQASZ20241102381E-03 Shenzhen DO Intelligent Technology Co., Ltd

*In the configuration tested, the EUT complied with the standards specified above.

Tested By:	lewis zhou
	(Lewis Zhou)
Reviewed By:	Timo Loj
	(Timo Lei)
Approved By:	James
	(Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20241102381E-03	Rev.01	Initial report	2024-12-26

Note:

The difference between product #1 and product #2 is that the motor model, screen model, speaker model is different including having different motor supplier, screen supplier, speaker supplier. The key differences are the appearance and the model number. These changes do not affect RF performance.

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

Page

1 VERSION	2
2 TEST SUMMARY	
3 CONTENTS	4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	5
4.2 GENERAL DESCRIPTION OF EUT	5
4.3 Additional Instructions	7
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	-
4.7 TEST LOCATION	
4.8 Test Facility	
4.9 DEVIATION FROM STANDARDS	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 Equipment List	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT	
5.2 Conducted Emissions	
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 6DB OCCUPY BANDWIDTH	
5.5 POWER SPECTRAL DENSITY	
5.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.7 Spurious RF Conducted Emissions	
5.8 RADIATED SPURIOUS EMISSION & RESTRICTED BANDS	
5.8.1 Spurious Emissions	
6 PHOTOGRAPHS - EUT TEST SETUP	
6.1 RADIATED SPURIOUS EMISSION	
6.2 CONDUCTED EMISSIONS TEST SETUP	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	Shenzhen DO Intelligent Technology Co., Ltd	
Address of Applicant:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China	
Manufacturer:	Shenzhen DO Intelligent Technology Co., Ltd	
Address of Manufacturer:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China	
Factory:	Shenzhen DO Intelligent Technology Co., Ltd	
Address of Factory:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China	

4.2 General Description of EUT

Product Name:	Smart Watch		
Model No.:	IDW26-FY, verfit watch 01		
Test Model No.:	verfit watch 01		
Trade Mark:	VERFIT		
Software Version:	V1.1.1		
Hardware Version:	V1.0		
Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	V5.3		
Modulation Type:	GFSK		
Transfer Rate:	1Mbps		
Number of Channel:	40		
Product Type:	□ Mobile		
Test Software of EUT:	Untitled		
Antenna Type:	FPC antenna		
Antenna Gain:	Main control chip:-3.1dBi		
	Findmy chip:-1.1dBi		
EUT Power Supply:	Li-ion battery: DC 3.8V 300mAh, Charge by DC 5V for adapter		
Simultaneous Transmission	☐ Simultaneous TX is supported and evaluated in this report.		
	⊠ Simultaneous TX is not supported.		

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Additional Instructions

EUT Test Software Settings:					
Mode:	Special software is used.	Special software is used.			
	0 0 0	☐ Through engineering command into the engineering mode. engineering command: *#*#3646633#*#*			
EUT Power level:	Class2 (Power level is built-in set para selected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)			
Use test software to set the lowest frequency, the middle frequency and the highest frequency keep					
transmitting of the EUT.	transmitting of the EUT.				
Mode	Channel Frequency(MHz)				
	CH0 2402				
GFSK	GFSK CH19 2440				
	CH39	СН39 2480			

Run Software:

4.4 Test Environment

Operating Environment	Operating Environment:		
Temperature:	24.5°C		
Humidity:	59% RH		
Atmospheric Pressure:	1009mbar		
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.		

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
1	/	/	1	1
2) Cable				

Cable No.	Description	Manufacturer	Cable Type/Length	Supplied by
/	1	/	1	1

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Deviation from Standards

None.

4.10Other Information Requested by the Customer

None.

4.11 Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU26	CQA-038	2024/9/2	2025/9/1
Spectrum analyzer	R&S	FSU40	CQA-075	2024/9/2	2025/9/1
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2024/9/2	2025/9/1
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2024/9/2	2025/9/1
Preamplifier	EMCI	EMC184055SE	CQA-089	2024/9/2	2025/9/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2023/9/8	2026/9/7
Bilog Antenna	R&S	HL562	CQA-011	2023/11/01	2026/10/31
Horn Antenna	R&S	HF906	CQA-012	2023/11/01	2026/10/31
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2023/9/7	2026/9/6
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2024/9/2	2025/9/1
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2024/9/2	2025/9/1
Antenna Connector	CQA	RFC-01	CQA-080	2024/9/2	2025/9/1
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2024/9/2	2025/9/1
Power meter	R&S	NRVD	CQA-029	2024/9/2	2025/9/1
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2024/9/2	2025/9/1
EMI Test Receiver	R&S	ESR7	CQA-005	2024/9/2	2025/9/1
LISN	R&S	ENV216	CQA-003	2024/9/2	2025/9/1
Coaxial cable	CQA	N/A	CQA-C009	2024/9/2	2025/9/1
DC power	KEYSIGHT	E3631A	CQA-028	2024/9/2	2025/9/1

Note:

The temporary antenna connector is soldered on the pcb board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

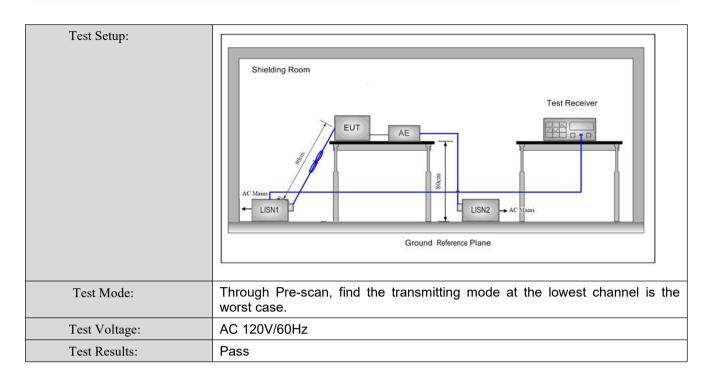
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

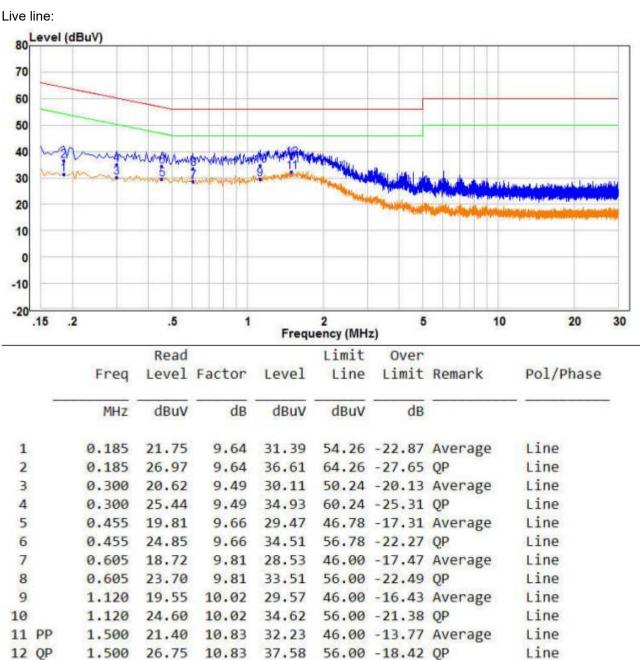
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:


The antenna is FPC antenna.

The connection/connection type between the antenna to the EUT's antenna port is: unique coupling This is either permanently attachment or a unique coupling that satisfies the requirement.

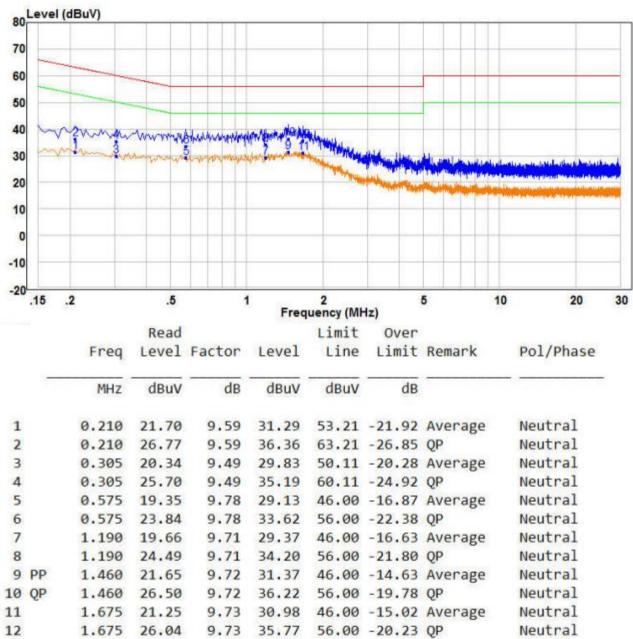
Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
Limit:		Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm o	f the frequency.					
Test Procedure:	1) The mains terminal disturt room.	bance voltage test was	s conducted in a shielded				
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not						
	 exceeded. 3) The tabletop EUT was placed ground reference plane. An placed on the horizontal gr 4) The test was performed will of the EUT shall be 0.4 m for vertical ground reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated equipment and all of the in ANSI C63.10: 2013 on con 	nd for floor-standing an ound reference plane, th a vertical ground ref from the vertical ground plane was bonded to th 1 was placed 0.8 m fro to a ground reference and reference plane. The of the LISN 1 and the quipment was at least (im emission, the relative terface cables must be	rangement, the EUT was erence plane. The rear d reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2.				



1#

Measurement Data

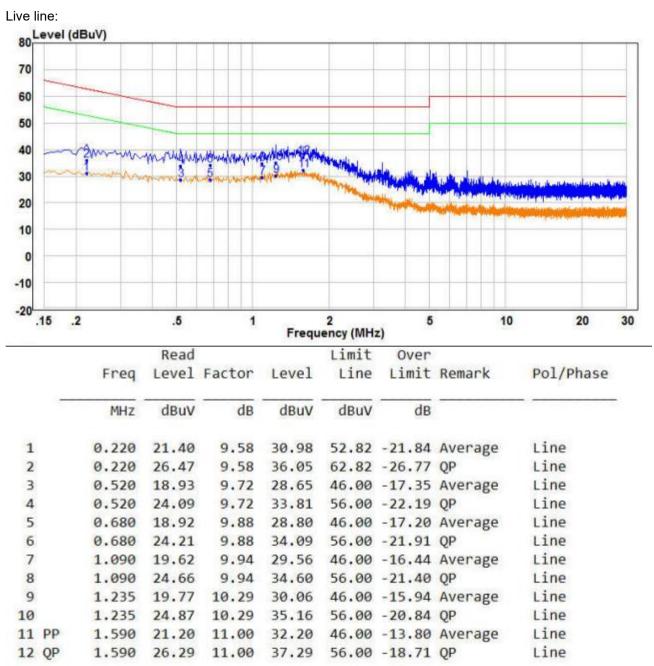
Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

Neutral line:

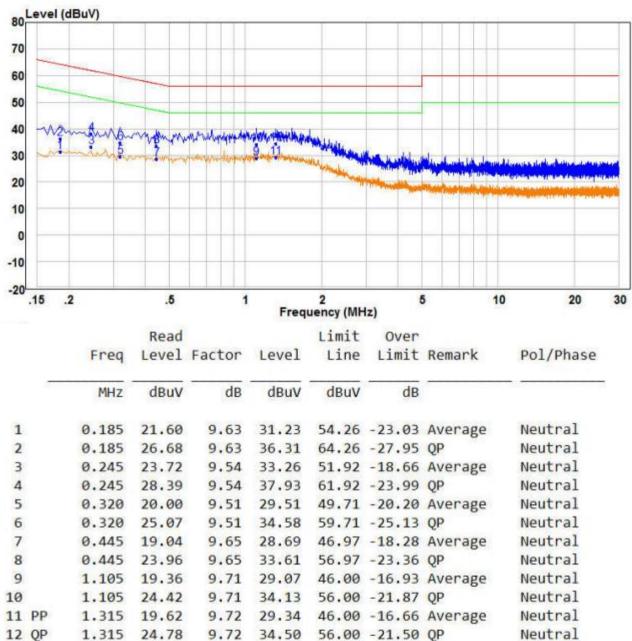

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

2#

Measurement Data

Remark:

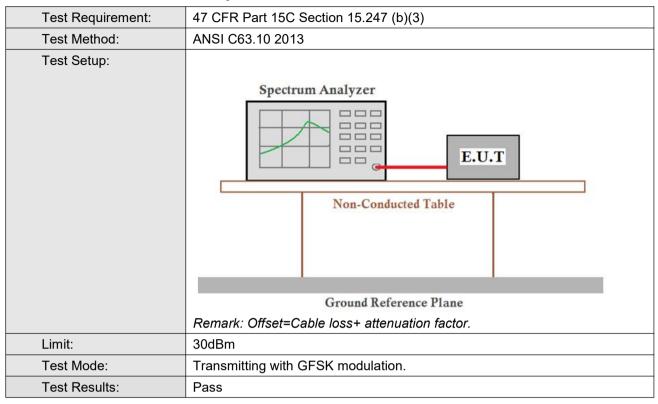

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

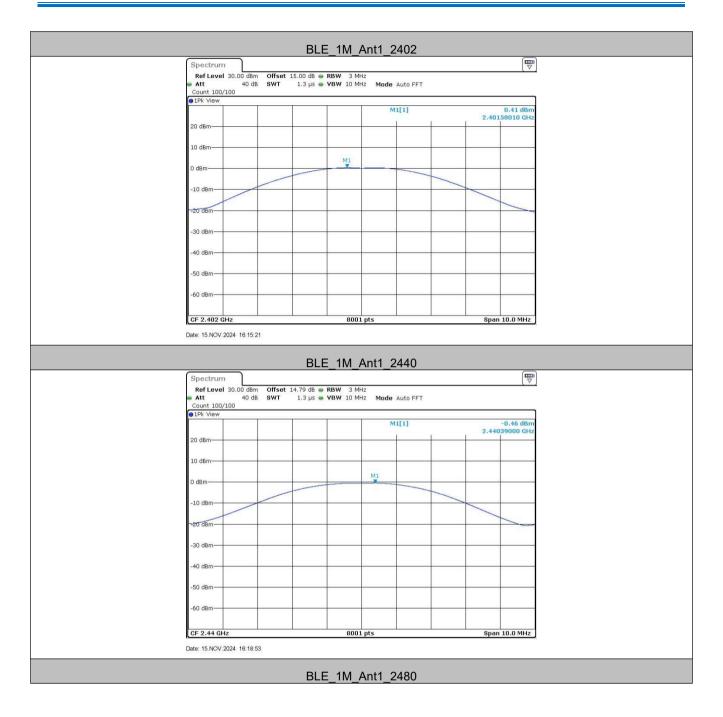
Neutral line:

Remark:


1. The following Quasi-Peak and Average measurements were performed on the EUT:

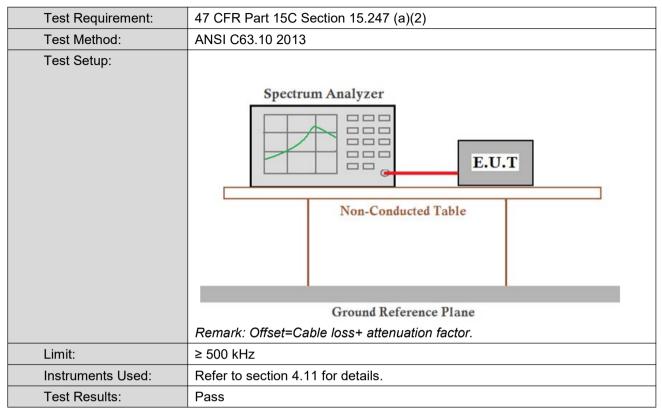
2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

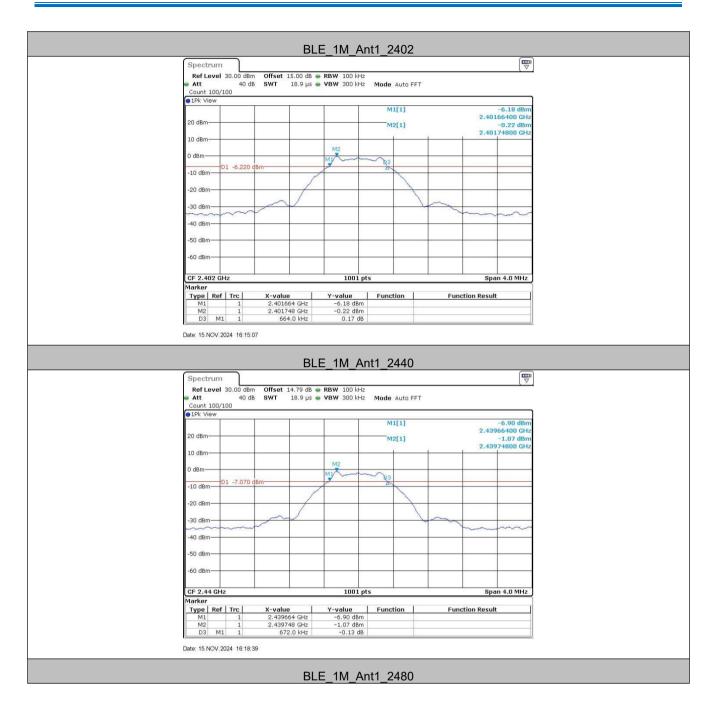

5.3 Conducted Peak Output Power

Measurement Data

GFSK mode (1Mbps)						
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	0.41	30.00	Pass			
Middle	-0.46	30.00	Pass			
Highest	-0.29	30.00	Pass			

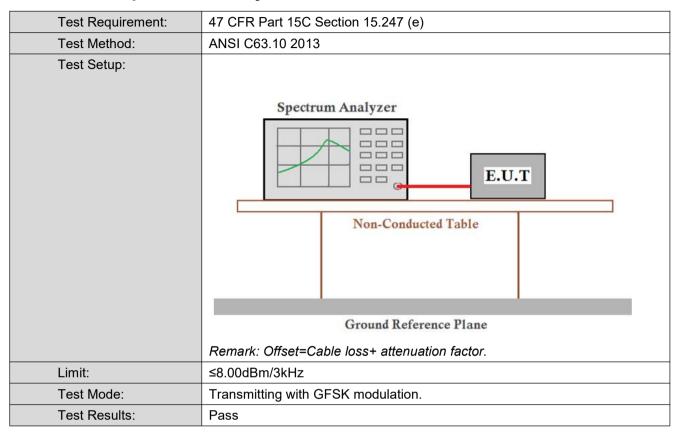


Count 100/100	db SWT :	 10 MHz Mode	AULU FFT			
●1Pk View		N	M1[1]	2.48	-0.29 dBm 017120 GHz	
20 dBm		 				
10 dBm					·	
0 dBm		 M1				
-10 dBm						
-20 dBm						
-40 dBm						
-50 dBm						
-60 dBm		 				


5.4 6dB Occupy Bandwidth

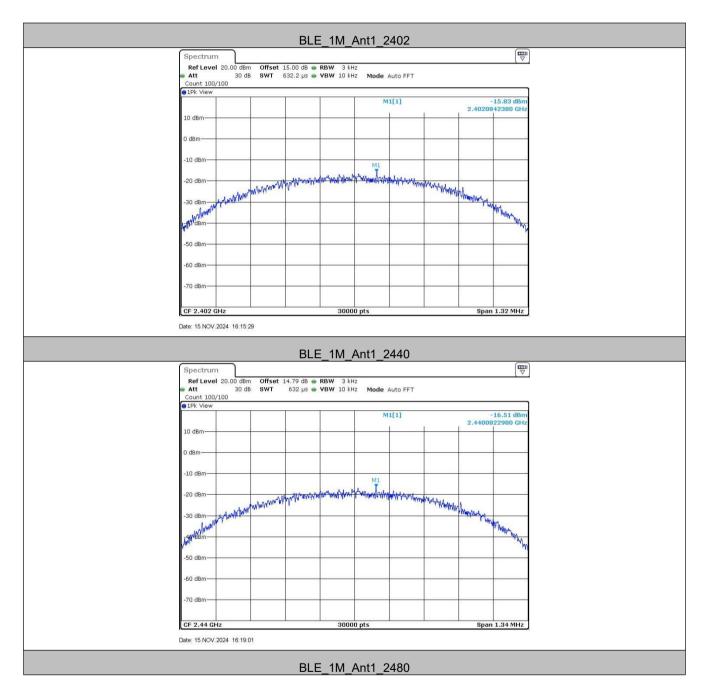
Measurement Data

GFSK mode (1Mbps)						
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result			
Lowest	0.66	≥500	Pass			
Middle	0.67	≥500	Pass			
Highest	0.66	≥500	Pass			



Ref Level 30.00 di Att 40	Bm Offset 14.79 dB dB SWT 18.9 μs	RBW 100 kHz		-	
Count 100/100	an 2MI 1979 ha	SUU KHZ	Mode Auto FF		
●1Pk View					
20 dBm			M1[1]		-6.47 dBn 47966800 GH -0.76 dBn 47974800 GH
10 dBm					
0 dBm		M2 M1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-10 dBm	U dBm	/	-		
-20 dBm			7		2.20
-30 dBm				1mg	
-40 dBm		_			
-50 dBm					
-60 dBm					
CF 2.48 GHz		1001 pt	s	-	Span 4.0 MHz
Marker					
Type Ref Trc M1 1	2.479668 GHz	Y-value -6.47 dBm	Function	Function Re	esult
M2 1	2.479748 GHz	-0.76 dBm			
D3 M1 1	660.0 kHz	-0.08 dB			

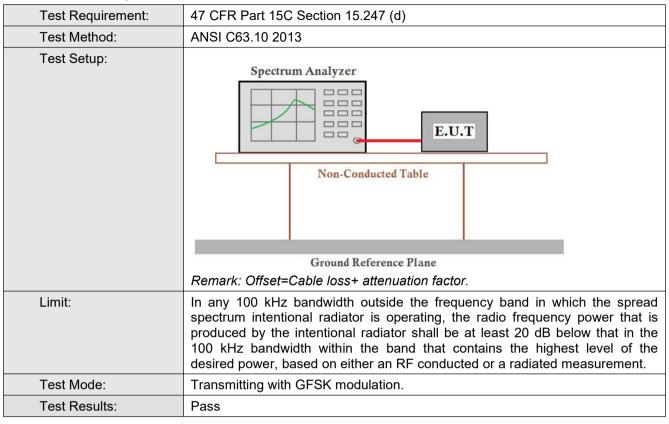
5.5 Power Spectral Density



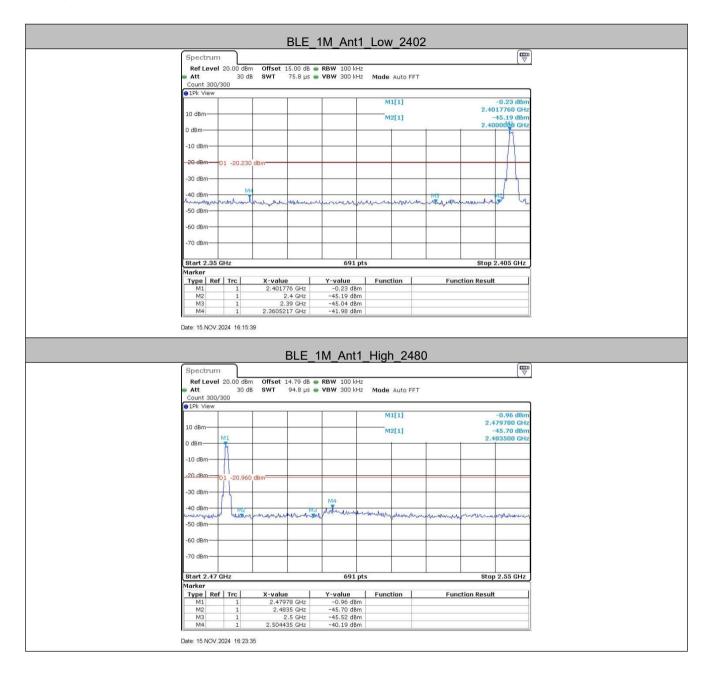
Measurement Data

GFSK mode (1Mbps)						
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-15.83	≤8.00	Pass			
Middle	-16.51	≤8.00	Pass			
Highest	-16.35	≤8.00	Pass			

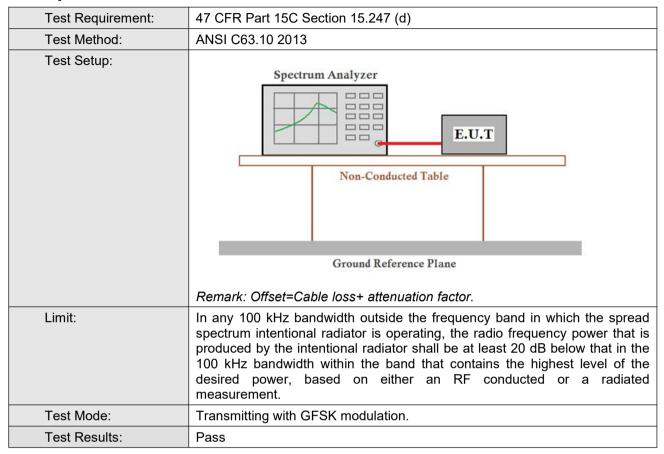
Test plot as follows:



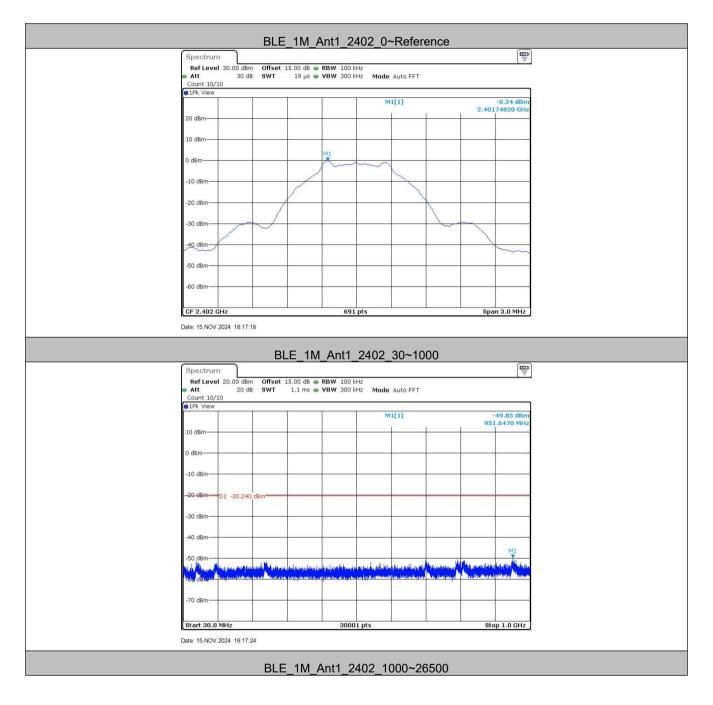
Count 100/100
●1Pk View
M1[1] -16.35 dBm 2.4800832700 GHz
10 dBm
0 dBm
-10 dBm- M1
20 dam
- www.What we want to an a start to a start
-30 dBm control man and a second se
have been a second and the second an
-10 dBm -20 dBm -30 dB
-50 dBm
-60 dBm-
-70 dBm


5.6 Band-edge for RF Conducted Emissions

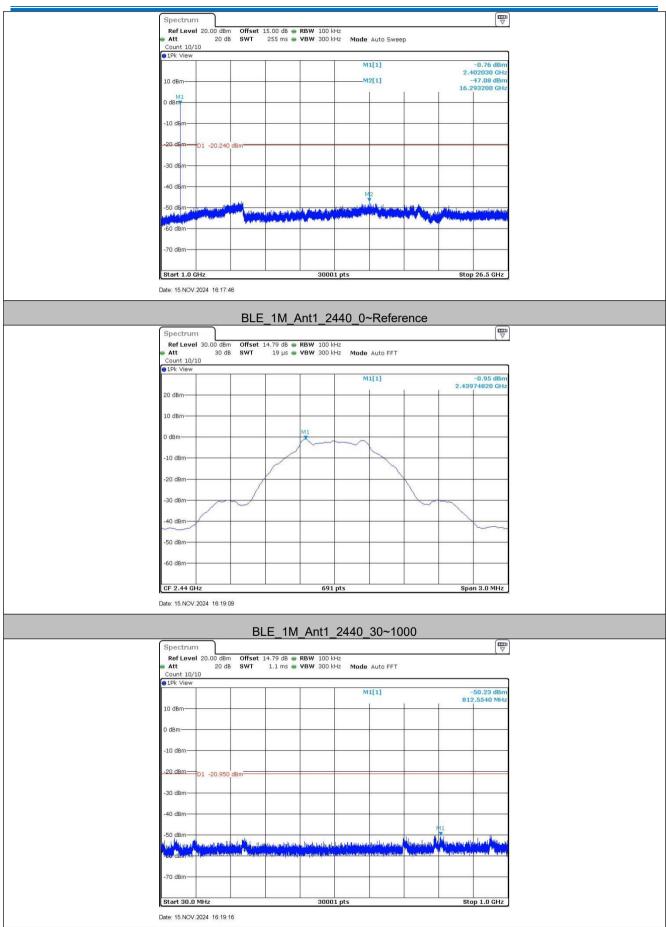
TestMode	ChName	Freq(MHz)	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
	Low	2402	-0.23	-41.98	≤-20.23	PASS
BLE_1M	High	2480	-0.96	-40.19	≤-20.96	PASS

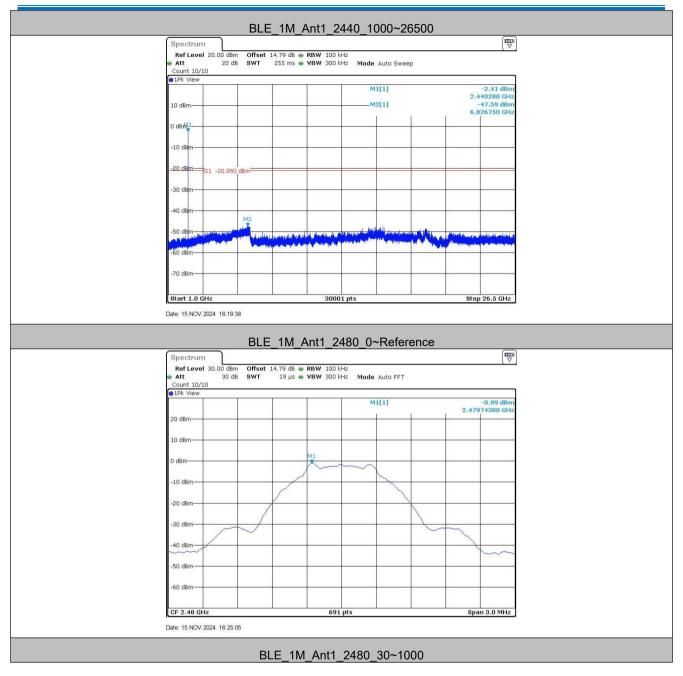


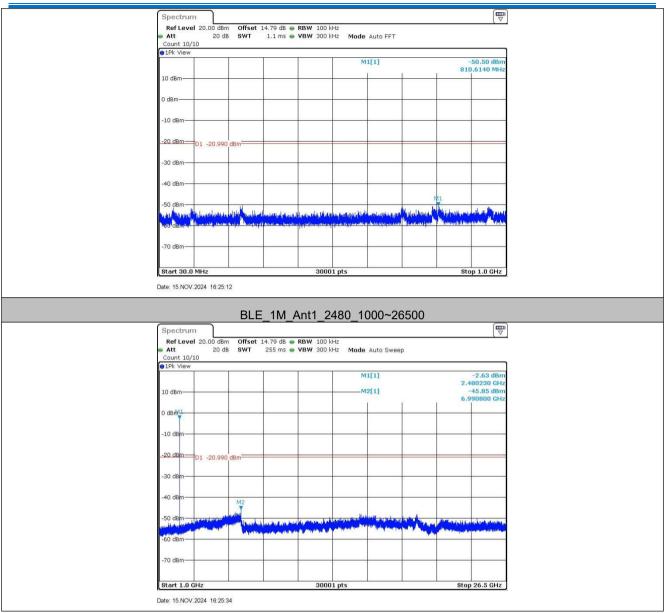
Test plot as follows:



5.7 Spurious RF Conducted Emissions

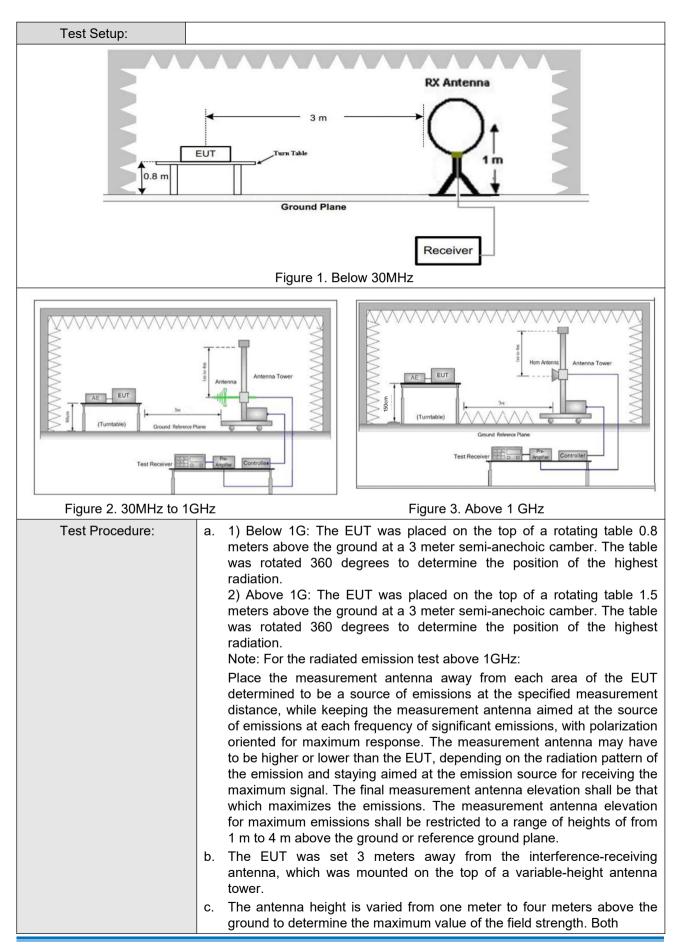



Test plot as follows:



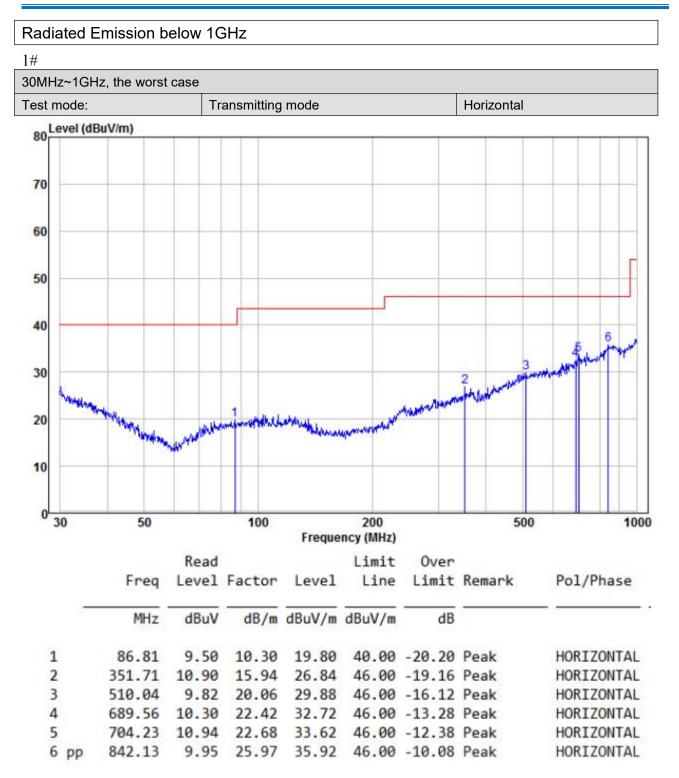
Report No.: CQASZ20241102381E-03

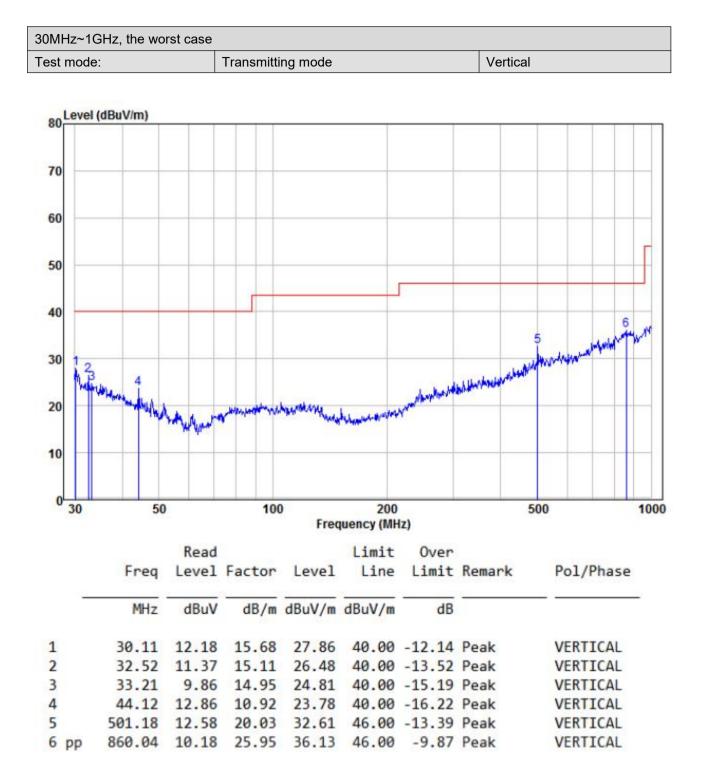
Remark:


Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

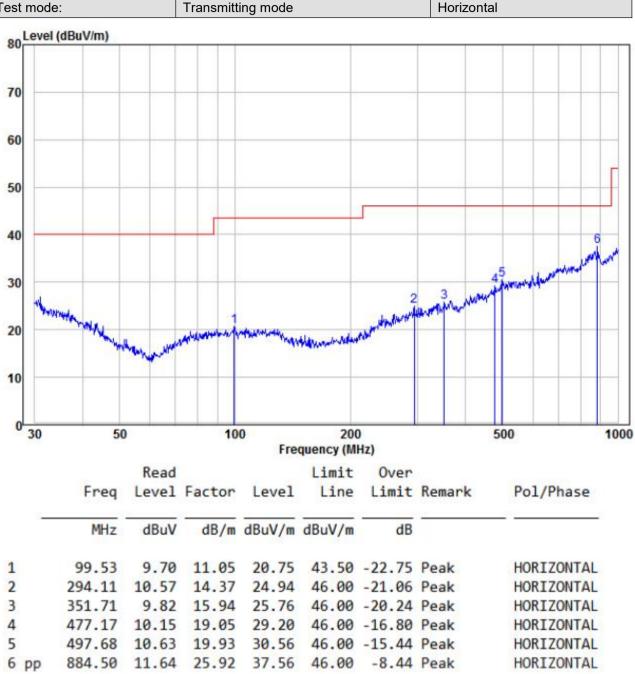
5.8 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205									
Test Method:	ANSI C63.10 2013									
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz		Peak	10kHz	z 30kHz	Peak				
	0.009MHz-0.090MHz		Average	10kHz	z 30kHz	Average				
	0.090MHz-0.110MH	z	Quasi-peak 10kH		z 30kHz	Quasi-peak				
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak				
	0.110MHz-0.490MH	z	Average	10kHz	z 30kHz	Average				
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak				
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak				
	Above 1GHz		Peak	1MHz	3MHz	Peak				
			Peak	1MHz	10Hz	Average				
Limit:	Frequency	Frequency (mic		Limit (dBuV/m)	Remark	Measureme distance (m				
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30				
	1.705MHz-30MHz		30	-	-	30				
	30MHz-88MHz		100	40.0	Quasi-peak	3				
	88MHz-216MHz		150	43.5	Quasi-peak	3				
	216MHz-960MHz		200	46.0	Quasi-peak	3				
	960MHz-1GHz		500	54.0	Quasi-peak	3				
	Above 1GHz	ve 1GHz		54.0	Average	3				
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.									

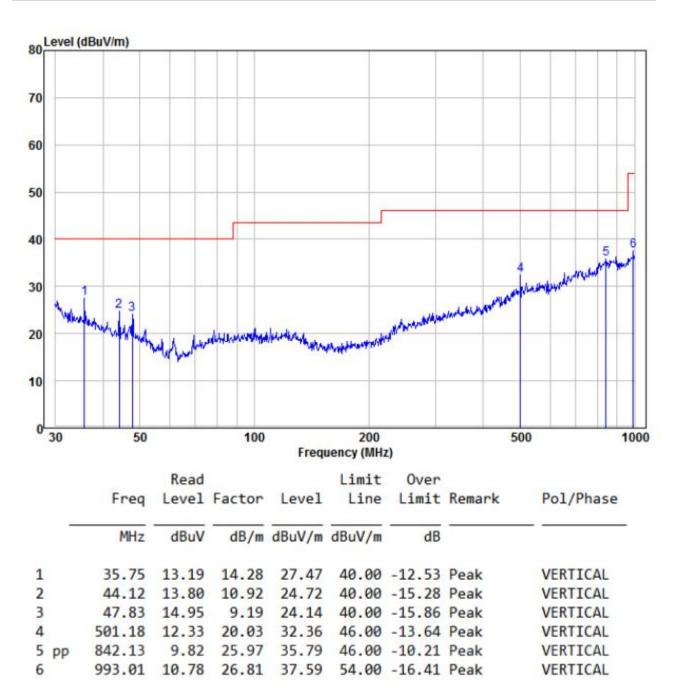




	horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with GFSK modulation. Transmitting mode.
Final Test Mode:	Through Pre-scan, find the 1Mbps of data type and GFSK modulation is the worst case.
	For below 1GHz part, through pre-scan, the worst case is the highest channel.
	Only the worst case is recorded in the report.
Test Results:	Pass



2#



Test mode:

Transmitter Emission above 1GHz

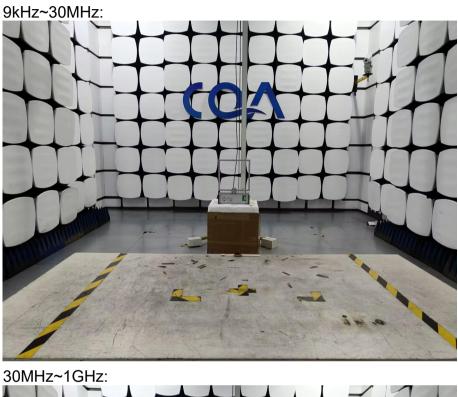
Worse case m	orse case mode:		GFSK(1Mbps)		Test channel:		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2390	54.59	-9.2	45.39	74	-28.61	Peak	н
2400	54.89	-9.39	45.50	74	-28.50	Peak	Н
4804	51.38	-4.33	47.05	74	-26.95	Peak	Н
7206	49.54	1.01	50.55	74	-23.45	Peak	Н
2390	54.80	-9.2	45.60	74	-28.40	Peak	V
2400	52.08	-9.39	42.69	74	-31.31	Peak	V
4804	53.08	-4.33	48.75	74	-25.25	Peak	V
7206	51.11	1.01	52.12	74	-21.88	Peak	V

Worse case m	ode:	GFSK(1Mbps	s)	Test channel:		Middle	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	52.03	-4.11	47.92	74	-26.08	peak	Н
7320	48.47	1.51	49.98	74	-24.02	peak	Н
4880	51.33	-4.11	47.22	74	-26.78	peak	V
7320	48.73	1.51	50.24	74	-23.76	peak	V

Worse case mode:		GFSK(1Mbps)		Test channel:		Highest	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
2483.5	54.81	-9.29	45.52	74	-28.48	Peak	Н
4960	52.61	-4.04	48.57	74	-25.43	Peak	Н
7440	48.26	1.57	49.83	74	-24.17	Peak	Н
2483.5	56.22	-9.29	46.93	74	-27.07	Peak	v
4960	51.55	-4.04	47.51	74	-26.49	Peak	V
7440	50.30	1.57	51.87	74	-22.13	Peak	V

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

6.2 Conducted Emissions Test Setup

7 Photographs - EUT Constructional Details

Refer to Photographs - EUT Constructional Details OF EUT for CQASZ20241102381E-01.

*** END OF REPORT ***