DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2 **Motorola Solutions Inc. EME Test Laboratory** Motorola Solutions Malaysia Sdn Bhd Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. **Date of Report:** 2/10/2022 **Report Revision:** **Responsible Engineer:** Saw Sun Hock (EME Senior Engineer) **Report Author:** Muhammad Zakwan Bin Zaidi (EME Senior Technician) **Date/s Tested:** 12/8/2021 - 12/11/2021, 12/17/2021, 12/22/2021, 12/28/2021 Motorola Solutions Inc. Manufacturer: Handheld Portable - FKP 136-174 5W GOB GNSS BT WLAN TIA4950 **DUT Description:** **Test TX mode(s):** CW (PTT), Bluetooth, WLAN 802.11 b/g/n Refer Table 3 Max. Power output: LMR 136-174 MHz; BT/BT LE 2.402-2.480 GHz; Tx Frequency Bands: WLAN 802.11 b/g/n 2.412-2.462 GHz **Signaling type:** FM (LMR), FHSS (Bluetooth), 802.11 b/g/n (WLAN) Model(s) Tested: AAH56JDN9RA1AN (PMUD3496B) (IC Model No: PMUD3496BBCNAA) **Model(s) Certified:** Refer to Table 1 **Serial Number(s):** 871TXX3213 & 871TXX3214 **Classification:** Occupational/Controlled **Applicant Name:** Motorola Solutions Inc. **Applicant Address:** 8000 West Sunrise Boulevard, Fort Lauderdale, Florida 33322 FCC ID: AZ489FT7154; LMR 150.8-173.4MHz, BT/BT LE 2.402-2.480 GHz, WLAN 2.412-2.462 GHz This report contains results that are immaterial for FCC equipment approval, which are clearly identified. 109U-89FT7154; LMR 138-174MHz, BT/BT LE 2.402-2.480 GHz, WLAN 2.412-2.462 GHz IC: This report contains results that are immaterial for ISED equipment approval, which are clearly identified. 24843 **ISED Test Site registration: FCC Test Firm Registration** 823256 **Number:** The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5). Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola **Solutions Inc EME Laboratory.** I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated. > Pei Loo Tev **Approved Signatory** Approval Date: 2/10/2022 # Part 1 of 2 | 1.0 | Introdu | uction | 4 | |------|---------|--|----| | 2.0 | FCC S | AR Summary | 5 | | 3.0 | Abbre | viations / Definitions | 5 | | 4.0 | Refere | nced Standards and Guidelines | 6 | | 5.0 | SAR I | imits | 7 | | 6.0 | Descri | ption of Device Under Test (DUT) | 7 | | 7.0 | Option | nal Accessories and Test Criteria | 8 | | | 7.1 | Antennas | 8 | | | 7.2 | Battery | 9 | | | 7.3 | Body worn Accessories | 9 | | | 7.4 | Audio Accessories | 11 | | 8.0 | Descri | ption of Test System | 14 | | | 8.1 | Descriptions of Robotics/Probes/Readout Electronics DASY 5 | 14 | | | 8.2 | Descriptions of Robotics/Probes/Readout Electronics DASY 6 | 15 | | | 8.3 | Description of Phantom(s) | 15 | | | 8.4 | Description of Simulated Tissue | 16 | | 9.0 | Additi | onal Test Equipment | 17 | | 10.0 | SAR N | Measurement System Validation and Verification | 18 | | | 10.1 | System Validation | 18 | | | 10.2 | System Verification | 18 | | | 10.3 | Equivalent Tissue Test Results | 19 | | 11.0 | Enviro | onmental Test Conditions | 20 | | 12.0 | DUT | Test Setup and Methodology | 20 | | | 12.1 | Measurements | 20 | | | 12.2 | DUT Configuration(s) | 21 | | | 12.3 | DUT Positioning Procedures | 21 | | | | 12.3.1 Body | 21 | | | | 12.3.2 Head | | | | 10.4 | 12.3.3 Face | | | | 12.4 | DUT Test Channels | | | | 12.5 | SAR Result Scaling Methodology | | | 12.0 | 12.6 | DUT Test Plan | | | 13.0 | | Test Data | | | | 13.1 | LMR assessments at the Body | | | | 13.2 | LMR assessments at the Face | | | | 13.3 | Assessment for WLAN | | | | 13.4 | Assessment for BT | | | | | 13.4.1 FCC US Requirement | | | | 12 5 | 13.4.2 ISED Requirement | | | | 13.5 | Assessment for ISED Canada | | | | 13.6 | Shortened Scan Assessment | 26 | | FCC | ID: AZ489FT7154 / IC: 109U-89FT7154 | Report ID: P31125-EME-00017 | |------|--|-----------------------------| | 14.0 | Simultaneous Transmission Exclusion for BT | 27 | | 15.0 | Simultaneous Transmission between LMR, WLAN and BT | 27 | | | Results Summary | | | | Variability Assessment | | | | System Uncertainty | | | APP | ENDICES | | | A | Measurement Uncertainty Budget | | | В | Probe Calibration Certificates | 35 | | Part | 2 of 2 | | | APP | ENDICES | | | В | Probe Calibration Certificates | 2 | | C | Dipole Calibration Certificates | 27 | | D | System Verification Check Scans | 45 | | E | DUT Scans | 52 | | F | Shorten Scan of Highest SAR Configuration | 58 | | G | DUT Test Position Photos | 60 | | Η | DUT, Body worn and audio accessories Photos | 62 | # **Report Revision History** | Date | Revision | Comments | |-----------|----------|-----------------------------------| | 2/6/2022 | A | Initial release | | 2/10/2022 | В | Update antenna's gains in Table 5 | Η # FCC ID: AZ489FT7154 / IC: 109U-89FT7154 #### 1.0 Introduction This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number AAH56JDN9RA1AN (PMUD3496B) (IC Model No: PMUD3496BBCNAA). This model has the same maximum output power level, frequency operating range and operating modes as Reference Model PMUD2904B & PMUD2906B, with FCC ID: AZ489FT7066, IC ID: 109U-89FT7066. Model PMUD3496B uses the same accessories as the Reference Model PMUD2904B & PMUD2906B with FCC ID: AZ489FT7066, IC ID: 109U-89FT7066 and these accessories were also taken consideration and/or evaluation as well. This device is classified as Occupational/Controlled. The results of those previous evaluations were taken into consideration when developing the AAH56JDN9RA1AN (PMUD3496B) (IC Model No: PMUD3496BBCNAA) SAR Test Plan. The information herein is to show evidence of SAR compliance based on the SAR evaluation of VCO and BT/WIFI chipset redesign. Table 1 indicted the models that certified under FCC ID: AZ489FT7154 / IC: 109U-89FT7154 Table 1 – Models Certified | Table 1 – Wodels Certified | | | | | | |-------------------------------|---------------------------------------|--|--|--|--| | Model Number | Description | | | | | | AAH56JDN9RA1AN | XPR 7550e 136-174 5W FKP GNSS BT WiFi | | | | | | (IC Model No: PMUD2904EBCNAA) | GOB | | | | | | AAH56JDC9RA1AN | XPR 7350e 136-174 5W NKP GNSS BT WiFi | | | | | | (IC Model No: PMUD2906EBANAA) | GOB | | | | | | AAH56JDC9RA1AN | XPR 7350e 136-174 5W NKP GNSS BT WiFi | | | | | | (IC Model No: PMUD3498BBANAA) | GOB TIA4950 | | | | | | AAH56JDC9WA1AN | XPR 7350e 136-174 5W NKP GNSS CFS BT | | | | | | (IC Model No: PMUD2906EAANKA) | WiFi | | | | | | AAH56JDC9WA1AN | XPR 7350e 136-174 5W NKP GNSS CFS BT | | | | | | (IC Model No: PMUD3498BAANKA) | WiFi TIA4950 | | | | | | AAH56JDN9RA1AN | XPR 7550e 136-174 5W FKP GNSS BT WiFi | | | | | | (IC Model No: PMUD3496BBCNAA) | GOB TIA4950 | | | | | | AAH56JDN9WA1AN | XPR 7550e 136-174 5W FKP GNSS CFS BT | | | | | | (IC Model No: PMUD2904EACNKA) | WiFi | | | | | | AAH56JDN9WA1AN | XPR 7550e 136-174 5W FKP GNSS CFS BT | | | | | | (IC Model No: PMUD3496BACNKA) | WiFi TIA4950 | | | | | # 2.0 FCC SAR Summary ### Table 2 | Equipment | Frequency | Max Calc at
Body (W/kg) | Max Calc at
Face (W/kg) | |-------------|---|----------------------------|----------------------------| | Class | band (MHz) | 1g-SAR | 1g-SAR | | TNF | 150.8-173.4
MHz (LMR) | 1.74 | 1.30 | | *DSS | 2402-2480
MHz
(Bluetooth) | NA | NA | | DTS | 2412-2462
MHz (WLAN
802.11 b/g/n) | 0.012 | 0.023 | | **Simultane | eous Results | 1.75 | 1.32 | ^{*}Results not required per KDB (refer to previous filing). #### 3.0 Abbreviations / Definitions BT: Bluetooth BT LE: Bluetooth Low Energy CNR: Calibration Not Required CW: Continuous Wave DSS: Direct Spread Spectrum DTS: Digital Transmission System DUT: Device Under Test EME: Electromagnetic Energy FHSS: Frequency Hopping Spread Spectrum FKP: Full Keypad FM: Frequency Modulation Li-Ion: Lithium-Ion Li-Mn: Lithium Manganese LMR: Land Mobile Radio NA: Not Applicable NiMH: Nickel Metal Hydride NKP: No Keypad OFDM: Orthogonal Frequency Division Multiplexing PTT: Push to Talk RF: Radio Frequency RSM: Remote Speaker Microphone SAR: Specific Absorption Rate TNF: Licensed Non-Broadcast Transmitter Held to Face WLAN: Wireless Local Area Network Audio accessories: These accessories allow communication while the DUT is worn on the body. Body worn accessories: These accessories allow the DUT to be worn on the body of the user. Maximum Power: Defined as the upper limit of the production line final test station. #### 4.0 Referenced Standards and Guidelines This product is designed to comply with the following applicable national and international standards and guidelines. - IEC62209-1 (2016) Procedure to determine the specific absorption rate (SAR) for handheld devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz) - Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997. - IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption
Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques - American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992 - Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005 - International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998 - Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz - RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands) - Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014) - ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002" - IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz). - FCC KDB 643646 D01 SAR Test for PTT Radios v01r03 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 RF Exposure Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 - FCC KDB 648474 D04 Handset SAR v01r03 #### 5.0 SAR Limits Table 3 | | SAR (W/kg) | | | | |---|-----------------------|---------------------|--|--| | EXPOSURE LIMITS | (General Population / | (Occupational / | | | | EAI OSUKE LIMITS | Uncontrolled Exposure | Controlled Exposure | | | | | Environment) | Environment) | | | | Spatial Average - ANSI - | | | | | | (averaged over the whole body) | 0.08 | 0.4 | | | | Spatial Peak - ANSI - | | | | | | (averaged over any 1-g of tissue) | 1.6 | 8.0 | | | | Spatial Peak – ICNIRP/ANSI - | | | | | | (hands/wrists/feet/ankles averaged over 10-g) | 4.0 | 20.0 | | | | Spatial Peak - ICNIRP - | | | | | | (Head and Trunk 10-g) | 2.0 | 10.0 | | | # **6.0** Description of Device Under Test (DUT) These portable devices operate in the LMR bands using frequency modulation (FM). These devices also contain WLAN technology for data capabilities over 802.11b/g/n wireless networks and Bluetooth technology for short range wireless devices. The LMR bands in this device operate in a half duplex system. A half duplex system only allows the user to transmit or receive. These devices cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device. These devices also incorporate a Bluetooth v4.0, which includes classis Bluetooth, Bluetooth high speed and Bluetooth low energy. It is Class 1 Bluetooth device with Frequency Hopping Spread Spectrum (FHSS) technology. The Bluetooth radio modem is used to wireless link audio accessories. The maximum actual transmission duty cycle is imposed by the Bluetooth standard. The maximum duty cycle for BT is derived from 5-slots packet type operation which consists of receiving on 1-slot and transmitting on 5-slots, and thus maximum duty cycle = 77% WLAN 802.11 b/g/n operate using Direct Sequence Spread Spectrum (DSSS) and Orthogonal Frequency-Division Multiplexing (OFDM) accordance with the IEEE 802.11 b/g/n Table below summarizes the technologies, bands, maximum duty cycles and maximum output powers. Maximum output powers are defined as upper limit of the production line final test station. Table 4 | Radio Type | Band (MHz) | Transmission | Duty Cycle (%) | Max Power (W) | |------------|------------|--------------|-----------------------|---------------| | LMR | 136-174 | FM | *50 | 6.00 | | BT | 2402-2480 | FHSS | 77 | 0.010 | | BT LE | 2402-2480 | FHSS | 63.7 | 0.009 | | WLAN | 2412-2484 | 802.11b | 100 | 0.0224 | | WLAN | 2412-2484 | 802.11g | 100 | 0.0083 | | WLAN | 2412-2484 | 802.11n | 100 | 0.0126 | Note - * includes 50% PTT operation The intended operating positions are "at the face" with the DUT at least 1 inch from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio. Operation at the body without an audio accessory attached is possible by means of BT accessories. # 7.0 Optional Accessories and Test Criteria This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation for reference model FCC ID: AZ489FT7066, IC ID: 109U-89FT7066 to determine if testing was required per the guidelines outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances. SAR Tested represents the accessories that selected for spot check evaluation. #### 7.1 Antennas There are optional removable antennas. The Table below lists their descriptions. Table 5 | 24022 | | | | | | | |----------------|----------------|---|--------------------|---------------|--|--| | Antenna
No. | Antenna Models | Description | SAR
Evaluated** | SAR
Tested | | | | 1 | PMAD4116A | VHF Helical antenna, 144-165MHz, ½ wave, -9.5dBi | Yes(1) | Yes | | | | 2 | PMAD4117A | VHF Helical antenna, 136-155MHz, ½ wave, -9.5dBi | Yes(2) | Yes | | | | 3 | PMAD4118A | VHF Helical antenna, 152-174MHz, ½ wave, -9.5dBi | Yes(3) | Yes | | | | 4 | PMAD4119A | VHF Stubby antenna, 136-148MHz, ¼ wave, -12dBi | Yes | No | | | | 5 | PMAD4120A | VHF Stubby antenna, 146-160MHz, ¼ wave, -12dBi | Yes | No | | | | 6 | PMAD4121B | VHF Stubby antenna, 160-174MHz, ¼ wave, -12dBi | Yes | No | | | | 7 | PMAD4147A | VHF Wideband Whip antenna,136-174MHZ, 1/4 wave, -3dBi | Yes | No | | | | 8 | 0104039J80 | IFA Bluetooth / WLAN antenna, 2400-2484MHz, ¹ / ₄ wave, -4dBi | Yes; only for WLAN | Yes | | | ^{**} SAR evaluated in reference model PMUD2904B & PMUD2906B - (1) The accessory provided highest Body SAR in previous SAR evaluation. - (2) The accessory provided highest ISED Body SAR in previous SAR evaluation. - (3) The accessory provided highest Face SAR in previous SAR evaluation # 7.2 Battery There are optional batteries offered for this product. Table below lists their descriptions. Table 6 | Battery
No. | Battery Models | Description | SAR
Evaluated** | SAR
Tested | Comments | |----------------|-----------------------|--|--------------------|---------------|--------------------------------| | 1 | PMNN4435AR | Li-MN 1400 mAh Low Temp -30C Battery
Submersible (IP57) 1300M 1400T | Yes | No | | | 2 | PMNN4463A | Battery Li-Ion, IP57 2050 mAh | Yes | No | | | 3 | NNTN8129A | IMPRES Hi-Capacity Li-Ion, 2300 mAh
Battery(FM) | Yes | No | | | 4 | PMNN4409BR | IMPRES Li-Ion, 2250 mAh IP56 Battery | Yes | No | | | 5 | PMNN4412AR | Standard IP67 NiMH, 1300M 1400T | Yes | No | | | 6 | PMNN4406BR | Core Slim Li-Ion, 1600 mAh IP56 Battery | Yes | No | | | 7 | PMNN4407BR | IMPRES Slim Li-Ion, 1600 mAh IP56
Battery | Yes | No | | | 8 | PMNN4448AR | IMPRES Li-Ion, 2700 mAh Battery | Yes | No | | | 9 | PMNN4493A | IMPRES Li-Ion, 3000 mAh IP68 Battery,
Low Voltage | Yes | No | | | 10 | PMNN4489A | IMPRES Li-Ion, 2900 mAh TIA4950
HAZLOC IP68 Battery | Yes | No | | | 11 | PMNN4491C | IMPRES Slim Li-Ion, 2100 mAh IP68
Battery | Yes(1) | Yes | | | 12 | PMNN4488A | IMPRES Li-Ion, 3000 mAh IP68 Battery for Vibrating Belt Clip | Yes(2) | Yes | Only compatible with PMLN7296A | | 13 | NNTN8560A | IMPRES Hi-Capacity Li-Ion, 2500 mAh
IP57 Battery, 2300M 2500T | Yes(3) | Yes | | | 14 | PMNN4543A | Core Li-Ion 2450mAh IP68 Battery | Yes | No | | | 15 | PMNN4544A | IMPRES Li-Ion 2450 mAh IP68 Battery | Yes | No | | ^{**} SAR evaluated in reference model PMUD2904B & PMUD2906B - (1) The battery provides highest Face SAR in previous SAR evaluation. - (2) The battery provides highest Body SAR in previous SAR evaluation. - (3) The battery provides highest SAR in previous WLAN SAR evaluation. # 7.3 Body worn Accessories All body worn accessories were considered. Table below lists the body worn accessories, and body worn accessory descriptions. Table 7 | Body worn
No. | Body worn
Models | Description | SAR
Evaluated** | SAR
Tested | Comments | |------------------|---------------------|---|--------------------|---------------|--| | 1 | RLN4815A | Radio Pack Universal RADIOPAK & Utility Case | Yes | No | | | 2 | HLN6602A | Chest Pack | Yes | No | | | 3 | PMLN7296A | 2.5 Inch Vibrating Belt Clip | Yes(1) | Yes | Only compatible with battery PMNN4488A | | 4 | RLN4570A | Break-A-Way Chest Pack | Yes | No | | | 5 | PMLN7008A | 2.5 Inch Belt Clip | Yes | No | | | 6 | PMLN4651A | Belt Clip 2 Inch | Yes | No | | | 7 | PMLN5844A | Nylon Case With 3 Inch Fixed Belt Loop
For FKP and LKP | Yes | No | Tested with NTN5243A | ^{**} SAR evaluated in reference model PMUD2904B & PMUD2906B ⁽¹⁾ The accessory provides highest Body SAR in previous SAR evaluation. **Table 7 (Continue)**
| Body worn No. | Body worn
Models | Description | SAR
Evaluated** | SAR
Tested | Comments | |---------------|---------------------|---|--------------------|---------------|---| | 8 | PMLN5838A | Hard Leather Case With 3 Inch Fixed
Belt Loop For FKP | Yes | No | Tested with NTN5243A | | 9 | PMLN5842A | Hard Leather Case With 2.5 Inch Swivel
Belt Loop For FKP and LKP | Yes | No | Tested without Belt
Loop with NTN5243A | | 10 | NTN5243A | Carrying Strap | Yes | No | Tested with PMLN5844A, PMLN5838A and PMLN5842A | | 11 | PMLN5840A | Hard Leather Case With 3 Inch Swivel
Belt Loop For FKP | No | No | By similarity to
PMLN5842A with
NTN5243A | | 12 | PMLN5845A | Nylon Case with 3 Inch Fixed Belt Loop - No Display | No | No | By similarity to
PMLN5844A with
NTN5243A | | 13 | PMLN5846A | Hard Leather Case with 3 Inch Swivel
Belt Loop - No Display | No | No | By similarity to
PMLN5842A with
NTN5243A | | 14 | PMLN5843A | Hard Leather Case with 2.5 Inch Swivel
Belt Loop - No Display | No | No | By similarity to
PMLN5842A with
NTN5243A | | 15 | PMLN5839A | Hard Leather Case with 3 Inch Fixed Belt
Loop - No Display | No | No | By similarity to
PMLN5838A with
NTN5243A | | 16 | 4200865599 | 1.75-Inch Black Leather Belt | No | No | | | 17 | 4280384F89 | RADIOPAK Lengthener | No | No | | | 18 | HLN9985B | Waterproof Bag | No | No | | | 19 | RLN4295A | Small Clip Epaulet Strap | No | No | | | 20 | 15012157001 | Accessory Dust Cover | No | No | | | 22 | RLN6487A | Leather Radio Strap-XL | Yes | No | Tested with
PMLN5838A,
PMLN5842A &
PMLN5844A | | 23 | RLN6488A | Anti-sway Strap Leather Radio Strap | Yes | No | Tested with
PMLN5838A,
PMLN5842A &
PMLN5844A | ^{**} SAR evaluated in reference model PMUD2904B & PMUD2906B # 7.4 Audio Accessories The Table below lists the offered audio accessories and their descriptions. The highest SAR configuration from the reference model was found with no audio accessory attached, simulating the Bluetooth type test configuration was the worst case overall. Table 8 | Audio | Audio Acc. | Table 6 | SAR | SAR | | |-------|-------------|--|-------------|--------|---| | No. | Models | Description | Evaluated** | Tested | Comments | | 1 | PMMN4024A | Remote Speaker MIC | Yes | No | | | 2 | PMLN5097A | IMPRES 3 Wire Surveillance -Black | Yes | No | | | | D) 015105 A | MT Series Over-The Head Headset, Direct | | 3.7 | | | 3 | RMN5137A | Radio Connect | Yes | No | | | 4 | PMLN5275C | Heavy Duty Headset | Yes | No | | | 5 | PMLN5973A | Ear Receive With Inline MIC/PTT MagOne | Yes | No | | | 6 | PMMN4050A | IMPRES Large RSM With Ear jack, Noise Canceling. | Yes | No | Tested with
RMN4055B | | 7 | PMMN4040A | Submersible Remote Speaker MIC | Yes | No | | | 8 | NNTN8383B | IMPRES Inc RSM, Audio Jack | Yes | No | Tested with
RMN4056B | | 9 | RMN5058A | Core Lightweight Headset With PTT & VOX | Yes | No | | | 10 | PMLN5101A | IMPRES Temple Transducer | Yes | No | | | 11 | PMLN5102A | Core Ultra-Lite Headset | Yes | No | | | 12 | PMLN5096B | Core Earset D-Shell | Yes | No | | | 13 | PMLN6853A | Next Generation BTH Heavy Headset
GCAI TIA4950 | Yes | No | | | 14 | PMLN5975A | Swivel Earpiece With MIC/PTT MagOne | Yes | No | | | 15 | PMLN6833A | Temple Transducer With Boom MIC | Yes | No | | | 16 | PMLN6095A | PTT Nexus Adapter For Motorola Series
Headsets | Yes | No | Tested with RMN4053B | | 17 | NNTN8459A | 1 Wire Surveillance Kit With Translucent
Tube, Black | Yes | No | | | 18 | PMLN6125A | Receive Only Surveillance Kit, Black | Yes | No | | | 19 | PMLN6127A | IMPRES 2 Wire Surveillance Kit, Black | Yes | No | | | 20 | PMLN6129A | IMPRES 2 Wire Surveillance Kit With
Translucent Tube, Black | Yes | No | | | 21 | PMLN6123A | IMPRES 3 Wire Surveillance Kit With
Translucent Tube, Black | Yes | No | | | 22 | RMN4055B | HT Series Listen Only Over The Head
Headset With 3.5mm Non Treaded
Connector | Yes | No | Tested with PMMN4050A | | 23 | RMN4056B | Receive Only Hard Hat Mount 3.5mm RT
Angle Plug | Yes | No | Tested with
NNTN8383B | | 24 | PMLN6765A | PTT/VOX Interface | Yes | No | Tested with
PMLN6833A and
PMLN6767A | | 25 | PMLN6767A | Remote Body PTT | Yes | No | Tested with PMLN6833A and PMLN6765A | ^{**} SAR evaluated in reference model PMUD2904B & PMUD2906B **Table 8 (Continued)** | . =. | | Table 8 (Continued) | | | | |--------------|----------------------|---|--------------------|---------------|---| | Audio
No. | Audio Acc.
Models | Description | SAR
Evaluated** | SAR
Tested | Comments | | 26 | RMN4053B | Tactical PRO Series Hard Hat Headset
With Nexus Connector | Yes | No | Tested with PMLN6095A | | 27 | PMMN4083A | IMPRES Large RSM APX IP68 Delta T (GCAI) | No | No | By similarity to
PMMN4050A, Phase
2 Accessory | | 28 | PMLN6852A | Next Generation Heavy Duty Headset
GCAI | No | No | By similarity to
PMLN6853A, Phase
2 Accessories | | 29 | RMN5138A | MT Series Neckband Headset, Direct
Radio Connect | No | No | By similarity to RMN5137A | | 30 | RMN5139A | MT Series Hard Hat Attached Headset,
Direct Radio Connect | No | No | By similarity to
RMN5137A | | 31 | PMLN6069A | Earbud with Inline MIC/PTT MagOne | No | No | By similarity to PMLN5973A | | 32 | PMLN5974A | Lightweight Headset with Boom MIC & PTT MagOne | No | No | By similarity to PMLN5973A | | 33 | PMLN5976A | Earset With Boom MIC Inline PTT MagOne | No | No | By similarity to PMLN5973A | | 34 | PMLN5979A | Breeze Headset with Boom MIC & PTT MagOne | No | No | By similarity to PMLN5975A | | 35 | PMLN5106A | Impres 3 Wire Surveillance - Beige | No | No | By similarity to PMLN5097A | | 36 | PMMN4025A | Impres Remote Speaker MIC | No | No | By similarity to PMMN4024A | | 37 | NNTN8382B | IMPRES Inc RSM, IP57 | No | No | By similarity to
NNTN8383B | | 38 | PMLN5111A | IMPRES 3-Wire Surveillance with Acoustic Tube - Black | No | No | By similarity to PMLN6123A | | 39 | PMLN5112A | IMPRES 3-Wire Surveillance with Acoustic Tube - Beige | No | No | By similarity to PMLN6123A | | 40 | PMLN6088A | MT Series Over-The Head Headset with Nexus Connector | No | No | By similarity to
RMN4053B | | 41 | PMLN6124A | IMPRES 3 Wire Surveillance Kit With Translucent Tube, Beige | No | No | By similarity to PMLN6123A | | 42 | PMLN6126A | Receive Only Surveillance Kit, Beige | No | No | By similarity to PMLN6125A | | 43 | PMLN6128A | IMPRES 2 Wire Surveillance Kit, Beige | No | No | By similarity to PMLN6127A | | 44 | PMLN6130A | IMPRES 2 Wire Surveillance Kit With Trans Tube, Beige | No | No | By similarity to PMLN6129A | | 45 | PMLN6827A | PTT Interface | No | No | By similarity to PMLN6765A | | 46 | PMLN6830A | Remote Ring PTT | No | No | By similarity to PMLN6767A | | 47 | PMMN4046A | IMPRES Large RSM with Volume,
Emergency, Programmable Button, IP57 | No | No | By similarity to PMMN4050A | | 48 | RLN5878A | Core 1 Wire Surveillance - Black | No | No | By similarity to PMLN6125A | | 49 | RLN5879A | Core 1 Wire Surveillance - Beige | No | No | By similarity to PMLN6125A | | 50 | RLN5880A | IMPRES 2 Wire Surveillance -Black | No | No | By similarity to PMLN6127A | | | | | | | | ^{**} SAR evaluated in reference model PMUD2904B & PMUD2906B **Table 8 (Continued)** | | Table 8 (Continued) | | | | | | | |--------------|---------------------|--|--------------------|---------------|-------------------------------|--|--| | Audio
No. | Audio Acc. Models | Description | SAR
Evaluated** | SAR
Tested | Comments | | | | 51 | RLN5881A | IMPRES 2 Wire Surveillance - Beige | No | No | By similarity to PMLN6127A | | | | 52 | RLN5882A | IMPRES 2-Wire Surveillance with Acoustic Tube - Black | No | No | By similarity to PMLN6129A | | | | 53 | RLN5883A | IMPRES 2-Wire Surveillance with
Acoustic Tube - Beige | No | No | By similarity to
PMLN6129A | | | | 54 | RMN4052A | Tactical PRO Series Over-The-Head
Headset with Nexus Connector | No | No | By similarity to
RMN4053B | | | | 55 | RMN5132A | HT Series Listen Only Neckband Headset with 3.5mm Non Threaded Connector | No | No | By similarity to
RMN4055B | | | | 56 | RMN5133A | HT Series Listen Only Hard Hat Headset with 3.5mm Non Threaded Connector | No | No | By similarity to
RMN4055B | | | | 57 | RMN5135A | Tactical PRO Series Neckband Headset with Nexus Connector | No | No | By similarity to
RMN4053B | | | | 58 | RMN4057B | Rx Only Hard Hat Mount 3.5mm Threaded | No | No | Receive only | | | | 59 | BDN6727A | Receive Only Earpiece, Ext Loud, Black | No | No | Receive only | | | | 60 | BDN6666A | Earpiece with Vol Control | No | No | Receive only | | | | 61 | BDN6728A | Receive Only Earpiece with Vol, Black | No | No | Receive only | | | | 62 | RLN5314A | Receive Only Surveillance Kit
(Beige)/Noise | No | No | Receive only | | | | 63 | RLN5313A | Receive Only Surveillance Kit (Black) /Noise | No | No | Receive only | | | | 64 | BDN6664A | Receive Only Earpiece Beige 1-Wire | No | No | Receive only | | | | 65 | BDN6719A | Earpiece w/3.5mm Threaded Plug | No | No | Receive only | | | | 66 | BDN6781A | Earbud, Single Speaker | No | No | Receive only | | | | 67 | BDN6726A | Receive Only Earpiece Black, 1-Wire | No | No | Receive only | | | | 68 | RLN4941A | Receive Only Earpiece with Translucent
Tube And Eartip - OTTO | No | No | Receive only | | | | 69 | WADN4190B | Over The Ear Receiver For RSM | No | No | Receive only | | | | 70 | PMLN4620B | D-Shell RX-Only Earpiece (3.5MM) | No | No | Receive only | | | | 71 |
AARLN4885B | Receive Only Earbud | No | No | Receive only | | | | 72 | MDRLN4885B | Receive-Only Earbud | No | No | Receive only | | | | 73 | MDRLN4941A | Receive-Only Earpiece | No | No | Receive only | | | | 74 | RLN6284A | Earpiece with Acoustic Tube Assembly-Beige | No | No | Received only | | | | 75 | RLN6285A | Earpiece with Acoustic Tube Assembly-
Black | No | No | Received only | | | | 76 | RLN6288A | Earpiece with High Noise Kit Assembly-Beige | No | No | Received only | | | | 77 | RLN6289A | Earpiece with High Noise Kit Assembly-
Black | No | No | Received only | | | | 78 | RLN6242A | Low Noise Kit with Translucent Tube And
1 Clear Rubber Ear Tip | No | No | Received only | | | | 79 | BDN6665A | Receive Only Earpiece, Ext Loud, Beige | No | No | Receive only | | | | 80 | RMN4051B | MT Series Hard Hat Attached Headset with Nexus Connector | No | No | By similarity to
RMN4053B | | | | 81 | 1580376E32 | MT Series Neckband Headset with Nexus
Connector | No | No | By similarity to
RMN4053B | | | [|] Connector | ** SAR evaluated in reference model PMUD2904B & PMUD2906B #### 8.0 Description of Test System # 8.1 Descriptions of Robotics/Probes/Readout Electronics DASY 5 Table 9 | Dosimetric System type | System version | DAE type | Probe Type | |--|----------------|--------------|---------------------| | Schmid & Partner
Engineering AG
SPEAG DASY 5 | 52.10.4.1527 | DAE4
DAE3 | EX3DV4
(E-Field) | The DASY5TM system is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations. # 8.2 Descriptions of Robotics/Probes/Readout Electronics DASY 6 Table 10 | Dosimetric System type | System version | DAE type | Probe Type | |--|----------------|----------|---------------------| | Schmid & Partner
Engineering AG
SPEAG DASY 6 | V16.0.0.116 | DAE4 | EX3DV4
(E-Field) | The DASY6TM system is operated per the instructions in the DASY6TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. # 8.3 Description of Phantom(s) Table 11 | | | N | Phantom
Dimensions | Material | Support | Loss | |--------------|-------------------|------------------------|-----------------------|-------------------|-----------------------|----------------| | Phantom Type | Phantom(s) Used | Material
Parameters | LxWxD (mm) | Thickness
(mm) | Structure
Material | Tangent (wood) | | Thumbom Type | 1 marron (s) escu | 200MHz -6GHz; | (11111) | (11111) | 1120001201 | (11000) | | Triple Flat | NA | Er = 3-5, | 280x175x175 | | | | | Triple Flat | NA | Loss Tangent = | 280X1/3X1/3 | | | | | | | ≤0.05 | | | | | | | | 300MHz -6GHz; | | | | | | SAM | NA | Er = < 5, | Human Model | 2mm
+/- 0.2mm | Wood | < 0.05 | | SAM | | Loss Tangent = | | | wood | < 0.03 | | | | ≤0.05 | | | | | | | | 300MHz -6GHz; | | | | | | Oval Flat | √ | Er = 4 + / - 1, | 600x400x190 | | | | | Oval Flat | | Loss Tangent = | 00084008190 | | | | | | | ≤0.05 | | | | | # 8.4 Description of Simulated Tissue The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use. The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications. # **Simulated Tissue Composition (percent by mass)** Table 12 | 14510 12 | | | | | | | |-----------------------|-------|-------|----------|-------|--|--| | | 150 | MHz | 2450 MHz | | | | | Ingredients | Head | Body | Head | Body | | | | Sugar | 55.40 | 49.70 | 0 | 0 | | | | Diacetin | 0 | 0 | 51.00 | 34.50 | | | | De ionized –
Water | 38.35 | 46.20 | 48.75 | 65.20 | | | | Salt | 5.15 | 3.00 | 0.15 | 0.20 | | | | HEC | 1.00 | 1.00 | 0 | 0 | | | | Bact. | 0.10 | 0.10 | 0.10 | 0.10 | | | # 9.0 Additional Test Equipment The Table below lists additional test equipment used during the SAR assessment. Table 13 | Table 15 | | | | | | | | | |---------------------------|---------------------------|---------------|---------------------|----------------------|--|--|--|--| | Equipment Type | Model
Number | Serial Number | Calibration
Date | Calibration Due Date | | | | | | SPEAG PROBE | EX3DV4 | 7486 | 6/18/2021 | 6/18/2022 | | | | | | SPEAG PROBE | EX3DV4 | 7511 | 6/18/2021 | 6/18/2022 | | | | | | SPEAG PROBE | EX3DV4 | 7533 | 4/19/2021 | 4/19/2022 | | | | | | SPEAG DAE | DAE4 | 1488 | 4/7/2021 | 4/7/2022 | | | | | | SPEAG DAE | DAE4 | 729 | 6/9/2021 | 6/9/2022 | | | | | | SPEAG DAE | DAE3 | 374 | 4/8/2021 | 4/8/2022 | | | | | | POWER AMPLIFIER | 50W 1000A | 14715 | CNR | CNR | | | | | | VECTOR SIGNAL GENERATOR | E4438C | MY42081753 | 8/27/2021 | 8/27/2022 | | | | | | POWER METER | E4419B | MY45103725 | 6/29/2021 | 6/29/2022 | | | | | | POWER METER | E4418B | MY45107917 | 7/23/2021 | 7/23/2022 | | | | | | POWER SENSOR | E9301B | MY55210003 | 5/29/2021 | 5/29/2022 | | | | | | POWER SENSOR | E9301B | MY41495733 | 5/29/2021 | 5/29/2022 | | | | | | BI-DIRECTIONAL COUPLER | 3020A | 41931 | 7/27/2021 | 7/27/2022 | | | | | | POWER AMPLIFIER | 50W100D | 0357646 | | | | | | | | VECTOR SIGNAL GENERATOR | E4438C | MY45091270 | 9/9/2021 | 9/9/2022 | | | | | | BI-DIRECTIONAL COUPLER | 3020A | 40295 | 7/8/2021 | 7/8/2022 | | | | | | POWER METER | E4418B | MY45100911 | 8/20/2021 | 8/20/2022 | | | | | | POWER METER | E4416A | MY50001037 | 8/16/2020 | 8/16/2022 | | | | | | POWER SENSOR | E4412A | MY61050006 | 4/21/2021 | 4/21/2022 | | | | | | POWER SENSOR | E9301B | MY41495594 | 5/29/2021 | 5/29/2022 | | | | | | DATA LOGGER | DSB | 16398050 | 8/18/2021 | 8/18/2022 | | | | | | NETWORK ANALYZER | E5071B | MY42403218 | 9/13/2021 | 9/13/2022 | | | | | | DIELECTRIC ASSESSMENT KIT | DAK-12 | 1069 | 4/7/2021 | 4/7/2022 | | | | | | SPEAG DIPOLE | CLA150 | 4010 | 1/17/2020 | 1/17/2023 | | | | | | SPEAG DIPOLE | D2450V2 | 782 | 2/20/2020 | 2/20/2023 | | | | | | POWER METER | E9301B | MY50280001 | 5/7/2021 | 5/7/2022 | | | | | | TEMPERATURE PROBE | HH806AU | 080307 | 11/26/2021 | 11/26/2022 | | | | | | THERMOMETER | 80PK-22 | 06032017 | 11/26/2021 | 11/26/2022 | | | | | | DIGITAL THERMOMETER | 1523 | 3492108 | 9/28/2021 | 9/28/2022 | | | | | | TEMPERATURE PROBE | PR-10L-4-
100-1/4-6-BX | WNWR037791 | 9/17/2021 | 9/17/2022 | | | | | | POWER METER | E4418B | GB40206480 | 11/24/2021 | 11/24/2022 | | | | | | POWER SENSOR | E9301B | MY55210006 | 5/7/2021 | 5/7/2022 | | | | | # 10.0 SAR Measurement System Validation and Verification DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively. # 10.1 System Validation The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below. Table 14 | Dates | Probe Calibration Point | | Probe
SN | 112000 | Measured Tissue
Parameters | | Validation | | | |------------|-------------------------|------|-------------|--------|-------------------------------|-------------|------------|----------|--| | | ro | ını | SIN | σ | $\epsilon_{ m r}$ | Sensitivity | Linearity | Isotropy | | | | | | | CV | V | | | | | | 05/09/2021 | Body | 150 | 7522 | 0.78 | 58.9 | Pass | Pass | Pass | | | 05/12/2021 | Head | 150 | 7533 | 0.75 | 51.8 | Pass | Pass | Pass | | | 07/07/2021 | Body | 150 | 7511 | 0.81 | 59.1 | Pass | Pass | Pass | | | 07/07/2021 | Head | 150 | | 0.74 | 51.7 | Pass | Pass | Pass | | | 07/09/2021 | Body | 150 | 7486 | 0.76 | 59.9 | Pass | Pass | Pass | | | 07/20/2021 | Head | 150 | | 0.73 | 51.7 | Pass | Pass | Pass | | | | | | | WL | AN | | | | | | 05/24/2021 | Body | 2450 | 7522 | 2.01 | 51.9 | Pass | Pass | Pass | | | 06/01/2021 | Head | 2450 | 7533 | 1.89 | 39.6 | Pass | Pass | Pass | | | 07/13/2021 | Body | 2450 | 7511 | 2.03 | 48.1 | Pass | Pass | Pass | | | 07/12/2021 | Head | 2450 | | 1.88 | 35.8 | Pass | Pass | Pass | | # 10.2 System Verification System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment. Table 15 | Probe
Serial # | Tissue Type | Dipole Kit / Serial # | Ref SAR @ 1W
(W/kg) | System Check
Results
Measured
(W/kg) | System Check Test
Results when
normalized to 1W
(W/kg) | Tested
Date | |-------------------|------------------|------------------------|------------------------
---|---|----------------| | | FCC Body | | 3.69 ± 10% | 3.84 | 3.84 | 12/09/2021# | | 7511 | Tee Body | SPEAG CLA150 /
4010 | 3.09 ± 10% | 3.95 | 3.95 | 12/22/2021 | | | IEEE/IEC
Head | | $3.60 \pm 10\%$ | 3.60 | 3.60 | 12/08/2021 | | | IEEE/IEC
Head | SPEAG D2450V2 /
782 | 54.40 ± 10% | 13.30 | 53.20 | 12/10/2021# | | 7533 | FCC Body | SPEAG D2450V2 /
782 | 51.90 ± 10% | 12.90 | 51.60 | 12/17/2021# | | 7486 | FCC Body | SPEAG CLA150 /
4010 | 3.69 ± 10% | 4.03 | 4.03 | 12/28/2021 | Note – * Targets were set for 150MHz per the guidance in KDB8865664 System verification options. Detailed results are available in Appendix I (refer to report template 13.12 for 150MHz with 300MHz dipole appendix) Note: # system verification check covers next testing day (within 24 hours) # **10.3** Equivalent Tissue Test Results Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment. Table 16 | | | | | | Dielectric | | |--------------------|-------------------------------------|------------------------------|-------------------------------|-----------------------------|-------------------|-------------| | Frequency
(MHz) | Tissue Type | Conductivity
Target (S/m) | Dielectric Constant
Target | Conductivity
Meas. (S/m) | Constant
Meas. | Tested Date | | 140 | FCC Body | 0.79
(0.75-0.83) | 62.2
(59.0-65.3) | 0.76 | 59.8 | 12/28/2021 | | | | | | 0.78 | 60.5 | 12/09/2021 | | 150 | FCC Body | 0.80
(0.76-0.84) | 61.9
(58.8-65.0) | 0.76 | 59.0 | 12/22/2021 | | 130 | | | | 0.76 | 59.5 | 12/28/2021 | | | IEEE/
IEC Head | 0.76
(0.72-0.80) | 52.3
(49.7-54.9) | 0.73 | 51.5 | 12/08/2021 | | | EGG D. I | 0.80 | 61.9 | 0.78 | 60.4 | 12/09/2021 | | 151 | 51 FCC Body (0.76-0.84) (58.8-65.0) | | 0.76 | 59.0 | 12/22/2021 | | | 167 | IEEE/
IEC Head | 0.77
(0.73-0.81) | 51.5
(49.0-54.1) | 0.74 | 50.8 | 12/08/2021 | | 2412 | FCC Body | 1.91
(1.82-2.01) | 52.8
(47.5-58.0) | 1.92 | 49.4 | 12/16/2021# | | 2412 | IEEE/
IEC Head | 1.77
(1.68-1.86) | 39.3
(35.3-43.2) | 1.75 | 35.5 | 12/10/2021 | | 2437 | FCC Body | 1.94
(1.84-2.03) | 52.7
(47.4-58.0) | 1.95 | 49.3 | 12/16/2021# | | 2437 | IEEE/
IEC Head | 1.79
(1.70-1.88) | 39.2
(35.3-43.1) | 1.77 | 36.5 | 12/10/2021 | | 2450 | FCC Body | 1.95
(1.85-2.05) | 52.7
(47.4-58.0) | 1.96 | 49.3 | 12/16/2021# | | 2450 | IEEE/
IEC Head | 1.80
(1.71-1.89) | 39.2
(35.3-43.1) | 1.77 | 36.5 | 12/10/2021 | | 2462 | FCC Body | 1.97
(1.87-2.07) | 52.7
(57.4-58.0) | 1.98 | 49.2 | 12/16/2021# | | 2 702 | IEEE/
IEC Head | 1.81
(1.72-1.90) | 39.2
(35.3-43.1) | 1.78 | 36.5 | 12/10/2021# | Note: # tissue covers next testing day (within 24 hours) #### FCC ID: AZ489FT7154 / IC: 109U-89FT7154 #### 11.0 Environmental Test Conditions The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein: Table 17 | | Target | Measured | |---------------------|------------|----------------------| | | | Range: 19.7 – 24.3°C | | Ambient Temperature | 18 − 25 °C | Avg. 21.6 °C | | | | Range: 19.3-22.4°C | | Tissue Temperature | 18 − 25 °C | Avg. 20.4°C | Relative humidity target range is a recommended target The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated. #### 12.0 DUT Test Setup and Methodology #### 12.1 Measurements SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing. The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements. Table 18 | Descri | iption | ≤3 GHz | > 3 GHz | | |--|-----------------------------|---|--|--| | Maximum distance from close (geometric center of probe sen | - | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | Maximum probe angle from proormal at the measurement loc | | 30° ± 1° | 20° ± 1° | | | | | ≤ 2 GHz: ≤ 15 mm | $3-4$ GHz: ≤ 12 mm | | | | | $2-3$ GHz: ≤ 12 mm | $4-6 \text{ GHz:} \leq 10 \text{ mm}$ | | | | | When the x or y dimension of the test device, in | | | | Maximum area scan spatial | resolution: Av Area Av Area | the measurement plane orientation, is smaller | | | | Waximum area scan spatiar | resolution. AxArea, AyArea | than the above, the measurement resolution must | | | | | | be \leq the corresponding x or y dimension of the | | | | | | test device with at least one measurement point | | | | | | on the test device. | | | | Maximum zoom scan spatial re | esolution: ΔxZoom, ΔyZoom | \leq 2 GHz: \leq 8 mm | $3-4 \text{ GHz: } \leq 5 \text{ mm*}$ | | | | | $2-3 \text{ GHz: } \leq 5 \text{ mm*}$ | $4-6 \text{ GHz: } \leq 4 \text{ mm*}$ | | | Maximum zoom scan spatial | uniform grid: ΔzZoom(n) | | $3-4$ GHz: ≤ 4 mm | | | resolution, normal to | | ≤ 5 mm | $4-5$ GHz: ≤ 3 mm | | | phantom surface | | | 5 – 6 GHz: ≤ 2 mm | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. ## **12.2 DUT Configuration(s)** The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646. KDB 941225 was applied to LTE test configurations. Agilent's PXT Wireless Communication Test Set was used for LTE testing with the TTI (Transmit Time Interval) set to maximum. #### 12.3 **DUT Positioning Procedures** The positioning of the device for each body location is described below and illustrated in Appendix G. #### 12.3.1 Body The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory without the offered audio accessories as applicable. #### 12.3.2 Head Not applicable. #### 12.3.3 Face The DUT was positioned with its' front sides separated 2.5cm from the phantom. ^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. #### **12.4 DUT Test Channels** The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula. $$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$ Where N_c = Number of channels $F_{high} = Upper channel$ $F_{low} = Lower channel$ F_c = Center channel ## 12.5 SAR Result Scaling Methodology The calculated 1-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" is scaled using the following formula: $$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$ $P_{max} = Maximum Power (W)$ P int = Initial Power (W) Drift = DASY drift results (dB) $SAR_meas = Measured 1-g$ DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation Note: for conservative results, the following are applied: If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$. Drift = 1 for positive drift Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted. #### 12.6 DUT Test Plan The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW and LTE modes and 50% duty cycle was applied to PTT configurations in the final results. Standalone and simultaneous BT testing were assessed in sections 13.14 and 14.0 per the guidelines of KDB 447498. #### FCC ID: AZ489FT7154 / IC: 109U-89FT7154 #### 13.0 DUT Test Data # 13.1 LMR assessments at the Body The conducted power measurements for all test channels according to FCC allocated frequency range (150.8-173.4 MHz) are listed in Table 18. Table 19 | Test
Freq (MHz) | Power (W) | |-----------------|-----------| | 150.8000 | 5.980 | | 152.0000 | 5.980 | | 155.0000 | 5.960 | | 160.0000 | 5.960 | | 165.0000 | 5.960 | | 166.5000 | 5.950 | | 173.4000 | 5.940 | The highest applicable configuration at the body found in the reference model PMUD2904B & PMUD2906B, FCC ID: AZ489FT7066, IC ID: 109U-89FT7066 has been selected to perform spot check. SAR plot (in bold) of the result is presented in Appendix E. Table 20 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-
SAR
(W/kg) | Max
Calc.
1g-
SAR
(W/kg) | Run# | | | | |-----------|----------------------------|--------------------|--------------------|--------------------|--------------------|----------------------|-------------------------------|--------------------------------------|---|--|--|--| | | Highest Body Configuration | | | | | | | | | | | | | PMAD4116A | PMNN4488A | PMLN7296A | NONE | 150.800 | 6.00 | -1.01 | 4.77 | 3.01 | Reference Model
Highest at Body
AZ-AB-151021-14 | | | | | PMAD4116A | PMNN4488A | PMLN7296A | NONE | 150.800 | 6.00 | -0.33 | 3.23 | 1.74 | MA-AB-211209-13 | | | | #### 13.2 LMR assessments at the Face The highest applicable configuration at the face found in the reference model PMUD2904B & PMUD2906B, FCC ID: AZ489FT7066, IC ID: 109U-89FT7066 has been selected to perform spot check. SAR plot (in bold) of the result is presented in Appendix E. Table 21 | Antenna | Battery | Carry
Accessory | Cable
Accessory
Highest Bod | Test Freq
(MHz)
y Configura | Init Pwr (W) | SAR
Drift
(dB) | Meas.
1g-
SAR
(W/kg) | Max
Calc.
1g-
SAR
(W/kg) | Run# | |-----------|-----------|--------------------|-----------------------------------|-----------------------------------|--------------|----------------------|-------------------------------|--------------------------------------|--| | PMAD4118A | PMNN4491C | Front @ 2.5cm | NONE | 166.500 | 5.86 | -0.45 | 2.50 | 1.42 | Reference Model
SAR at Face
ZZ-FACE-200114-
04# | | PMAD4118A | PMNN4491C | Front @ 2.5cm | NONE | 166.500 | 6.00 | -0.15 | 2.51 | 1.30 | MA-FACE-
211208-14 | #### 13.3 Assessment for WLAN The tables below represent the output power measurements for WLAN 2.4 GHz 802.11b/g/n. Table 22 | Band | Mode | Ch. BW | Ch. | Freq. (MHz) | Measured
conducted
power (W) | Antenna
max power
(W) | |---------|-----------|--------|-----|-------------|------------------------------------|-----------------------------| | | 802.11b | | 1 | 2412 | 0.0180 | | | | | 20 | 6 | 2437 | 0.0167 | 0.0224 | | | (1Mbps) | | 11 | 2462 | 0.0158 | | | | 802.11g | 20 | 1 | 2412 | 0.0053 | | | 2.4 GHz | | | 6 | 2437 | 0.0053 | 0.0083 | | | (6Mbps) | | 11 | 2462 | 0.0049 | | | | 902.11 | | 1 | 2412 | 0.0094 | | | | 802.11n | 20 | 6 | 2437 | 0.0090 | 0.0126 | | | (6.5Mbps) | | 11 | 2462 | 0.0080 | | Note: 802.11b was chosen over 802.11 g & n for testing because it has the highest max power. Table below indicated the SAR results that have performed based on reference model configurations and across the frequencies bands. SAR plot (in bold) of the result is presented in Appendix E. Table 23 | | | | Table | | | | | | | |------------|-----------|-----------------|-----------|------------|-------------|-------|--------|----------------------------|-------------| | | | | Cable | Test Freq | Init
Pwr | | 1g-SAR | Max
Calc.
1g-
SAR | | | Antenna | Battery | Carry Accessory | Accessory | (MHz) | (W) | (dB) | (W/kg) | (W/kg) | Run# | | | | | Assessmen | t at Body | | | | | | | | | | | | | | | | Reference | | | | | | 2412 | | | | | Model | | | | | | 2412 | 0.018 | -0.17 | 0.0180 | 0.023 | FIE-AB- | | | PMNN4488A | | | | | | | | 151023-07 | | 0104039J80 | | DMI NGOCA | NT | 2412 | | | | | AR(IRA)-AB- | | WiFi Ant | | PMLN7296A | None | 2412 | 0.018 | 0.04 | 0.008 | 0.010 | 211217-03# | | | | | | 2437 | | | | | AR(IRA)-AB- | | | | | | 2437 | 0.017 | -0.22 | 0.008 | 0.012 | 211217-04# | | | | | | 2462 | | | | | AR(IRA)-AB- | | | | | | 2402 | 0.016 | 0.11 | 0.008 | 0.011 | 211217-05## | | | | | Assessmei | nt at Face | | | | | | | | | | Assessmen | n at race | | | | | Reference | | | | | | | | | | | Model | | | | | | 2412 | 0.018 | 0.27 | 0.057 | 0.082 | FIE-FACE- | | | | | | | 0.010 | 0.27 | 0.007 | 0.002 | 151021-08 | | 0104039J80 | | | | | | | | | MA-FACE- | | WiFi Ant | NNTN8560A | Front @ 2.5cm | None | 2412 | 0.018 | -0.22 | 0.0170 | 0.022 | 211210-15 | | | | | | 2.125 | | | | | MA-FACE- | | | | | | 2437 | 0.017 | 0.08 | 0.0170 | 0.023 | 211210-16 | | | | | | | | | | | AR-FACE- | | | | | | 2462 | 0.016 | -0.32 | 0.0130 | 0.020 | 211211-03# | | | | | | 2462 | 0.016 | -0.32 | 0.0130 | 0.020 | | #### 13.4 Assessment for BT ### 13.4.1 FCC US Requirement Per guidelines in KDB 447498, the following formula was used to determine the test exclusion for standalone Bluetooth transmitter; [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] *[$\sqrt{F(GHz)}$] = 2.4, which is \leq 3 for 1-g SAR #### Where: Max. power = 7.7 mW (10.0 mW*77.0% duty cycle) Min. test separation distance = 5 mm for actual test separation < 5 mm F(GHz) = 2.48 GHz Per the result from the calculation above, the standalone SAR assessment Was not required for Bluetooth band. Therefore, SAR results for Bluetooth are not reported herein. #### 13.4.2 ISED Requirement Based on RSS-102 Issue 5, exemption limits for SAR evaluation for controlled devices at Bluetooth frequency band with separation distance \leq 5mm was 20 mW. Standalone Bluetooth transmitter operates at Maximum conducted power: - = 10.0 mW * 77.0% - = 7.7 mW or 8.86 dBm Equivalent isotropically radiated power (EIRP): - = Maximum conducted power, dBm + Antenna gain, dBi - = 8.86 dBm + (-4 dBi) - = 4.86 dBm or 3.06 mW Higher output power level, maximum power 7.7 mW was below the threshold power level 20mW. Hence SAR test was not required for Bluetooth band. ## 13.5 Assessment for ISED Canada As per ISED Notice 2020-DRS0022, if the worst-case reported SAR value in the reference model's original RF technical brief is less than or equal to 6W/kg, spot check must be performed for the configuration yielding the worst-case SAR identified for the reference model. Table 24 indicated the spot check results for Body and Face worst-case SAR configurations. The spot check results was not above 30% of the worst-case SAR value in the original SAR report for the reference model, no additional testing shall be performed. SAR plots of the highest results per Table (bolded) are presented in Appendix E. Table 24 | | Table 24 | | | | | | | | | | | | |------------------------|---------------|--------------------|--------------------|--------------------|--------------------|----------------------|-------------------------------|----------------------------------|---|--|--|--| | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-
SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | | | | | | Body | | | | | | | | | | | | | PMAD4117A | PMNN4488
A | PMLN7296A | NONE | 139.7 | 6.00 | -1.01 | 5.27 | 3.32 | Reference Model
Highest at Body
AZ-AB-151021-18 | | | | | PMAD4117A | PMNN4488
A | PMLN7296A | NONE | 139.7 | 5.87 | -0.65 | 4.22 | 2.50 | FZ-AB-211228-04 | | | | | | | | | Face | | | | | | | | | | PMAD4118A | PMNN4491C | Front @
2.5cm | NONE | 166.500 | 5.86 | -0.45 | 2.50 | 1.42 | Reference Model
Highest SAR at
Face
ZZ-FACE-200114-
04# | | | | | PMAD4118A | PMNN4491C | NONE | NONE | 166.500 | 6.00 | -0.15 | 2.51 | 1.30 | MA-FACE-211208-
14 | | | | | | • | | Body (V | WLAN 2.4 | GHz) | | | • | | | | | | 0104039J80
WiFi Ant | PMNN4488
A | PMLN7296A | None | 2412 | 0.018 | -0.17 | 0.0180 | 0.023 | Reference Model
FIE-AB-151023-
07 | | | | | 0104039J80
WiFi Ant | PMNN4488
A | PMLN7296A | None | 2412 | 0.018 | 0.04 | 0.008 | 0.010 | AR(IRA)-AB-
211217-03# | | | | | 0104039J80
WiFi Ant | PMNN4488
A | PMLN7296A | None | 2437 | 0.017 | -0.22 | 0.008 | 0.012 | AR(IRA)-AB-
211217-04# | | | | | 0104039J80
WiFi Ant | PMNN4488
A | PMLN7296A | None | 2462 | 0.016 | 0.11 | 0.008 | 0.011 | AR(IRA)-AB-
211217-05## | | | | | | • | | Face (V | VLAN 2.4 | GHz) | | | • | | | | | | 0104039J80
WiFi Ant | NNTN8560A | None | None | 2412 | 0.018 | 0.27 | 0.057 | 0.082 | Reference Model
FIE-FACE-
151021-08 | | | | | 0104039J80
WiFi Ant | NNTN8560A | None | None | 2412 | 0.018 | -0.22 | 0.0170 | 0.022 | MA-FACE-
211210-15 | | | | | 0104039J80
WiFi Ant | NNTN8560A | None | None | 2437 | 0.017 | 0.08 | 0.0170 | 0.023 | MA-FACE-
211210-16 | | | | | 0104039J80
WiFi Ant | NNTN8560A | None | None | 2462 | 0.016 | -0.32 | 0.0130 | | AR-FACE-
211211-03# | | | | #### 13.6 Shortened Scan Assessment A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY6TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F. Table 25 | | | | | | | | | Max
Calc. | | |-----------|-----------|--------------------|--------------------|--------------------|------------|---------------|------------------|--------------|-----------------| | | | | | | Init | SAR | Meas.
| 1g- | | | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Pwr
(W) | Drift
(dB) | 1g-SAR
(W/kg) | | Run# | | PMAD4116A | PMNN4488A | PMLN7296A | None | 150.800 | 6.00 | -0.07 | 3.58 | 1.82 | AR-AB-211222-24 | #### 14.0 Simultaneous Transmission Exclusion for BT Per guidelines in KDB 447498, the following formula was used to determine the test exclusion to an antenna that transmits simultaneously with other antennas for test distances ≤ 50 mm: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] *[$\sqrt{F(GHz)/X}$] = 0.32W/kg, which is \leq 0.4 W/kg (1g) #### Where: X = 7.5 for 1g-SAR; 18.75 for 10g Max. power = 7.7mW (10mW*77% duty cycle) Min. test separation distance = 5mm for actual test separation < 5mm F(GHz) = 2.48 GHz Per the result from the calculation above, simultaneous exclusion is applied and therefore SAR results are not reported herein. #### 15.0 Simultaneous Transmission between LMR, WLAN and BT This device uses a single transmitter module and antenna for both WLAN and BT/BT LE. WLAN and BT cannot transmit simultaneously. Simultaneous transmission for BT had been excluded as mentioned in section 14.0. The maximum sourced-based time-averaged output power for tested 802.11b is 22.4 mW while the BT/BT LE is 10mW. Therefore the measured SAR from 802.11b is used in conjunction with LMR for simultaneous results. The Table below summarizes the simultaneous transmissions between LMR and WLAN bands. Table 26 | | | LMR Bands | |-----------|--------------|-------------------| | | Errog (MIIg) | UHF | | | Freq. (MHz) | (150.8-173.4 MHz) | | WLAN Band | 2412 - 2462 | $\sqrt{}$ | # 16.0 Results Summary Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands and ISED Canada Frequency bands, the highest Operational Maximum Calculated 1-gram and 10-gram average SAR values found for this filing: Table 27 | Designator | Frequency
band | Max Calc at Body
(W/kg) | Max Calc at Face
(W/kg) | | | | | | | | | |------------|-------------------|----------------------------|----------------------------|--|--|--|--|--|--|--|--| | | (MHz) | 1g-SAR | 1g-SAR | | | | | | | | | | FCC | | | | | | | | | | | | | LMR | 150.8-173.4 | 1.74 | 1.30 | | | | | | | | | | WLAN | 2412-2462 | 0.012 | 0.023 | | | | | | | | | | | | ISED | | | | | | | | | | | LMR | 138-174 | 2.50 | 1.30 | | | | | | | | | | WLAN | 2412-2462 | 0.012 | 0.023 | | | | | | | | | All results are scaled to the maximum The highest combined 1g-SAR results for simultaneous is indicated in the following Table: Table 28 | Designator | Frequency bands | Combined 1g-
SAR
(W/kg) | |------------|------------------------|-------------------------------| | | Body | | | FCC | LMR (150.8-173.4) MHz) | | | rcc | and WLAN band | 1.75 | | Industry | LMR (136-173.4) and | | | Canada | WLAN band | 2.51 | | | Face | | | FCC | LMR (150.8-173.4) MHz) | 1.32 | | rcc | and WLAN band | 1.52 | | Industry | LMR (136-173.4) and | 1.32 | | Canada | WLAN band | 1.52 | Notes: For this combined 1-g-SAR, there is no new higher SAR value compared with the current filed results. The test results clearly demonstrate compliance with FCC Occupational/Controlled RF Exposure limits of 8 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5). ## 17.0 Variability Assessment Per the guidelines in KDB 865664 SAR variability assessment is not required because SAR results are less than 4.0W/kg (Occupational) or 0.8W/kg (General population). #### **18.0** System Uncertainty A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value Occupational exposure is less than 7.5W/kg. **Report ID: P31125-EME-00017** Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A. FCC ID: AZ489FT7154 / IC: 109U-89FT7154 Report ID: P31125-EME-00017 # Appendix A Measurement Uncertainty Budget Table A.1: Uncertainty Budget for Device Under Test, for 150 MHz | а | b | c | d | e = f(d,k) | f | g | h = c x f / e | $i = c \times g / e$ | k | |--|-------------------------|------------|--------------|------------|-------------|--------------|---------------|--------------------------|----------| | Uncertainty Component | IEEE
1528
section | Tol. (± %) | Prob
Dist | Div. | c_i (1 g) | c_i (10 g) | 1 g | 10 g u _i (±%) | v_i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.7 | N | 1.00 | 1 | 1 | 6.7 | 6.7 | ∞ | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 0.707 | 0.707 | 1.9 | 1.9 | ∞ | | Hemispherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0.707 | 0.707 | 3.9 | 3.9 | ∞ | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | ∞ | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | 8 | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Integration Time | E.2.8 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | 8 | | RF Ambient Conditions -
Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | Probe Positioner Mech. Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | 8 | | Probe Positioning w.r.t Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | ∞ | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | 8 | | Test sample Related | | | | | | | | | | | Test Sample Positioning | E.4.2 | 3.2 | N | 1.00 | 1 | 1 | 3.2 | 3.2 | 29 | | Device Holder Uncertainty | E.4.1 | 4.0 | N | 1.00 | 1 | 1 | 4.0 | 4.0 | 8 | | SAR drift | 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | 8 | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | 8 | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | 8 | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | N | 1.00 | 0.64 | 0.43 | 2.1 | 1.4 | 8 | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | ∞ | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | N | 1.00 | 0.6 | 0.49 | 1.1 | 0.9 | ∞ | | Combined Standard Uncertainty | | | RSS | | | | 11 | 11 | 477 | | Expanded Uncertainty (95% CONFIDENCE LEVEL) | | | k=2 | | | | 23 | 22 | | - a) Column headings a-k are given for reference. - b) Tol. tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty Table A.2: Uncertainty Budget for Device Under Test, for 2450 MHz | | | | | e = | | | h = c x f / | $i = c \times g /$ | | |---|-------------------------|------------|--------------|--------|-------------|--------------|-------------------------------|--------------------------------|----------| | a | b | c | d | f(d,k) | f | g | e | e | k | | Uncertainty Component | IEEE
1528
section | Tol. (± %) | Prob
Dist | Div. | ci
(1 g) | ci
(10 g) | 1 g
u _i
(±%) | 10 g
u _i
(±%) | v_i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.0 | N | 1.00 | 1 | 1 | 6.0 | 6.0 | 8 | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 0.707 | 0.707 | 1.9 | 1.9 | 8 | | Hemispherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0.707 | 0.707 | 3.9 | 3.9 | 8 | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 8 | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | 8 | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Integration Time | E.2.8 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | 8 | | RF Ambient Conditions -
Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | 8 | | Probe Positioner Mech. Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | ∞ | | Probe Positioning w.r.t Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | 8 | | Max. SAR Evaluation (ext., int., | | | | | | | | | | | avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | ∞ | | Test sample Related | | | | | | | | | | | Test Sample Positioning | E.4.2 | 3.2 | N | 1.00 | 1 | 1 | 3.2 | 3.2 | 29 | | Device Holder Uncertainty | E.4.1 | 4.0 | N | 1.00 | 1 | 1 | 4.0 | 4.0 | 8 | | SAR drift | 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | ~ | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | ∞ | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Conductivity | Баа | 2.2 | N.T | 1.00 | 0.64 | 0.42 | 2.1 | 1.4 | | | (measurement) | E.3.3 | 3.3 | N | 1.00 | 0.64 | 0.43 | 2.1 | 1.4 | ∞ | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | ∞ | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | N | 1.00 | 0.6 | 0.49 | 1.1 | 0.9 | ∞ 410 | | Combined Standard Uncertainty | | | RSS | | | | 11 | 11 | 419 | | Expanded Uncertainty (95% CONFIDENCE LEVEL) | | | k=2 | | | | 22 | 22 | | - a) Column headings *a-k* are given for reference. - b) Tol. tolerance in influence quantity. - c) Prob. Dist.
Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty Table A.3: Uncertainty Budget for System Validation (dipole & flat phantom) for 150 MHz | | | | | | | | h = c x f | i = | | |---|-------------------------|------------------|--------------|------------|----------------------|--------------|-------------------------------|--|------------------| | a | b | \boldsymbol{c} | d | e = f(d,k) | f | g | / e | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | \boldsymbol{k} | | Uncertainty Component | IEEE
1528
section | Tol. (± %) | Prob
Dist | Div. | c _i (1 g) | c_i (10 g) | 1 g
U _i
(±%) | 10 g
U _i
(±%) | v _i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.7 | N | 1.00 | 1 | 1 | 6.7 | 6.7 | 8 | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 8 | | Spherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0 | 0 | 0.0 | 0.0 | 8 | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 8 | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | 8 | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Integration Time | E.2.8 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | ∞ | | RF Ambient Conditions - Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | 8 | | Probe Positioner Mechanical Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | 8 | | Probe Positioning w.r.t. Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | 8 | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | ∞ | | Dipole | | | | | | | | | | | Dipole Axis to Liquid Distance | 8, E.4.2 | 2.0 | R | 1.73 | 1 | 1 | 1.2 | 1.2 | ∞ | | Input Power and SAR Drift Measurement | 8, 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | ∞ | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | 8 | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | R | 1.73 | 0.64 | 0.43 | 1.2 | 0.8 | ∞ | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | ∞ | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | R | 1.73 | 0.6 | 0.49 | 0.6 | 0.5 | ∞ | | Combined Standard Uncertainty | | | RSS | | | | 10 | 9 | 99999 | | Expanded Uncertainty (95% CONFIDENCE LEVEL) | | | k=2 | | | | 19 | 18 | | - a) Column headings *a-k* are given for reference. - b) Tol. tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) ci sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) *ui* SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty Table A.4: Uncertainty Budget for System Validation (dipole & flat phantom) for 2450 MHz | | | | | | | | h = | i = | | |--|-------------------------|------------|--------------|--------|----------------------|--------------|-------------------------------|--------------------------------|----------------| | | 1 | | , | e = | C | | cxf | cx | , | | a | b | c | d | f(d,k) | J | g | / e | g/e | k | | Uncertainty Component | IEEE
1528
section | Tol. (± %) | Prob
Dist | Div. | c _i (1 g) | c_i (10 g) | 1 g
U _i
(±%) | 10 g
U _i
(±%) | v _i | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.0 | N | 1.00 | 1 | 1 | 6.0 | 6.0 | 8 | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 8 | | Spherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0 | 0 | 0.0 | 0.0 | 8 | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 8 | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | 8 | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | ∞ | | Integration Time | E.2.8 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | ∞ | | RF Ambient Conditions - Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | ∞ | | Probe Positioner Mechanical Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | ∞ | | Probe Positioning w.r.t. Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | ∞ | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | ∞ | | Dipole | | | | | | | | | | | Dipole Axis to Liquid Distance | 8, E.4.2 | 2.0 | R | 1.73 | 1 | 1 | 1.2 | 1.2 | ∞ | | Input Power and SAR Drift Measurement | 8, 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | ∞ | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | ∞ | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | R | 1.73 | 0.64 | 0.43 | 1.2 | 0.8 | ∞ | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | 8 | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | R | 1.73 | 0.6 | 0.49 | 0.6 | 0.5 | 8 | | Combined Standard Uncertainty | | | RSS | | | | 9 | 9 | 99999 | | Expanded Uncertainty
(95% CONFIDENCE LEVEL) | | | k=2 | | | | 18 | 17 | | - a) Column headings *a-k* are given for reference. - b) Tol. tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty # Appendix B Probe Calibration Certificates FCC ID: AZ489FT7154 / IC: 109U-89FT7154 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst C Service sulsse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Mot Motorola Solutions MY Certificate No: EX3-7486_Jun21 # CALIBRATION CERTIFICATE Object EX3DV4 - SN:7486 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: June 18, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID. | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-860 Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013, Dec20) | Dec-21 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E44198 | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | Calibrated by: Jeton Kastrati Name Function Laboratory Technician Approved by: Katja Pokovic Technical Manager This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Issued: June 21, 2021 Certificate No: EX3-7486 Jun21 Page 1 of 23 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the
recognition of calibration certificates Glossary: TSL NORMx,y,z ConvF DCP tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 3 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 3 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - EC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7486_Jun21 Page 2 of 23 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7486 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.38 | 0.47 | 0.49 | ± 10.1 % | | DCP (mV) ⁸ | 99.0 | 91.5 | 97.5 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |----------|-----------------------------|---|---------|-----------|-------|-----------|----------|----------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 133.9 | ± 3.3 % | ± 4.7 % | | | particular and a second | Y | 0.00 | 0.00 | 1.00 | 200000000 | 137.2 | | 7500051-130 | | | | Z | 0.00 | 0.00 | 1.00 | | 135.5 | 1 | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 6.91 | 76.74 | 14.90 | 10.00 | 60.0 | ± 4.2 % | ± 9.6 % | | AAA | | Y | 10.94 | 82.20 | 16.58 | 10000000 | 60.0 | 5-030003-03000 | | | | | Z | 20.00 | 91.76 | 20.63 | l | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 88.86 | 17.47 | 6.99 | 80.0 | ±2.9% | ± 9.6 % | | AAA | | Y | 20.00 | 89.09 | 17.63 | 200000 | 80.0 | | 1 75500000 | | | | Z | 20.00 | 96.75 | 21.92 | | 80.0 | 1 | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 95.06 | 19.03 | 3.98 | 95.0 | ±1.8% | ± 9.6 % | | AAA | | Y | 20.00 | 92.53 | 18.10 | 1000000 | 95.0 | | 5274585575 | | | | Z | 20.00 | 110.11 | 26.85 | | 95.0 | 1 | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 110.08 | 24.67 | 2.22 | 120.0 | | ± 9.6 % | | AAA | | Y | 20.00 | 100.93 | 20.96 | STALKE - | 120.0 | | | | | 8 | Z | 20.00 | 129.65 | 34.26 | | 120,0 | 1 | | | 10387- | QPSK Waveform, 1 MHz | X | 1.70 | 67.37 | 15.57 | 1.00 | 150.0 | ±2.1% ± | ± 9.6 % | | AAA | STANDAR SALES AND SURFACE | Y | 1.87 | 67.98 | 16.23 | | 150.0 | | 10-1111/2 | | | | Z | 1.76 | 67.40 | 15.78 | 1 | 150.0 | 1 | | | 10388- | QPSK Waveform, 10 MHz | X | 2.20 | 68.20 | 16.06 | 0.00 | 150.0 | ± 1.1 % | ±9.6 % | | AAA | | Y | 2,49 | 69.66 | 16.90 | 9000000 I | 150.0 | | 12-11-22-2 | | | | Z | 2.30 | 68.67 | 16.34 | 1 | 150.0 | 1 | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.65 | 70.40 | 19.07 | 3.01 | 150.0 | ±1.2% | ± 9.6 % | | AAA | | Y | 2.42 | 67.66 | 18.00 | 033000 | 150.0 | | 1200000 | | | | Z | 3.07 | 72.66 | 20.27 | | 150.0 | 1 | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.50 | 67.23 | 15.93 | 0.00 | 150.0 | ±1.2% | ±9.6% | | AAA | 155 | Y | 3.58 | 67.22 | 16.14 | 1,200,000 | 150.0 | .0 | 5000000 | | | | Z | 3.57 | 67.43 | 16.09 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.81 | 65.83 | 15.67 | 0.00 | 150.0 | 0.77 | ± 9.6 % | | AAA | 20 53 | Y | 4.89 | 65.53 | 15.74 | 1 | 150.0 | 1 | | | STATE OF | | Z | 4.89 | 65.87 | 15.76 | 1 | 150.0 | 1 | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7486_Jun21 Page 3 of 23 ⁶ The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ⁹ Numerical linearization parameter: uncertainty not required. ¹ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. June 18, 2021 EX3DV4- SN:7486 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7486 ### Sensor Model Parameters | | C1
fF | C2
fF | α
V-1 | T1
ms,V ⁻² | T2
ms.V⁻⁴ | T3
ms | T4
V-2 | T5
V-1 | Т6 | |---|----------|----------|----------|--------------------------|--------------|----------|-----------|-----------|------| | X | 37.0 | 271.91 | 34.67 | 5.55 | 0.05 | 4.99 | 1.70 | 0.00 | 1.01 | | Υ | 44.1 | 342.17 | 38.13 | 10.19 | 0.00 | 5.01 | 0.00 | 0.31 | 1.00 | | Z | 40.8 | 304.97 | 35.65 | 8.14 | 0.00 | 5.05 | 1.92 | 0.03 | 1.01 | ### Other Probe Parameters | Sensor Arrangement | Triangular | |---|--| | Connector Angle (*) | -159.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | |
Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | | | THE STATE OF S | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7486_Jun21 Page 4 of 23 EX3DV4-SN:7486 June 18, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7486 ### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ⁶
(mm) | Unc
(k=2) | |----------------------|--------------------------|-----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 52,3 | 0.76 | 13.52 | 13.52 | 13.52 | 0.00 | 1.00 | ± 13.3 % | | 300 | 45.3 | 0.87 | 12.20 | 12.20 | 12.20 | 0.09 | 1.25 | ± 13.3 % | | 450 | 43.5 | 0.87 | 11.24 | 11.24 | 11.24 | 0.16 | 1.30 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.44 | 10.44 | 10.44 | 0.48 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.15 | 10.15 | 10.15 | 0.29 | 1.13 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.02 | 10.02 | 10.02 | 0.38 | 0.92 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.99 | 8.99 | 8,99 | 0.32 | 0.80 | ± 12.0 % | | 1810 | 40.0 | 1,40 | 8.58 | 8.58 | 8.58 | 0.30 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.37 | 8.37 | 8.37 | 0.28 | 0.86 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 8.32 | 8.32 | 8.32 | 0.31 | 0.84 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.02 | 8.02 | 8.02 | 0.33 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.69 | 7.69 | 7.69 | 0.30 | 0.85 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.38 | 7.38 | 7.38 | 0.35 | 0.85 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.20 | 7.20 | 7.20 | 0.30 | 1.35 | ± 14.0 % | | 3700 | 37.7 | 3.12 | 7.11 | 7.11 | 7.11 | 0.30 | 1.35 | ± 14.0 % | | 5250 | 35.9 | 4.71 | 5.46 | 5.46 | 5.46 | 0.40 | 1.80 | ± 14.0 % | | 5500 | 35.6 | 4.96 | 4.93 | 4.93 | 4.93 | 0.40 | 1.80 | ± 14.0 % | | 5600 | 35.5 | 5.07 | 4.73 | 4.73 | 4.73 | 0.40 | 1.80 | ± 14.0 % | | 5750 | 35.4 | 5.22 | 4.90 | 4.90 | 4.90 | 0.40 | 1.80 | ± 14.0 % | Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at antibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency filter than 110 MHz. All frequencies up to 6 GHz, the validity of tissue parameters (r and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during dailoration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7486_Jun21 Page 5 of 23 EX3DV4- SN:7486 June 18, 2021 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7486 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ⁶
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 61.9 | 0.80 | 13.16 | 13.16 | 13.16 | 0.00 | 1.00 | ± 13.3 % | | 300 | 58.2 | 0.92 | 11.73 | 11.73 | 11.73 | 0.04 | 1.25 | ± 13.3 % | | 450 | 56.7 | 0.94 | 11.40 | 11.40 | 11.40 | 0.11 | 1.20 | ± 13.3 % | | 750 | 55.5 | 0.96 | 10.20 | 10.20 | 10.20 | 0.45 | 0.85 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.91 | 9.91 | 9.91 | 0.37 | 0.95 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.71 | 9.71 | 9.71 | 0.36 | 0.99 | ± 12.0 9 | | 1450 | 54.0 | 1.30 | 9.02 | 9.02 | 9.02 | 0.40 | 0.80 | ± 12.0 9 | | 1810 | 53.3 | 1.52 | 8.28 | 8.28 | 8.28 | 0.40 | 0.86 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.12 | 8.12 | 8.12 | 0.36 | 0,95 | ± 12.0 % | | 2100 | 53.2 | 1.62 | 8.10 | 8.10 | 8.10 | 0.33 | 1,00 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.84 | 7.84 | 7.84 | 0.45 | 0.90 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.65 | 7.65 | 7.65 | 0.45 | 0.90 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.46 | 7.46 | 7.46 | 0.33 | 08,0 | ± 12.0 % | | 3500 | 51,3 | 3.31 | 6.52 | 6.52 | 6.52 | 0.40 | 1.35 | ± 14.0 % | | 3700 | 51.0 | 3.55 | 6.42 | 6.42 | 6.42 | 0.40 | 1.35 | ± 14.0 % | | 5250 | 48.9 | 5.38 | 4.70 | 4.70 | 4.70 | 0.50 | 1.90 | ± 14.0 % | | 5500 | 48.6 | 5.65 | 4.14 | 4.14 | 4.14 | 0.50 | 1.90 | ± 14.0 % | | 5600 | 48.5 | 5.77 | 4.08 | 4.08 | 4.08 | 0.50 | 1.90 | ± 14.0 % | | 5750 | 48.3 | 5.94 | 4.19 | 4.19 | 4.19 | 0.50 | 1.90 | ± 14.0 % | Frequency validity abovs 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at celibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 5 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies up to 6 GHz, the validity of tissue parameters (a and o) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7486_Jun21 Page 6 of 23 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7486_Jun21 Page 7 of 23 Certificate No: EX3-7486_Jun21 Page 8 of 23 ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-7486_Jun21 Page 9 of 23 # **Conversion Factor Assessment** ### Deviation from Isotropy in Liquid Error (o, 3), f = 900 MHz Certificate No: EX3-7486_Jun21 Page 10 of 23 EX3DV4- SN:7486 June 18, 2021 ### **Appendix: Modulation Calibration Parameters** | UID | Rev | Communication System Name | Group | PAR
(dB) | Unc ^c
(k=2) | |-------|-----|---|-----------|-------------|---------------------------| | 0 | | CW | CW | 0.00 | ±4.7% | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 % | | 10011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 % | | 10012 | CAB | IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 % | | 10013 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9,46 | ±9.6% | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 % | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 % | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 % | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 9 | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ± 9.6 9 | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 9 | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ± 9.6 9 | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ±9.69 | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ± 9.6 9 | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PV4-DQPSK, DH1) | Bluetooth | 7.74 | ±9.69 | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ± 9.6 9 | | 10035 | CAA | IEEE 802,15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ± 9.6 9 | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ±9.69 | | 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ± 9.6 % | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.10 | ± 9.63 | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.57 | ± 9.6 ° | | 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 7.78 | ± 9.6 ° | | 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ± 9.6 % | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ± 9.6 9 | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ± 9.6 % | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ± 9.6 % | | 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | ±9.63 | | 10059 | CAB | IEEE 802.11b WIFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ± 9.6 9 | | 10060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ±9.63 | | 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ± 9.6 9 | | 10062 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ± 9.6 % | | 10063 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ± 9.6 % | | 10064 | CAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ±9.6 % | | 10065 | CAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ± 9.6 % | | 10066 | CAD | IEEE
802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ± 9.6 % | | 10067 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ± 9.6 9 | | 10068 | CAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ± 9.6 9 | | 10069 | CAD | IEEE 802,11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ± 9.6 % | | 10071 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ±9.69 | | 0072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ±9.69 | | 0073 | CAB | IEEE 802.11g WIFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 % | | 0074 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ±9.6% | | 0075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ± 9.6 % | | 0076 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ± 9.6 % | | 0077 | CAB | IEEE 802.11g WiFl 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ± 9.6 % | | 0081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ± 9.6 % | | 0082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, Pt/4-DQPSK, Fullrate) | AMPS | 4.77 | | | 0090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ± 9.6 % | | 0097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ±9.6% | | 8000 | DAC | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 11 of 23 | 10099 | CAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ± 9.6 % | |-------|-----|--|---------|-------|---------| | 10100 | CAC | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ±9.6 % | | 10101 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10102 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10103 | DAC | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 % | | 10104 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TOO | 9.97 | ± 9.6 % | | 10105 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TOO | 10.01 | ±9.6 % | | 10108 | CAE | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FOD | 5.80 | ± 9.6 % | | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FOD | 6.43 | ±9.6 % | | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDO | 6.44 | ± 9.6 % | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDO | 6.59 | ± 9.6 % | | 10113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDO | 6.62 | ± 9.6 % | | 10114 | CAG | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10115 | CAG | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ±9.6 % | | 10116 | CAG | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ± 9.6 % | | 10117 | CAG | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ± 9.6 % | | 10118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 % | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ±9.6 % | | 10140 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ±9.6 % | | 10141 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ± 9.6 % | | 10142 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDO | 5.73 | ± 9.6 % | | 10143 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ± 9.6 % | | 10144 | CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ± 9.6 % | | 10145 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ± 9.6 % | | 10146 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | ± 9.6 % | | 10147 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ± 9.6 % | | 10149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10151 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TOD | 9.28 | ± 9.6 % | | 10152 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10153 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.05 | ± 9.6 % | | 10154 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10155 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10156 | CAF | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5,79 | ± 9.6 % | | 10157 | CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10158 | CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6,62 | ± 9.6 % | | 10159 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ± 9.6 % | | 10160 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ± 9.6 % | | 10161 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10162 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ± 9.6 % | | 10166 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ± 9.6 % | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 % | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ± 9.6 % | | 10169 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10170 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10171 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10172 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10173 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10174 | CAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10175 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10176 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10177 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FOD | 5.73 | ± 9.6 % | | 10178 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10179 | AAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10180 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 12 of 23 | 10181 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5,72 | ± 9.6 % | |-------|-----|---|---------|---|---| | 10182 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10183 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FD0 | 6.50 | ± 9.6 % | | 10184 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10185 | CAI | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ± 9.6 % | | 10186 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10187 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10188 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDO | 6.52 | ± 9.6 % | | 10189 | CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 84-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10193 | CAE | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8,09 | ± 9.6 % | | 10194 | AAD | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ± 9.6 % | | 10195 | CAE | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.21 | ± 9.6 % | | 10196 | CAE | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8,10 | ± 9.6 % | | 10197 | AAE | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10198 | CAF | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10219 | CAF | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ± 9.6 % | | 10220 | AAF | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8,13 | ± 9.6 % | | 10221 | CAC | IEEE 802,11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10222 | CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ± 9.6 % | | 10223 | CAD | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAD | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ± 9.6 % | | 10225 | CAD | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ± 9.6 % | | 10226 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TOO | 9.49 | ± 9.6 % | | 10227 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TOD | 10.26 | ± 9.6 % | | 0228 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDO | 9.22 | ± 9.6 % | | 10229 | DAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDO | 9.48 | ± 9.6 % | | 10230 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TOO | 10.25 | ± 9.6 % | | 10231 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TOD | 9,19 | ± 9.6 % | | 10232 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TOO | 9.48 | ± 9.6 % | | 10233 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TOO | 10.25 | ± 9.6 % | | 10234 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10235 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz. 16-QAM) | LTE-TOD | 9.48 | ± 9.6 % | | 10236 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz. 64-QAM) | LTE-TOO | 10.25 | ± 9.6 % | | 10238 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TOD | 9.21 | ± 9.6 % | | 10239 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TOD | 9.48 | ± 9.6 % | | 10239 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10240 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.21 | ± 9.6 % | | 10242 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TOD | 9.82 | ± 9.6 % | | 10243 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAW) | LTE-TOD | 9.86 | ± 9.6 % | | 10244 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TOD | 9.46 | ± 9.6 % | | 10245 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TOD | 10.06 | ± 9.6 % | | 10246 | - | LTE-TDD (SC-FDMA, 50% RB, 3 MHz,
QPSK) | LTE-TOD | 10.06 | ± 9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TOD | 9.30 | ± 9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TOD | 9.91 | ± 9.6 % | | 10249 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TOD | 10.09 | ± 9.6 % | | 0250 | CAG | LTE-TDD (SC-FDMA, 50% RB. 10 MHz, 16-QAM) | LTE-TOD | 7 | ± 9.6 % | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TOD | 9.81 | ± 9.6 % | | 0252 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TOD | 9.24 | ± 9.6 % | | 0253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TOD | 9.24 | ± 9.6 % | | 10254 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TOD | 10.14 | ± 9.6 % | | 10255 | CAB | LTE-TOD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TOD | 9.20 | 0.0000000000000000000000000000000000000 | | 0256 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TOD | 9.20 | ± 9.6 % | | 0257 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TOD | 10.08 | ±9.6% | | 10258 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TOD | 9.34 | ±9.6 % | | | UPU | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | CIE.IDD | 9.34 | ±9.6% | Certificate No: EX3-7486_Jun21 Page 13 of 23 | 10260 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TOD | 9.97 | ± 9.6 % | |-------|-----|--|----------|---|---------| | 10261 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.83 | ± 9.6 % | | 10263 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TOD | 10.16 | ± 9.6 % | | 10264 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TOD | 9.23 | ± 9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TOD | 9.92 | ± 9.6 % | | 10266 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.07 | ± 9.6 % | | 10267 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TOD | 9.30 | ± 9.6 % | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TOO | 10.06 | ± 9.6 % | | 10269 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TOD | 10.13 | ± 9.6 % | | 10270 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ± 9.6 % | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8,10) | WCDMA | 4.87 | ± 9.6 % | | 10275 | CAD | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCOMA | 3.96 | ± 9.6 % | | 10277 | CAD | PHS (QPSK) | PHS | 11.81 | ± 9.6 % | | 10278 | CAD | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 % | | 10279 | CAG | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 12.18 | ± 9.6 % | | 10290 | CAG | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ± 9.6 % | | 10291 | CAG | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ± 9.6 % | | 10292 | CAG | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ± 9.6 % | | 10293 | CAG | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ±9.6 % | | 10295 | CAG | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 % | | 10297 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ± 9.6 % | | 10298 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10299 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ± 9.6 % | | 10300 | CAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6% | | 10301 | CAC | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WIMAX | 12.03 | ± 9.6 % | | 10302 | CAB | IEEE 802,16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WIMAX | 12.57 | ± 9.6 % | | 10303 | CAB | IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 12.52 | ± 9.6 % | | 10304 | CAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WIMAX | 11.86 | ±9.6 % | | 10305 | CAA | IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WIMAX | 15.24 | ± 9.6 % | | 10306 | CAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) | WIMAX | 14.67 | ± 9.6 % | | 10307 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WIMAX | 14.49 | ± 9.6 % | | 10308 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WiMAX | 14.46 | ± 9.6 % | | 10309 | AAB | IEEE 802.16s WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3) | WiMAX | 14.58 | ± 9.6 % | | 10310 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 | WIMAX | 14.57 | ± 9.6 % | | 10311 | AAB | LTE-FDO (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 % | | 10313 | AAD | IDEN 1:3 | IDEN | 10.51 | ±9.6 % | | 10314 | AAD | IDEN 1:6 | IDEN | 13.48 | ± 9.6 % | | 10315 | AAD | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) | WLAN | 1.71 | ± 9.6 % | | 10316 | AAD | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc do) | WLAN | 8.36 | ±9.6 % | | 10317 | AAA | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ± 9.6 % | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ± 9.6 % | | 10354 | AAA | Pulse Waveform (200Hz. 40%) | Generic | 3.98 | ± 9.6 % | | 10355 | AAA | Pulse Waveform (200Hz. 60%) | Generic | 2.22 | ± 9.6 % | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ± 9.6 % | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic | 5.10 | ± 9.6 % | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ± 9.6 % | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic | 8.27 | ± 9.6 % | | 10399 | AAA | 64-QAM Waveform, 40 MHz. | Generic | 6.27 | ± 9.6 % | | 10400 | AAD | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | ±9.6 % | | 10401 | AAA | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) | WLAN | 8.60 | ±9.6 % | | 10402 | AAA | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | | | | WAD | DODERSON STOCKER, A CANADA CAN | | 100000000000000000000000000000000000000 | ±9.6 % | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.77 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 14 of 23 | 10410 | AAA | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) | LTE-TOO | 7.82 | ± 9.6 % | |----------|-------------------|--|----------|--------|---------| | 10414 | AAA | WLAN CCDF, 64-QAM, 40MHz | Generic | 8.54 | ± 9.6 % | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1.54 | ±9.6 % | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10417 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ± 9.6 % | | 10419 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ± 9.6 % | | 10422 | AAA | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ± 9.6 % | | 10423 | AAA | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ± 9.6 % | | 10424 | AAE | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ± 9.6 % | | 10425 | AAE | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ± 9.6 % | | 10426 | AAE | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ± 9.6 % | | 10427 | AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ± 9.6 % | | 10430 | AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ± 9.6 % | | 10431 | AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ± 9.6 % | | 10432 | AAB | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10433 | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10434 | AAG | W-COMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ± 9.6 % | | 10435 | AAA | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | ±9.69 | | 10447 | AAA | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.56 | ± 9.6 % | | 10448 | AAA
 LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.53 | ± 9.6 % | | 10449 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7.51 | ± 9.6 % | | 10450 | AAA | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.48 | ± 9.6 % | | 10451 | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | WCDMA | 7.59 | ± 9.6 % | | 10453 | AAC | Validation (Square, 10ms, 1ms) | Test | 10.00 | ± 9.6 9 | | 10456 | AAC | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) | WLAN | 8.63 | ± 9.6 % | | 10457 | AAC | UMTS-FDD (DC-HSDPA) | WCDMA | 6.62 | ± 9.6 9 | | 10458 | AAC | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.55 | ± 9.6 9 | | 10459 | AAC | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | CDMA2000 | 8.25 | ±9.69 | | 10460 | AAC | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ±9.69 | | 10461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10462 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.30 | ± 9.6 % | | 10463 | AAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10464 | AAD | LTE-TDO (SC-FOMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ±9.69 | | 10465 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ±9.69 | | 10466 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | | | 10467 | AAA | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10469 | The second second | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 10.000 | ±9.69 | | 10470 | AAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | | 8.56 | ±9.69 | | 10471 | AAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 9 | | 10471 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 9 | | 10472 | AAC | | | 8.57 | ± 9.6 % | | 10474 | AAA | LTE-TOD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub)
LTE-TOD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10474 | AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10475 | AAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 10477 | AAC | | LTE-TDD | 8.32 | ± 9.6 % | | 10478 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | AMAGEO C | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10480 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8,18 | ±9.69 | | 10481 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ±9.6% | | 10482 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.71 | ± 9.6 % | | 10483 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) | LTE-TDD | 8.39 | ±9.6% | | 10484 | AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.47 | ± 9.6 % | | 10485 | AAB | LTE-TDO (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.59 | ± 9.6 % | | 10486 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.38 | ± 9.6 % | | 10487 | AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.60 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 15 of 23 | 10488 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TOD | 7.70 | ± 9.6 % | |-------|-----|--|---------|------|---------| | 10489 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.31 | ± 9.6 % | | 10490 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.54 | ± 9.6 % | | 10491 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TOD | 7.74 | ± 9.6 % | | 10492 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.41 | ± 9.6 % | | 10493 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TOD | 8,55 | ± 9.6 % | | 10494 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub) | LTE-TOD | 7.74 | ±9.6 % | | 10495 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.37 | ± 9.6 % | | 10496 | AAE | LTE-TDO (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.54 | ± 9.6 % | | 10497 | AAE | LTE-TOD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TOD | 7.67 | ± 9.6 % | | 10498 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.40 | ± 9.6 % | | 10499 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.68 | ± 9.6 % | | 10500 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 % | | 10501 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.44 | ± 9.6 % | | 10502 | AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.52 | ±9.6 % | | 10503 | AAB | LTE-TOO (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.72 | ± 9.6 % | | 10504 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.31 | ± 9.6 % | | 10505 | AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10506 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10507 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.36 | ± 9.6 % | | 10508 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.55 | ± 9.6 % | | 10509 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | LTE-TOD | 7.99 | ± 9.6 % | | 10510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.49 | ± 9.6 % | | 10511 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.51 | ± 9.6 % | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.42 | ± 9.6 % | | 10514 | AAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 10515 | AAE | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10516 | AAE | IEEE 802,11b WiFi 2.4 GHz (D\$5S, 5.5 Mbps, 99pc dc) | WLAN | 1.57 | ± 9.6 % | | 10517 | AAF | IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 99pc.do) | WLAN | 1.58 | ± 9.6 % | | 10518 | AAF | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10519 | AAF | IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10520 | AAB | IEEE 802,11a/h WIFI 5 GHz (OFDM, 18 Mbps, 99pc dc) | WLAN | 8.12 | ± 9.6 % | | 10521 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc) | WLAN | 7.97 | ± 9.6 % | | 10522 | AAB | IEEE 802.11a/h WIFi 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10523 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) | WLAN | 8.08 | ± 9.6 % | | 10524 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10525 | AAC | IEEE 802.11ac WIFi (20MHz, MCS0, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10526 | AAF | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10527 | AAF | IEEE 802.11ac WIFI (20MHz, MC52, 99pc dc) | WLAN | 8.21 | ± 9.6 % | | 10528 | AAF | IEEE 802.11ac WIFI (20MHz, MCS3, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10529 | AAF | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc do) | WLAN | 8.36 | ± 9.6 % | | 10531 | AAF | IEEE 802.11ac WIFi (20MHz, MCS6, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10532 | AAF | IEEE 802.11ac WIFI (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10533 | AAE | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10534 | AAE | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) | WLAN | 8.45 | ±9.6% | | 10535 | AAE | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10536 | AAF | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10537 | AAF | IEEE 802.11ac WiFI (40MHz, MCS3, 99pc dc) | WLAN | 8.44 | ±9.6% | | 10538 | AAF | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10540 | AAA | IEEE 802.11ac WiFI (40MHz, MCS6, 89pc dc) | WLAN | 8.39 | ± 9.6 % | | 10541 | AAA | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10542 | AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10543 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10544 | AAC | IEEE 802.11ac WIFI (80MHz, MCS0, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10545 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 16 of 23 | 10546 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc) | WLAN | 8.35 | ± 9.6 % | |-------|-------|---|----------|------|---------| | 10547 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10548 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10550 | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10551 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10552 | AAC | JEEE 802,11ac WiFi (80MHz, MCS8, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10553 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10554 | AAC | IEEE 802.11ac WIFI (160MHz, MCS0, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10555 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc) | WLAN | 8.47 | ±9.6% | | 10556 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10557 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc) | WLAN | 8.52 | ± 9.6 % | | 10558 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc) | WLAN | 8.61 | ± 9.6 % | | 10560 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc) | WLAN | 8.73 | 19.6% | | 10561 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc) | WLAN | 8.56 | ± 9.6 % | | 10562 | AAC | IEEE 802.11ac WIFI (160MHz, MCSB, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10563 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10564 | AAC | IEEE 802.11g
WIFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10565 | AAC | IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10566 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | 8.13 | ± 9.6 % | | 10567 | AAC | IEEE 802.11g WiFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 % | | 10568 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10569 | AAC | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN | 8.10 | ± 9.6 % | | 10570 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10571 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10572 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc) | WLAN | 1.99 | | | 10573 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10574 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10575 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10576 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10577 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10578 | AAD | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10579 | AAD | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10580 | AAD | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10581 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10582 | AAD | IEEE 802 11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | - | | 10583 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10584 | AAD | IEEE 802.11a/h WiFl 5 GHz (OFDM, 9 Mbps, 90pc dc) | WLAN | | ± 9.6 % | | 10585 | AAD | IEEE 802.11ah WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10586 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | | ± 9.6 % | | 10587 | AAA | IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10588 | AAA | IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10589 | AAA | IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10590 | AAA | IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10591 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10592 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) | WLAN | 8.63 | ± 9.6 % | | 10593 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) | WLAN | 8.79 | ±9.6 % | | 10594 | AAA | [EEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10595 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc 6c) | | 8.74 | ± 9.6 % | | 10596 | _ | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10597 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCSS, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10598 | 10000 | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | 10000000 | 8.72 | ± 9.6 % | | 10599 | AAA | IEEE 802.11h (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ± 9.6 % | | 10600 | AAA | IEEE 802.11h (HT Mixed, 40MHz, MCS0, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10601 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10601 | AAA | | WLAN | 8.82 | ± 9.6 % | | 10603 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10003 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc) | WLAN | 9.03 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 17 of 23 | 10604 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc) | WLAN | 8.76 | ± 9.6 % | |-------|--|--|-----------|-------|-------------------| | 10605 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc) | WLAN | 8.97 | ± 9.6 % | | 10606 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ±9.6% | | 10607 | AAC | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc) | WLAN | 8.64 | ±9.6% | | 10608 | AAC | IEEE 802 11ac WiFi (20MHz, MCS1, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10609 | AAC | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ±9.6 % | | 10610 | AAC | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.78 | ±9.6% | | 10611 | AAC | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10612 | AAC | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10613 | AAC | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc) | WLAN | 8.94 | ±9.6% | | 10614 | AAC | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10615 | AAC | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10616 | AAC | IEEE 802.11ac WIFI (40MHz, MCS0, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10617 | AAC | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10618 | AAC | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ± 9.6 % | | 10619 | AAC | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc) | WLAN | 8,86 | ±9.6 % | | 10620 | AAC | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10621 | AAC | IEEE 802,11ac WiFi (40MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10622 | AAC | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc) | WLAN | 8.68 | ± 9.6 % | | 10623 | AAC | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10624 | AAC | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10625 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10626 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10627 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10628 | AAC | IEEE 802.11ac W/Fi (80MHz, MCS2, 90pc dc) | WLAN | 8.71 | ±9.6
% | | 10629 | AAC | IEEE 802.11ac WIFI (80MHz, MCS3, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10630 | AAC | IEEE 802.11sc WIFI (80MHz, MCS4, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10631 | AAC | IEEE 802.11sc WIFI (80MHz, MCS5, 90pc dc) | WLAN | 8.81 | The second second | | 10632 | AAC | IEEE 802.11ac WIFI (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10833 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10634 | AAC | IEEE 802.11ac WIFI (80MHz, MCS8, 90pc dc) | WLAN | | ± 9.6 % | | 10635 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc) | WLAN | 8.80 | ±9.6 % | | 10636 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10637 | AAC | IEEE 802.11ac WIFI (160MHz, MCS1, 90pc dc) | WLAN | 8.83 | ±9.6% | | 10638 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc) | WLAN | 277.5 | ±9.6 % | | 10639 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10840 | The state of s | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10641 | AAC | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc) | WLAN | 8.98 | ± 9.6 % | | 10642 | AAC | IEEE 802.11ac WiFI (160MHz, MCS6, 90pc dc) | 10000000 | 9.06 | ± 9.6 % | | 10643 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc) | WEAN | 9.06 | ± 9.6 % | | 10644 | AAC | IEEE 802.11ac WiFI (160MHz, MCS8, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10845 | AAC | The state of s | WLAN | 9.05 | ±9.6% | | 10646 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc) | WLAN | 9.11 | ±9.6% | | 10647 | AAC | LTE-TOD (SC-FOMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) | LTE-TOD | 11.96 | ±9.6 % | | | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11.95 | ± 9.6 % | | 10648 | AAC | CDMA2000 (1x Advanced) | CDMA2000 | 3.45 | ± 9.6 % | | 10652 | AAC | LTE-TOD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.91 | ± 9.6 % | | 10653 | AAC | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.42 | ± 9.6 % | | 10654 | AAC | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | 2 9.6 % | | 10655 | AAC | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.21 | ± 9.6 % | | 10658 | AAC | Pulse Waveform (200Hz, 10%) | Test | 10.00 | ± 9.6 % | | 10659 | AAC | Pulse Waveform (200Hz, 20%) | Test | 6.99 | ± 9.6 % | | 10660 | AAC | Pulse Waveform (200Hz, 40%) | Test | 3.98 | ±9.6 % | | 10661 | AAC | Pulse Waveform (200Hz, 60%) | Test | 2.22 | ±9.6 % | | 10662 | AAC | Pulse Waveform (200Hz. 80%) | Test | 0.97 | ± 9.6 % | | 10670 | AAC | Bluetooth Low Energy | Bluetooth | 2.19 | ±9.6% | | 10671 | AAD | IEEE 802.11ax (20MHz, MCS0, 90pc dc) | WLAN | 9.09 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 18 of 23 June 18, 2021 EX3DV4-- SN:7486 | 10672 | AAD | IEEE 802.11ax (20MHz, MCS1, 90pc dc) | WLAN | 8.57 | ± 9.6 % | |-------|-----|---------------------------------------|------|------|---------| | 10673 | AAD | IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10674 | AAD | IEEE 802.11ax (20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10675 | AAD | IEEE 802.11ax (20MHz, MCS4, 90pc dc) | WLAN | 8.90 | ±9.6% | | 10676 | AAD | IEEE 802.11ax (20MHz, MC55, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10677 | AAD | IEEE 802.11ax (20MHz, MCS6, 90pc do) | WLAN | 8.73 | ± 9.6 % | | 10678 | AAD | IEEE 802,11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | ±9.6% | | 10679 | AAD | IEEE 802.11ax (20MHz, MCS8, 90pc do) | WLAN | 8.89 | ± 9.6 % | | 10680 | AAD | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ±9.6 % | | 10681 | AAG | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ± 9.6 % | | 10682 | AAF | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ±9.6 % | | 10683 | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10684 | AAC | IEEE 802.11ax (20MHz, MCS1, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10685 | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10686 | AAC | IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN | 8.28 | ± 9.6 % | | 10687 | AAE | IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10688 | AAE | IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10689 | AAD | IEEE 802.11ax (20MHz, MCS6, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10690 | AAE | IEEE 802.11ax (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10691 | AAB | IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10692 | AAA | IEEE 802.11ax (20MHz, MCS9, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10693 | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10694 | AAA | IEEE 802.11ax (20MHz, MCS11, 99pc dc) | WLAN | 8.57 | ± 9.6 % | | 10695 | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10696 | AAA | IEEE 802,11ax (40MHz, MCS1, 90pc dc) | WLAN | 8.91 | ±9.6 % | | 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ±9.6% | | 10698 | AAA | IEEE 802.11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ±9.6 % | | 10699 | AAA | IEEE 802,11ax (40MHz, MCS4, 90pc dc) | WLAN | 8.82 | ±9.6 % | | 10700 | AAA | IEEE 802.11ax (40MHz, MCS5, 90pc dc) | WLAN | 8.73 | ±9.6% | | 10701 | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10702 | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN | 8.82 | ±9.6% | | 10704 | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.56 | ± 9.6 % | | 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.69 | ±9.6% | | 10706 | AAC | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.66 | ±9.6% | | 10707 | AAC | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8.32 | ±9.6% | | 10708 | AAC | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10709 | AAC | IEEE 802.11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.33 | ±9.6% | | 10710 | AAC | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.29 | ±9.6% | | 10711 | AAC | IEEE 802,11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10712 | AAC | IEEE 802.11ax (40MHz, MCS5, 99pc dc) | WLAN | 8.67 | ± 9.6 % | | 10713 | AAC | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10714 | AAC | IEEE 802.11ax (40MHz, MCS7, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10715 | AAC | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10716 | AAC | IEEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10717 | AAC | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ±9.6% | | 10718 | AAC | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ± 9.6 % | | 10719 | AAC | IEEE 802.11ax (80MHz, MCS0, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10720 | AAC | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10721 | AAC | IEEE 802.11ax (80MHz, MCS2, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10722 | AAC | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.55 | ± 9.6 % | | 10723 | AAC | IEEE 802.11ax (80MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10724 | AAC | IEEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10725 | AAC | IEEE 802.11ax (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10726 | AAC | IEEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10727 | AAC | IEEE 802.11ax (80MHz, MCSB, 90pc dc) | WLAN | 8.66 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 19 of 23 | 10728 | AAC | IEEE 802.11ax (80MHz, MCS9, 90pc dc) | WLAN | 8.65 | ± 9.6 % | |----------|-----|--|--------------------------------|-------------------|--------------------------| | 10729 | AAC | IEEE 802.11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10730 | AAC | IEEE 802,11ax (80MHz, MCS11, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10731 | AAC | IEEE 802.11ax (80MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10732 | AAC | IEEE 802,11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10733 | AAC | IEEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10734 | AAC | IEEE 802.11ax (80MHz, MCS3, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10735 | AAC | IEEE 802.11ax (80MHz, MCS4, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10736 | AAC | IEEE 802.11ax (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10737 | AAC | IEEE 802.11ax (80MHz, MCS6, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10738 | AAC | IEEE 802.11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10739 | AAC | IEEE 802.11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10740 | AAC | IEEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ±9.6 % | | 10741 | AAC | IEEE 802.11ax (80MHz, MCS10, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10742 | AAC | IEEE 802.11ax (80MHz, MCS11, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10743 | AAC | IEEE 802.11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10744 | AAC | IEEE 802.11ax (160MHz, MCS1, 90pc dc) | WLAN | 9.16 | ± 9.6 % | | 10745 | AAC | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10746 | AAC | IEEE 802.11ax (160MHz, MCS3, 90pc do) | WLAN | 9.11 | ± 9.6 % | | 10747 | AAC | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN | 9.04 | ± 9.6 % | | 10748 | AAC | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10749 | AAC | IEEE 802.11ax (160MHz, MCS6, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10750 | AAC | IEEE 802.11ax (160MHz, MCS7, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10751 | AAC | IEEE 802.11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10752 | AAC | IEEE 802.11ax (160MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10753 | AAC | IEEE 802.11ax (160MHz, MCS10, 90pc dc) | WLAN | 9.00 | 2 9.6 % | | 10754 | AAC | IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10755 | AAC | JEEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.64 | ± 9.6 % | | 10756 | AAC | IEEE 802.11ax (160MHz, MCS1, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10757 | AAC | IEEE 802,11ax (160MHz, MCS2, 99pc dc) | WLAN | 8.77 | ±9.6 % | | 10758 | AAC | IEEE 802.11ax (160MHz, MCS3, 99pc dc) | WLAN | 8.69 | ±9.6 % | | 10759 | AAC | IEEE 802.11ax (160MHz, MCS4, 99pc dc) | WLAN | 8.58 | ±9.6 % | | 10760 | AAC | IEEE
802.11ax (160MHz, MCS5, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10761 | AAC | IEEE 802.11ax (160MHz, MCS6, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10762 | AAC | IEEE 802.11ax (160MHz, MCS7, 99pc dc) | WLAN | 8.49 | 2 9.6 % | | 10763 | - | IEEE 802.11ax (160MHz, MCS8, 99pc dc) | WLAN | 10110 | The second second second | | 10764 | AAC | IEEE 802.11ax (160MHz, MCS9, 99pc dc) | WLAN | 8.53
8.54 | ± 9.6 % | | 10765 | AAC | IEEE 802.11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10766 | | IEEE 802.11ax (160MHz, MCS11, 99pc dc) | WLAN | The second second | | | 10767 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.51 | ±9.6 % | | 10768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ±9.6% | | 10769 | AAC | 5G NR (CP-0FDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10770 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10771 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | | 8.02 | ±9.6% | | 10772 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD | 8.02 | ±9.6 % | | 10773 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ± 9.6 % | | 10774 | AAC | | | 8.03 | ±9.6% | | | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10775 | AAC | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ±9.6% | | 10776 | AAC | | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 11000000 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8,30 | ± 9.6 % | | 10778 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10779 | AAC | 5G NR (CP-0FDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ±9.6 % | | 10780 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ±9.6% | | 10781 | AAC | 5G NR (CP-0FDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10782 | AAC | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10783 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 20 of 23 | 10784 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TOD | 8.29 | ±9.6 % | |-------|-----|--|----------------------|----------|----------| | 10785 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TOD | 8.40 | ± 9.6 % | | 10786 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10787 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TOD | 8.44 | ± 9.6 % | | 10788 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TOO | 8.39 | ± 9.6 % | | 10789 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10790 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10791 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 T00 | 7.83 | ± 9.6 % | | 10792 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.92 | ± 9.6 % | | 10793 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | 7.95 | ± 9.6 % | | 10794 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10795 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ±9.6% | | 10796 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10797 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10798 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10799 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ± 9.6 % | | 10803 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ±9.6 % | | 10805 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10806 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10817 | AAD | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 % | | 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10821 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10823 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10824 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10827 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10828 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10829 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10830 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ±9.6 % | | 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ± 9.6 % | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ± 9.6 % | | 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ± 9.6 % | | 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TOD | 7.70 | ± 9.6 % | | 10836 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TOD | 7.66 | ± 9.6 % | | 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ± 9.6 % | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ± 9.6 % | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ± 9.6 % | | 10843 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TD0 | 8.49 | ± 9.6 % | | 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6% | | 10855 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 % | | 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | | | The state of s | Leaven and the topic | 1 12 200 | T 0.0 70 | Certificate No: EX3-7486_Jun21 Page 21 of 23 EX3DV4- \$N:7486 June 18, 2021 | 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | |--------|-----|--
---------------|-----------|---------| | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10863 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10864 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ± 9.6 % | | 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ± 9.6 % | | 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ± 9.6 % | | 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.39 | ± 9.6 % | | 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10879 | AAD | 5G NR (CP-OFDM, 1 R8, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ± 9.6 % | | 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TOD | 8.38 | | | 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6% | | 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10883 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 0.90 5.85 | | | 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ± 9.6 % | | 10885 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDO | 6.53 | ± 9.6 % | | 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | | 6,61 | ± 9.6 % | | 10887 | - | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10888 | AAD | | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10889 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.35 | ± 9.6 % | | 10890 | DAA | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ±9.6% | | 10891 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ± 9.6 % | | 10892 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ± 9.6 % | | 10897 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10898 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ± 9.6 % | | 100000 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10899 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ±9.6% | | 10900 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | 5.68 | ± 9.6 % | | 10901 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6% | | 10902 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10903 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10905 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10906 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10907 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ± 9.6 % | | 10908 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10909 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.96 | ± 9.6 % | | 10910 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10911 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10912 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10913 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10914 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ± 9.6 % | | 10915 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10916 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10917 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10916 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10919 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10920 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10921 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | Certificate No: EX3-7486_Jun21 Page 22 of 23 EX3DV4-SN:7486 June 18, 2021 | 10922 | | EC NO (DET - OFFILE 1994) PR 95 444 - CORES SOLIT | | | | |-------|-----|---|---------------|-------|---------| | 10923 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ± 9.6 % | | 10923 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TD0 | 5.84 | ± 9.6 % | | 10925 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10926 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ± 9.6 % | | 10927 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TD0 | 5.84 | ± 9.6 % | | - | AAD | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10928 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10929 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5,52 | ± 9.6 % | | 10930 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10931 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10932 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10935 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10936 | AAC | 6G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10937 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ± 9.6 % | | 10938 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10939 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ± 9.6 % | | 10940 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ± 9.6 % | | 10941 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10942 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10943 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ± 9.6 % | | 10944 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.81 | ± 9.6 % | | 10945 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10946 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10947 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10948 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10949 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10950 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10951 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | ± 9.6 % | | 10952 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ± 9.6 % | | 10953 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.15 | ± 9.6 % | | 10954 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ± 9.6 % | | 10955 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | 10956 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ± 9.6 % | | 10957 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ± 9.6 % | | 10958 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ±9.6% | | 10959 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ± 9.6 % | | 10960 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ± 9.6 % | | 10961 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ± 9.6 % | | 10962 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ± 9.6 % | | 10963 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | |
10964 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ± 9.6 % | | 10965 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10987 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ± 9.6 % | | 10968 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ± 9.6 % | | 10972 | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 11.59 | ± 9.6 % | | 10973 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 9.06 | ± 9.6 % | | 10974 | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) | 5G NR FR1 TDD | 10.28 | ± 9.6 % | ⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EX3-7486_Jun21 Page 23 of 23 Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Motorola Solutions MY Calibration Equipment used (M&TE critical for calibration) Certificate No: EX3-7511_Jun21 CALIBRATION CERTIFICATE Object EX3DV4 + SN:7511 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: June 18, 2021 This calibration certificate documents the traceability to national standards, which restize the physical units of measurements (51). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. | Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) | Apr-22
Apr-22 | |--|------------------------| | | Apr-22 | | Power sensor NRP-291 SN: 103245 09-Apr-21 (No. 217-03292) | | | | Apr-22 | | Reference 20 dB Attenuator SN: CC2552 (20x) 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 SN: 660 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 SN: 3013 30-Dec-20 (No. ES3-3013 Dec20) | Dec-21 | | Secondary Standards ID Check Date (in house) | Scheduled Check | | Power meter E4419B SN: GB41293874 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A SN: MY41498087 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A SN: 000110210 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C SN: US3642U01700 04-Aug-89 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A SN: US41080477 31-Mar-14 (In house check Oct-20) | In house check: Oct-21 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: June 21, 2021 This calibration certificate shall not be reproduced except in full without written approval of the taboratory. Certificate No: EX3-7511_Jun21 Page 1 of 23 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 3 3 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - iEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-call; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - CorrvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for CorrvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7511_Jun21 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7511 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.46 | 0.37 | 0.44 | ± 10.1 % | | DCP (mV)8 | 103.0 | 99.3 | 97.8 | 1 | Calibration Desults for Madulation December | UID | Communication System Name | | A
dB | B
dBõV | Ċ | D
dB | VR
mV | Max
dev. | Max
Unct
(k=2) | | |----------|---|--------------------|---------|-----------|-------|-----------|----------|-------------|----------------------|---------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 148.5 | ±1.9 % | ± 4.7 % | | | | | Y | 0.00 | 0.00 | 1.00 | | 135.0 | | 450000000 | | | | | Z | 0.00 | 0.00 | 1.00 | Barren | 129.9 | | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 2.56 | 66.20 | 10.31 | 10.00 | 60.0 | ± 3.0 % | ± 9.6 % | | | AAA | A TORONO CONTRACTOR AND A TORONO CONTRACTOR | Y | 1.99 | 63.58 | 8.65 | THE PARTY | 60.0 | | 000000000 | | | | | Z | 16.95 | 86.38 | 17.96 | | 60.0 | | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 1,49 | 65.07 | 9.01 | 6.99 | 80.0 | ±2.1% | ± 9.6 % | | | AAA | | Y | 1.07 | 62.01 | 7.02 | 10000000 | 80.0 | | 0.00000 | | | | | Z | 20.00 | 90.46 | 18.31 | II | 80.0 | | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 3.46 | 74.70 | 11.64 | 3.98 | 95.0 | ±1.2% | ± 9.6 % | | | AAA | | Y | 0.57 | 61.87 | 6.39 | A1100000 | 95.0 | | 150,000,00 | | | 21301000 | | Z | 20.00 | 99.46 | 21.19 | | 95.0 | | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 93.75 | 17.02 | 2.22 | 120.0 | ± 1.0 % | ± 9.6 % | | | AAA | | Y | 20.00 | 88.32 | 14.48 | | 120.0 | | 0.000000 | | | | | Z | 20.00 | 108.92 | 24.42 | | 120.0 | | | | | 10387- | QPSK Waveform, 1 MHz | X | 1.67 | 66.69 | 15.05 | 1.00 | 150.0 | ± 1.9 % | ± 9.6 % | | | AAA | | Y | 1.80 | 68.83 | 16.28 | | 150.0 | | 75/20075/7 | | | | | Z | 1.77 | 67.49 | 15.69 | | 150.0 | | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.04 | 66.73 | 15.21 | 0.00 | 0.00 | 150.0 | ±1.1% | ± 9.6 % | | AAA | | Y |
2.28 | 68.96 | 16.55 | 17,536-27 | 150.0 | | 2.00 % | | | . connec | | Z 2.32 68.71 16.28 | | | | 150.0 | i | | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.17 | 66.27 | 16.86 | 3.01 | 150.0 | ±1.2% | ± 9.6 % | | | AAA | | Y | 2.44 | 69.27 | 18.61 | (655.07) | 150.0 | | 0.0000000 | | | | | Z | 2.56 | 69.10 | 18.44 | | 150.0 | | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.40 | 66.58 | 15.51 | 0.00 | 150.0 | ±1.0 % | ± 9.6 % | | | AAA | W 0.5220 | Y | 3.56 | 67.57 | 16.18 | | 150.0 | - 1.0 // | 00000 | | | 3430 | | Z | 3.47 | 66.95 | 15.81 | 8 4 | 150.0 | | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.72 | 65.38 | 15.37 | 0.00 | 150.0 | ± 1.3 % | ± 9.6 % | | | AAA. | 20 00 | Y | 4.66 | 65.43 | 15.54 | 3355.53 | 150.0 | | - 0.0 W | | | | | | 4.78 | 65.53 | 15.55 | | 150.0 | 1 1 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7511_Jun21 Page 3 of 23 A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical finearization parameter: uncertainty not required. Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7511 ### Sensor Model Parameters | | C1
fF | C2
fF | ν-1 | T1
ms.V ⁻² | ms.V ⁻¹ | T3
ms | T4
V-2 | T5
V-1 | Т6 | |---|----------|----------|-------|--------------------------|--------------------|----------|-----------|-----------|------| | X | 37.5 | 276.52 | 34.69 | 4.86 | 0.00 | 4.96 | 0.76 | 0.13 | 1.00 | | Υ | 34.1 | 252.32 | 35.07 | 5.36 | 0.00 | 4.93 | 1.40 | 0.00 | 1.00 | | Z | 39.2 | 290.62 | 35.20 | 6.04 | 0.00 | 5.00 | 0.86 | 0.15 | 1.01 | ### Other Probe Parameters | Sensor Arrangement | Triangular | |---|--| | Connector Angle (*) | -180 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | | | The state of s | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-7511_Jun21 Page 4 of 23 EX3DV4-SN:7511 June 18, 2021 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:7511 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ⁶ | Depth ⁶
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 52.3 | 0.76 | 12.09 | 12.09 | 12.09 | 0.00 | 1.00 | ± 13.3 % | | 300 | 45.3 | 0.87 | 10.90 | 10.90 | 10.90 | 0.09 | 1.25 | ± 13.3 % | | 450 | 43.5 | 0.87 | 10.18 | 10.18 | 10.18 | 0.16 | 1.30 | ± 13.3 % | | 750 | 41.9 | 0.89 | 9.52 | 9.52 | 9.52 | 0.51 | 0.82 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.22 | 9.22 | 9.22 | 0.33 | 1.04 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.04 | 9.04 | 9.04 | 0.50 | 0.80 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.25 | 8.25 | 8.25 | 0.30 | 0.80 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 7.85 | 7.85 | 7.85 | 0.37 | 0.86 | ± 12.0 9 | | 1900 | 40.0 | 1.40 | 7.63 | 7.63 | 7.63 | 0.37 | 0.86 | ± 12.0 9 | | 2100 | 39.8 | 1.49 | 7.54 | 7.54 | 7.54 | 0.32 | 0.86 | ± 12.0 9 | | 2300 | 39.5 | 1,67 | 7.18 | 7.18 | 7.18 | 0.33 | 0.90 | ± 12.0 9 | | 2450 | 39.2 | 1.80 | 7.00 | 7.00 | 7.00 | 0.34 | 0.90 | ± 12.0 9 | | 2600 | 39.0 | 1.96 | 6.80 | 6.80 | 6.80 | 0.36 | 0.90 | ± 12.0 9 | | 3500 | 37.9 | 2.91 | 6.47 | 6.47 | 6.47 | 0.35 | 1.30 | ± 14.0 % | | 3700 | 37.7 | 3.12 | 6.38 | 6.38 | 6.38 | 0.35 | 1.30 | ± 14.0 % | | 5250 | 35.9 | 4.71 | 4.99 | 4.99 | 4.99 | 0.40 | 1,80 | ± 14.0 % | | 5500 | 35.6 | 4.96 | 4.50 | 4.50 | 4.50 | 0.40 | 1.80 | ± 14.0 % | | 5600 | 35.5 | 5.07 | 4.40 | 4.40 | 4.40 | 0.40 | 1.80 | ± 14.0 % | | 5750 | 35.4 | 5.22 | 4.58 | 4.58 | 4.58 | 0.40 | 1.80 | ± 14.0 % | ⁶ Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. ⁷ At frequencies up to 6 GHz, the validity of tissue parameters (c and a) can be relaxed to ± 10% if light compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance target than half the probe tip diameter from the boundary. Certificate No: EX3-7511_Jun21 Page 5 of 23 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7511 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ⁰ | Depth ⁰
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 61.9 | 0.80 | 11.65 | 11.65 | 11.65 | 0.00 | 1.00 | ± 13.3 % | | 300 | 58.2 | 0.92 | 10.90 | 10.90 | 10.90 | 0.06 | 1.25 | ± 13.3 % | | 450 | 56.7 | 0.94 | 10.46 | 10.46 | 10.46 | 0.10 | 1.30 | ± 13.3 % | | 750 | 55.5 | 0.96 | 9,35 | 9.35 | 9.35 | 0.36 | 0.98 | ± 12.0 9 | | 835 | 55.2 | 0.97 | 9.30 | 9.30 | 9.30 | 0.45 | 0.80 | ± 12.0 9 | | 900 | 55.0 | 1.05 | 9.13 | 9.13 | 9.13 | 0.43 | 0.86 | ± 12.0 % | | 1450 | 54.0 | 1,30 | 8.02 | 8.02 | 8.02 | 0.35 | 0.80 | ± 12.0 9 | | 1810 | 53,3 | 1.52 | 7,57 | 7,57 | 7.57 | 0.40 | 0.86 | ± 12.0 9 | | 1900 | 53,3 | 1.52 | 7.41 | 7.41 | 7.41 | 0.39 | 0.86 | ± 12.0 9 | | 2100 | 53.2 | 1.62 | 7.30 | 7.30 | 7.30 | 0.27 | 0.86 | ± 12.0 9 | | 2300 | 52.9 | 1.81 | 7.05 | 7.05 | 7.05 | 0.42 | 0.90 | ± 12.0 9 | | 2450 | 52.7 | 1.95 | 6.97 | 6.97 | 6.97 | 0.37 | 0.90 | ± 12.0 9 | | 2600 | 52.5 | 2.16 | 6.85 | 6.85 | 6.85 | 0.28 | 0.90 | ± 12.0 9 | | 3500 | 51.3 | 3.31 | 5.97 | 5.97 | 5.97 | 0.40 | 1.35 | ± 14.0 9 | | 3700 | 51.0 | 3.55 | 5.81 | 5.81 | 5.81 | 0.40 | 1.35 | ± 14.0 9 | | 5250 | 48.9 | 5.36 | 4.44 | 4.44 | 4.44 | 0.50 | 1.90 | ± 14.0 9 | | 5500 | 48.6 | 5.65 | 3.98 | 3.98 | 3.98 | 0.50 | 1.90 | ± 14.0 9 | | 5600 | 48.5 | 5,77 | 3.85 | 3.85 | 3.85 | 0.50 | 1.90 | ± 14.0 % | | 5750 | 48.3 | 5,94 | 3.97 | 3.97 | 3.97 | 0.50 | 1.90 | ± 14.0 9 | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the CornF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for CornF assessments at 30, 94, 128, 150 and 220 MHz respectively. Validity of CornF assessed at 6 MHz is 4-8 MHz, and CornF assessed at 13 MHz is 9-19 MHz, Above 5 GHz frequency validity can be extended
to ± 110 MHz. ¹ Af frequencies up to 6 GHz, the validity of tissue parameters (c and o) can be released to ± 10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the CornF uncertainty for indicated target tissue parameters. ³ AlphaCoph are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7511_Jun21 Page 6 of 23 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7511_Jun21 Page 7 of 23 # Receiving Pattern (φ), 9 = 0° Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-7511_Jun21 Page 8 of 23 ### Dynamic Range f(SAR_{head}) (TEM cell , f_{oval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-7511_Jun21 Page 9 of 23 ### **Conversion Factor Assessment** ### Deviation from Isotropy in Liquid Error (0, 3), f = 900 MHz Certificate No: EX3-7511_Jun21 Page 10 of 23 June 18, 2021 EX3DV4- SN:7511 ### Appendix: Modulation Calibration Parameters | UID | Rev | Communication System Name | Group | PAR
(dB) | Unc"
(k=2) | |--------------|-----|---|-----------|-------------|---| | 10010 | - | CW | CW | 0.00 | 2 4.7 % | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 % | | 10011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 % | | 10012 | CAB | IEEE 802.11b WIFI 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 % | | 17.2.2 17.2% | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 % | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 % | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 10026 | DAC | EDGE-FDO (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 % | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 % | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ± 9.6 % | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 % | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ± 9.6 % | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ± 9.6 % | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ± 9.6 % | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ± 9.6 % | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ± 9.6 % | | 10035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ±9.6% | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ± 9.6 % | | 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ± 9.6 % | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.10 | ± 9.6 % | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.57 | ± 9.6 % | | 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 7.78 | ± 9.6 % | | 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ±9.6 % | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ±9.6 % | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | | 100000000000000000000000000000000000000 | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 10.79 | ± 9.6 % | | 10058 | DAC | EDGE-FDD (TOMA, 8PSK, TN 0-1-2-3) | GSM | | ± 9.6 % | | 10059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mons) | WLAN | 6.52 | ± 9.6 % | | 10060 | - | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.12 | ± 9.6 % | | 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | | 2.83 | ± 9.6 % | | 10062 | CAB | IEEE 802.11a/h WiFi 5 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ± 9.6 % | | 10063 | CAD | IEEE 802.11am WIFI 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ± 9.6 % | | 10064 | CAD | | WLAN | 8.63 | ± 9.6 % | | | CAD | IEEE 802,11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ± 9.6 % | | 10065 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ± 9.6 % | | 10068 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ± 9.6 % | | 10067 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ± 9.6 % | | 10068 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ± 9.6 % | | 10069 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ± 9.6 % | | 10071 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ± 9.6 % | | 10072 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ± 9.6 % | | 10073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 % | | 10074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ± 9.6 % | | 10075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ± 9.6 % | | 10076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ± 9.6 % | | 10077 | CAB | IEEE 802 11g WIFI 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ± 9.6 % | | 10081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ± 9.6 % | | 10082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ± 9.6 % | | 10090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ± 9.6 % | | 10097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ± 9.6 % | | 10098 | DAC | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ± 9.6 % | Certificate No: EX3-7511_Jun21 Page 11 of 23 | 10099 | CAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ± 9.6 % | |-------|-----|--|---|-------|---------| | 10100 | CAC | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ±9.6% | | 10101 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10102 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10103 | DAC | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TOO | 9.29 | ± 9.6 % | | 10104 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | 10105 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.01 | ± 9.6 % | | 10108 | CAE | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ± 9.6 % | | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ± 9.6 % | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ± 9.6 % | | 10113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10114 | CAG | IEEE 802.11n (HT Greenfield, 13.5 Mbps. BPSK) | WLAN | 8.10 | ±9.6 % | | 10115 | CAG | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ± 9.6 % | | 10116 | CAG | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ± 9.6 % | | 10117 | CAG | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ± 9.6 % | | 10118 | CAD | IEEE 802,11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 % | | 10119 | CAD | IEEE 802,11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ± 9.6 % | | 10140 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10141 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ± 9.6 % | | 10142 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10143 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ±9.6 % | | 10144 | CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | | | 10145 | - | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ±9.6 % | | 10146 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | | | 10147 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 17207 | ± 9.6 % | | 10149 | CAC | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.72 | ±9.6 % | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10151 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, GPSK) | 200000000000000000000000000000000000000 | 6.60 | ± 9.6 % | | 10151 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.28 | ± 9.6 % | | 10153 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10154 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TOD | 10.05 | ± 9.6 % | | 10155 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 5.75 | ± 9.6 % | | 10156 | CAF | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | | 6.43 | ±9.6 % | | 10157 | CAF | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 5.79 | ± 9.6 % | | 10157 | CAE | | LTE-FD0 | 6.49 | ± 9.6 % | | 10159 | CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10160 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6,56 | ± 9.6 % | | 10160 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ± 9.6 % | | | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10162 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6,58 | ± 9.6 % | | 10166 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FD0 | 5.46 | ± 9.6 % | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 % | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ±9.6 % | | 10169 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDO | 5.73 | ± 9.6 % | | 10170 | CAG | LTE-FDD
(SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDO | 6.52 | ± 9.6 % | | 10171 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10172 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10173 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10174 | CAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10175 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10176 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10177 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FOD | 5.73 | ± 9.6 % | | 10178 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10179 | AAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10180 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | Certificate No: EX3-7511_Jun21 Page 12 of 23 | 10181 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | |-------|-----|---|---------|-------|---------| | 10182 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10183 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10184 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10185 | CAI | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ± 9.6 % | | 10186 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 84-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10187 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10188 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FOO | 6.52 | ± 9.6 % | | 10189 | CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10193 | CAE | IEEE 802.11n (HT Greenfield, 6,5 Mbps, 8PSK) | WLAN | 8.09 | ± 9.6 % | | 10194 | AAD | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ± 9.6 % | | 10195 | CAE | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.21 | ± 9.6 % | | 10196 | CAE | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10197 | AAE | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10198 | CAF | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | £ 9.6 % | | 10219 | CAF | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ±9.6 % | | 10220 | AAF | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10221 | CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10222 | CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ± 9.6 % | | 10223 | CAD | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAD | IEEE 802,11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 80.8 | ± 9.6 % | | 10225 | CAD | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ± 9.6 % | | 10226 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.49 | ± 9.6 % | | 10227 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.26 | ±9.6% | | 10228 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ± 9.6 % | | 10229 | DAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz. 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10230 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10231 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TDD | 9.19 | ±9.6 % | | 10232 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10233 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10234 | CAD | LYE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TOD | 9.21 | ± 9.6 % | | 10235 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10236 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10237 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10238 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TOD | 9.48 | ± 9.6 % | | 10239 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10240 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10241 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ± 9.6 % | | 10242 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TOO | 9.86 | ± 9.6 % | | 10243 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ± 9.6 % | | 10244 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10245 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10246 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TOD | 9.30 | ± 9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz., 16-QAM) | LTE-TDD | 9.91 | ± 9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TOD | 10.09 | ± 9.6 % | | 10249 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TOD | 9.29 | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ±9.6% | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ± 9.6 % | | 10252 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.90 | ± 9.6 % | | 10254 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDO | 10.14 | ± 9.6 % | | 10255 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TOD | 9.20 | ± 9.6 % | | 10256 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TOD | 9.96 | ± 9.6 % | | 10257 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.08 | ± 9.6 % | | 10258 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TOO | 9.34 | ±9.6% | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TOO | 9.98 | ± 9.6 % | Certificate No: EX3-7511_Jun21 Page 13 of 23 | 10260 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.97 | ± 9.6 % | |-------|---------------|---|----------------------|-------|---| | 10261 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.83 | ± 9.6 % | | 10263 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.16 | ± 9.6 % | | 10264 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TOD | 9.23 | ± 9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10266 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.07 | ± 9.6 % | | 10267 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TOD | 10.08 | ± 9.6 % | | 10269 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TOD | 10.13 | ±9.6% | | 10270 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ±9.6% | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ± 9.6 % | | 10275 | CAD | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | 3.96 | ± 9.6 % | | 10277 | CAD | PHS (QPSK) | PHS | 11.81 | ± 9.6 % | | 10278 | CAD | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 % | | 10279 | CAG | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 12.18 | ± 9.6 % | | 10290 | CAG | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ± 9.6 % | | 10291 | CAG | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ± 9.6 % | | 10292 | CAG | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ±9.6% | | 10293 | CAG | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ± 9.6 % | | 10295 | CAG | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 % | | 10297 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FOD | 5.81 | ± 9.6 % | | 10298 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDO | 5.72 | ± 9.6 % | | 10299 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ± 9.6 % | | 10300 | CAC | LTE-FDO
(SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10301 | CAC | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WIMAX | 12.03 | ± 9.6 % | | 10302 | CAB | IEEE 802 16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WIMAX | 12.57 | ± 9.6 % | | 10303 | CAB | IEEE 802 16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 12.52 | ± 9.6 % | | 10304 | CAA | IEEE 802 16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 11.86 | ± 9.6 % | | 10305 | CAA | IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 15.24 | ± 9.6 % | | 10306 | CAA | IEEE 802.16e WIMAX (29;18, 10ms, 10MHz, 64QAM, PUSC) | WIMAX | 14.67 | ± 9.6 % | | 10307 | AAB | IEEE 802 16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WiMAX | 14.49 | ± 9.6 % | | 10308 | AAB | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WIMAX | 14,46 | ± 9.6 % | | 10309 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3) | WIMAX | 14.58 | ± 9.6 % | | 10310 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 | WIMAX | 14.57 | ± 9.6 % | | 10311 | AAB | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 % | | 10313 | AAD | IDEN 1:3 | IDEN | 10.51 | ±9.6 % | | 10314 | AAD | IDEN 1:6 | IDEN | 13.48 | ± 9.6 % | | 10315 | AAD | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) | WLAN | 1.71 | ± 9.6 % | | 10316 | AAD | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10317 | AAA | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ± 9.6 % | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ± 9.6 % | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ± 9.6 % | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 2.22 | ± 9.6 % | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ± 9.6 % | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic Generic | 5.10 | ± 9.6 % | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ± 9.6 % | | 10396 | - temperature | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ± 9.6 % | | 10390 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ± 9.6 % | | 10400 | AAD | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | 19.6% | | 10400 | - | IEEE 802.11ac WiFI (40MHz, 64-QAM, 99oc dc) | WLAN | 8.60 | ± 9.6 % | | 10402 | AAA | IEEE 802.11ac WIFI (80MHz, 64-QAM, 99pc dc) | WLAN | - | THE RESERVE TO SHARE THE PARTY OF | | 10402 | AAA | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 8.53 | ± 9.6 % | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000
CDMA2000 | 3.76 | ± 9.6 % | | 10404 | AAB | CDMA2000 (1XEV-DO, Rev. A) CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 3.77 | ± 9.6 % | | 10400 | AAD | COMPAGOO, NGS, SGSZ, SGRO, FOII Kate | CDMIA2000 | 5.22 | ± 9.6 % | Certificate No: EX3-7511_Jun21 Page 14 of 23 | 10410 | AAA | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) | LTE-TDD | 7.82 | ± 9.6 % | |-------|-----|--|--|--|---------| | 10414 | AAA | WLAN CCDF, 64-QAM, 40MHz | Generic | 8.54 | ± 9.6 % | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1.54 | ± 9.6 % | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc do) | WLAN | 8.23 | ± 9.6 % | | 10417 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ± 9.6 % | | 10419 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ± 9.6 % | | 10422 | AAA | IEEE 802.11n (HT Greenfield, 7.2 Mbps, 8PSK) | WLAN | 8.32 | ± 9.6 % | | 10423 | AAA | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ±9.6 % | | 10424 | AAE | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ± 9.6 % | | 10425 | AAE | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ± 9.6 % | | 10426 | AAE | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ± 9.6 % | | 10427 | AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ± 9.6 % | | 10430 | AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FOD | 8.28 | ± 9.6 % | | 10431 | AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDO | 8.38 | ± 9.6 % | | 10432 | AAB | LTE-FOD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10433 | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10434 | AAG | W-CDMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ± 9.6 % | | 10435 | AAA | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10447 | AAA | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.56 | ± 9.6 % | | 10448 | AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.53 | ± 9.6 % | | 10449 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7.51 | ± 9.6 % | | 10450 | AAA | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.48 | ±9.6 % | | 10451 | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | WCDMA | 7.59 | ± 9.6 % | | 10453 | AAC | Validation (Square, 10ms, 1ms) | Test | 10.00 | ± 9.6 % | | 10456 | AAC | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) | WLAN | 8.63 | ± 9.6 % | | 10457 | AAC | UMTS-FDD (DC-HSDPA) | WCDMA | 6.62 | ± 9.6 % | | 10458 | AAC | CDMA2000 (1xEV-DO, Rev. B. 2 carriers) | CDMA2000 | 6.55 | ± 9.6 % | | 10459 | AAC | CDMA2000 (1xEV-DO, Rev. B. 3 carriers) | CDMA2000 | 8.25 | ± 9.6 % | | 10460 | AAC | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ± 9.6 % | | 10461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1,4 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10462 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.30 | ± 9.6 % | | 10463 | AAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.56 | ± 9.6 % | | 10464 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10465 | AAC | LTE-TDD
(SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.32 | ± 9.6 % | | 10466 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 10467 | AAA | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.32 | ± 9.6 % | | 10469 | AAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) | LTE-TOO | 8.56 | ± 9.6 % | | 10470 | AAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10471 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.32 | ± 9.6 % | | 10472 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 10473 | | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 10474 | AAA | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, GFSK, 0E Sub) | LTE-TOD | 8.32 | ± 9.6 % | | 10475 | - | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 10475 | AAD | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 18-QAM, UL Sub) | LTE-TOD | 8.32 | ± 9.6 % | | 10476 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 84-QAM, UL Sub) | LTE-TOO | 8.57 | ± 9.6 % | | 10479 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TOD | 7.74 | ± 9.6 % | | 104/8 | - | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TOO | 8.18 | ± 9.6 % | | 10481 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.45 | ± 9.6 % | | 10482 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, B4-CAM, 0E Sub) | LTE-TOO | 7.71 | ± 9.6 % | | 10482 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSR, 01, Sub) | LTE-TDD | 1.00 | | | 10484 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, SUB) | LTE-TOO | 8.39
8.47 | ± 9.6 % | | 10484 | AA8 | | the second secon | The second secon | ± 9.6 % | | | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TOO | 7.59 | ± 9.6 % | | 10486 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDO | 8.38 | ± 9.6 % | | 10487 | AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDO | 8.60 | ± 9.6 % | Certificate No: EX3-7511_Jun21 Page 15 of 23 | EX3DV4 SN:7511 | June 18, 2021 | |----------------|---------------| | | | | 10488 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TOD | 7.70 | ± 9.6 % | |-------|--|---|----------|-----------|---| | 10489 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.31 | ± 9.6 % | | 10490 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10491 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10492 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.41 | ± 9.6 % | | 10493 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.55 | ± 9.6 % | | 10494 | AAF | LTE-TDD (SC-FDMA, 50% R8, 20 MHz, QPSK, UL Sub) | LTE-TOD | 7.74 | ± 9.6 % | | 10495 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.37 | ± 9.6 % | | 10496 | AAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10497 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDO | 7.67 | ± 9.6 % | | 10498 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.40 | ± 9.6 % | | 10499 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.68 | ±9.6 % | | 10500 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ±9.6 % | | 10501 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDO | 8.44 | ± 9.6 % | | 10502 | AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.52 | ± 9.6 % | | 10503 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TOO | 7.72 | ± 9.6 % | | 10504 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.31 | ± 9.6 % | | 10505 | AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10506 | the state of s | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10507 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, GFSK, 02 Sub) | LTE-TDD | 8.36 | ± 9.6 % | | 10508 | - Laboratoria | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ± 9.6 % | | 10509 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.99 | 1 | | 1900 | AAF | | | | ± 9.6 % | | 10510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.49 | ± 9.6 % | | 10511 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.51 | ± 9.6 % | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.42 | ± 9.6 % | | 10514 | AAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 10515 | AAE | IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10516 | AAE | IEEE 802.11b WIFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc) | WLAN | 1.57 | ± 9.6 % | | 10517 | AAF | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10518 | AAF | IEEE 802.11a/h WIFi 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10519 | AAF | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10520 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc) | WLAN | 8.12 | ± 9.6 % | | 10521 | AAB | IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps, 99pc dc) | WLAN | 7.97 | ± 9.6 % | | 10522 | AAB | IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10523 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) | WLAN | 8.08 | ± 9.6 % | | 10524 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10525 | AAC | IEEE 802.11ac WiFI (20MHz, MCS0, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10526 | AAF | IEEE 802.11ac WIFI (20MHz, MCS1, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10527 | AAF | IEEE 802.11ac WIFI (20MHz, MCS2, 99pc dc) | WLAN | 8.21 | ± 9.6 % | | 10528 | AAF | IEEE 802.11ac WIFI (20MHz, MCS3, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10529 | AAF | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10531 | AAF | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10532 | AAF | IEEE 802.11ac WIFI (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10533 | AAE | IEEE 802,11ac WIFI (20MHz, MCS8, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10534 | AAE | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10535 | AAE | IEEE 802.11ac WIFI (40MHz, MCS1, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10536 | AAF | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10537 | AAF | IEEE 802.11ac WIFI (40MHz, MCS3, 99pc dc) | WLAN | 8.44 | ± 9.6 % | | 10538 | AAF | IEEE 802 11ac WiFi (40MHz, MCS4, 99ac dc) | WLAN | 8.54 | ± 9.6 % | | 10540 | AAA | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10541 | 1.4.6. | IEEE 802.11ac WIFI (40MHz, MCS7, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10541 | AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10543 | AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) | WLAN | 1,111,000 | | | 10544 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 13.70 | AAC | | 7.100.00 | 8.47 | ± 9.6 % | | 10545 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | Certificate No: EX3-7511_Jun21 Page 16 of 23 | 10546 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc) | WLAN | 8.35 | ± 9.6 % | |------------|--------|--|------|------|-----------------------| | 10547 | AAC | IEEE 802.11ac WIFI (80MHz, MCS3, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10548 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) | WLAN | 8.37 | ±9.6 % |
 10550 | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 0661 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 0652 | AAC | IEEE 802.11ac WIFI (80MHz, MCSB, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10553 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10554 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10555 | AAC | IEEE 802.11ac WiFi (180MHz, MCS1, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10556 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10557 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc) | WLAN | 8.52 | ± 9.6 % | | 0558 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc) | WLAN | 8.61 | ± 9.6 % | | 10560 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc) | WLAN | 8.73 | ± 9.6 % | | 10561 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc) | WLAN | 8.56 | ± 9.6 % | | 10562 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10563 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10564 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10565 | AAC | IEEE 802 11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10566 | AAC | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | 8.13 | ± 9.6 % | | 10567 | AAC | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 % | | 10568 | AAC | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10569 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN | 8.10 | ± 9.6 % | | 10570 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10571 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10572 | AAC | IEEE 802.11b WiFI 2.4 GHz (DSSS. 2 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10573 | AAC | IEEE 802.11b WiFl 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10574 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 9 | | 10575 | AAC | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10576 | AAC | IEEE 802.11g WFI 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ±9.69 | | 10577 | - | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10578 | AAC | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mops, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10579 | AAD | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 16 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10580 | | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 works, supe do) | WLAN | 8.76 | and the second second | | 10581 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 9 | | 10582 | 1.0.00 | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 46 Mbps, 90pc dc) | WLAN | | 1000 | | 10583 | AAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10584 | AAD | I IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 90pc dc) | WLAN | 8.59 | ±9.6 % | | 10585 | CAA | IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10586 | AAD | | | 8,70 | ± 9.6 % | | 1000000 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10587 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10588 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10590 | AAA | IEEE 802.11a/h WIFi 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 3.7.5.7.7. | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10591 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) | WLAN | 8.63 | ± 9.6 % | | 10592 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MGS1, 90pc dc) | WLAN | 8.79 | ± 9.6 9 | | 10593 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10594 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 9 | | 10595 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10596 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) | WLAN | 8,71 | ±9.69 | | 10597 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10598 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ± 9.6 9 | | 10599 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCSD, 90pc dc) | WLAN | 8.79 | ± 9.6 9 | | 10600 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) | WLAN | 88.8 | ± 9.6 9 | | 10601 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) | WLAN | 8.82 | ± 9.6 9 | | 10602 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ± 9.6 9 | | 10803 | AAA. | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc) | WLAN | 9.03 | ± 9.6 % | Certificate No: EX3-7511_Jun21 Page 17 of 23 | EX3DV4- SN:7511 | June 18, 2021 | |-----------------|---------------| | | | | 10604 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc) | WLAN | 8.76 | ± 9.6 % | |----------------|-------|--|-----------|-------|---------| | 10605 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc) | WLAN | 8.97 | ± 9.6 % | | 10606 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc da) | WLAN | 8.82 | ± 9.6 % | | 10607 | AAC | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10608 | AAC | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10609 | AAC | IEEE 802 11ac WiFI (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ± 9.6 % | | 10610 | AAC | IEEE 802 11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.78 | ±9.6 % | | 10611 | AAC | IEEE 802.11ac WiFI (20MHz, MCS4, 90pc dc) | WLAN | 8.70 | ±9.6% | | 10612 | AAC | IEEE 802.11ac WIFI (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ±9.6 % | | 10813 | AAC | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10614 | AAC | IEEE 802.11ac WIFI (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10615 | AAC | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10616 | AAC | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10617 | AAC | IEEE 802.11ac WIFI (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10618 | AAC | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ± 9.6 % | | 10619 | AAC | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10620 | AAC | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10621 | AAC | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10622 | AAC | IEEE 802.11ac WiFI (40MHz, MCS6, 90pc dc) | WLAN | 8.68 | ± 9.6 % | | 10623 | AAC | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10624 | AAC | IEEE 802 11ac WiFi (40MHz, MCS8, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10625 | AAC | IEEE 802.11ac WIFI (40MHz, MCS9, 90pc dc) | WLAN | 8.96 | ±9.6% | | 10626 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10627 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10628 | AAC | IEEE 802.11ac WIFI (80MHz, MCS2, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10629 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc) | WLAN | 8,85 | ± 9.6 % | | 10630 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10631 | AAC | IEEE 802.11ac WIFI (80MHz, MCS5, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10632 | AAC | IEEE 802 11ac WiFi (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 0.00 | AAC | IEEE 802 11ac WiFi (80MHz, MCS7, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10634
10635 | AAC | IEEE 802.11ac WIFI (80MHz, MCS8, 90pc dc) | WŁAN | 8.80 | ± 9.6 % | | 10636 | AAC | IEEE 802.11ac WIFI (80MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10636 | AAC | IEEE 802,11ac WiFi (160MHz, MCS0, 90pc dc)
IEEE 802,11ac WiFi (160MHz, MCS1, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10638 | AAC | | | 8.79 | ± 9.6 % | | 10638 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc)
IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10640 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10641 | AAC | IEEE 802,11ac WIFI (160MHz, MCS4, 90pc dc) | WLAN | 8.98 | ± 9.6 % | | 10641 | AAC | IEEE 802,11ac WIFI (160MHz, MCS6, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10643 | AAC | IEEE 802.11ac WIFI (160MHz, MCS7, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10644 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, supc dc) | WLAN | | ± 9.6 % | | 10645 | AAC | IEEE 802.11ac WiFI (180MHz, MCS8, 90pc dc) | WLAN | 9.05 | ± 9.6 % | | 10646 | AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) | LTE-TOD | 11.96 | ± 9.6 % | | 10647 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | LTE-TOD | 11.96 | ± 9.6 % | | 10648 | AAC | CDMA2000 (1x Advanced) | CDMA2000 | 3.45 | ± 9.6 % | | 10652 | AAC | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.91 | ± 9.6 % | | 10653 | AAC | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.42 | ± 9.6 % | | 10654 | AAC | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TOD | 6.96 | ± 9.6 % | | 10655 | AAC | LTE-TOD (OFDMA, 19 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.21 | ± 9.6 % | | 10658 | - | Pulse Waveform (200Hz, 10%) | Test | 10.00 | ± 9.6 % | | 10659 | AAC | Pulse Waveform (200Hz, 20%) | Test | 6.99 | ± 9.6 % | | 10660 | AAC | Pulse Waveform (200Hz, 40%) | Test | 3.98 | ± 9.6 % | | 10661 | AAC | Pulse Waveform (200Hz, 60%) | Test | 2.22 | ± 9.6 % | | 10662 | AAC | Pulse Waveform (200Hz. 80%) | Test | 0.97 | ± 9.6 % | | 10670 | AAC | Bluetooth Low Energy | Bluetooth | 2.19 | ± 9.6 % | | | PARIL | IEEE 802.11ax (20MHz, MCS0, 90pc dc) | WLAN | 9.09 | ± 9.6 % | Certificate No: EX3-7511_Jun21 Page 18 of 23 | 10672 | AAD | IEEE 802.11ax (20MHz, MCS1, 90pc dc) | WLAN | 8.57 | ± 9.6 % | |-------|-----|---------------------------------------|------|------|---------| | 10673 | AAD | IEEE 802.11ax
(20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10674 | AAD | IEEE 802.11ax (20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10675 | AAD | IEEE 802.11ax (20MHz, MCS4, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10676 | AAD | IEEE 802.11ax (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 0677 | AAD | IEEE 802.11ax (20MHz, MCS6, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10678 | AAD | IEEE 802.11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | # 9.6 % | | 10679 | AAD | IEEE 802.11ax (20MHz, MCSB, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10680 | AAD | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10681 | AAG | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ± 9.6 % | | 10682 | AAF | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 0683 | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 0684 | AAC | IEEE 802.11ex (20MHz, MCS1, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10685 | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10686 | AAC | IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN | 8.28 | ± 9.6 % | | 0687 | AAE | IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10688 | AAE | IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 0689 | AAD | IEEE 802.11ax (20MHz, MCS6, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 0690 | AAE | IEEE 802.11ax (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10691 | AAB | IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 0692 | AAA | IEEE 802.11ax (20MHz, MCS9, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10693 | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10694 | AAA | IEEE 802.11ax (20MHz, MCS11, 99pc dc) | WLAN | 8.57 | ± 9.6 % | | 10695 | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 0696 | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc dc) | WLAN | 8.91 | ± 9.6 % | | 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ± 9.6 % | | 0698 | AAA | IEEE 802.11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10699 | AAA | IEEE 802.11ax (40MHz, MCS4, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10700 | AAA | IEEE 802.11ax (40MHz, MCS5, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10701 | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10702 | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10704 | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.56 | ± 9.6 % | | 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.69 | ± 9.6 % | | 10706 | AAC | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.66 | ± 9.6 % | | 10707 | AAC | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10708 | AAC | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10709 | AAC | IEEE 802.11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10710 | AAC | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10711 | AAC | IEEE 802.11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10712 | AAC | IEEE 802.11ax (40MHz, MCS5, 99pc dc) | WLAN | 8.67 | ± 9.6 % | | 10713 | AAC | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10714 | AAC | IEEE 802.11ax (40MHz, MCS7, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10715 | AAC | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10716 | AAC | IEEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10717 | AAC | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10718 | AAC | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ± 9.6 % | | 10719 | AAC | IEEE 802.11ax (80MHz, MCS0, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10720 | AAC | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10721 | AAC | IEEE 802.11ax (80MHz, MCS2, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10722 | AAC | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.55 | ± 9.6 % | | 10723 | AAC | IEEE 802.11ax (80MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10724 | AAC | IEEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10725 | AAC | IEEE 802.11ax (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10726 | AAC | IEEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10727 | AAC | IEEE 802.11ax (80MHz, MCS8, 90pc dc) | WLAN | 8.66 | ± 9.6 % | Certificate No: EX3-7511_Jun21 Page 19 of 23 | 10728 | AAC | IEEE 802.11ax (80MHz, MCS9, 90pc dc) | WLAN | 8.65 | ± 9.6 % | |-------|---------------------|---|---------------|----------------------|---------| | 10729 | AAC | IEEE 802.11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10730 | AAC | IEEE 802.11ax (80MHz, MCS11, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10731 | AAC | IEEE 802.11ax (80MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10732 | AAC | IEEE 802.11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10733 | AAC | IEEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10734 | AAC | IEEE 802.11ax (80MHz, MCS3, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10735 | AAC | IEEE 802.11ax (80MHz, MCS4, 99pc dc) | WLAN | 8.33 | ±9.6% | | 10736 | AAC | IEEE 802.11ax (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10737 | AAC | IEEE 802.11ax (80MHz, MCS6, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10738 | AAC | IEEE 802.11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10739 | AAC | IEEE 802.11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10740 | AAC | IEEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10741 | AAC | IEEE 802,11ax (80MHz, MCS10, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10742 | AAC | IEEE 802.11ax (80MHz, MCS11, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10743 | AAC | IEEE 802 11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10744 | AAC | IEEE 802.11ax (160MHz, MCS1, 90oc dc) | WLAN | 9.16 | ± 9.6 % | | 10745 | AAC | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | 8.93 | ±9.6% | | 10746 | AAC | IEEE 802 11ax (160MHz, MCS3, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10747 | AAC | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN | 9.04 | ± 9.6 % | | 10748 | AAC | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | WLAN | 8.93 | 2 9.6 % | | 10749 | AAC | IEEE 802.11ax (160MHz, MCS6, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10750 | AAC | IEEE 802.11ax (160MHz, MCS7, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10751 | AAC | IEEE 802.11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10752 | AAC | IEEE 802,11ax (160MHz, MC59, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10753 | AAC | IEEE 802.11ax (160MHz, MCS10, 90pc dc) | WLAN | 9.00 | ± 9.6 % | | 10754 | AAC | IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10755 | AAC | IEEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.64 | ± 9.6 % | | 10756 | AAC | IEEE 802.11ax (160MHz, MCS1, 99pc do) | WLAN | 8.77 | ± 9.6 % | | 10757 | AAC | IEEE 802.11ax (160MHz, MCS2, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10758 | AAC | IEEE 802.11ax (160MHz, MCS3, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10759 | AAC | IEEE 802.11ax (160MHz, MCS4, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10760 | AAC | IEEE 802.11ax (160MHz, MCS5, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10761 | AAC | IEEE 802.11ax (160MHz, MCS6, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10762 | AAC | IEEE 802.11ax (160MHz, MCS7, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10763 | AAC | IEEE 802.11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.53 | 19.6% | | 10764 | AAC | IEEE 802.11ax (160MHz, MCS9, 99pc dc) | WLAN | 8.54 | 196% | | 10765 | AAC | IEEE 802.11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10766 | AAC | IEEE 802.11ax (160MHz, MCS11, 99pc dc) | WLAN | 8.51 | ± 9.6 % | | 10767 | _ | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ± 9.6 % | | 10768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10769 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10770 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10771 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 % | | 10772 | market and the same | 5G NR (CP-0FDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ± 9.6 % | | 10773 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TOD | 8.03 | | | 10774 | AAC | 5G NR (CP-0FDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10775 | AAC | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | - Control of Control | | | 10776 | AAC | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8,31 | ±9.6% | | 10776 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TOO | 8.30 | | | 10777 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | TOO 11 | ±9.6% | | 10779 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6% | | 10780 | AAC | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 KHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | | AAC | | | 8.38 | ±9.6 % | | 10781 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10782 | AAC | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10783 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | Certificate No: EX3-7511_Jun21 Page 20 of 23 | 10784 | AAC | 5G NR (CP-0FDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ± 9.6 % | |--------
--|---|---------------|---------|---| | 10785 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10786 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDO | 8.35 | ± 9.6 % | | 10787 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.44 | ± 9.6 % | | 10788 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 % | | 10789 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10790 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 % | | 10791 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.83 | ± 9.6 % | | 10792 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.92 | ±9.6 % | | 10793 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.95 | ± 9.6 % | | 10794 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10795 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ± 9.6 % | | 10796 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ±9.6 % | | 10797 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10798 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10799 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ± 9.6 % | | 10803 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | the second property of the first of the first | | 10805 | The state of s | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | - | ± 9.6 % | | 10806 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10809 | 1.00 | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 3400000 | 100000000000000000000000000000000000000 | | 10810 | AAD | | | 8.34 | ± 9.6 % | | 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10817 | AAD | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 % | | 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10821 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10823 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10824 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10827 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10828 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10829 | CAA | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10830 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ± 9.6 % | | 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ± 9.6 % | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ± 9.6 % | | 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ± 9.6 % | | 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10836 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ± 9.6 % | | 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ± 9.6 % | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TOD | 7.67 | ± 9.6 % | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TOD | 7.71 | ± 9.6 % | | 10843 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.49 | ± 9.6 % | | 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 % | | 200020 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10858 | | | | | | Certificate No: EX3-7511_Jun21 Page 21 of 23 | 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | |-------|-----|--|---------------|------|---------| | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | ±9.6 % | | 10863 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10864 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ± 9.6 % | | 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ± 9.6 % | | 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 % | | 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ±9.6 % | | 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.39 | ± 9.6 % | | 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ± 9.6 % | | 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 84QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ± 9.6 % | | 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.96 | ± 9.6 % | | 10883 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TOD | 6.57 | ± 9.6 % | | 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ± 9.6 % | | 10885 | AAD | 5G NR
(DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.35 | ± 9.6 % | | 10889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ± 9.6 % | | 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ± 9.6 % | | 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ± 9.6 % | | 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10897 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDO | 5.66 | ± 9.6 % | | 10898 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10899 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDO | 5.67 | ± 9.6 % | | 10900 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10901 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10902 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5,68 | ± 9.6 % | | 10903 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10905 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10908 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10907 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ± 9.6 % | | 10908 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10909 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.96 | ± 9.6 % | | 10910 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10911 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10912 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10913 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10914 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ± 9.6 % | | 10915 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10916 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10917 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10918 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10919 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10920 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | 5.87 | ± 9.6 % | | 10921 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | Certificate No: EX3-7511_Jun21 Page 22 of 23 | 10922 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ± 9.6 % | |-------|-----|--|--|-------|---------| | 10923 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10924 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10925 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ± 9.6 % | | 10926 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10927 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10928 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10929 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10930 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10931 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10932 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FD0 | 5.51 | ± 9.6 % | | 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10935 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10936 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10937 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ± 9.6 % | | 10938 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10939 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ± 9.6 % | | 10940 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ± 9.6 % | | 10941 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ±9.6% | | 10942 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10943 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ± 9.6 % | | 10944 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.81 | ±9.6% | | 10945 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10946 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ±9.6% | | 10947 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD |
5.87 | ± 9.6 % | | 10948 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10949 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10950 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10951 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | ± 9.6 % | | 10952 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ±9.6% | | 10953 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 84-QAM, 16 kHz) | 5G NR FR1 FDD | 8.15 | ±9.6% | | 10954 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 84-QAM, 15 kHz) | 50 NR FR1 FDD | 8.23 | ±9.6 % | | 10955 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | 10956 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ± 9.6 % | | 10957 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ± 9.6 % | | 10958 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ±9.6 % | | 10959 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ± 9.6 % | | 10960 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ± 9.6 % | | 10961 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDO | 9.36 | ± 9.6 % | | 10962 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDO | 9.40 | ± 9.6 % | | 10963 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10964 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ±9.6 % | | 10965 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10967 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ± 9.6 % | | 10968 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ± 9.6 % | | 10972 | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 11.59 | ± 9.6 % | | 10973 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TOO | 9.06 | ± 9.6 % | | | | The state of s | The state of s | | | ⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EX3-7511_Jun21 Page 23 of 23