

FCC PART 15 SUBPART C TEST REPORT							
FCC PART 15 SUBPART E 15.407							
Report Reference No: FCC ID	MTEB24080008-R2 2AHCR-C316W						
Compiled by (position+printed name+signature):	File administrators Alisa Luo	Alisa Luo					
Supervised by (position+printed name+signature):	Test Engineer Sunny Deng	Alisa Luo Sunny Deng					
Approved by (position+printed name+signature):	Manager Yvette Zhou	Vietter					
Date of issue:	Aug. 02,2024						
Representative Laboratory Name. :	Shenzhen Most Technology Se	rvice Co., Ltd.					
Address:	No.5, 2nd Langshan Road, North Nanshan, Shenzhen, Guangdong						
Applicant's name:	AKUVOX (XIAMEN) NETWORKS CO., LTD.						
Address:	10/F, No.56 Guanri Road,Softw China	are Park II , Xiamen 361009,					
Test specification:							
Standard	FCC Part 15 Subpart E 15.407						
Shenzhen Most Technology Service	· · ·						
This publication may be reproduced in Shenzhen Most Technology Service C material. Shenzhen Most Technology S liability for damages resulting from the placement and context.	o., Ltd. is acknowledged as copyrig Service Co., Ltd. takes no responsi	bility for and source of the					
Test item description:	Indoor Monitor						
Trade Mark:	Akuvox						
Model/Type reference:	C316W						
Listed Models	N/A						
Ratings	DC 12V±10%						
	POE power supply(48V)						
Modulation	OFDM						
Frequency	From 5745MHz-5825MHz						
Hardware version	V0.95						
Software version:	V316.30.12.113						
Result:	PASS						

TEST REPORT

Equipment under Test	:	Indoor Monitor
Model /Type	:	C316W
Listed Models	:	N/A
Remark		N/A
Applicant	:	AKUVOX (XIAMEN) NETWORKS CO., LTD.
Address	:	10/F, No.56 Guanri Road, Software Park II, Xiamen 361009, China
Manufacturer	:	AKUVOX (XIAMEN) NETWORKS CO., LTD.
Address	:	10/F, No.56 Guanri Road, Software Park II,Xiamen 361009, China

Test Result: PASS

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

	4
2 TEST STANDARDS	5
3 SUMMARY	6
3.1 General Remarks	
3.2 Product Description	6
3.3 Equipment Under Test	
3.4 Short description of the Equipment under Test (EUT)	
3.5 EUT operation mode	7
3.6 Block Diagram of Test Setup	7
3.1 Test Item (Equipment Under Test) Description	7
3.2 Auxiliary Equipment (AE) Description	7
3.3 Antenna Information	7
3.4 Related Submittal(s) / Grant (s)	8
3.5 EUT configuration	8
3.6 Modifications	8
4 TEST ENVIRONMENT	•
4 IESI ENVIRUNMENI	Э
4.1 Address of the test laboratory	9
4.2 Test Facility	
4.3 Environmental conditions	9
4.4 Test Description	
4.5 Statement of the measurement uncertainty	
4.6 Equipments Used during the Test	
5 TEST CONDITIONS AND RESULTS	12
5.1 AC Power Conducted Emission	12
5.1 AC Power Conducted Emission 5.2 Radiated Emissions	12
 5.1 AC Power Conducted Emission 5.2 Radiated Emissions 5.3 Conduction spurious emission 	12 13 20
 5.1 AC Power Conducted Emission 5.2 Radiated Emissions 5.3 Conduction spurious emission 5.4 Maximum Conducted Average Output Power 	
 5.1 AC Power Conducted Emission 5.2 Radiated Emissions 5.3 Conduction spurious emission 5.4 Maximum Conducted Average Output Power 5.5 Power Spectral Density 	
 5.1 AC Power Conducted Emission 5.2 Radiated Emissions 5.3 Conduction spurious emission 5.4 Maximum Conducted Average Output Power 5.5 Power Spectral Density 5.6 Emission Bandwidth (26dBm Bandwidth) 	
 5.1 AC Power Conducted Emission 5.2 Radiated Emissions 5.3 Conduction spurious emission 5.4 Maximum Conducted Average Output Power 5.5 Power Spectral Density 5.6 Emission Bandwidth (26dBm Bandwidth) 5.7 Minimum Emission Bandwidth (6dBm Bandwidth) 	
 5.1 AC Power Conducted Emission 5.2 Radiated Emissions 5.3 Conduction spurious emission 5.4 Maximum Conducted Average Output Power 5.5 Power Spectral Density 5.6 Emission Bandwidth (26dBm Bandwidth) 5.7 Minimum Emission Bandwidth (6dBm Bandwidth) 5.8 Frequency Stability 	
 5.1 AC Power Conducted Emission 5.2 Radiated Emissions 5.3 Conduction spurious emission 5.4 Maximum Conducted Average Output Power 5.5 Power Spectral Density 5.6 Emission Bandwidth (26dBm Bandwidth) 5.7 Minimum Emission Bandwidth (6dBm Bandwidth) 5.8 Frequency Stability 	
 5.1 AC Power Conducted Emission 5.2 Radiated Emissions 5.3 Conduction spurious emission 5.4 Maximum Conducted Average Output Power 5.5 Power Spectral Density 5.6 Emission Bandwidth (26dBm Bandwidth) 5.7 Minimum Emission Bandwidth (6dBm Bandwidth) 	
 5.1 AC Power Conducted Emission	
 5.1 AC Power Conducted Emission 5.2 Radiated Emissions 5.3 Conduction spurious emission 5.4 Maximum Conducted Average Output Power 5.5 Power Spectral Density 5.6 Emission Bandwidth (26dBm Bandwidth) 5.7 Minimum Emission Bandwidth (6dBm Bandwidth) 5.8 Frequency Stability 5.9 Duty Cycle Information 	
 5.1 AC Power Conducted Emission	
 5.1 AC Power Conducted Emission	
 5.1 AC Power Conducted Emission	
 5.1 AC Power Conducted Emission	
 5.1 AC Power Conducted Emission 5.2 Radiated Emissions 5.3 Conduction spurious emission 5.4 Maximum Conducted Average Output Power 5.5 Power Spectral Density 5.6 Emission Bandwidth (26dBm Bandwidth) 5.7 Minimum Emission Bandwidth (6dBm Bandwidth) 5.8 Frequency Stability 5.9 Duty Cycle Information 6 TEST SETUP PHOTOS OF THE EUT 7 PHOTOS OF THE EUT APPENDIX I.Frequency Stability APPENDIX II.Duty Cycle APPENDIX III.Peak Power Spectral Density APPENDIX IV.Conducted Peak Output Power APPENDIX V.99% Bandwidth 	
 5.1 AC Power Conducted Emission	

1 <u>Revision History</u>

Revision	Issue Date	Revisions	Revised By
00	2024.08.02	Initial Issue	Alisa Luo

2 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules Part 15 Subpart E</u>—Unlicensed National Information Infrastructure Devices <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices <u>KDB789033 D02</u>: General UNII Test Procedures New Rules v01r02

3 <u>SUMMARY</u>

3.1 General Remarks

Date of receipt of test sample	:	2024.07.09
Testing commenced on	:	2024.07.10
Testing concluded on	:	2024.08.02

3.2 Product Description

Product Description:	Indoor Monitor							
Model:	C316W							
Power supply: DC 12V								
	POE power supply(48\	/)						
Testing sample ID:	MTYP05768							
WIFI								
	20MHz system	40MHz system	80MHz system	160MHz system				
Supported type:	802.11a 802.11n 802.11ac	802.11n 802.11ac	802.11ac	N/A				
Operation frequency:	5745MHz-5825MHz	5755MHz-5795MHz	5775MHz	N/A				
Modulation:	OFDM	OFDM OFDM OFDM N/A						
Antenna type:	FPC antenna							
Antenna gain:	3.6Bi							

3.3 Equipment Under Test

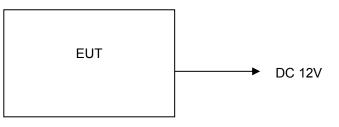
Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
			Other (specified in blank below))

DC 12V POE power supply(48V)

3.4 Short description of the Equipment under Test (EUT)

This is a Indoor Monitor For more details, refer to the user's manual of the EUT.


3.5 EUT operation mode

The Applicant provides communication tools software (AT command) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. All test performed at the low, middle and high of operational frequency range of each mode.

	20	MHz	40MHz		80MHz		
Operating band	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
	149	5745	151	5755	155	5775	
U-NII 3	153	5765	151 5/55	0/00	100	0110	
(5725MHz-	157	5785	450	5705			
5850MHz)	161	5805	159	5795			
	165	5825					

Note: The line display in grey is those Channels/Frequencies select to test in this report for each operation mode.

3.6 Block Diagram of Test Setup

3.1 Test Item (Equipment Under Test) Description

Short designation	EUT Name	EUT Description	Serial number	Hardware status	Software status
EUT A					
EUT B					
EUT C					

*: declared by the applicant. According to customers information EUTs A and B are the same devices.

3.2 Auxiliary Equipment (AE) Description

AE short designation	EUT Name (if available)	EUT Description	Serial number (if available)	Software (if used)
AE 1				
AE 2	-			

3.3 Antenna Information

Short designation	Antenna Name	Antenna Type	Frequency Range	Serial number	Antenna Peak Gain
Antenna 1		FPC antenna	5745MHz-5825MHz		3.6dBi
Antenna 2					

*: declared by the applicant.

3.4 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

3.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

 $\, \odot \,$ - supplied by the manufacturer

• - Supplied by the lab

Ο	ADAPTER 1	M/N:	1
		Manufacturer:	1

3.6 Modifications

No modifications were implemented to meet testing criteria.

4 <u>TEST ENVIRONMENT</u>

4.1 Address of the test laboratory

Shenzhen Most Technology Service Co., Ltd.

No.5, 2nd Langshan Road, North District, Hi-tech Industrial Park, Nanshan, Shenzhen, Guangdong, China.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

4.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 0031192610

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 6343.01

Shenzhen Most Technology Service Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

4.3 Environmental conditions

Radiated Emission:

Temperature:	23 ° C	
Humidity:	48 %	
Atmospheric pressure:	950-1050mbar	

AC Main Conducted testing:

Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	24 ° C	
Humidity:	45 %	
Atmospheric pressure:	950-1050mbar	

4.4 Test Description

FCC Requirement		
FCC Part 15.207	AC Power Conducted Emission	N/A
FCC Part 15.407(a)	Emission Bandwidth(26dBm Bandwidth)	N/A _{Note1}
FCC Part 15.407(e)	Minimum Emission Bandwidth(6dBm Bandwidth)	PASS _{Note2}
FCC Part 15.407(a)	Maximum Conducted Output Power	PASS
FCC Part 15.407(a)	Peak Power Spectral Density	PASS
FCC Part 15.407(g)	Frequency Stability	PASS
FCC Part 15.407(b)	Undesirable emission	PASS
FCC Part 15.407(b)/15.205/15.209	Radiated Emissions	PASS
FCC Part 15.407(h)	Dynamic Frequency Selection	N/A Note 3
FCC Part 15.203/15.247(b)Antenna RequirementPASS		PASS

Note 1: Apply to U-NII 1, U-NII 2A, and U-NII 2C band.

Note 2: Apply to U-NII 3 band only.

Note 3: This device not work in DFS band.

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate
Maximum Conducted Output Power	11a/OFDM	54 Mbps
Maximum Conducted Output Power Power Spectral Density Emission Bandwidth(26dBm Bandwidth) Minimum Emission Bandwidth(6dBm Bandwidth) Undesirable emission Frequency Stability	11n(20MHz) /11ac(20MHz)OFDM	MCS7
	11n(40MHz) /11ac(40MHz) /OFDM	MCS7
	11ac(80MHz) /OFDM	MCS9

4.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Most Technology Service Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

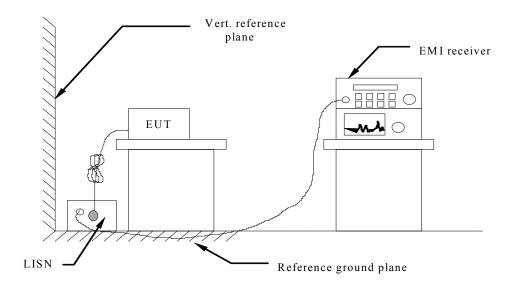
Hereafter the best measurement capability for Shenzhen Most Technology Service Co., Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)

Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)
26dB Bandwidth & 99%			
Bandwidth&6dB	/	5%	(1)
Bandwidth			
Maximum Conducted	1	0.80dB	(1)
Output Power	1	0.0000	(1)
Spurious RF Conducted	1	1.6dB	(1)
Emission		1.006	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

4.6 Equipments Used during the Test


Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N.	R&S	ENV216	100093	2024/03/15	1 Year
2	Three-phase artificial power network	Schwarzback Mess	NNLK8129	8129178	2024/03/15	1 Year
3.	Receiver	R&S	ESCI	100492	2024/03/15	1 Year
4	Receiver	R&S	ESPI	101202	2024/03/15	1 Year
5	Spectrum analyzer	Agilent	9020A	MT-E306	2024/03/15	1 Year
6	Bilong Antenna	Sunol Sciences	JB3	A121206	2023/08/15	1 Year
7	Horn antenna	HF Antenna	HF Antenna	MT-E158	2024/03/15	1 Year
8	Loop antenna	Beijing Daze	ZN30900B	/	2024/03/15	1 Year
9	Horn antenna	R&S	OBH100400	26999002	2024/03/15	1 Year
10	Wireless Communication Test Set	R&S	CMW500	/	2024/03/15	1 Year
11	Spectrum analyzer	R&S	FSP	100019	2024/03/15	1 Year
12	High gain antenna	Schwarzbeck	LB-180400KF	MT-E389	2024/03/15	1 Year
13	Preamplifier	Schwarzbeck	BBV 9743	MT-E390	2024/03/15	1 Year
14	Pre-amplifier	EMCI	EMC051845S E	MT-E391	2024/03/15	1 Year
15	Pre-amplifier	Agilent	83051A	MT-E392	2024/03/15	1 Year
16	High pass filter unit	Tonscend	JS0806-F	MT-E393	2024/03/15	1 Year
17	RF Cable(below1GHz)	Times	9kHz-1GHz	MT-E394	2024/03/15	1 Year
18	RF Cable(above 1GHz)	Times	1-40G	MT-E395	2024/03/15	1 Year
19	RF Cable (9KHz-40GHz)	Tonscend	170660	N/A	2024/03/15	1 Year
20	Power meter	R&S	NRVD	100444	2024/03/15	1 Year

Note: The Cal.Interval was one year.

5 TEST CONDITIONS AND RESULTS

5.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Eroquonov rango (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithm of the frequency.			

TEST RESULTS

5.2 Radiated Emissions

<u>Limit</u>

The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

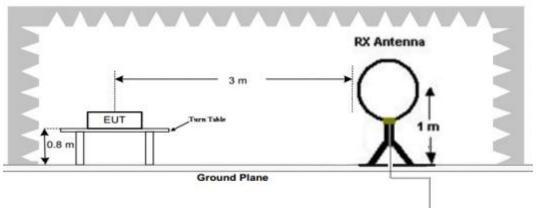
(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Requirement	Limit(EIRP)	Limit (Field strength at 3m) Note1		
15.407(b)(1)				
15.407(b)(2)	PK:-27(dBm/MHz)	$DK \cdot 69.2(dDu)/(m)$		
15.407(b)(3)		PK:68.2(dBµV/m)		
15.407(b)(4)				

Undesirable emission limits

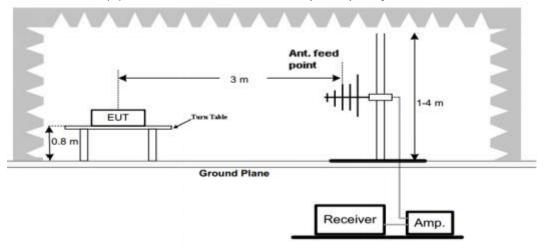
Note1: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \,\mu$$
V/m, where P is the eirp (Watts)

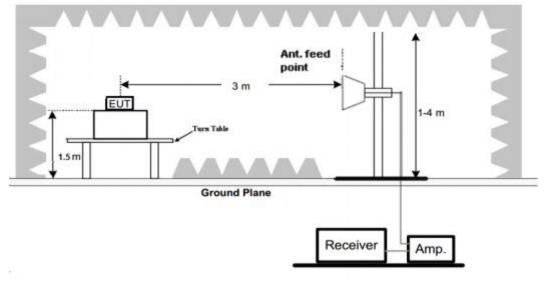

(5) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209(6)In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Radiated emission limits


TEST CONFIGURATION

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz



(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

Receiver

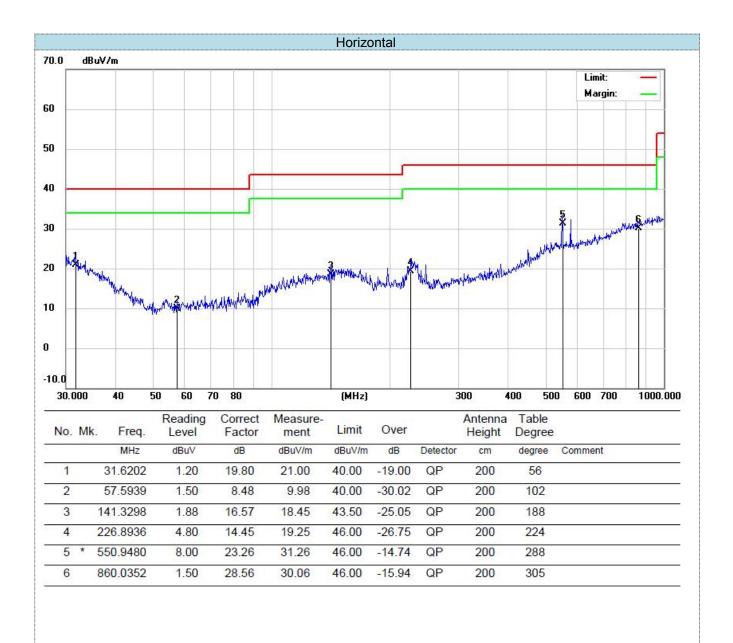
(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

Test Procedure

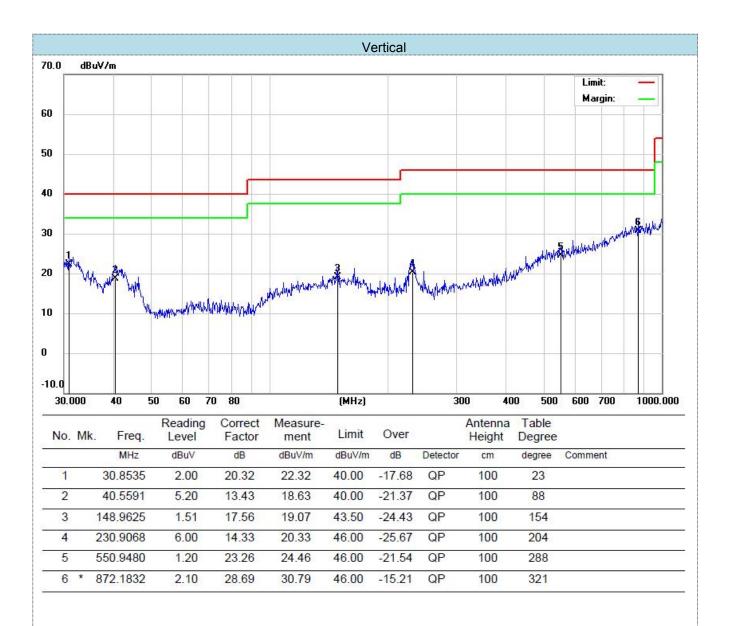
- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane, and above 1GHz measurement EUT was placed on a low permittivity and low loss tangent turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 40GHz.
- 6. The distance between test antenna and EUT as following table states:

e distance between test ante	ina ana Lor ao ionowing table ste	
Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:


 ing toot receiven op ootra	in as following table states:	
Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
	Average Value: RBW=1MHz/VBW=10Hz,	I Cak
	Sweep time=Auto	

TEST RESULTS


Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. All 802.11a, 802.11n(20), 802.11n(40), 802.11ac (20), 802.11ac (40), 802.11ac (80) modes have been tested for below 1GHz test, only the worst case 802.11a low channel of U-NII 1 band was recorded.
- 3. All 802.11a, 802.11n(20), 802.11n(40), 802.11ac (20), 802.11ac (40), 802.11ac (80) modes have been tested for above 1GHz test, only the worst case 802.11a was recorded.
- 4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 5. Remark: Result=Reading value+Factor

For 30MHz-1GHz

*:Maximum data x:Over limit !:over margin

*:Maximum data x:Over limit !:over margin

For 1GHz to 40GHz

Note: 802.11a, 802.11n(20), 802.11n(40), 802.11ac(20), 802.11ac(40), 802.11ac(80) modes have been tested for above 1GHz test, only the worst case 802.11a was recorded.

Polar (H/V)	Frequency	Meter Reading	Antenna Factor	Cable loss	Preamp factor	Emission Level	Limits	Margin	Detector Type
(1,,,,,)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type
		_	80	02.11a M	ode -5500N	ИНz			
V	5086	52.75	32.52	5.24	36.4	54.11	68.2	14.09	PK
V	5086	39.87	32.52	5.24	36.4	41.23	54	12.77	AV
Н	5086	49.1	32.52	5.24	36.4	50.46	68.2	17.74	PK
Н	5086	44.21	32.52	5.24	36.4	45.57	54	8.43	AV
V	11490	35.89	39.46	11.47	34.28	52.54	68.2	15.66	PK
V	11490	23.52	39.46	11.47	34.28	40.17	54	13.83	AV
Н	11490	34.27	39.46	11.47	34.28	50.92	68.2	17.28	PK
Н	11490	28.69	39.46	11.47	34.28	45.34	54	8.66	AV
			80	02.11a M	ode -5600N	ЛНz			
V	5086	51.5	32.52	5.24	36.4	52.86	68.2	15.34	PK
V	5086	40.51	32.52	5.24	36.4	41.87	54	12.13	AV
Н	5086	51.04	32.52	5.24	36.4	52.4	68.2	15.8	PK
Н	5086	44.17	32.52	5.24	36.4	45.53	54	8.47	AV
V	11570	35.82	39.46	11.47	34.28	52.47	68.2	15.73	PK
V	11570	25.75	39.46	11.47	34.28	42.4	54	11.6	AV
Н	11570	34.82	39.46	11.47	34.28	51.47	68.2	16.73	PK
Н	11570	27.83	39.46	11.47	34.28	44.48	54	9.52	AV
			80)2.11a <i>M</i>	ode -5700N	ЛНz			
V	5086	50.24	32.52	5.24	36.4	51.6	68.2	16.6	PK
V	5086	38.75	32.52	5.24	36.4	40.11	54	13.89	AV
Н	5086	50.52	32.52	5.24	36.4	51.88	68.2	16.32	PK
Н	5086	45.41	32.52	5.24	36.4	46.77	54	7.23	AV
V	11650	36.87	39.46	11.47	34.28	53.52	68.2	14.68	PK
V	11650	26.32	39.46	11.47	34.28	42.97	54	11.03	AV
Н	11650	35.11	39.46	11.47	34.28	51.76	68.2	16.44	PK
Н	11650	27.87	39.46	11.47	34.28	44.52	54	9.48	AV

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the other emission levels were very low against the limit.
- 5. RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Radiated Band Edge Test:

All 802.11a, 802.11n(20), 802.11n(40), 802.11ac(20), 802.11ac(40), 802.11ac(80) modes have been tested for above 1GHz test, only the worst case 802.11a was recorded.

U-NII 3

Polar (H/V)	Frequency	Meter Reading	Antenna Factor	Cable loss	Preamp factor	Emission Level	Limits	Margin	Detector Type
(17, •)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Type
				80)2.11a		•		
V	5460	52.99	31.62	7.89	35.76	56.74	74	17.26	PK
V	5460	37.04	31.62	7.89	35.76	40.79	54	13.21	AV
H	5460	54.1	31.62	7.89	35.76	57.85	74	16.15	PK
H	5460	40.35	31.62	7.89	35.76	44.1	54	9.9	AV
V	5850	54.76	31.71	7.92	35.55	58.84	74	15.16	PK
V	5850	38.01	31.71	7.92	35.55	42.09	54	11.91	AV
Н	5850	54.38	31.71	7.92	35.55	58.46	74	15.54	PK
Н	5850	41.68	31.71	7.92	35.55	45.76	54	8.24	AV

5.3 Conduction spurious emission

<u>Limit</u>

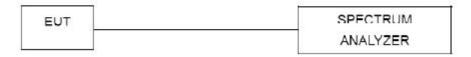
The maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

(4) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.


Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz VBW \ge RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize

Test Configuration

TEST RESULTS See APPENDIX VIII

5.4 Maximum Conducted Average Output Power

<u>Limit</u>

For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

<u>Test Results</u> See APPENDIX IV

5.5 Power Spectral Density

<u>Limit</u>

(1) For the band 5.15 - 5.25 GHz.

(i) For an outdoor access point operating in the band 5.15 - 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}

(ii) For an indoor access point operating in the band 5.15 - 5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band.^{note1}

(iii) For fixed point-to-point access points operating in the band 5.15 - 5.25 GHz, transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

(iv) For mobile and portable client devices in the 5.15 - 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band. ^{note1}

(2) For the 5.25 - 5.35 GHz and 5.47 - 5.725 GHz bands, the peak power spectral density shall not exceed 11 dBm in any 1 MHz band. ^{note1}

(3) For the band 5.725 - 5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band. ^{note1, note2}

Note1: If transmitting antennas of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Note2: Fixed point - to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW = 1MHz for U-NII 1, U-NII 2A, U-NII C band and 510KHz for U-NII 3 band.
- 3. Set the VBW \geq 3× RBW.
- 4. Set the span to encompass the entire EBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.

Test Configuration

<u>Test Results</u> See APPENDIX III

5.6 Emission Bandwidth (26dBm Bandwidth)

<u>Limit</u>

N/A

Test Procedure

- 1. Set resolution bandwidth (RBW) = approximately 1 % of the EBW.
- 2. Set the video bandwidth (VBW) > RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW / EBW ratio is approximately 1 %.

Test Configuration

Test Results

<u>N/A</u>

5.7 Minimum Emission Bandwidth (6dBm Bandwidth)

<u>Limit</u>

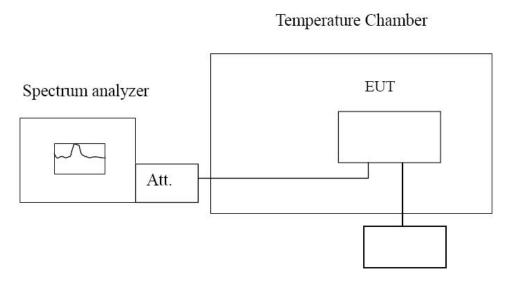
Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure

- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth $3 \times RBW$.
- 3. Detector = Peak.
- 4. Trace mode = Max hold.
- 5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Configuration

Test Results


See APPENDIX VI

5.8 Frequency Stability

<u>LIMIT</u>

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

TEST CONFIGURATION

Variable Power Supply

TEST PROCEDURE

Frequency Stability under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20° operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

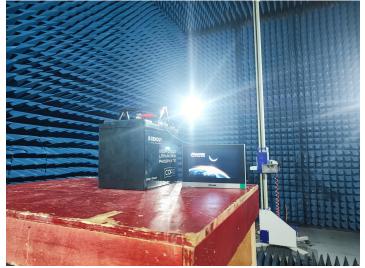
Frequency Stability under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (\pm 15%) and endpoint, record the maximum frequency change.


TEST RESULTS

See APPENDIX I.


5.9 Duty Cycle Information

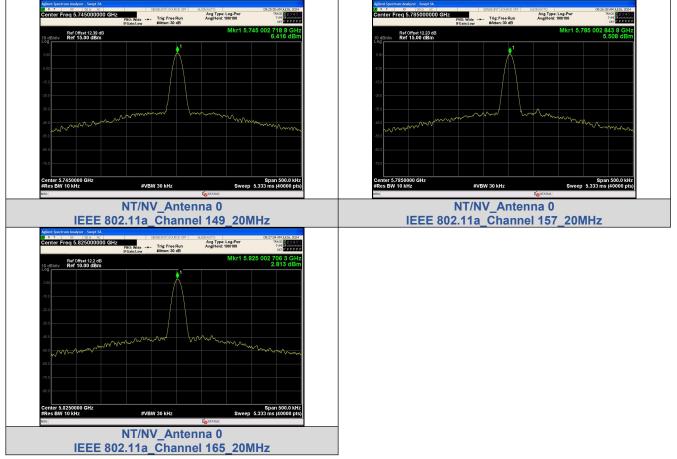
See APPENDIX II

6 Test Setup Photos of the EUT

RE TEST SETUP

7 Photos of the EUT

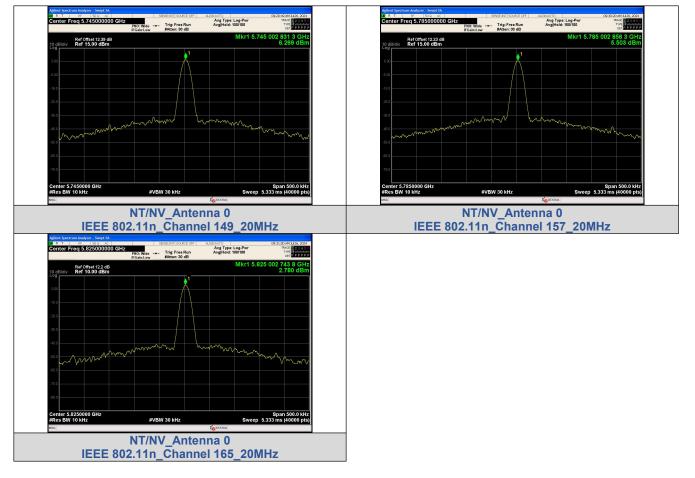
see photo report.


APPENDIX I.Frequency Stability

Test Result

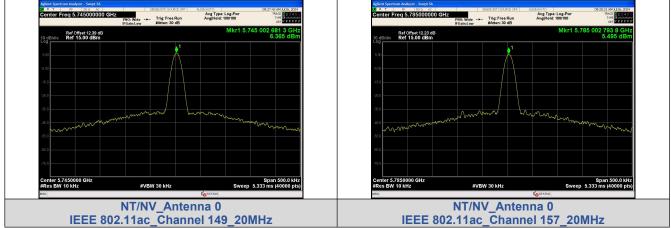
Condition	Mode	Ch.	Antenna	Center Frequency (MHz)	Calculated Value of Center Frequency(MHz)	Result (ppm)	Limit (ppm)	State
	IEEE	149		5745.0	5745.002719	0.47		PASS
	802.11a	157		5785.0	5785.002844	0.49		PASS
	002.11a	165		5825.0	5825.002706	0.46		PASS
	IEEE	149		5745.0	5745.002831	0.49		PASS
	802.11n 20	157		5785.0	5785.002856	0.49		PASS
	002.1111_20	165		5825.0	5825.002744	0.47		PASS
	IEEE	151		5755.0	5755.002794	0.49	Within	PASS
NT/NV	802.11n_40	159	0	5795.0	5795.002819	0.49	authorized	PASS
	IEEE	149		5745.0	5745.002681	0.47	band	PASS
	802.11ac 20	157		5785.0	5785.002794	0.48		PASS
	002.11ac_20	165		5825.0	5825.002794	0.48		PASS
	IEEE	151		5755.0	5755.002819	0.49		PASS
	802.11ac_40	159		5795.0	5795.002881	0.5		PASS
	IEEE 802.11ac_80	155		5775.0	5775.002694	0.47		PASS

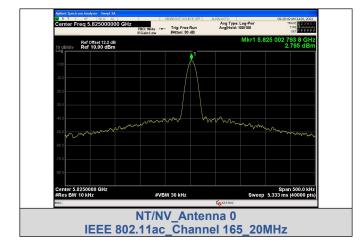
Test Graphs NT/NV


IEEE 802.11a

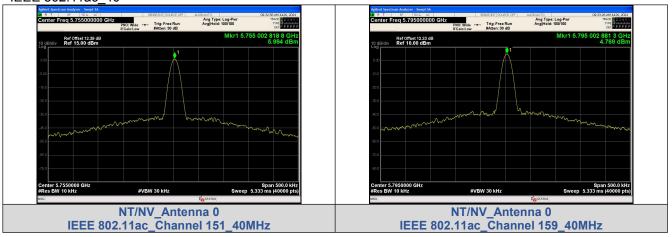
IEEE 802.11n_20

Report No.: MTEB24080008-R2

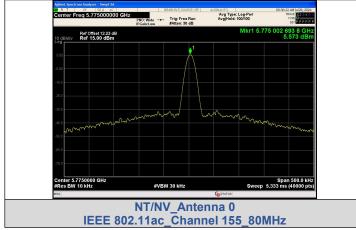

Page 30 of 53



IEEE 802.11n_40

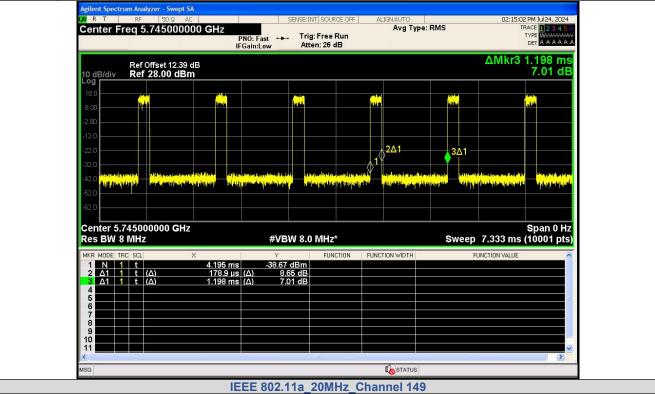


IEEE 802.11ac_20



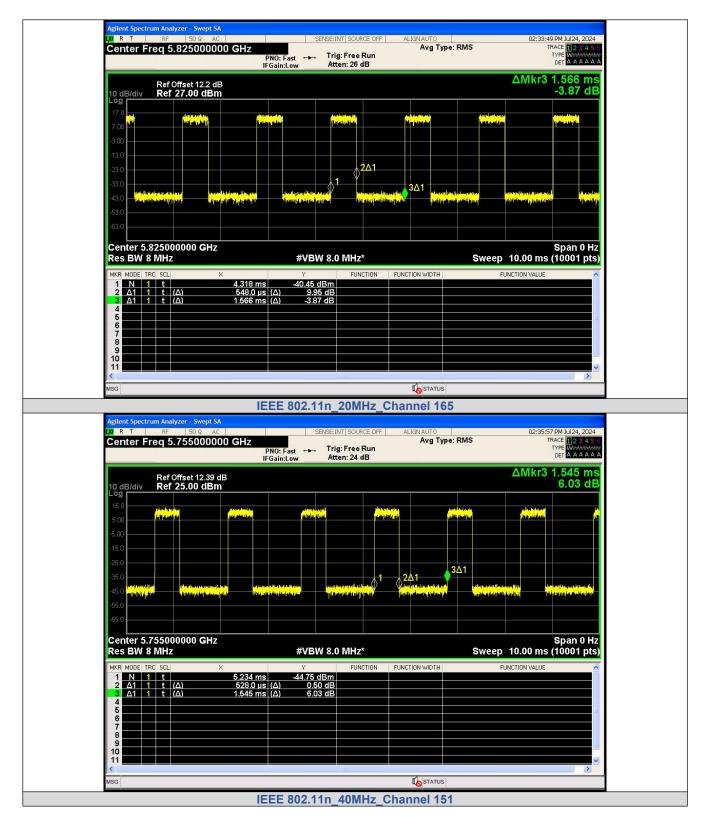
IEEE 802.11ac_40

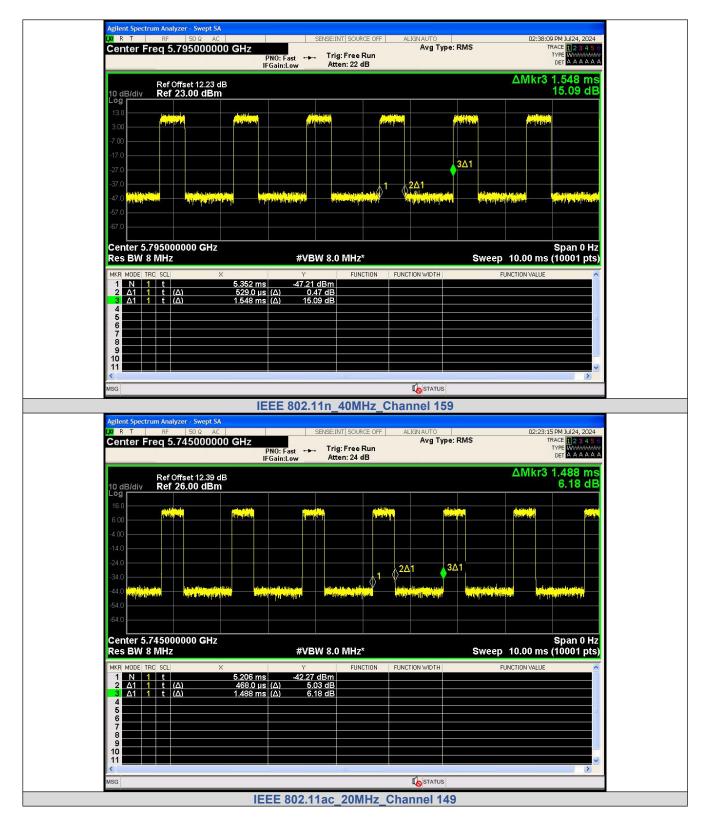
IEEE 802.11ac_80




APPENDIX II.Duty Cycle

Test Result


Mode	Data rates	Channel	Antenna	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle (linear)	Duty Cycle Factor (dB)
IEEE		149		0.179	1.198	14.94	0.1494	8.2565
802.11a	54	157		0.179	1.198	14.93	0.1493	8.2594
002.11a		165		0.179	1.198	14.94	0.1494	8.2565
IEEE		149		0.548	1.566	34.99	0.3499	4.5606
802.11n_20		157		0.549	1.567	35.04	0.3504	4.5544
002.111 <u>2</u> 0		165		0.548	1.566	34.99	0.3499	4.5606
IEEE		151		0.528	1.545	34.17	0.3417	4.6636
802.11n_40	MCS 7	159	1	0.529	1.548	34.17	0.3417	4.6636
IEEE	101037	149		0.468	1.488	31.45	0.3145	5.0238
802.11ac 20		157		0.476	1.482	32.11	0.3211	4.9336
002.11ac_20		165		0.486	1.490	32.65	0.3265	4.8612
IEEE		151		0.411	1.429	28.75	0.2875	5.4136
802.11ac_40		159		0.422	1.435	29.38	0.2938	5.3195
IEEE 802.11ac_80	MCS 9	155		0.384	1.403	27.37	0.2737	5.6273


Test Graphs

Ref Offs	et 12.39 dB					ΔMkr	3 1.566 ms -0.93 dE
10 dB/div Ref 27, Log	.00 dBm	a an				404 mintal	-0.35 CE
7.00	<mark>triti presingele</mark>		in dia cattion	inst to a	ຍ,		ahish Alise
-13.0			2Δ1				
-33.0	as had gatale the statistics	distance and the billion		3∆1	Mar Lange and Mary Ma		ited a batelliter to a b
-53.0	nilapiene di Sale de Hendrice	A late of the second	e <mark>la anti-</mark> rittanese	h a spin a serie day	No. 14 million of the set	<mark>у</mark> іні	aliat fatt kata ita a bi
Center 5.7450000	00 GHz						Span 0 Hz
Res BW 8 MHz	×	#VBW 8.0 P		CTION WIDTH		10.00 m	is (10001 pts
1 N 1 t 2 Δ1 1 t (Δ)	4.938 ms 548.0 μs	-41.16 dBm (Δ) 12.10 dB	FUNCTION	CHON WIDTH	ru	INCTION VALU	
3 Δ1 1 t (Δ) 4 5	1.566 ms	(Δ) -0.93 dB					
6 7 8							
9							
11							~
		1		I o status			
MSG		EE 802.11n_2	0MHz_Cha				
11 ▲ Agilent Spectrum Analyzer Ø R T RF	- Swept SA 50 Ω AC			nnel 149		02:3	1:46 PM Jul 24, 2024
Agilent Spectrum Analyzer	- Swept SA 50 Ω AC S5000000 GHz P	SENSE:INT		nnel 149			1:46 PM Jul 24, 2024 TRACE 1 2 3 4 5 TYPE WWWWWW DET A A A A A
Agilent Spectrum Analyzer	- Swept SA 50 Ω AC S5000000 GHz P	SENSE:INT	SOURCE OFF	nnel 149			1:46 PM Jul 24, 2024
Agilent Spectrum Analyzer	- Swept SA 50 Q AC 55000000 GHz P IF et 12.23 dB .00 dBm	SENSE:INT PNO: Fast Trig: Gain:Low Atten	SOURCE OFF	ALIGN AUTO AVIG Type	RMS	ΔMkr	1:46 PM Jul 24, 2024 TRACE 1 2 3 4 5 TYPE WHINTHIN DET A A A A A 3 1.567 ms
Agilent Spectrum Analyzer	- Swept SA 50 Ω AC P 25000000 GHz IF et 12.23 dB	SENSE:INT NO:Fast → Trig: Gain:Low Atten	SOURCE OFF	nnel 149	RMS		1:46 PM Jul 24, 2024 TRACE 1 2 3 4 5 TYPE WHINTHIN DET A A A A A 3 1.567 ms
Agilent Spectrum Analyzer	- Swept SA 50 Q AC 55000000 GHz P IF et 12.23 dB .00 dBm	SENSE:INT PNO: Fast Trig: Gain:Low Atten	SOURCE OFF	ALIGN AUTO AVIG Type	RMS	ΔMkr	1:46 PM Jul 24, 2024 TRACE 1 2 3 4 5 TYPE WHINTHIN DET A A A A A 3 1.567 ms
Agilent Spectrum Analyzer Msg Agilent Spectrum Analyzer OX R T RF Center Freq 5.78 10 dB/div Ref Offs 17.0 Migridit 3.00 Augusta -33.0 Augusta	- Swept SA 50 Ω AC P F5000000 GHz P IF et 12.23 dB .00 dBm	SENSE:INT NO: Fast Trig: Gain:Low Atten	SOURCE OFF	ALIGN AUTO AVG Type	RMS	ΔMkr	1:46 PM JU/24, 2024 TRACE 2 2:3 4 5 TYPE WWWWWW DET A A A A A 3 1.567 ms 18.21 dE
Agilent Spectrum Analyzer	- Swept SA 50 Q AC 55000000 GHz P IF et 12.23 dB .00 dBm	SENSE:INT NO: Fast → Trig: Gain:Low Atten		ALIGN AUTO AV g Type (Mag 3A	RMS		1:46 PM Jul 24, 2024 TRACE 1 2 3 4 5 TYPE WHINTHIN DET A A A A A 3 1.567 ms
Agilent Spectrum Analyzer VI R T RF Center Freq 5.78 10 dB/div Ref 27 12.0 7.00 -13.0 -3.00 -3.00 -3.00 -4.3.0 within a state of the stat	- Swept SA 50 Q AC 5000000 GHz P P F et 12.23 dB .00 dBm P - State from particular - State from particular	SENSE:INT NO: Fast → Trig: Gain:Low Atten		ALIGN AUTO AV g Type (Mag 3A			1:46 PM 30/24, 2024 TRACE 12:3:4:5 TYPE A A A A 3 1.567 ms 18.21 dE
Agilent Spectrum Analyzer VI R T RF Center Freq 5.78 Ref Offs 10 dB/div Ref 27 0 dB/di	- Swept SA 50 Q AC 5000000 GHz F et 12.23 dB 00 dBm 	SENSE:INT NO: Fast → Trig: Gain:Low Atten		ALIGN AUTO AV g Type (Mag 3A			1:46 PM 30/24, 2024 TRACE 12:3:4:5 TYPE A A A A 3 1.567 ms 18.21 dE
Agilent Spectrum Analyzer Msc Agilent Spectrum Analyzer OX R T RF Center Freq 5.78 10 dB/div Ref Offs 17.0 Msc Ref Offs 7.00 Msc Ref Offs 3.00 Ref Offs Ref Offs	- Swept SA 50 02 AC P F 5000000 GHz P F et 12.23 dB 00 dBm - Add to 10 -	SENSE:INT NO: Fast Trig: Gain:Low Trig: Atten	SOURCE OFF	ALIGN AUTO AV g Type (Mag 3A	RMS		1:46 PM JUI24, 2024 TRACE 2 3 4 5 TYPE A A A A 3 1.567 ms 18.21 dE
Agilent Spectrum Analyzer Agilent Spectrum Analyzer MsG Agilent Spectrum Analyzer MsG Ref Offs Center Freq 5.78 Ref Offs 10 dB/div Ref 27 Og Agilent Spectrum Analyzer Ref Offs Agilent Spectrum Analyzer Center Freq 5.78 Center Science 10 dB/div Ref Offs 10 dB/div Ref Offs 13.0 Aging Aging -3.00 Aging Aging -3	- Swept SA 50 02 AC P F 5000000 GHz P F et 12.23 dB 00 dBm P F F F F F F F F F F F F F	SENSE:INT NO: Fast Trig: Gain:Low Trig: Atten	SOURCE OFF	ALIGN AUTO Avg Type Avg Type Avg Type Avg Type Avg Type Avg Type Avg Type Avg Type Avg Type Avg Type	RMS	AMkr	1:46 PM JUI24, 2024 TRACE 2 3 4 5 TYPE A A A A 3 1.567 ms 18.21 dE
Agilent Spectrum Analyzer MsG Agilent Spectrum Analyzer MsG MsG R T RF Center Freq 5.78 Ref Offs 10 dB/div Ref Offs 13.0 Image: Market and	- Swept SA 50 02 AC P F 5000000 GHz P F et 12.23 dB 00 dBm - Add to 10 -	SENSE:INT NO: Fast Trig: Gain:Low Trig: Atten	SOURCE OFF	ALIGN AUTO Avg Type Avg Type Avg Type Avg Type Avg Type Avg Type Avg Type Avg Type Avg Type Avg Type	RMS	AMkr	1:46 PM JUI24, 2024 TRACE 2 3 4 5 TYPE A A A A 3 1.567 ms 18.21 dE

	PNO: Fast +++ Trig: Free IFGain:Low Atten: 20		TRACE 123456 TYPE WWWWWWW DET A A A A A A
Ref Offset 12.23 10 dB/div Ref 22.00 dBi Log	dB m		∆Mkr3 1.482 ms -1.11 dB
12.0	here here here here here here here here	n National Agents	
-8.00			
-18.0			
-38.0	1 24	3Δ1	
-48.0	lansintinini kupanya na kupanya	utorian/hontoup/skapyy	selecture and a selecture of the second selecture of the second second second second second second second second
-68.0			
Center 5.785000000 GHz Res BW 8 MHz	2 #VBW 8.0 MH	z* S	Span 0 Hz weep 6.797 ms (2000 pts)
MKR MODE TRC SCL		UNCTION FUNCTION WIDTH	FUNCTION VALUE
2 Δ1 1 t (Δ) 3 Δ1 1 t (Δ)	2.628 ms -47.45 dBm 476.0 μs (Δ) -1.24 dB 1.482 ms (Δ) -1.11 dB		
4 5 6			
7 8 9			
10			V
0.0			
MSG	10	STATUS	
MSG	IEEE 802.11ac_20		
Agilent Spectrum Analyzer - Swept S VV R T RF 50 Ω A	C SENSE:INT SO	MHz_Channel 157	02:27:24 PM Jul 24, 2024
Agilent Spectrum Analyzer - Swept S	C SENSE:INT SO	MHz_Channel 157	
Agilent Spectrum Analyzer - Swept S 20 R T RF 50 Q A Center Freq 5.8250000 Ref Offset 12.2 c	A C SENSE:INT SO 100 GHz PN0: Fast IFGain:Low Atten: 20 IB	MHz_Channel 157	02:27:24 PM Jul 24, 2024 TRACE 2 3 4 5 6 TYPE WWWWWW DET A A A A A AMkr3 1.490 ms
Agilent Spectrum Analyzer - Swept S VI R T RF SOQ A Center Freq 5.8250000	A C SENSE:INT SO 100 GHz PN0: Fast IFGain:Low Atten: 20 IB	MHz_Channel 157	02:27:24 PM Jul 24, 2024 TRACE 12 2 3 4 5 TYPE WWWWWW DET A A A A A A
Agilent Spectrum Analyzer - Swept S (X) R T BF 50.0 A Center Freq 5.8250000 Ref Offset 12.2 c 1.0 dB/div Ref 22.00 dBr 12.0 2.00	A C SENSE:INT SO 100 GHz PN0: Fast IFGain:Low Atten: 20 IB	MHz_Channel 157	02:27:24 PM Jul 24, 2024 TRACE 2 3 4 5 6 TYPE WWWWWW DET A A A A A AMkr3 1.490 ms
Agilent Spectrum Analyzer - Swept S 24 R T RF S0 A Center Freq 5.8250000 Ref Offset 12.2 c 10 dB/div Ref 22.00 dBr 12.0	A C SENSE:INT SO 100 GHz PN0: Fast IFGain:Low Atten: 20 IB	MHz_Channel 157	02:27:24 PM Jul 24, 2024 TRACE 2 3 4 5 6 TYPE WWWWWW DET A A A A A AMkr3 1.490 ms
Agilent Spectrum Analyzer - Swept S (X) R T RF 500 A Center Freq 5.8250000 Ref Offset 12.2 c 10 dB/div Ref 22.00 dBr 12 0 2 00 -18 0 -18 0 -28 0	A C SENSE:INT SO 100 GHz PN0: Fast IFGain:Low Atten: 20 IB	MHz_Channel 157	02:27:24 PM Jul 24, 2024 TRACE 2 3 4 5 6 TYPE WWWWWW DET A A A A A AMkr3 1.490 ms
Agilent Spectrum Analyzer - Swept S (X) R T RF 500 A Center Freq 5.8250000 Ref Offset 12.2 c 10 dB/div Ref 22.00 dBr 12 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0	A C SENSE:INT SO 100 GHz PN0: Fast IFGain:Low Atten: 20 IB	MHz_Channel 157	02:27:24 PM Jul 24, 2024 TRACE 2 3 4 5 6 TYPE WWWWWW DET A A A A A AMkr3 1.490 ms
Agilent Spectrum Analyzer - Swept S QX R T RF S0.2 A Center Freq 5.8250000 Ref Offset 12.2 c C 10 dB/div Ref 22.00 dBr B 12.0	A C SENSE:INT SO 100 GHz PN0: Fast IFGain:Low Atten: 20 IB	MHz_Channel 157	02:27:24 PM Jul 24, 2024 TRACE 2 3 4 5 6 TYPE WWWWWW DET A A A A A AMkr3 1.490 ms
Agilent Spectrum Analyzer - Swept S Q2 R T RF 50.2 A Center Freq 5.8250000 Ref Offset 12.2 c A 10 dB/div Ref 22.00 dB B 12.0	A SENSE:INT SO 100 GHz PN0: Fast → Trig: Fre- IFGain:Low → Atten: 20 IB m	MHz_Channel 157	02:27:24 FM Jul 24, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET N A A A A A A A A A A A A A A A A
Agtient Spectrum Analyzer - Swept 3 (X) R T RF 50.2 A Center Freq 5.8250000 Ref Offset 12.2 c 12.0 2.00 -8.8250000000 GHz	A SENSE INT SO 100 GHz PRO: Fast Trig: Fre- IFGain:Low Trig: Fre- Atten: 20 IB m 	MHz_Channel 157	02:27:24 FM Jul 24, 2024 TRACE 1, 2, 3, 4, 5 0 TYPE WWWWWAAAAA AMkr3 1,490 ms -0.03 dB
Agilent Spectrum Analyzer - Swept S Q2 R T RF S0.2 A Center Freq 5.8250000 Ref Offset 12.2 c 10 dB/div Ref 22.00 dBr 12.0 Ref 22.00 dBr 200 Ref 22.00 dBr 12.0 Ref 22.00 dBr 200 Ref 22.00 dBr -8 00 Ref 20.00 dBr -8 00 <t< td=""><td>A SENSE:INT SO IOO GHZ IFGain:Low Trig: Free IFGain:Low Atten: 20 B M W W W W W W W W W W W W W</td><td>MHz_Channel 157</td><td>02:27:24 PM JU 24, 2024 TRACE 02 3 4 5 G TYPE 02 3 4 5 G TYPE 02 3 4 5 G TYPE 02 4 5 G TYPE</td></t<>	A SENSE:INT SO IOO GHZ IFGain:Low Trig: Free IFGain:Low Atten: 20 B M W W W W W W W W W W W W W	MHz_Channel 157	02:27:24 PM JU 24, 2024 TRACE 02 3 4 5 G TYPE 02 3 4 5 G TYPE 02 3 4 5 G TYPE 02 4 5 G TYPE
Agilent Spectrum Analyzer - Swept S QC R T RF SO Q A Center Freq 5.8250000 SO Q A C </td <td>A SENSE INT SO 100 GHz PRO: Fast Trig: Fre- IFGain:Low Trig: Fre- Atten: 20 IB m </td> <td>MHz_Channel 157</td> <td>02:27:24 FM Jul 24, 2024 TRACE 1, 2, 3, 4, 5 0 TYPE WWWWWAAAAA AMkr3 1,490 ms -0.03 dB</td>	A SENSE INT SO 100 GHz PRO: Fast Trig: Fre- IFGain:Low Trig: Fre- Atten: 20 IB m 	MHz_Channel 157	02:27:24 FM Jul 24, 2024 TRACE 1, 2, 3, 4, 5 0 TYPE WWWWWAAAAA AMkr3 1,490 ms -0.03 dB
Agilent Spectrum Analyzer - Swept 3 QX R T Ref SO Q A Center Freq 5.8250000 Ref Offset 12.2 c GO Q A <td>A SENSE:INT SO IOO GHZ IFGain:Low Trig: Free IFGain:Low Atten: 20 B M W W W W W W W W W W W W W</td> <td>MHz_Channel 157</td> <td>02:27:24 FM Jul 24, 2024 TRACE 1, 2, 3, 4, 5 0 TYPE WWWWWAAAAA AMkr3 1,490 ms -0.03 dB</td>	A SENSE:INT SO IOO GHZ IFGain:Low Trig: Free IFGain:Low Atten: 20 B M W W W W W W W W W W W W W	MHz_Channel 157	02:27:24 FM Jul 24, 2024 TRACE 1, 2, 3, 4, 5 0 TYPE WWWWWAAAAA AMkr3 1,490 ms -0.03 dB
Agilent Spectrum Analyzer - Swept 3 Ref Offset 12.2 c Center Freq 5.82500000 Ref Offset 12.2 c 0 dB/div Ref 22.00 dBr 200	A SENSE:INT SO IOO GHZ IFGain:Low Trig: Free IFGain:Low Atten: 20 B M W W W W W W W W W W W W W	MHz_Channel 157	02:27:24 FM Jul 24, 2024 TRACE 1, 2, 3, 4, 5 0 TYPE WWWWWAAAAA AMkr3 1,490 ms -0.03 dB

Ref Offset 12.39 dB 10 dB/div Ref 22.00 dBm Log			ΔMkr3 1.429 ms 1.00 dB
12.0 2.00 -8.00 -18.0 -26.0		Αμοροκ Αμοροκ 2Δ1	
-38.0 -48.0 -48.0 -68.0 -68.0	Line State Line S	3A1	kan ya kata ya Na kata ya kata
Center 5.755000000 GHz Res BW 8 MHz	#VBW 8.0 MHz*	Sweet	Span 0 Hz 7.333 ms (10001 pts)
3 Δ1 1 t (Δ) 1 4 5 5 6 6 7 7 8 9 10 1 10 11 1 1	1495 ms 48.12 dBm 410.7 μs (Δ) 11.25 dB .429 ms (Δ) 1.00 dB		×
MSG	IEEE 802.11ac_40MH		
Agilent Spectrum Analyzer - Swept SA Dol R T RF 50 2 AC Center Freq 5.795000000 G	HZ PNO: Fast → Trig: Free Rur IFGain:Low #Atten: 26 dB	Avg Type: RMS	02:42:25 PM Jul 24, 2024 TRACE 12 2 4 5 5 Type Det A A A A A
Ref Offset 12.23 dB 10 dB/div Ref 20.00 dBm Log			ΔMkr3 1.435 ms 19.63 dB
10.0 0.00 -10.0 -20.0 -30.0		3Δ1	
-40.0 [47:37-47:49] -50.0 -60.0 -70.0 Center 5.795000000 GHz		Yacaaniiniiniiniiniiniiniiniinii laa	Span 0 Hz
Res BW 8 MHz	#VBW 8.0 MHz*		P 6.797 ms (2000 pts)
MICH MODE THE SEE	407 ms -41.94 dBm 421.6 μs (Δ) 0.38 dB .435 ms (Δ) 19.63 dB		

Agilent Spectrum Analyzer - Swept SA	
M R T RF 50 Q AC SENSE:INT SOURCE OFF ALIGNAUTO 03:05:38 PM Jul	
Center Freq 5.775000000 GHz Avg Type: RMS TRACE I PN0: Fast Frig: Free Run TYPE W IFGain:Low #Atten: 26 dB DET A	23456 ////////////////////////////////////
	3 ms 9 dB
	<i></i>
0.000 Abits Alignetics Schellicht Schellicht Schellicht Schellicht	
	in and Ny Geographi
-60.0	
	n 0 Hz
Res BW 8 MHz #VBW 8.0 MHz* Sweep 10.00 ms (1000	01 pts)
MKR MODE TRC SCL X Y FUNCTION VIDTH FUNCTION VIDTH FUNCTION VALUE	^
1 N 1 t 5.578 ms -42.49 dBm 2 Δ1 1 t (Δ) 384.0 μs (Δ) -0.11 dB	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	~
nsg Lostatus	,