


Test Report

Report No.:	MTi240729020-02E1
Date of issue:	2024-08-29
Applicant:	Superior communications
Product name:	AT&T BT Audio TX/RX
Model(s):	00019, 00019/4455T(oracle# for 00019)
FCC ID:	YJW-00019

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sumr	mary of Test Result	8
3	Test	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List c	of test equipment	10
5	Evalu	uation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radio	o Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	Conducted Emission at AC power line Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time RF conducted spurious emissions and band edge measurement Band edge emissions (Radiated) Radiated emissions (below 1GHz) Radiated emissions (above 1GHz)	
	-	aphs of the test setup	
	•	aphs of the EUT	
		x A: 20dB Emission Bandwidth	
		x B: Maximum conducted output power	
		x C: Carrier frequency separation	
		x D: Time of occupancy	
		x E: Number of hopping channels	
Арр	pendix	x F: Band edge measurements	53
Арр	pendix	x G: Conducted Spurious Emission	56

Test Result Certification				
Applicant: Superior communications				
Address:	5027 Irwindale Ave. Suite Irwindale Ave CA United States 91706			
Manufacturer:	Shenzhen Jianshun Electronic Commerce Co.,Ltd			
Address:	Room 1002, Zhuohuijia Plaza, Yousong Street, Longhua District, Shenzhen City, Guangdong Province.			
Product description				
Product name:	AT&T BT Audio TX/RX			
Trademark:	AT&T			
Model name:	00019,			
Series Model(s):	00019/4455T(oracle# for 00019)			
Standards:	47 CFR Part 15.247			
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2020			
Date of Test				
Date of test:	2024-08-22 to 2024-08-28			
Test result:	Pass			

Test Engineer	:	James Qu
		(James Qin)
Reviewed By	:	Dowid. Cee
		(David Lee)
Approved By	:	(con chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

•	
Product name:	AT&T BT Audio TX/RX
Model name:	00019
Series Model(s):	00019/4455T(oracle# for 00019)
Model difference:	All models are the same circuit and module, but the model, name, and customer used are different.
Electrical rating:	Input: DC 5V Battery: DC 3.7V, 200mAh
Accessories:	Cable: USB-A to USB-C cable: 30cm 3.5mm audio cable: 30cm
Hardware version:	V1
Software version:	V1
Test sample(s) number:	MTi240729020-02S1001
RF specification	
Bluetooth version:	V5.3
Operating frequency range:	2402-2480MHz
Channel number:	79
Modulation type:	GFSK,π/4-DQPSK
Antenna(s) type:	PCB
Antenna(s) gain:	-0.58dBi

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-GFSK
Mode2	TX-π/4-DQPSK

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com

Page 6 of 61

Report No.: MTi240729020-02E1

9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Test Channel List Operation Band: 2400-2483.5 MHz

Γ	Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
	(MHz)	(MHz)	(MHz)	(MHz)
	1	2402	2441	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: FCC Assist 1.0.2.2

For power setting, refer to below table.

Mode	2402MHz	2441MHz	2480MHz
GFSK	10	10	10
π/4-DQPSK	10	10	10

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list							
Description Model Serial No. Manufacturer							
Moible Phone Find X3 / OPPO							
Support cable list	Support cable list						
Description	Length (m)	From	То				
/	/	/	/				

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
3	Occupied Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
4	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(1)	Pass
5	Channel Separation	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
6	Number of Hopping Frequencies	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
7	Dwell Time	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
8	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
11	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment Manufacturer		Model	Serial No.	Cal. date	Cal. Due	
	Conducted Emission at AC power line						
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19	
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20	
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19	
		Emissions in non- Occuj Maximum Co Chan	Dwell Time restricted freque pied Bandwidth nducted Output nel Separation Hopping Freque	Power			
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19	
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20	
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20	
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20	
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20	
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20	
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20	
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19	
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20	
		Band edge Emissions in frequ	emissions (Radi uency bands (ab	,			
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19	
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16	
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19	
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20	
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20	
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16	
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20	
	Emissions in frequency bands (below 1GHz)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19	
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10	
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22	
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19	

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com

5 Evaluation Results (Evaluation)

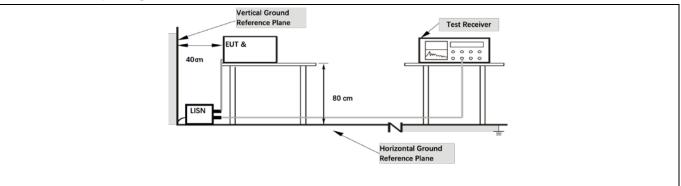
5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be
	considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

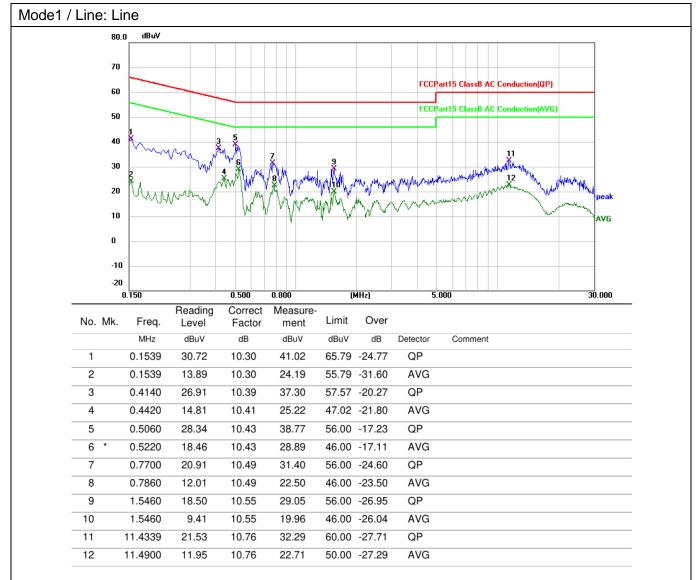
6 Radio Spectrum Matter Test Results (RF)

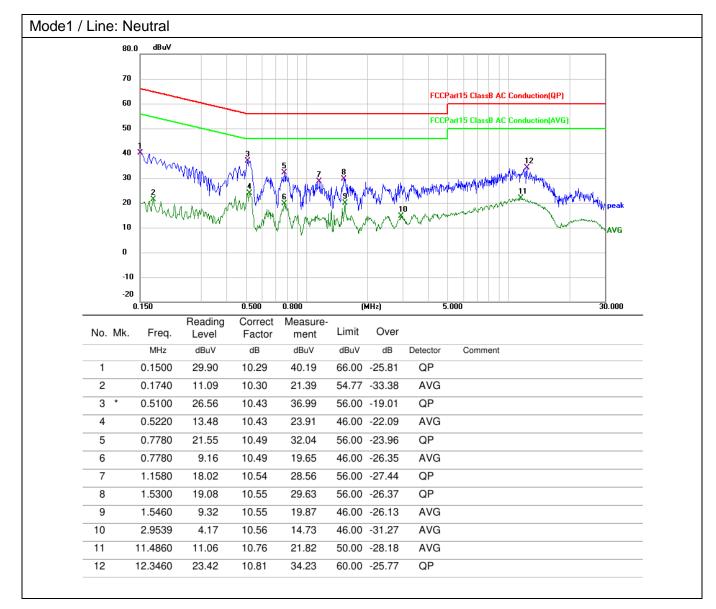

6.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).				
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)			
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	5-30 60 50			
	*Decreases with the logarithm of the frequency.				
Test Method:	ANSI C63.10-2020 section 6.2				
Procedure:	Refer to ANSI C63.10-2020 sect line conducted emissions from u			wer-	

6.1.1 E.U.T. Operation:

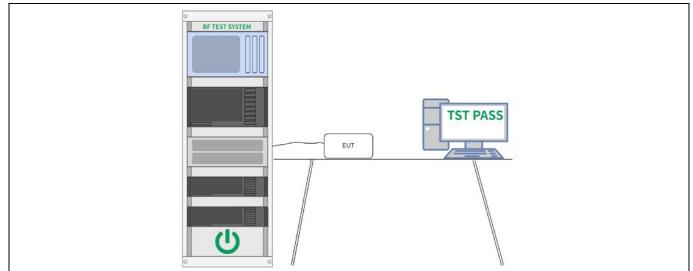
Operating Envi	Operating Environment:						
Temperature:	25.9 °C		Humidity:	58 %	Atmospheric Pressure:	101 kPa	
Pre test mode:		Mode	e1, Mode2				
Einal test mode.				re-test mode w ded in the repo	ere tested, only the data or rt	of the worst mode	


6.1.2 Test Setup Diagram:



6.1.3 Test Data:

6.2 Occupied Bandwidth

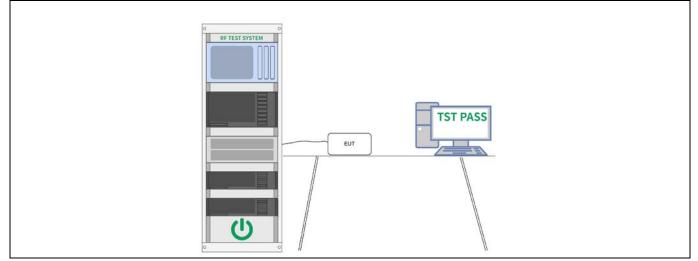

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2020, section 7.8.6, For occupied bandwidth measurements, use the procedure in 6.9.3. Frequency hopping shall be disabled for this test. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be at least three times the RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.6.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max-hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the oliver frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth shall be reported by providing spectral plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

6.2.1 E.U.T. Operation:

Operating Environment:							
Temperature:	24 °C		Humidity:	54 %		Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2				
Final test mode: Mod		e1, Mode2					

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Maximum Conducted Output Power

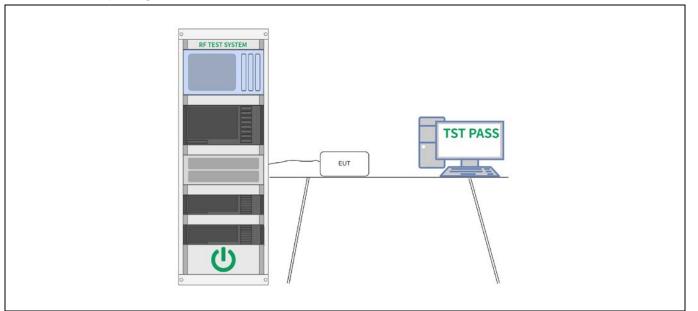
Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2020, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. Frequency hopping shall be disabled for this test. Use the following spectrum analyzer settings: a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. b) RBW > 20 dB bandwidth of the emission being measured. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow trace to stabilize. h) Use the marker-to-peak function to set the marker to the peak of the emission. i) The indicated level is the peak output power, after any corrections for external attenuators and cables. j) A spectral plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.3.1 E.U.T. Operation:

Operating Environment:						
Temperature:	24 °C	24 °C Humidity: 54 % Atmospheric Pressure: 101 kPa				
Pre test mode:		Mode	e1, Mode2			
Final test mode: Mod		Mode	e1, Mode2			

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Channel Separation

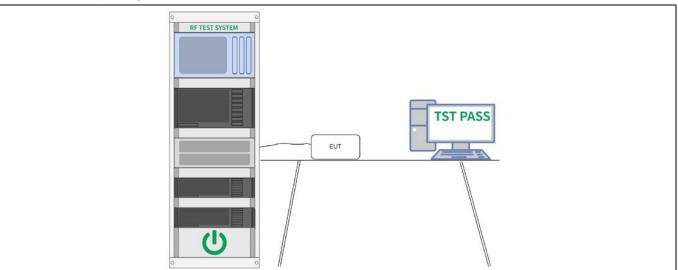
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2020, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A spectral plot of the data shall be included in the test report.

6.4.1 E.U.T. Operation:

Operating Envi	ironment:					
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa
Pre test mode: Mode1, M		e1, Mode2				
		e1, Mode2				

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it could be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of an EUT.

6.5.1 E.U.T. Operation:

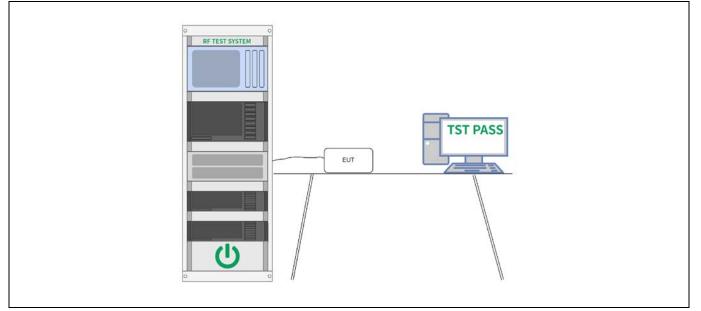
Operating Environment:							
Temperature:	: 24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Mod		Mode	e1, Mode2				
Final test mode: Mod		Mode	e1, Mode2				

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

6.6 Dwell Time

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	 Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The dwell time per hop on a channel is the time from the start of the first transmission to the end of the last transmission for that hop. If the device has a single transmission per hop then the dwell time is the duration of that transmission. If the device has a multiple transmissions per hop then the dwell time is measured from the start of the first transmission to the end of the last transmission.
	The time of occupancy is the total time that the device dwells on a channel over an observation period specified in the regulatory requirement. To determine the time of occupancy the spectrum analyzer will be configured to measure both the dwell time per hop and the number of times the device transmits on a specific channel in a given period.
	The EUT shall have its hopping function enabled. Compliance with the requirements shall be made with the minimum and with the maximum number of channels enabled. If the dwell time per channel does not vary with the number of channels than compliance with the requirements may be based on the minimum number of channels. If the device supports different dwell times per channel (example Bluetooth devices can dwell on a channel for 1, 3 or 5 time slots) then measurements can be limited to the longest dwell time with the minimum number of channels.
	Use the following spectrum analyzer settings to determine the dwell time per hop:
	 a) Span: Zero span, centered on a hopping channel. b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected transmission time per hop. c) Sweep time: Set so that the start of the first transmission and end of the last transmission for the hop are clearly captured. Setting the sweep time to be slightly longer than the hopping period per channel (hopping period = 1/hopping rate) should achieve this. d) Use a video trigger, where possible with a trigger delay, so that the start of the transmission is clearly observed. The trigger level might need adjustment to reduce the chance of triggering when the system hops on an adjacent channel.
	e) Detector function: Peak.f) Trace: Clear-write, single sweep.g) Place markers at the start of the first transmission on the channel and at the end of the last transmission. The dwell time per hop is the time between these two markers.
	To determine the number of hops on a channel in the regulatory observation period repeat the measurement using a longer sweep time. When the device uses a single hopping sequence the period of measurement should be



sufficient to capture at least 2 hops. When the device uses a dynamic hopping sequence, or the sequence varies, the period of measurement may need to capture multiple hops to better determine the average time of occupancy. Count the number of hops on the channel across the sweep time.
The average number of hops on the same channel within the regulatory observation period is calculated from the number of hops on the channel divided by the spectrum analyzer sweep time multiplied by the regulatory observation period. For example, if three hops are counted with an analyzer sweep time of 500 ms and the regulatory observation period is 10 s, then the number of hops in that ten seconds is $3 / 0.5 \times 10$, or 60 hops.
The average time of occupancy is calculated by multiplying the dwell time per hop by the number of hops in the observation period.

6.6.1 E.U.T. Operation:

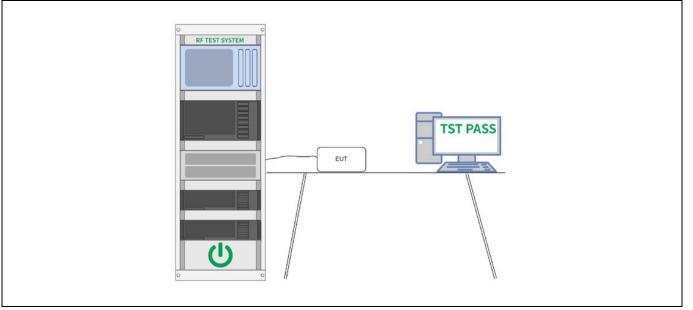
Operating Environment:							
Temperature:	24 °C		Humidity:	54 %		Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2				
Final test mode	e:	Mode	e1, Mode2				
			-				

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

6.7 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	7.8.7.1 General considerations To demonstrate compliance with the relative out-of-band emissions requirements conducted spurious emissions shall be measured for the transmit frequencies, per 5.5 and 5.6, and at the maximum transmit powers. Frequency hopping shall be disabled for this test with the exception of measurements at the allocated band-edges which shall be repeated with hopping enabled.
	Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The frequency range of testing shall span 30 MHz to 10 times the operating frequency and this may be done in a single sweep or, to aid resolution, across a number of sweeps. The resolution bandwidth shall be 100 kHz, video bandwidth 300 kHz, and a coupled sweep time with a peak detector.
	The limit is based on the highest in-band level across all channels measured using the same instrument settings (resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector). To help clearly demonstrate compliance a display line may be set at the required offset (typically 20 dB) below the highest in-band level. Where the highest in-band level is not clearly identified in the out-of-band measurements a separate spectral plot showing the in-band level shall be provided.
	When conducted measurements cannot be made (for example a device with integrated, non-removable antenna) radiated measurements shall be used. The reference level for determining the limit shall be established by maximizing the field strength from the highest power channel and measuring using the resolution and video bandwidth settings and peak detector as described above. The field strength limit for spurious emissions outside of restricted-bands shall then be set at the required offset (typically 20 dB) below the highest in-band level. Radiated measurements will follow the standards measurement procedures described in Clause 6 with the exception that the resolution bandwidth shall be 100 kHz, video bandwidth 300 kHz, and a coupled sweep time with a peak detector. Note that use of wider measurement bandwidths are acceptable for measuring the spurious emissions provided that the peak detector is used and that the measured value of spurious emissions are compared to the highest in-band level measured with the 100 kHz / 300 kHz bandwidth settings to determine



7.8.7.2 Band-edges Compliance with a relative limit at the band-edges (e.g., -20 dBc) shall be made on the lowest and on the highest channels with frequency hopping disabled and repeated with frequency hopping enabled. For the latter test the hopping sequence shall include the lowest and highest channels.
For measurements with the hopping disabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of the allocated band-edge.
For measurements with the hopping enabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of both of the allocated band-edges. This could require separate spectral plots for each band-edge.

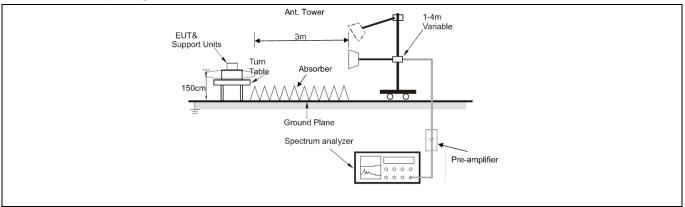
6.7.1 E.U.T. Operation:

Operating Environment:							
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Mod		Mode	e1, Mode2				
Final test mode: Mod		e1, Mode2					

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

6.8 Band edge emissions (Radiated)


Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(see	so comply with the						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 								
Test Method:									
Procedure:	ANSI C63.10-2020 sec	equency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. owever, operation within these frequency bands is permitted under other ections of this part, e.g., §§ 15.231 and 15.241. the emission table above, the tighter limit applies at the band edges. he emission limits shown in the above table are based on measurements inploying a CISPR quasi-peak detector except for the frequency bands 9–90 Hz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these							

6.8.1 E.U.T. Operation:

Operating Environment:							
Temperature:	21.3 °C		Humidity:	47.2 %	Atmospheric Pressure:	98.5 kPa	
Pre test mode:		Mode	e1, Mode2				
Elbal test mode.				re-test mode w ded in the repo	vere tested, only the data	of the worst mode	
Note:			•				

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.8.2 Test Setup Diagram:

6.8.3 Test Data:

Mode2 /	Polariza	tion: Horizonta	al / CH: L						
	No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1	2310.000	49.03	-4.83	44.20	74.00	-29.80	peak	
	2	2310.000	39.21	-4.83	34.38	54.00	-19.62	AVG	
	3	2390.000	53.28	-4.31	48.97	74.00	-25.03	peak	
	4 *	2390.000	43.53	-4.31	39.22	54.00	-14.78	AVG	

Mode2 / Polarization: Vertical / CH: L

No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV/m dB Detector 1 2310.000 49.72 -4.83 44.89 74.00 -29.11 peak 2 2310.000 39.18 -4.83 34.35 54.00 -19.65 AVG 3 2390.000 49.77 -4.31 45.46 74.00 -28.54 peak 4 * 2390.000 39.60 -4.31 35.29 54.00 -18.71 AVG	<u>, 7</u>	r Ulan	zalio								
12310.00049.72-4.8344.8974.00-29.11peak22310.00039.18-4.8334.3554.00-19.65AVG32390.00049.77-4.3145.4674.00-28.54peak		No.	Mk.	Freq.	0			Limit	Over		
2 2310.000 39.18 -4.83 34.35 54.00 -19.65 AVG 3 2390.000 49.77 -4.31 45.46 74.00 -28.54 peak				MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
3 2390.000 49.77 -4.31 45.46 74.00 -28.54 peak		1		2310.000	49.72	-4.83	44.89	74.00	-29.11	peak	
		2		2310.000	39.18	-4.83	34.35	54.00	-19.65	AVG	_
4 * 2390.000 39.60 -4.31 35.29 54.00 -18.71 AVG		3		2390.000	49.77	-4.31	45.46	74.00	-28.54	peak	-
		4	*	2390.000	39.60	-4.31	35.29	54.00	-18.71	AVG	

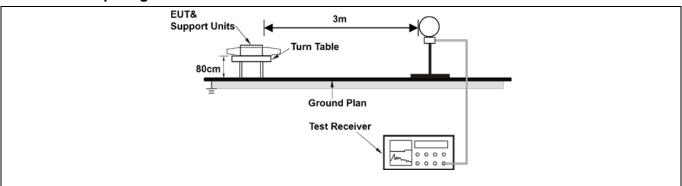
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	56.53	-4.21	52.32	74.00	-21.68	peak
2		2483.500	46.43	-4.21	42.22	54.00	-11.78	AVG
3		2500.000	58.45	-4.10	54.35	74.00	-19.65	peak
4	*	2500.000	47.82	-4.10	43.72	54.00	-10.28	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	50.81	-4.21	46.60	74.00	-27.40	peak
2		2483.500	40.53	-4.21	36.32	54.00	-17.68	AVG
3		2500.000	53.71	-4.10	49.61	74.00	-24.39	peak
4	*	2500.000	41.62	-4.10	37.52	54.00	-16.48	AVG

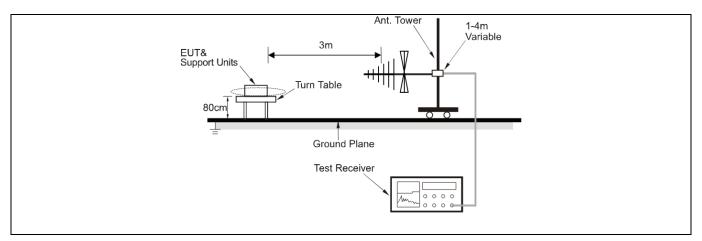
6.9 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(se	so comply with the									
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)									
	0.009-0.490 2400/F(kHz) 300											
	0.490-1.705 24000/F(kHz) 30 1.705-30.0 30											
	1.705-30.0											
	30-88											
	88-216 150 ** 3 216-960 200 ** 3 Above 960 500 3											
	Above 960 500 3											
	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 											
Test Method:	ANSI C63.10-2020 see KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02										
Procedure:	ANSI C63.10-2020 see	ction 6.6.4										

6.9.1 E.U.T. Operation:

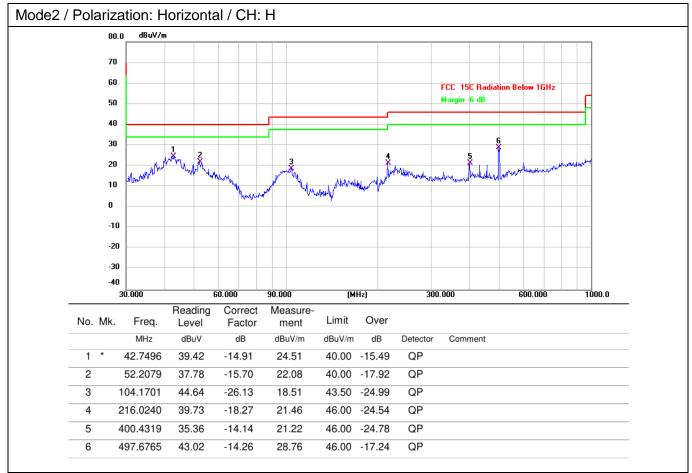

Operating Envi	ironment:						
Temperature:	21.3 °C		Humidity:	47.2 %	Atmospheric Pressure:	98.5 kPa	
Pre test mode:		Mode	e1, Mode2				
Final test mode	e:	All of the listed pre-test mode were tested, only the data of the worst mode (Mode2) is recorded in the report					
Noto							

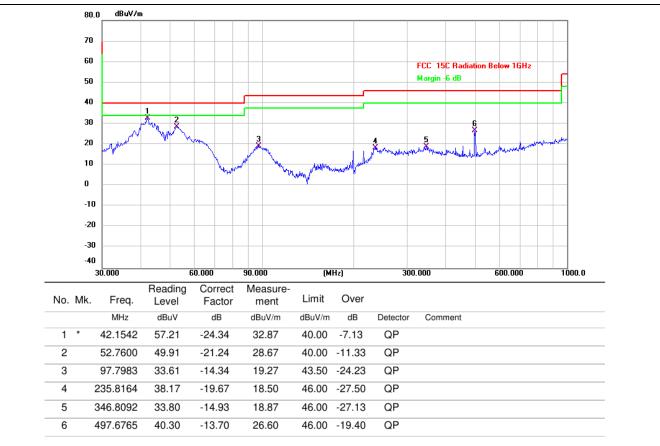
Note:


The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

6.9.2 Test Setup Diagram:

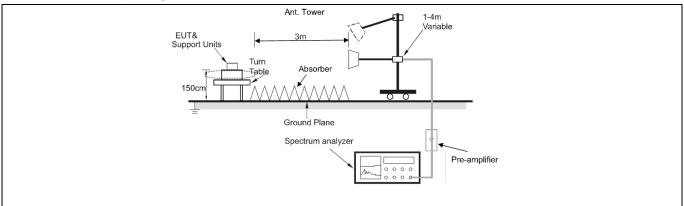




6.9.3 Test Data:

Mode2 / Polarization: Vertical / CH: H

6.10 Radiated emissions (above 1GHz)


Test Requirement:		nissions which fall in the rest comply with the radiated em 5(c)).									
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)								
	0.009-0.490 2400/F(kHz) 300 0.490-1.705 24000/F(kHz) 30 1.705-30.0 30 30										
	1.705-30.0	30-88 100 ** 3 88-216 150 ** 3									
	30-88										
	88-216										
	216-960 200 ** 3										
	Above 960 500 3										
	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 										
Test Method:	ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02										
Procedure:	ANSI C63.10-2020 sec	tion 6.6.4									

6.10.1 E.U.T. Operation:

Operating Env	ironment:						
Temperature:	21.3 °C		Humidity:	47.2 %	Atmospheric Pressure:	98.5 kPa	
Pre test mode:		Mode	e1, Mode2			·	
Final test mode	ə:		•	re-test mode w ded in the repo	vere tested, only the data ort	of the worst mode	
Note: Test frequency are from 1GHz to 25GHz, the amplitude of spurious emissions which are							
attenuated mo				•			

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

6.10.2 Test Setup Diagram:

6.10.3 Test Data:

Mode2 /	Polari	zatio	n: Horizonta	al / CH: L						
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	-
	1		4804.000	46.33	0.53	46.86	74.00	-27.14	peak	-
-	2		4804.000	39.73	0.53	40.26	54.00	-13.74	AVG	-
	3		7206.000	45.28	7.90	53.18	74.00	-20.82	peak	-
	4	*	7206.000	40.49	7.90	48.39	54.00	-5.61	AVG	
	5		9608.000	43.57	8.85	52.42	74.00	-21.58	peak	_
	6		9608.000	38.41	8.85	47.26	54.00	-6.74	AVG	-

Mode2 / Polarization: Vertical / CH: L

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4804.000	45.66	0.53	46.19	74.00	-27.81	peak
2	4804.000	40.73	0.53	41.26	54.00	-12.74	AVG
3	7206.000	44.46	7.90	52.36	74.00	-21.64	peak
4 *	7206.000	40.33	7.90	48.23	54.00	-5.77	AVG
5	9608.000	42.66	8.85	51.51	74.00	-22.49	peak
6	9608.000	39.31	8.85	48.16	54.00	-5.84	AVG

Mode2 / Polarization: Horizontal / CH: M No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB dBuV/m dB Detector 1 4882.000 44.85 0.57 45.42 74.00 -28.58 peak 2 4882.000 39.59 0.57 40.16 54.00 -13.84 AVG 3 7323.000 45.83 7.57 53.40 74.00 -20.60 peak 4 * 7323.000 40.79 7.57 48.36 54.00 -5.64 AVG										
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 1 4882.000 44.85 0.57 45.42 74.00 -28.58 peak 2 4882.000 39.59 0.57 40.16 54.00 -13.84 AVG 3 7323.000 45.83 7.57 53.40 74.00 -20.60 peak	Mode2 / Po	olariza	ation: Horizo	ntal / CH: M						
14882.00044.850.5745.4274.00-28.58peak24882.00039.590.5740.1654.00-13.84AVG37323.00045.837.5753.4074.00-20.60peak	٦	No. N	Vk. Freq	•				Over		
24882.00039.590.5740.1654.00-13.84AVG37323.00045.837.5753.4074.00-20.60peak			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
3 7323.000 45.83 7.57 53.40 74.00 -20.60 peak		1	4882.00	0 44.85	0.57	45.42	74.00	-28.58	peak	
		2	4882.00	0 39.59	0.57	40.16	54.00	-13.84	AVG	
4 * 7323.000 40.79 7.57 48.36 54.00 -5.64 AVG		3	7323.00	0 45.83	7.57	53.40	74.00	-20.60	peak	
		4 *	* 7323.00	0 40.79	7.57	48.36	54.00	-5.64	AVG	
5 9764.000 43.85 9.33 53.18 74.00 -20.82 peak		5	9764.00	0 43.85	9.33	53.18	74.00	-20.82	peak	_
6 9764.000 38.88 9.33 48.21 54.00 -5.79 AVG		6	9764.00	0 38.88	9.33	48.21	54.00	-5.79	AVG	_

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	46.84	0.57	47.41	74.00	-26.59	peak
2		4882.000	40.79	0.57	41.36	54.00	-12.64	AVG
3		7323.000	42.27	7.57	49.84	74.00	-24.16	peak
4		7323.000	37.71	7.57	45.28	54.00	-8.72	AVG
5		9764.000	43.84	9.33	53.17	74.00	-20.83	peak
6	*	9764.000	39.60	9.33	48.93	54.00	-5.07	AVG

Mode2 / I	Polari	zatic	on: Horizonta	al / CH: H						
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
_			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
_	1		4960.000	45.10	0.66	45.76	74.00	-28.24	peak	
_	2		4960.000	39.57	0.66	40.23	54.00	-13.77	AVG	
_	3		7440.000	46.00	7.94	53.94	74.00	-20.06	peak	_
_	4		7440.000	37.29	7.94	45.23	54.00	-8.77	AVG	
	5		9920.000	44.27	9.69	53.96	74.00	-20.04	peak	
_	6	*	9920.000	37.57	9.69	47.26	54.00	-6.74	AVG	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	43.87	0.66	44.53	74.00	-29.47	peak
2		4960.000	39.63	0.66	40.29	54.00	-13.71	AVG
3		7440.000	42.75	7.94	50.69	74.00	-23.31	peak
4		7440.000	36.42	7.94	44.36	54.00	-9.64	AVG
5		9920.000	44.18	9.69	53.87	74.00	-20.13	peak
6	*	9920.000	38.60	9.69	48.29	54.00	-5.71	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

Page 36 of 61

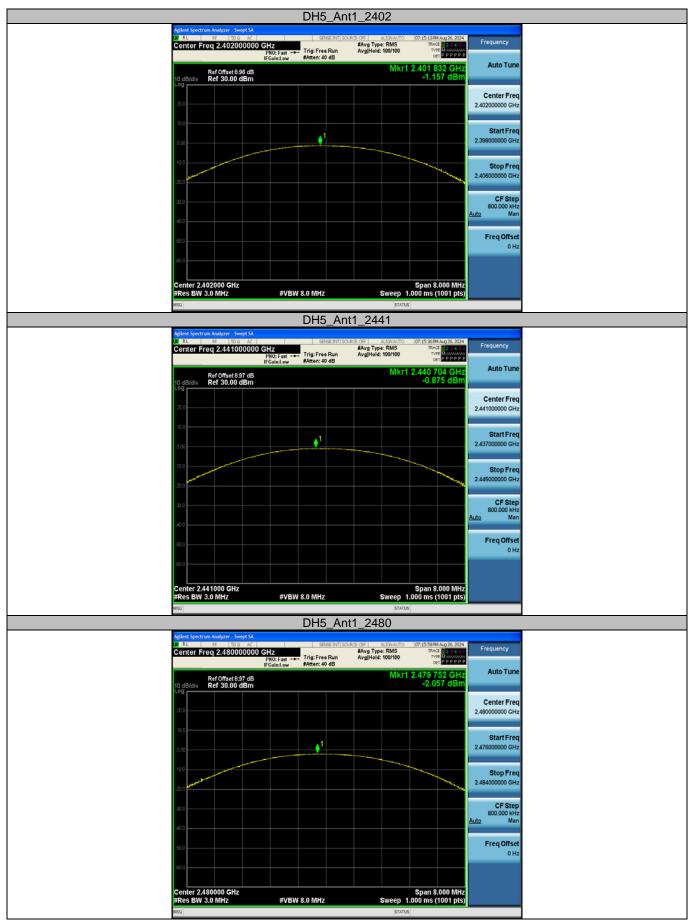
Appendix

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com

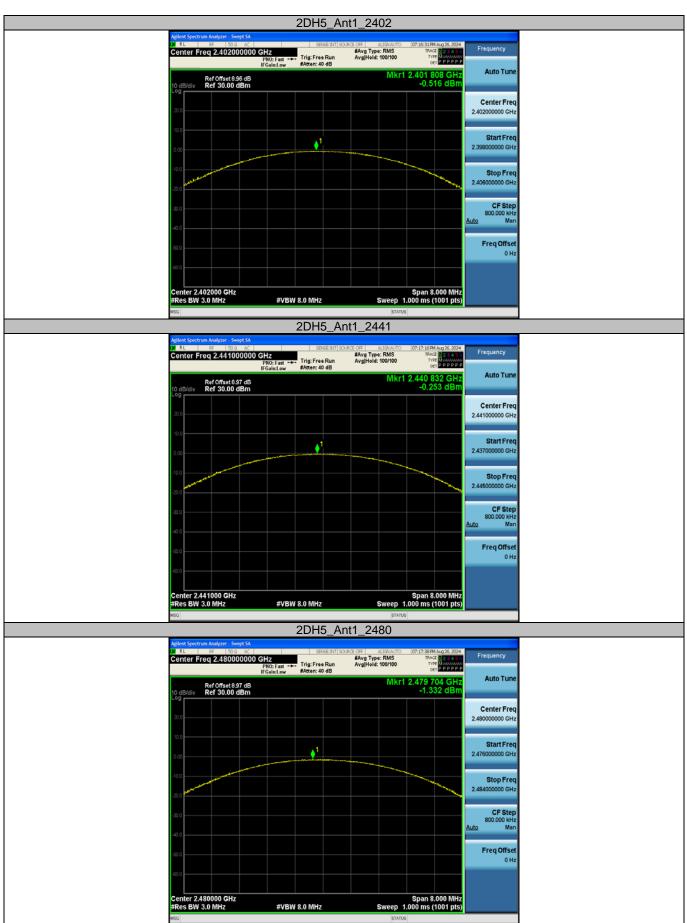
Appendix A: 20dB Emission Bandwidth

Test Result

Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]
		2402	0.954
DH5	Ant1	2441	0.927
		2480	0.951
		2402	1.314
2DH5	Ant1	2441	1.317
		2480	1.338



Appendix B: Maximum conducted output power


Test Result Peak

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
		2402	-1.16	≤30	PASS
DH5	Ant1	2441	-0.88	≤30	PASS
		2480	-2.06	≤30	PASS
		2402	-0.52	≤20.97	PASS
2DH5	Ant1	2441	-0.25	≤20.97	PASS
		2480	-1.33	≤20.97	PASS

Appendix C: Carrier frequency separation

Test Result

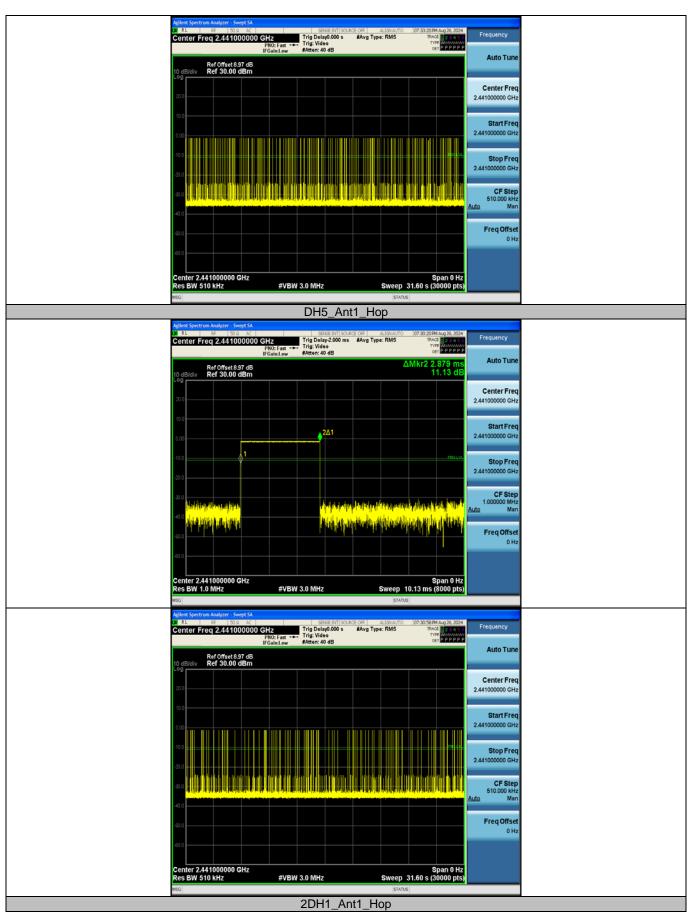
Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
DH5	Ant1	Нор	0.982	≥0.954	PASS
2DH5	Ant1	Нор	1.002	≥0.892	PASS

Appendix D: Time of occupancy

Test Result

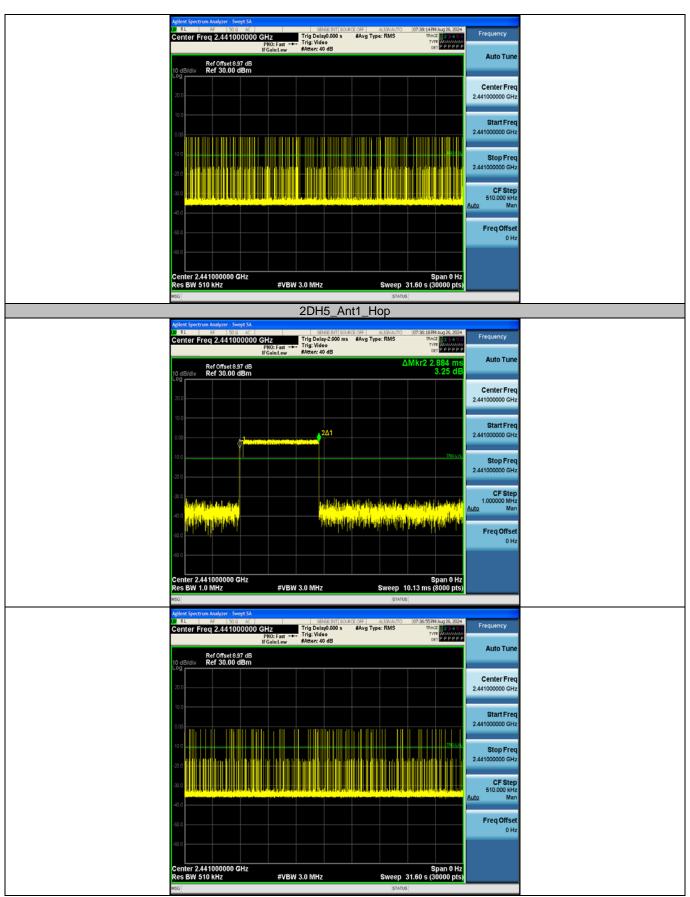
Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 31.6s [Num]	Result [s]	Limit [s]	Verdict
DH1	Ant1	Нор	0.374	318	0.119	≤0.4	PASS
DH3	Ant1	Нор	1.630	160	0.261	≤0.4	PASS
DH5	Ant1	Нор	2.879	107	0.308	≤0.4	PASS
2DH1	Ant1	Нор	0.385	313	0.121	≤0.4	PASS
2DH3	Ant1	Нор	1.638	157	0.257	≤0.4	PASS
2DH5	Ant1	Нор	2.884	91	0.262	≤0.4	PASS

Notes:


1. Period time = 0.4s * 79 = 31.6s

2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 31.6s [Num]

DH1_Ant1_Hop		
Agilent Spectrum Analyzer - Swept SA	- Ferraria	
Center Freq 2.441000000 GHz PN0: Fat Trig: Video Trig: Video Trig: Video Center: 40 dB Center	Frequency	
	Auto Tune	
Ref Offset 6.97 / 4B 24 / 4C / 4S / 4S		
20.0	Center Freq 2.441000000 GHz	
000	Start Freq	
	2.44100000 GHz	
-10.0 million	Stop Freq	
	2.441000000 GHz	
-900	CF Step	
and the state of the second state of the second state of the second seco	1.000000 MHz Auto Man	
👘 akti na kana kana kana kana kana kana kana	Ener Office	
40.0	Freq Offset 0 Hz	
40.0		
Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts)		
MSG STATUS		
Agilent Spectrum Analyzer - Swept SA DI RL 8F 50.0 AC SPRKE INT SOLRIFE OFF ALIXIAU/TO 07:32:06PM Aug 25, 2004	Frequency	
Center Freq 2.441000000 GHz Trig Delap0000 s #Avg Type: RMS TMAC B 28 are PRO: Fast Trig: Video Trige Video Trige Character PPPPP #Folant.ew #Atten: 40 4B		
Ref Offset 8.97 dB	Auto Tune	
10 dB/div Ref 30.00 dBm		
20.0	Center Freq 2.441000000 GHz	
	Start Freq	
	2.441000000 GHz	
.100 	Stop Freq	
	2.441000000 GHz	
	CF Step	
an a	510.000 kHz <u>Auto</u> Man	
40.0		
-50.0	Freq Offset 0 Hz	
60.0		
Center 2.441000000 GHz Span 0 Hz Res BW 510 KHz #VBW 3.0 MHz Sweep 31.60 s (30000 pts		
NSG		
DH3_Ant1_Hop		
Aglient Spectrum Analyzer - Swept SA R L 65 50.0 AC SERVER SOURCE OFF ALTONIAUTO (07:32-42PM Aug 26, 2004	Frequency	
Center Freq 2.441000000 GHz Trig Delay-2000 ms #Avg Type: RMS Trig Video Trig		
Ref Offset 897 dB ΔMkr2 1.630 ms	Auto Tune	
10 dB/div Ref 30.00 dBm 2.18 dB		
20.0	Center Freq 2.441000000 GHz	
10.0		
100 Δ 2Δ1	Start Freq	
	2.44100000 GHz	
10.0 TROLLA	Stop Freq	
-30.0	2.441000000 GHz	
	CF Step	
500 to be provide a service and the service of the	1.000000 MHz Auto Man	
100 ter för att ander stande stan		
	Freq Offset 0 Hz	
40.0		
Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts)		
MSG STATUS		

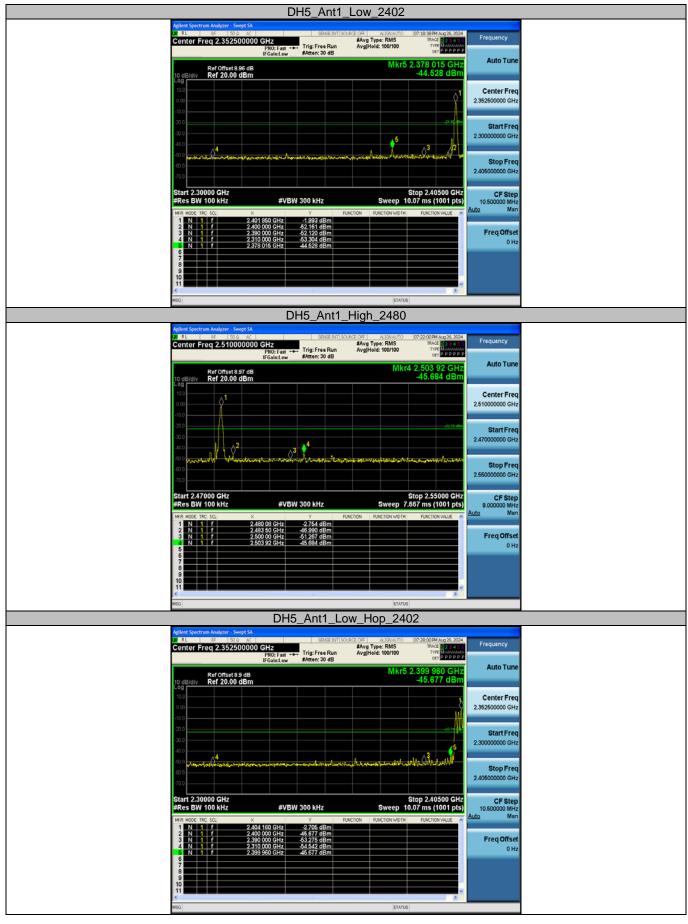


Agilent Spectrum Analyzer - Swegt SA 1 RL 87 50 0 AC SPRE2MT SOLRCE OFF ALIQNAUTO (07:29:27PM Aug28, 2040 Center Free 2:441000000 GHz Trig Delay-2:000 ms &Avg Type: RMS TMACE 23:45	Frequency
PNO: Fast Trig: Video TVVE IFGain:Low #Atten: 40 dB DET PPPP	
Ref Offset 6.97 dB ΔMkr2 385.0 μg 10 dB/div Ref 30.00 dBm 21.89 dB	Auto Tune
	Center Freq
	2.441000000 GHz
100 A201	Start Freq
	2.441000000 GHz
-10.0	Stop Freq 2.44100000 GHz
-20.0	
. 200 yana as kadakus dika 💡 yakaya kadakus ata di kada as kata bahandi pungsina mataka uta halama yaka diktar	CF Step 1.000000 MHz Auto Man
an alt Managinale Tapate Labort for Angenes water and rains to face plate and the fe	
	Freq Offset 0 Hz
40.0	
Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts	Z
 Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts USG ISTATUS ISTATUS	
Agilent Spestrum Analyzer - Swept SA 10 RL 8F 90 9 AC SPESSION SPESSION SPESSION (07-28-04PM Aug 26, 2044) Center Free 2.444 (100,000) CGHz Trig Delay0.000 s & Avg Type: RMS TAXL B 33.65	Frequency
Center Freq 2.441000000 GH2 Trig Delay0.000 s #Avg Type: RMS TAVE Determine PRO: Fast → Trig: Video Trig: Video trie #FGainLow #Atten: 00 dB cet DPPPP	P
Ref Offset 8.97 dB 10 dB/div Ref 30.00 dBm	Auto Tune
	Center Freq
200	2.44100000 GHz
10.0	Start Freq 2.44100000 GHz
	2.44 100000 GH2
	Stop Freq 2.441000000 GHz
-200	
	CF Step 510.000 kHz Auto Man
40.0	Freq Offset
60.0	0 Hz
60.0	
Center 2.441000000 GHz Span 0 Hz Res BW 510 kHz #VBW 3.0 MHz Sweep 31.60 s (30000 pts	
MSG	2
2DH3_Ant1_Hop Aglient Spectrum Analyzer - Swept SA	
DT RL RF 50.0 AC SERVICE.NT SOURCE OFF ALIGNAUTO 07:38:37 PM Aug 26, 2024 Center Freq 2.441000000 GHz Trig Delay-2.000 ms #Avg Type: RMS TRACE 17:34:51	requency
1 000-CW 1100-C 020	Auto Tuno
10 dB/dlv Ref 30.00 dBm 22.26 dE	
20.0	Center Freq 2.44100000 GHz
10.0	StatEron
0.00 ZΔ1	Start Freq 2.44100000 GHz
100	Stop Freq
200	2.441000000 GHz
500 Keledi statuk deki ila ana ana siki lina na taka kata di ana kata di sa kata di s	CF Step 1.00000 MHz
and have all a second showing a second se	Auto Man
	Freq Offset 0 Hz
600	0.12
Santa: 2.1.1000000 CU:	
Center 2.441000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts	
MSG STATUS	

Appendix E: Number of hopping channels

Test Result

Test Mode	Antenna	Frequency [MHz]	Result [Num]	Limit [Num]	Verdict
DH5	Ant1	Нор	79	≥15	PASS
2DH5	Ant1	Нор	79	≥15	PASS

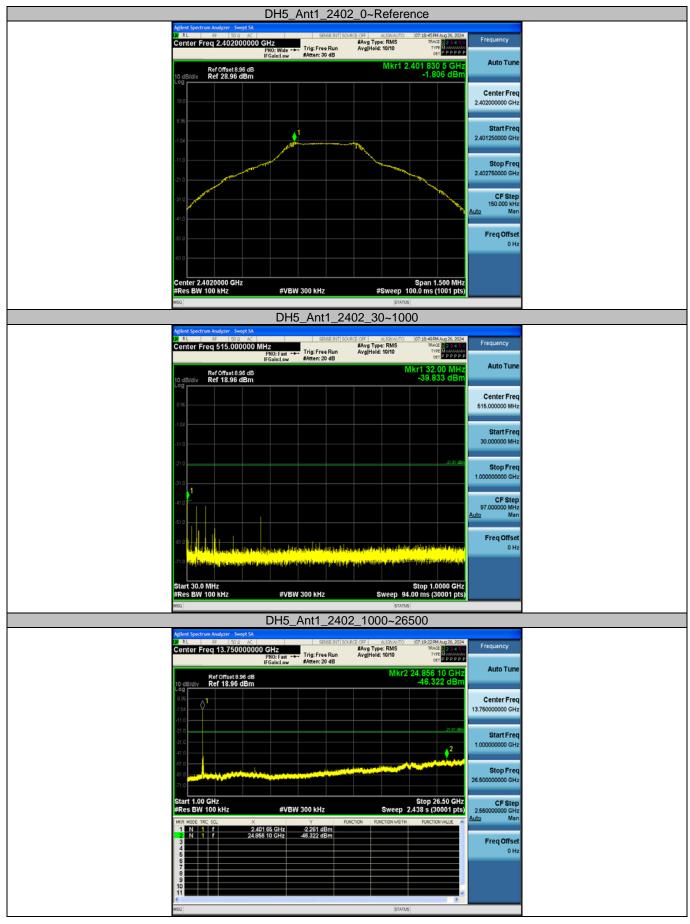


DH5_Ant1_Hop
Addiend Spectrum Analyzer - Servet SA. D R.L. 50 Species Acc Server SOL 50 Species Acc Server Solar Server Species Acc Server
Ref Offset 8 95 dB Auto Tune 10 dB/div Ref 30.00 dBm 20 g Center Freq 20 0 2.441750000 GHz
2.441/50000 GHz
10 0 10 0 2.483500000 GHz
S00 D CF Step 8.350000 MHz Auto Man
500 Freq Offset 0 Hz
Start 2.40000 GHz Stop 2.48350 GHz #Res BW 300 kHz #VBW 300 kHz Sweep 1.133 ms (1001 pts)
2DH5_Ant1_Hop
Agilent Spectrum Analyzer - Swept SA
DI RL RF 500 AC SINGE BIT SOURCE OFF ALISTANTO (07-355564 Aug 26, 2024 Center Freq 2.441750000 GHz FART CONTRACTOR FROM THE SOURCE OFF ALISTANTO (07-355564 Aug 26, 2024 Frequency Trig: Free Run IFGaint.cov Add Contract Add
Ref Offset 8.95 dB 10 dB/div Ref 30.00 dBm
200 Center Freq 2.441750000 GHz
100 0.00 100 100 100 100 100 100 100 100
100 Stop Freq 2.48350000 GHz
30 0 CF Step 8.350000 MHz 40 0 Man
400 FreqOffset 0 Hz
Start 2.40000 GHz Stop 2.48350 GHz
#Res BW 300 kHz #VBW 300 kHz Sweep 1.133 ms (1001 pts)

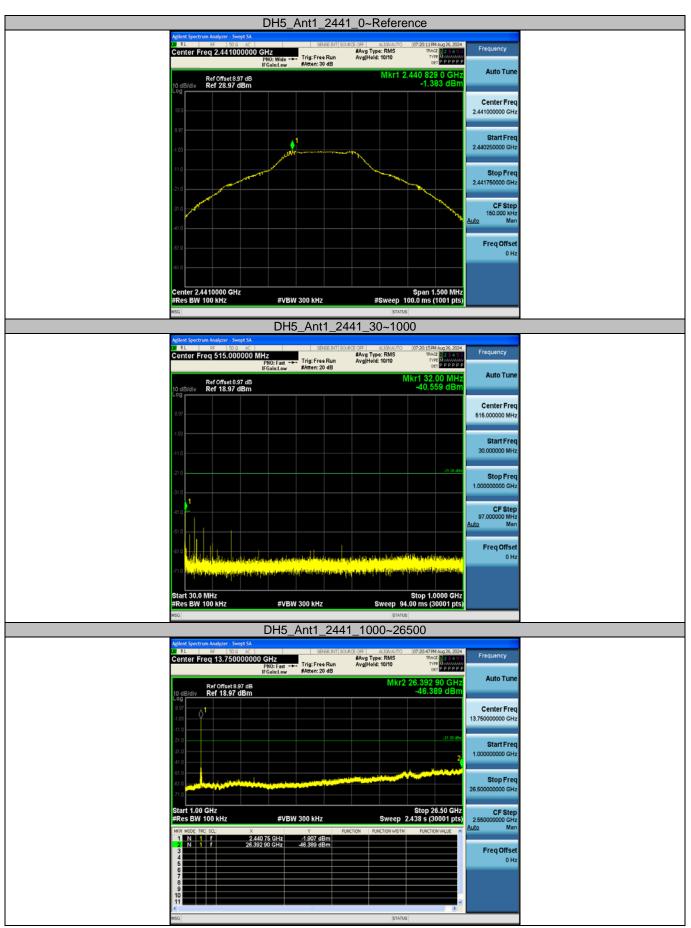
Appendix F: Band edge measurements

Test Graphs

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com

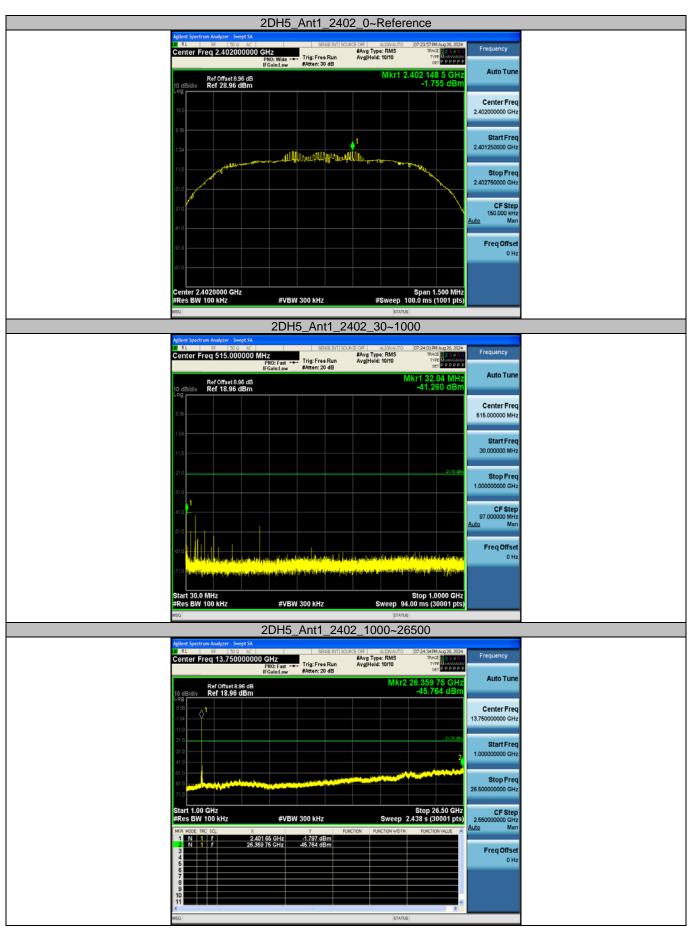


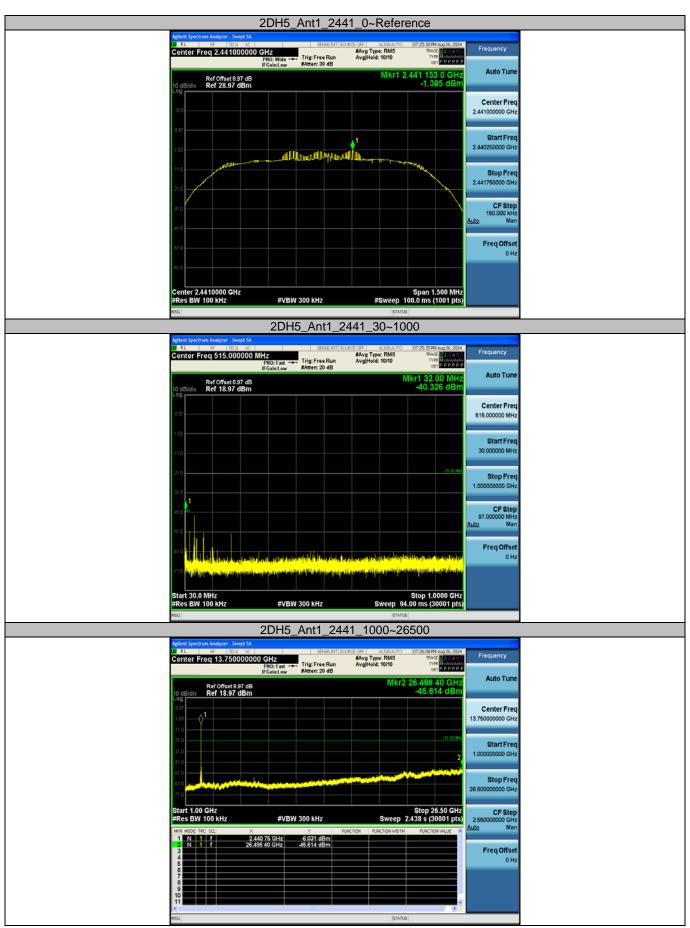
	2DH5_Ant1_Lc	w_Hop_2402	
Agilent Spestrum Analyzer - S 100 RL RF 150		RCE OFF ALIGN AUTO 07:34:05 PM Aug 26, 2024	
Center Freq 2.3525		#AvgType: RMS TRACE 23450 AvgHold>100/100	Frequency
Ref Offset 8		Mkr5 2.387 045 GHz -46.563 dBm	Auto Tune
Log 100 0.00			Center Freq 2.352500000 GHz
-10.0 -20.0 -30.0			Start Freq 2.30000000 GHz
-60.0		5 3 2	Stop Freq
-00.0			2.40500000 GHz
Start 2.30000 GHz #Res BW 100 kHz MRR MODE TRC SCI	#VBW 300 kHz	Stop 2.40500 GHz Sweep 10.07 ms (1001 pts)	CF Step 10.500000 MHz Auto Man
1 N 1000 1 N 30. 1 N 1 7 2 N 1 7 3 N 1 7 4 N 1 7	2,403 005 GHz 5,058 dBm 2,400 000 GHz 48,631 dBm 2,390 000 GHz 51,407 dBm 2,310 000 GHz 52,910 dBm		Freq Offset
	2.387 045 GHz 46.563 dBm		0 Hz
9 10 11			
MSG		STATUS	
	2DH5_Ant1_Hi	gh_Hop_2480	
Aglient Spectrum Analyzer S RL RF 50 Center Freq 2.5100	Q AC SENSE:INT SOU	RCE OFF ALIGNAUTO 07:39:40 PM Aug 26, 2024 #Avg Type: RMS TRACE 2284 400 Avg Highda 100/100 TVPE	Frequency
Ref Offset	PNO: Fast This: Free Run IFGain:Low #Atten: 30 dB	Mkr4 2.493 04 GHz	Auto Tune
	dBm	-45.956 dBm	Center Freq
0.00 1 -100 100 100 100			2.51000000 GHz
30.0	2 4 . 2	-25.40 dbs	Start Freq 2.47000000 GHz
-40.0 -40.0 -60.0	2 Antrophynetical Alfrediction and a start	นอาณารายสามารถสารเป็นของเป็นสารเป็นสารเป็นสารเป็นสารเป็นสารเป็นสารเป็นสารเป็นสารเป็นสารเป็นสารเป็นสารเป็นสารเป	Stop Freq 2.55000000 GHz
70.0 Start 2.47000 GHz		Stop 2.55000 GHz	CF Step
#Res BW 100 kHz	#VBW 300 kHz	Sweep 7.667 ms (1001 pts)	8.000000 MHz <u>Auto</u> Man
2 N 1 F 3 N 1 F 4 N 1 F 5	2.470 96 GHz -6.396 dBm 2.483 50 GHz -49.799 dBm 2.500 00 GHz -50.095 dBm 2.493 04 GHz -45.956 dBm		Freq Offset 0 Hz
6 7 8 9			
MSG		STATUS	

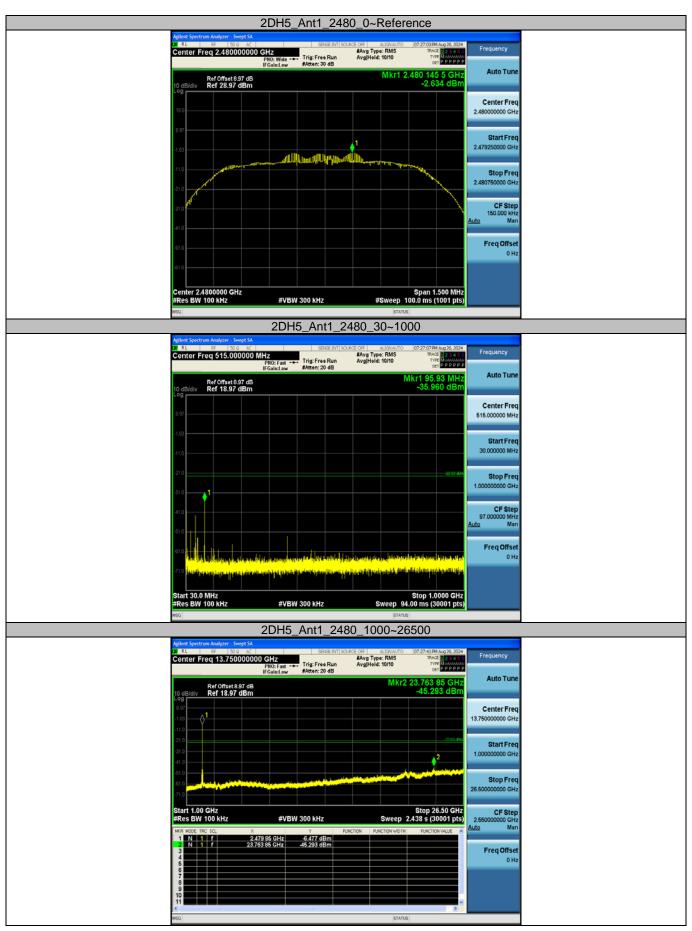

Appendix G: Conducted Spurious Emission

Test Graphs

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com







----End of Report----