

FCC SAR EVALUATION REPORT

In accordance with the requirements of FCC 47 CFR Part 2(2.1093) and IEEE Std 1528-2013

Product Name:	Holding a walkie-talkie
Model No.:	GU1
Serial Model:	N/A
Brand Name:	Gaswei
Report No.:	AiTSZ-241127194FW2
FCC ID:	2BAS7-GU1

Prepared for

Xiaowei Communication Technology (Shenzhen) Co., Ltd.

Room 1312, Building 1, Wanjunhui Business Apartment, Xixiang, Baoan, Shenzhen, China

Prepared by

Guangdong Asia Hongke Test Technology Limited

B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China Tel.: +86 0755-230967639 Fax.: +86 0755-230967639

TEST RESULT CERTIFICATION

Applicant's name:	: Xiaowei Communication Technology (Shenzhen) Co., Ltd.	
Address:	Room 1312, Building 1, Wanjunhui Business Apartment, Xixiang,	
Address	Baoan, Shenzhen, China	
Manufacturer's Name:	Xiaowei Communication Technology (Shenzhen) Co., Ltd.	
Address	Room 1312, Building 1, Wanjunhui Business Apartment, Xixiang,	
Address	Baoan, Shenzhen, China	
Product description		
Product name:	Holding a walkie-talkie	
Trademark	Gaswei	
Model and/or type reference:	GU1	
Serial Model	N/A	
	FCC 47 CFR Part 2(2.1093)	
Standards	IEEE Std 1528-2013	
	Published RF exposure KDB procedures	

This device described above has been tested by Guangdong Asia Hongke Test Technology Limited. In accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 and KDB 865664 D01. Testing has shown that this device is capable of compliance with localized specific absorption rate (SAR) specified in FCC 47 CFR Part 2(2.1093). The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

This report shall not be reproduced except in full, without the written approval of Guangdong Asia Hongke Test Technology Limited, this document may be altered or revised by Guangdong Asia Hongke Test Technology Limited, personal only, and shall be noted in the revision of the document.

Date of Test

Test Result	Pass
Date of Issue	Dec. 20, 2024
Date (s) of performance of tests:	Dec. 18, 2024

Reviewed by:

Approved by: _

Seal-Chen

Seal.chen

※ ※ Revision History ※ ※

REV.	DESCRIPTION	ISSUED DATE	REMARK
Rev.1.0	Initial Test Report Release	Dec. 20, 2024	Seal.chen

TABLE OF CONTENTS

1.	Genera	I Information	5
	1.1.	RF exposure limits	5
	1.2.	Statement of Compliance	6
	1.3.	EUT Description	7
	1.4.	Test specification(s)	8
	1.5.	Ambient Condition	8
	1.6.	Test Facility	8
2.	SAR Me	easurement System	9
	2.1.	SATIMO SAR Measurement Set-up Diagram	9
	2.2.	Robot	10
	2.3.	Probe	11
	2.3	.1. E-Field Probe Calibration	11
	2.4.	Phantoms	12
	2.5.	Technical Data	13
	2.6.	Device Holder	14
	2.7.	Test Equipment List	15
3.	SAR Me	easurement Procedures	17
	3.1.	Power Reference	17
	3.2.	Area scan & Zoom scan	17
	3.3.	Description of interpolation/extrapolation scheme	19
	3.4.	Volumetric Scan	19
	3.5.	Power Drift	.19
4.	System	Verification Procedure	20
	4.1.	Tissue Verification	20
	4.1.	1. Tissue Dielectric Parameter Check Results	21
		System Verification Procedure	
	4.2.	1. System Verification Results	23
5.	SAR me	asurement variabilit	24
6.	SAR Me	easurement Uncertainty	25
7.	RF Expo	osure Positions	26
	7.1.	Generic device	26
8.	RF Outp	out Power	27
	8.1.	Walkie Talkie Output Power	27
9.	Antenn	a Location	28
10	SAR N	Aeasurement Results	29
Ар	pendix A	. Photo documentation	30
Ар	pendix B	. System Check Plots	31
Ар	pendix C	. SAR Test Plots	34
Ар	pendix D). Calibration Certificate	39

1. General Information

1.1. RF exposure limits

(A).Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B).Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: *Whole-Body SAR* is averaged over the entire body, *partial-body SAR* is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. *SAR for hands, wrists, feet and ankles* is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE
TRUNK LIMIT
1.6 W/kg
APPLIED TO THIS EUT

1.2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing as follows.

	Max SAR Value	Reported(W/kg)	
Band	1-g Front of face (Separation distance of 25mm)	1-g Body worn (Separation distance of 0mm)	
Walkie Talkie	0.060	0.219	
NOTE:This device is in	compliance with Specific Absor	rption Rate (SAR) for general	

population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2(2.1093), and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013 & KDB 865664 D01.

1.3. EUT Description

Device Information		
Product Name	Holding a walkie-talkie	
Model Name	GU1	
Family Model	N/A	
Device Phase	Identical Prototype	
Exposure Category	General population / Uncontrolled environment	
Antenna Type	Integral antenna	
Power Rating:	Input: DC 5V/1A DC 3.7V 1800mAh Rechargeable Li-ion battery	
Hardware version	N/A	
Software version	N/A	
Device Operating Configurations		
Supporting Mode(s)	GMRS	
Test Modulation	FM	
Channel Separation	12.5KHz	
	462.5625MHz~462.7125MHz(2W)	
Operating Frequency Range(s)	462.5500MHz~462.7250MHz(2W)	
	467.5625MHz~467.7125MHz(0.5W)	

Frequency list

i requeriej net		1	
Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	462.5625	12	467.6625
2	462.5875	13	467.6875
3	462.6125	14	467.7125
4	462.6375	15	462.5500
5	462.6625	16	462.5750
6	462.6875	17	462.6000
7	462.7125	18	462.6250
8	467.5625	19	462.6500
9	467.5875	20	462.6750
10	467.6125	21	462.7000
11	467.6375	22	462.7250

1.4. Test specification(s)

FCC 47 CFR Part 2(2.1093)
IEEE Std 1528-2013
KDB 865664 D01 SAR measurement 100 MHz to 6 GHz
KDB 865664 D02 RF Exposure Reporting
KDB 447498 D01 General RF Exposure Guidance
KDB648474 D04 Handset SAR v01r03
KDB643646 D01 SAR Test for PTT Radios v01r03

1.5. Ambient Condition

Ambient temperature	20°C – 24°C
Relative Humidity	30% – 70%

1.6. Test Facility

Test Laboratory:

Guangdong Asia Hongke Test Technology Limited B1/F, Building 11, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

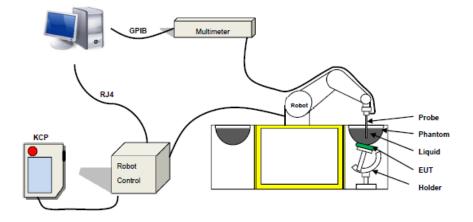
The test facility is recognized, certified or accredited by the following organizations:

FCC-Registration No.: 251906 Designation Number: CN1376

Guangdong Asia Hongke Test Technology Limited has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC — Registration No.: 31737 CAB identifier: CN0165

The 3m Semi-anechoic chamber of Guangdong Asia Hongke Test Technology Limited has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 31737


A2LA-Lab Cert. No.: 7133.01

Guangdong Asia Hongke Test Technology Limited has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

2. SAR Measurement System

2.1. SATIMO SAR Measurement Set-up Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO. The system is based on a high precision robot (working range: 901 mm), which positions the probes with a positional repeatability of better than ± 0.03 mm. The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

The first step of the field measurement is the evaluation of the voltages induced on the probe by the device under test. Probe diode detectors are nonlinear. Below the diode compression point, the output voltage is proportional to the square of the applied E-field; above the diode compression point, it is linear to the applied E-field. The compression point depends on the diode, and a calibration procedure is necessary for each sensor of the probe.

The Keithley multimeter reads the voltage of each sensor and send these three values to the PC. The corresponding E field value is calculated using the probe calibration factors, which are stored in the working directory. This evaluation includes linearization of the diode characteristics. The field calculation is done separately for each sensor. Each component of the E field is displayed on the "Dipole Area Scan Interface" and the total E field is displayed on the "3D Interface"

2.2. Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.03 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

2.3. Probe

This E-field detection probe is composed of three orthogonal dipoles linked to special Schottky diodes with low detection thresholds. The probe allows the measurement of electric fields in liquids such as the one defined in the IEEE and CENELEC standards.

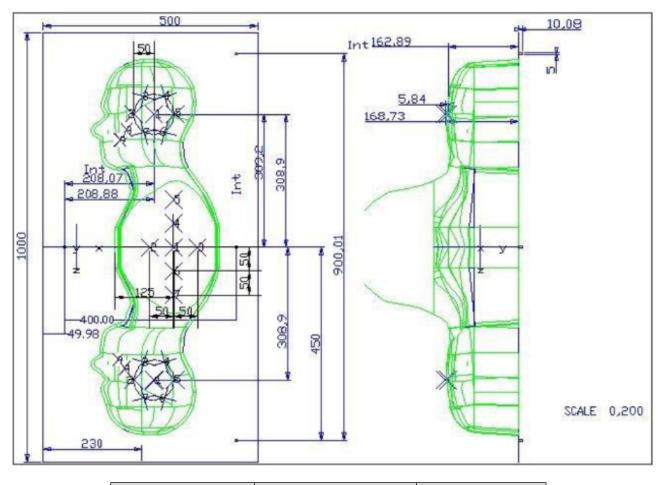
For the measurements the Specific Dosimetric E-Field Probe SN 25/22 EPGO376 with following specifications is used.

- Probe Length: 330 mm
- Length of Individual Dipoles: 2 mm
- Maximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 150 MHz to 6 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

2.3.1. E-Field Probe Calibration

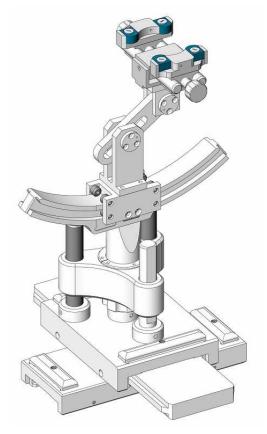
Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (Norm X, Norm Y, and Norm Z), the diode compression parameter (DCP) and the conversion factor (Conv F) of the probe are tested. The calibration data can be referred to appendix D of this report.

2.4. Phantoms


For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

SAM

2.5. Technical Data



Left	Head(mm)	Righ	t Head(mm)	Flat	Part(mm)
2	2.02	2	2.08	1	2.09
3	2.05	3	2.06	2	2.06
4	2.07	4	2.07	3	2.08
5	2.08	5	2.08	4	2.10
6	2.05	6	2.07	5	2.10
7	2.05	7	2.05	6	2.07
8	2.07	8	2.06	7	2.07
9	2.08	9	2.06	-	-

The test, based on ultrasonic system, allows measuring the thickness with an accuracy of 10 µm.

2.6. Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

2.7. Test Equipment List

This table gives a complete overview of the SAR measurement equipment.

Devices used during the test described are marked \boxtimes

	Manufacturer	Name of	Ture/Medel	Carial Number	Calib	ration
	Manufacturer	Equipment	Type/Model	Serial Number	Last Cal.	Due Date
	MVG	E FIELD PROBE	SSE2	SN 25/22 EPGO376	Jun. 22,	Jun. 21,
	WIVG			3N 23/22 LF 90370	2024	2025
	MVG	450 MHz Dipole	SID450	SN 38/18 DIP 0G450-	Sep. 22,	Sep. 21,
			010430	465	2024	2027
	MVG	750 MHz Dipole	SID750	SN 03/15 DIP 0G750-	Feb. 21,	Feb. 20,
				355	2024	2027
	MVG	835 MHz Dipole	SID835	SN 03/15 DIP 0G835-	Feb. 21,	Feb. 20,
				347	2024	2027
	MVG	900 MHz Dipole	SID900	SN 03/15 DI P 0G900-	Feb. 21,	Feb. 20,
			010000	348	2024	2027
	MVG	1800 MHz Dipole	SID1800	SN 03/15 DIP 1G800-	Feb. 21,	Feb. 20,
				349	2024	2027
	MVG	1900 MHz Dipole	SID1900	SN 03/15 DIP 1G900-	Feb. 21,	Feb. 20,
				350	2024	2027
] MVG 2000 Mł	2000 MHz Dipole	SID2000	SN 03/15 DIP 2G000-	Feb. 21,	Feb. 20,
			0102000	351	2024	2027
	MVG	2300 MHz Dipole	SID2300	SN 03/16 DIP 2G300-	Feb. 21,	Feb. 20,
				358	2024	2027
	MVG	2450 MHz Dipole	SID2450	SN 03/15 DIP 2G450-	Feb. 21,	Feb. 20,
				352	2024	2027
	MVG	2600 MHz Dipole	SID2600	SN 03/15 DIP 2G600-	Feb. 21,	Feb. 20,
			CIDZ000	356	2024	2027
	MVG	5000 MHz Dipole	SWG5500	SN 13/14 WGA 33	Feb. 21,	Feb. 20,
					2024	2027
\boxtimes	MVG	Liquid	SCLMP	SN 21/15 OCPG 72	Jul. 01,	Jun. 30,
		measurement Kit		3N 21/13 OCFG 72	2024	2025
\square	MVG	Power Amplifier	N.A	AMPLISAR_28/14_003	NCR	NCR
\boxtimes	KEITHLEY	Millivoltmeter	2000	4070700	Jul. 01,	Jun. 30,
			2000	4072790	2024	2025
		Universal radio				
	R&S	communication	CMU200	117858	Jul. 01,	Jun. 30,
	tester				2024	2025
		Wideband radio				
	R&S	communication	CMW500	116581	Jul. 01,	Jun. 30,
		tester			2024	2025

 Page 16 of 61
 Report No.: AiTSZ-241127194FW2

	HP	Network Analyzer	8753D	3410J01136	Jul. 01, 2024	Jun. 30, 2025
	Agilent	PSG Analog Signal Generator	E8257D	MY51110112	Jul. 01, 2024	Jun. 30, 2025
	Agilent	Power meter	E4419B	MY45102538	Jul. 01, 2024	Jun. 30, 2025
	Agilent	Power sensor	E9301A	MY41495644	Jul. 01, 2024	Jun. 30, 2025
	Agilent	Power sensor	Power sensor E9301A US3921214		Jul. 01, 2024	Jun. 30, 2025
	MCLI/USA	Directional Coupler	CB11-20	0D2L51502	Jul. 17, 2024	Jul. 16, 2027
\square	MVG	SAR Phantom	SSM2	SN 24/11 SAM87	NCR	NCR
\square	MVG	Device Holder	SMPPD	SN 24/11 MSH73	NCR	NCR

3. SAR Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

(b) Read the WWAN RF power level from the base station simulator.

(c) For Wi-Fi/BT power measurement, use engineering software to configure EUT Wi-Fi/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band.

(d) Connect EUT RF port through RF cable to the power meter, and measure Wi-Fi/BT output power.

<SAR measurement>

(a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT Wi-Fi/BT continuously transmission, at maximum RF power, in the highest power channel.

(b) Place the EUT in the positions as Appendix A demonstrates.

(c) Set scan area, grid size and other setting on the OPENSAR software.

(d) Measure SAR results for the highest power channel on each testing position.

(e) Find out the largest SAR result on these testing positions of each band.

(f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

(a) Power reference measurement

(b) Area scan

(c) Zoom scan

(d) Power drift measurement

3.1. Power Reference

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

3.2. Area scan & Zoom scan

The area scan is a 2D scan to find the hot spot location on the DUT. The zoom scan is a 3D scan

above the hot spot to calculate the 1g and 10g SAR value.

Measurement of the SAR distribution with a grid of 8 to 16 mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. Around this point, a cube of 30 * 30 *30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that will not be within the zoom scan of other peaks; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR compliance limit (e.g., 1 W/kg for 1,6 W/kg 1 g limit, or 1,26 W/kg for 2 W/kg, 10 g limit).

Area scan & Zoom scan scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz		
Maximum distance fro (geometric center of pr			$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle surface normal at the n			$30^{\circ} \pm 1^{\circ}$	$20^\circ\pm1^\circ$		
			\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan sp	atial resolu	ition: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d measurement point on the test	on, is smaller than the above, must be \leq the corresponding levice with at least one		
Maximum zoom scan s	spatial reso	lution: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz} \le 4 \text{ mm}^*$		
	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	$\leq 4 \text{ mm}$	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z		\geq 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ $5 - 6 \text{ GHz}: \ge 22 \text{ mm}$		

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

3.3. Description of interpolation/extrapolation scheme

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimise measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1 mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10 grams and 1 gram requires a very fine resolution in the three dimensional scanned data array.

3.4. Volumetric Scan

The volumetric scan consists to a full 3D scan over a specific area. This 3D scan is useful form multi Tx SAR measurement. Indeed, it is possible with OpenSAR to add, point by point, several volumetric scan to calculate the SAR value of the combined measurement as it is define in the standard IEEE1528 and IEC62209.

3.5. Power Drift

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In OpenSAR measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in V/m. If the power drifts more than $\pm 5\%$, the SAR will be retested.

4. System Verification Procedure

4.1. Tissue Verification

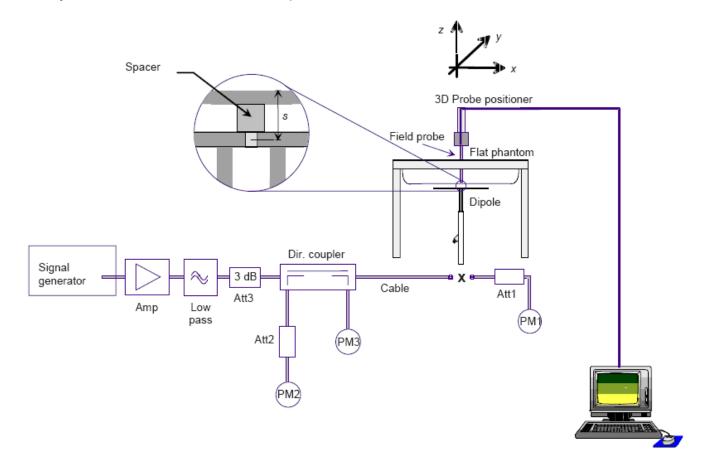
The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients (% of weight)	lients (% of weight) Head Tissue									
Frequency Band (MHz)	750	835	900	1800	1900	2000	2450	2600	5200	5800
Water	34.40	34.40	34.40	55.36	55.36	57.87	57.87	57.87	65.53	65.53
NaCl	0.79	0.79	0.79	0.35	0.35	0.16	0.16	0.16	0.00	0.00
1,2-Propanediol	64.81	64.81	64.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Triton X-100	0.00	0.00	0.00	30.45	30.45	19.97	19.97	19.97	24.24	24.24
DGBE	0.00	0.00	0.00	13.84	13.84	22.00	22.00	22.00	10.23	10.23

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid depth from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm.

4.1.1. Tissue Dielectric Parameter Check Results

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within $\pm 5\%$ of the target values.


— :	Measured	Target T	Target Tissue				
Tissue Type	Frequency (MHz)	εr (±5%)	σ (S/m) (±5%)	εr	σ (S/m)	Liquid Temp.	Test Date
Head	450	43.50	0.87	44.56	0.85	21.5 °C	Dec. 18, 2024
450	430	(41.33~45.68)	(0.83~0.91)	44.50	0.00	21.5 0	Dec. 10, 2024

NOTE: The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.

4.2. System Verification Procedure

The system verification is performed for verifying the accuracy of the complete measurement system and performance of the software. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 100mW (below 5GHz) or 100mW (above 5GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system verification to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system verification to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot). The system verification is shown as below picture:

4.2.1. System Verification Results

Comparing to the original SAR value provided by SATIMO, the verification data should be within its specification of $\pm 10\%$. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance verification can meet the variation criterion and the plots can be referred to Appendix B of this report.

	Target SA	AR (1W)	Measure	ed SAR			
System	(±10	(Normalize	ed to 1W)	Liquid	T (D (
Verification	1 m (10///Cm)		1-g	10-g	Temp.	Test Date	
	1-g (W/Kg)	10-g (W/Kg)	(W/Kg)	(W/Kg)			
450041-	4.70	3.01	E 40	0.00	04 5 80	D 10.0001	
450MHz	(4.23~5.17)	(2.71~3.31)	5.16	3.28	21.5 °C	Dec. 18, 2024	

5. SAR measurement variabilit

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

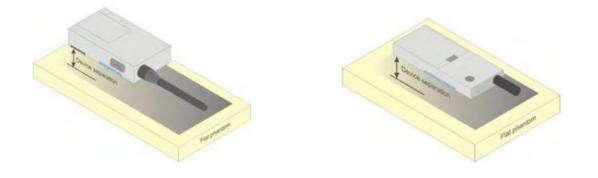
2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

6. SAR Measurement Uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.


7. RF Exposure Positions

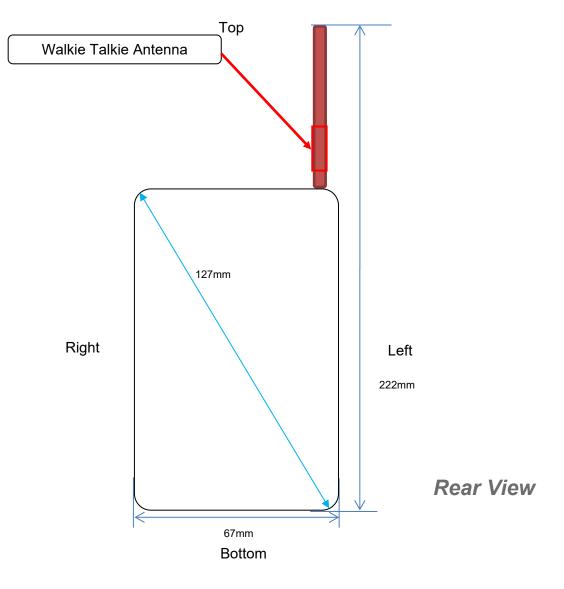
7.1. Generic device

The measurement procedures are as follows:

Front -of-face device

A typical example of a front-of-face device is a two-way radio that is held at a distance from the face of the user when transmitting. In these cases the device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions (Figure 7.1). If the intended use is not specified, a separation distance of 25 mm between the phantom surface and the device shall be used.

(Figure 7.1) Two-way radios


8. RF Output Power

8.1. Walkie Talkie Output Power

Frequency (MHz)	ERP(dBm)	Tune-Up	Polanrization		
462.6375	32.56	33.00	V		
462.6500	32.47	33.00	V		
467.6375	26.85	27.00	V		

9. Antenna Location

Antenna information:

WWAN Main Antenna	TX/RX

Note:

1). Per KDB648474 D04, because the overall diagonal distance of this devices is 127mm<160mm, it is considered as "Front-of-face " device.

2). Per KDB648474 D04, 10-g extremity SAR is not required when Body-Worn mode 1-g reported SAR < 1.2 W/kg.

10. SAR Measurement Results

< Walkie Talkie / 100% Duty Cycle >

Test Position	Test Freq.	Test Mode	Separation distance (mm)		Value /kg) 10g	Power Drift (±5%)	Conducted power (dBm)	Tune-up power (dBm)	Scaled SAR 1g (W/Kg)	Date	Plot
	Front of face										
Body	462.6375	FM	25	0.107	0.070	3.20	32.56	33.00	0.118	2024/12/18	1#
	Body worn										
Body	462.6375	FM	0	0.395	0.245	1.02	32.56	33.00	0.437	2024/12/18	2#

< Walkie Talkie / 50% Duty Cycle >

Test	Test	Test	Separation distance		Value /kg)	Power Drift	Conducted power	Tune-up power	Scaled SAR	Date	Plot
Position	Freq.	Mode	(mm)	1g	10g	(±5%)	(dBm)	(dBm)	1g (W/Kg)	Date	FIOL
	Front of face										
Body	462.6375	FM	25	0.054	0.035	3.20	32.56	33.00	0.060	2024/12/18	1#
	Body worn										
Body	462.6375	FM	0	0.198	0.123	1.02	32.56	33.00	0.219	2024/12/18	2#

Appendix A. Photo documentation

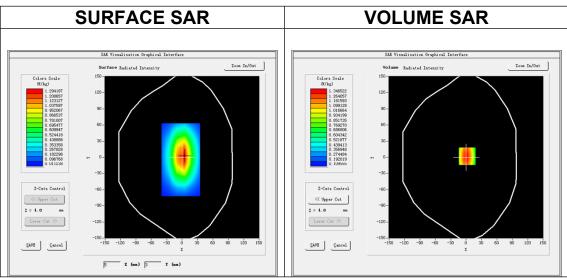
Refer to appendix Test Setup photo---SAR

Appendix B. System Check Plots

Table of contents

MEASUREMENT 1 System Performance Check - 450MHz

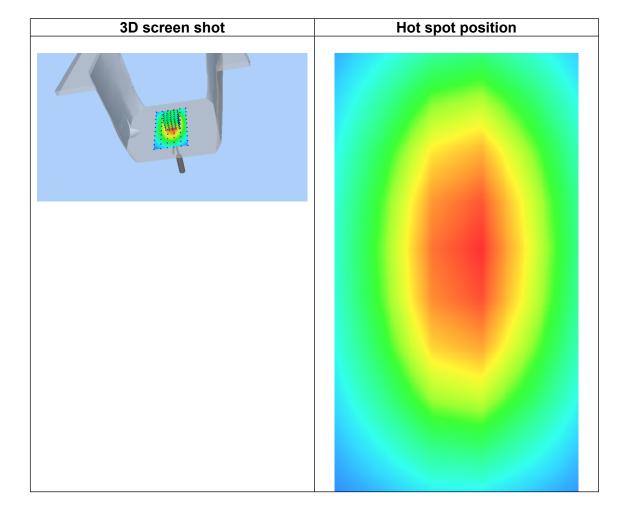
MEASUREMENT 1


Date of measurement: 18/12/2024

A. Experimental conditions.

<u>Area Scan</u>	<u>dx=15mm dy=15mm, h= 5.00 mm</u>	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm	
Phantom	Validation plane	
Device Position	Dipole	
Band	<u>CW450</u>	
Channels	Middle	
<u>Signal</u>	CW (Crest factor: 1.0)	
<u>ConvF</u>	<u>1.74</u>	

B. SAR Measurement Results


Frequency (MHz)	450.000000	
Relative permittivity (real part)	44.562010	
Relative permittivity (imaginary part)	34.102740	
Conductivity (S/m)	0.852569	
Variation (%)	0.210000	

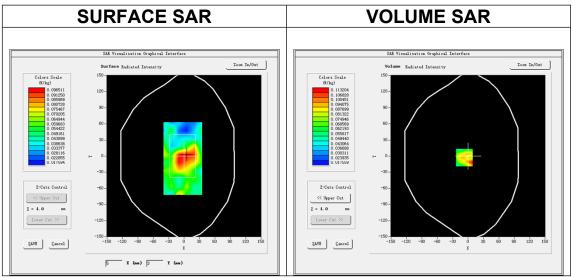
Maximum location: X=2.00, Y=2.00 SAR Peak: 1.87 W/kg

SAR 10g (W/Kg)	0.328031	
SAR 1g (W/Kg)	0.516125	

Appendix C. SAR Test Plots

Table of contents
MEASUREMENT 1 Walkie Talkie Front of face
MEASUREMENT 2 Walkie Talkie Body worn

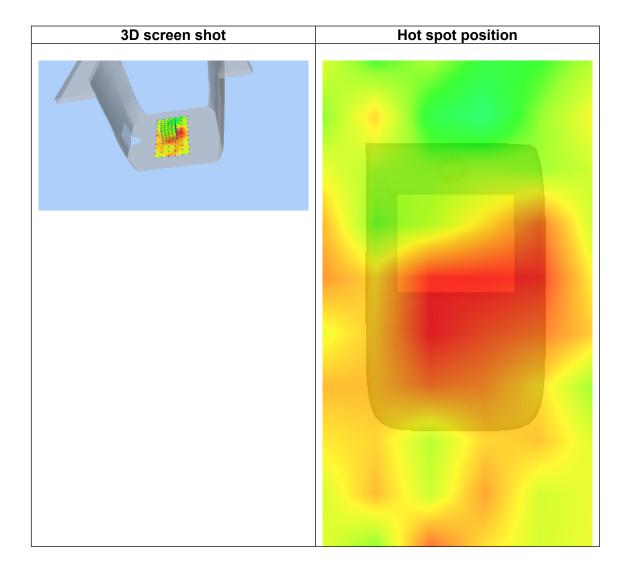
MEASUREMENT 1


Date of measurement: 18/12/2024

A. Experimental conditions.

Area Scan	<u>dx=15mm dy=15mm, h= 5.00 mm</u>	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm	
Phantom	Validation plane	
Device Position	Body	
Band	Walkie Talkie	
Channels	Middle	
Signal	(Crest factor: 1.0)	
<u>ConvF</u>	<u>1.74</u>	

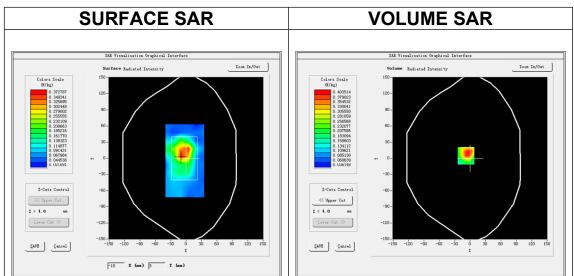
B. SAR Measurement Results


Frequency (MHz)	462.637500	
Relative permittivity (real part)	44.900000	
Relative permittivity (imaginary part)	32.800000	
Conductivity (S/m)	0.843028	
Variation (%)	3.200000	

Maximum location: X=-7.00, Y=-3.00 SAR Peak: 0.21 W/kg

SAR 10g (W/Kg)	0.070255		
SAR 1g (W/Kg)	0.106770		

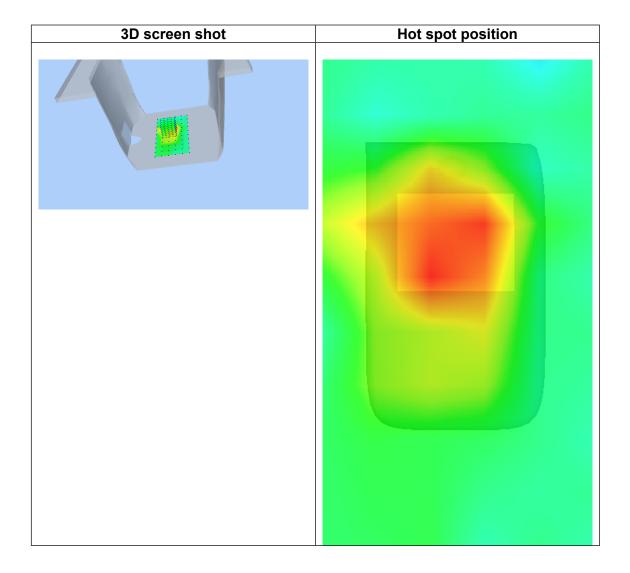
MEASUREMENT 2


Date of measurement: 18/12/2024

A. Experimental conditions.

Area Scan	dx=15mm dy=15mm, h= 5.00 mm	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm	
Phantom Phantom	Validation plane	
Device Position	Body	
Band	Walkie Talkie	
<u>Channels</u>	Middle	
<u>Signal</u>	(Crest factor: 1.0)	
<u>ConvF</u>	1.74	

B. SAR Measurement Results


Frequency (MHz)	462.637500	
Relative permittivity (real part)	44.900000	
Relative permittivity (imaginary part)	32.800000	
Conductivity (S/m)	0.843028	
Variation (%)	1.020000	

Maximum location: X=-8.00, Y=5.00 SAR Peak: 0.58 W/kg

SAR 10g (W/Kg)	0.245347		
SAR 1g (W/Kg)	0.394981		

Appendix D. Calibration Certificate

Table of contents
E Field Probe - SN 25/22 EPGO376
450 MHz Dipole - SN 38/18 DIP 0G450-465

Page: 1/11

Ref: ACR.180.4.42.BES.A

	Name	Function	Date	Signature
Prepared by :	Jérôme Le Gall	Measurement Responsible	6/22/2024	T
Checked & approved by:	Jérôme Luc	Technical Manager	6/22/2024	JS
Authorized by:	Yann Toutain	Laboratory Director	6/22/2024	Jann TOUTAAN

	Customer Name
Distribution :	Shenzhen
	Asia Hongke

Issue	Name	Date	Modifications
A	Jérôme Le Gall	6/22/2024	Initial release
	8		3.

Page: 2/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOS.AR Probe vK This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.180.4 42.BES.A

TABLE OF CONTENTS

1 De	vice Under Test4	
2 Pr	duct Description4	
2.1	General Information	4
3 M	easurement Method	
3.1	Linearity	4
3.2	Sensitivity	4
3.3	Lower Detection Limit	5
3.4	Isotropy	5
3.1	Boundary Effect	5
4 M	easurement Uncertainty	
5 Ca	libration Measurement Results	
5.1	Sensitivity in air	6
5.2	Linearity	7
5.3	Sensitivity in liquid	8
5.4	Isotropy	9
6 Li	t of Equipment10	

Page: 3/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.180.4.42.BES.A

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE2	
Serial Number	SN 25/22 EPGO376	
Product Condition (new / used)	New	
Frequency Range of Probe	0.15 GHz-6GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.193 MΩ	
	Dipole 2: R2=0.188 MΩ	
	Dipole 3: R3=0.198 MΩ	

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

Page: 4/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MFG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MFG.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{be} + d_{step}$ along lines that are approximately normal to the surface:

SAR uncertainty
$$[\%] = \delta SAR_{be} \frac{(d_{be} + d_{step})^2}{2d_{step}} \frac{(e^{-d_{be}(\delta \beta)})}{\delta/2}$$
 for $(d_{be} + d_{step}) < 10 \text{ mm}$

where

where	The second se
SARuncertainty	is the uncertainty in percent of the probe boundary effect
dbe	is the distance between the surface and the closest zoom-scan measurement
	point, in millimetre
Astep	is the separation distance between the first and second measurement points that
	are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible
8	is the minimum penetration depth in millimetres of the head tissue-equivalent
	liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;
ASAR be	in percent of SAR is the deviation between the measured SAR value, at the
	distance dbe from the boundary, and the analytical SAR value.

The measured worst case boundary effect SAR uncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.