MEASUREMENT/TECHNICAL REPORT

HYUNDAI ELECTRONICS INDUSTRIES CO.,LTD.

MODEL : P990

This report concerns(check one) : Original grant X Class change

Equipment type : <u>MONITOR</u>

Deferred grant requested per 47 CFR 0.457(d)(1)() ? yes____no__X

If yes, defer until:

____ agrees to notify the Commission by

of the intended date of announcement of the product so that the grant can be issued on that date.

Transition Rules Request per 15.37?

yes___no_X

If no, assumed Part 15, Subpart B for unintentional radiators - the new 47 CFR [10-1-91 Edition] provision.

Report prepared by : BONG JAE, HUR - Manager of QA Office

Company : HYUNDAI ELECTRONICS INDUSTRIES CO., LTD. Address : SAN 136-1, AMI-RI, BUBAL-EUB, ICHON-SI, KYOUNGKI-DO, KOREA Phone No : 82-336-630-3280

Fax No : 82-336-630-3265

TABLE OF CONTENTS

PAGE

1. GENERAL INFORMATION	3
1.1 Product Description	3
1.2 Related submittal(s)/Grant(s)	3
1.3 Tested System Details	4
1.4 Test Methodology	4
1.5 Test Facility	4
2. SYSTEM TEST CONFIGURATION	5
2.1 Justification	5
2.2 EUT Exercise Software	5
2.3 Cable Description	6
2.4 Noise Suppression Parts on Cable	6
2.5 Equipment Modifications	7
2.6 Configuration of Tested System	8
3. PRELIMINARY TESTS	9
3.1 Power line Conducted Emissions Tests	9
3.2 Radiated Emissions Tests	9
4. FINAL CONDUCTED AND RADIATED EMISSION TESTS SUMMARY	10
4.1 Conducted Emission Tests	
4.2 Radiated Emission Tests	11
5. FIELD STRENGTH CALCULATION	12

ID Label / Location Info.
External Photos.
Block Diagram
Test Setup Photos.
User's Manual.
Internal Photos.

1. GENERAL INFORMATION

1.1 Product Description

The Hyundai Electronics Industries Co., Ltd. Model P990(refered to as the EUT in this report) is a 19"COLOR Monitor HOR. Freq.93.5kHz w/max. Resolution of 1600×1200 Non-Interlaced.

Product specification information described herein was obtained from product data sheet or user's manual.

CHASSIS TYPE	PLASTIC
LIST OF EACH OSC. OR XTAL. FREQ.(FREQ.≥ 1MHz)	6 MHz
CHIPSET BRAND AND PART NO.	SAMSUNG : KA3843B SAMSUNG : KA358 PHILIPS : TDA4856 MITSUBISH : M52743ASP NATIONAL : LM4202T MOTOROLA : MC68HC705BD9B MOTOROLA : LSC4388P2 MATSUSHITA : AN5870K
POWER REQUIREMENT	100 - 240 VAC 50/60Hz 3A
NUMBER OF LAYERS	MAIN BOARD 1 LAYER CRT SOCKET BOARD 1 LAYER BNC BOARD 1 LAYER FRONT CONTROL BOARD 1 LAYER
MAX. RESOLUTION	1600 X 1200 NON-INTERLACED (@ 93.5 kHz/75 Hz)
H-SYNC FREQUENCY RANGE	30 kHz 95 kHz
V-SYNC FREQUENCY RANGE	50 Hz 150 Hz
CRT SIZE	19" (PANASONIC / Type : M46LNS180X18)
VIDEO CONNECTOR TYPE	D-SUB 15-PIN, BNC

1.2 Related Submittal(s) / Grant(s)

ORIGINAL SUBMITTAL ONLY

The Model names for all equipment, plus descriptions used in the tested system (including inserted cards) are:

DEVICE TYPE	MANUFACTURER	MODEL NUMBER	FCC ID / DoC	CONNECTED TO
COLOR MONITOR(EUT)	HYUNDAI	P990	CKLP990	HOST
PC(HOST)	H/P	HP BRIO 80XX	DoC	N/A
KEYBOARD	H/P	SK-2501-2D-K	DZL211029	HOST
PRINTER	H/P	C2168A	B94C2121X	HOST
MODEM	HYUNDAI	HMD-2404M	CKL8J7HMD-2404M	HOST
VIDEO CARD	DIAMOND	STEATH 3D 3000	FTUPCI130208	HOST
MOUSE	H/P	M-834	GYUR388K	HOST

1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4/1992. Radiated testing was performed at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data are located at the 254-1,MAEKOK-RI,HOBUP-MYUN,ICHON-SI,KYOUNGKI-DO, 467-701,KOREA. The site is constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. Detailed description of test facility was submitted to the Commission on May 22, 1997 and accepted dated July 25,1997(1300F2)

2.SYSTEM TEST CONFIGURATION

2.1 Justification

The device was configured for testing in a typical fashion (as a customer would normally use it). During the tests, the following components and I/O cards inside the E.U.T were used.

DEVICE TYPE	MANUFACTURE	MODEL/PART NUMBER
MAIN BOARD	HYUNDAI	E4208515008
CRT SOCKET BOARD	HYUNDAI	E4208515002
BNC BOARD	HYUNDAI	E4208515004
FRONT CONTROL BOARD	HYUNDAI	E4208515003

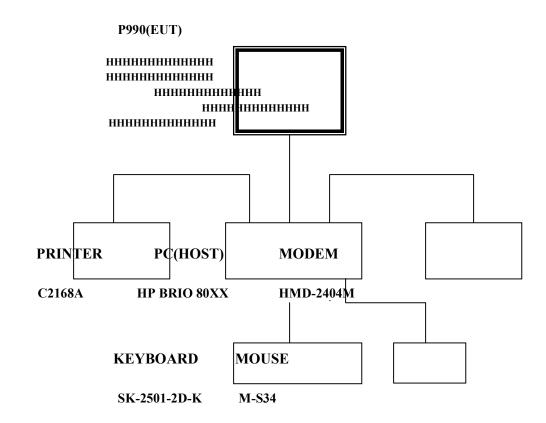
2.2 EUT exercise Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software, contained on a 3-1/2 inch disc, was inserted into drive A and is auto starting on power-up. Once loaded, the program sequentially exercises each system component in turn. The sequence used is :(1) Display test, (2) RS 232 test (3) Key board test,(4) Printer test,(5) FDD test,(6) HDD test. The complete cycle takes about 20 seconds and is repeated continuously. As the keyboard and mouse are strictly input devices, no data is transmitted to them during test. They are however, continuously scanned for data input activity. The video resolution modes setup and change program was used during the radiated and conducted emission testing.

	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (M)
PC(HOST)	Ν	N/A	1.5(P)
COLOR MONITOR(EUT)	Ν	Y	1.5(P), 1.5(D)
PARALLEL	Ν	Y	1.5(P), 1.5(D)
KEYBOARD	N/A	Y	1.0(D)
SERIAL	Ν	Y	1.5(P), 1.5(D)
MOUSE(PS/2)	N/A	Y	1.8(D)

The marked "(D)" means the Data Cable and "(P)" means the Power Cable.

2.4 Noise Suppression Parts on Cable.


	Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
PC(HOST)	Ν	N/A	Ν	N/A
COLOR MONITOR(EUT)	Y	PC END	Y	PC END
KEYBOARD	Y	PC END	Y	PC END
PARALLEL	Ν	N/A	Y	BOTH END
SERIAL	Ν	N/A	Y	BOTH END
MOUSE(PS/2)	N	N/A	Y	PC END

N/A

Line Conducted Test : EUT was connected to LISN, all other supporting equipment were connected to another LISN.
Preliminary Power line Conducted Emission tests were performed by using the procedure in ANSI C63.4/1992 7.2.3 to determine the worse operating conditions.

Radiated Emission Test : Preliminary Radiated Emissions tests were conducted using the procedure in ANSI C63.4/1992 8.3.1.1 to determine the worse operating condition. Final Radiated Emission tests were conducted at 3 meter open area test site.

[Configuration of Tested System]

3.1 AC Power line Conducted Emission Tests

During Preliminary Tests, the following operating mode were investigated

Processor Speed (MHz)	Video Resolution (w/max)	The worst operating condition
Pentium 75 MHz	1600 x 1200 Non-Interlaced (93.5KHz/75Hz)	X
Pentium 75 MHz	1280 x 1024 Non-Interlaced (91.1KHz/85Hz)	
Pentium 75 MHz	1024 x 768 Non-Interlaced (81.1KHz/100Hz)	
Pentium 75 MHz	800 x 600 Non-Interlaced (53.6KHz/85Hz)	
Pentium 75 MHz	640 x 480 Non-Interlaced (63.6KHz/120Hz)	

4.2 Radiated Emission Tests

During Preliminary Tests, the following operating mode were investigated

Processor Speed (MHz)	Video Resolution (w/max)	The worst operating condition
Pentium 75 MHz	1600 x 1200 Non-Interlaced (93.5KHz/75Hz)	Х
Pentium 75 MHz	1280 x 1024 Non-Interlaced (91.1KHz/85Hz)	
Pentium 75 MHz	1024 x 768 Non-Interlaced (81.1KHz/100Hz)	
Pentium 75 MHz	800 x 600 Non-Interlaced (53.6KHz/85Hz)	
Pentium 75 MHz	640 x 480 Non-Interlaced (63.6KHz/120Hz)	

NOTE :

The monitor(EUT) has two(2) video interface port(VGA 15pin D-sub, 5 BNC) to support various kinds of graphics adapters. So the test were performed with each video interface port. The final measurement was performed with VGA 15pin D-sub video interface port that produce the worst case emission.

Tested by Sang Jun, Lee

Date : DEC. 14. 1998

9

4. FINAL CONDUCETD AND RADIATED EMISSION TESTS SUMMARY

The following table shows the highest levels of conducted emissions on both polarization of hot and neutral line.

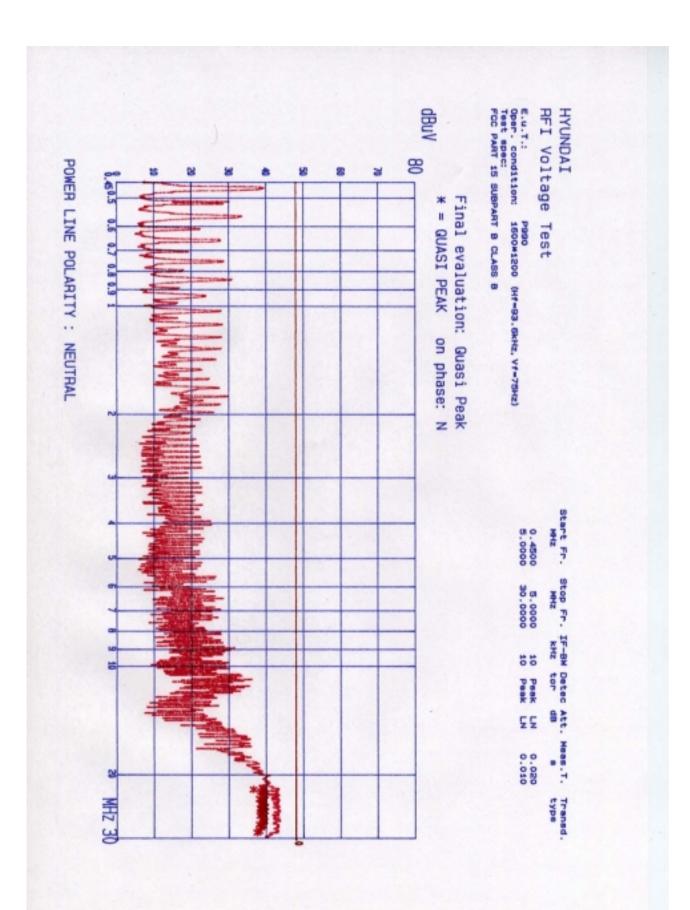
Humidity Level: 25%Temperature : 8Limit apply to: FCC CFR 47, PART 15, SUBPART BType of Tests: CLASS BDate: DEC. 15, 1998Result: PASSED BY 8.3 dB

EUT : 19" COLOR MONITOR

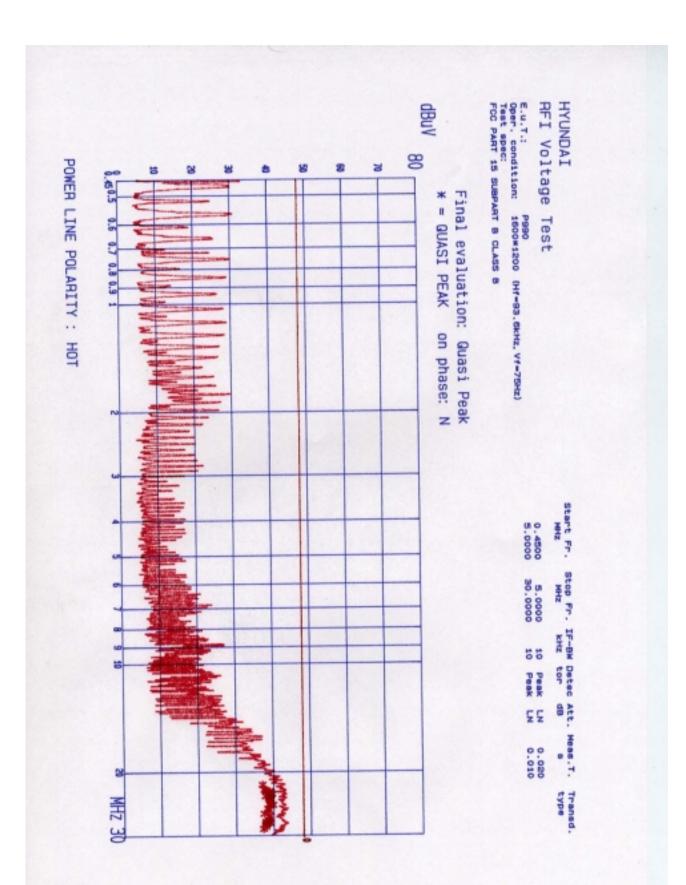
Operating Condition : 1600 X 1200 Non-Interlaced (Hf : 93.5 KHz, Vf : 75Hz)Detector: CISPR Quasi-Peak (6 dB Bandwidth : 9 KHz)

Power Li	ine Conducted Em	issions	FCC Class B		
Frequency (MHz)	Amplitude (dBuV)	Conductor	Limit (dBuV)	Margin (dB)	
21.860	39.3	NEUTRAL	48	-8.7	
22.050	39.3	NEUTRAL	48	-8.7	
23.079	39.7	НОТ	48	-8.3	
24.579	39.7	NEUTRAL	48	-8.3	
25.329	39.6	NEUTRAL	48	-8.4	
27.020	39.5	NEUTRAL	48	-8.5	
28.050	38.6	NEUTRAL	48	-9.4	

Line Conducted Emission Tabulated Data


NOET:

1. All video modes and resolutions were investigated and the worst-case emissions are reported


Other video modes & resolution were tested and found to be in compliance.

2. The limit for Class B device is 250 uV from 450 kHz to 30 MHz.

Measured by : Sang Jun, Lee / Engineer

POWER LINE POLARITY :	HYUNDAI RFI Voltage Test E.U.T.: PSGO Test spec: FCC PART IS SUBPART B CLASS B
INE POL	Test 1800#1200 T B CLASS
ARITY : NEUTRAL	DHF-93. BitHz, VF-75Hz) B
F	Æ
	Acceeding requency M4z 21.8500 22.05000 22.05000 22.05000 22.05000 22.05000 22.05000
	NTYNONOGTOGRADATONTOTOTOTOTOTOTOTO
	Phase: N G-Peak C 39.3 39.4 39.4 39.4 39.4 39.4 39.4 39.4

Encending values on phase: N M2 Park BW 0-Park BW	DOWED I THE DOI ARTTY . HOT						E.u.T.: P990 Oper. condition: 1600#1200 (Hf=93.6kHz,Vf=75Hz) Test spec: FCC PART 15 SUBPART & CLASS &	HYUNDAI RFI Voltage Test
Phase: Phase: 37.0 38.4 38		1.1	27, 9600 28, 0500 28, 4300 28, 9000	27 - 3000 27 - 4800 27 - 5800 27 - 58000 27 - 7700	24.850 25.3299 25.1800 25.1800 25.4600 27.2100	23.5500 23.5500 23.5500 23.5500 23.5500 23.5500 23.5500 24.0200 24.5799 24.7700	21.6700 22.4200 22.51200 22.9899 22.9899	Exceeding
phase: N G-Peak GP-Margin 37.4 -11.0 38.4 -9.2 38.4 -9.2 38.4 -9.4 38.5 -9.4 38.6 -9.4 38.7 -9.4 38.8 -9.4 38.7 -9.4 38.6 -9.4 38.7 -9.4 38.8 -9.4 38.9 -9.4 38.9 -9.4 38.7 -9.4 38.8 -9.4 38.9 -9.4 38.9 -9.4 38.9 -9.4 38.7 -9.4 38.7 -9.4 38.7 -9.4 38.7 -9.4 38.7 -9.5 38.7 -9.4 38.7 -9.4 38.7 -9.4 38.7 -9.4 38.7 -9.4 38.7 -9.4 38.7 -9.4 37.8 -10.1 3		exceeded	42.0 1 4 0					values on Peak dBuy
P-Margin dB 111.0 130.6 140.6			30.2 37.8 37.3	38.7 39.1 39.1	38.5 39.0	30.1 30.2 30.2	37.0 37.4 38.8 39.3 39.4	dBuy
			-10.2	000+AW	1000000		-10.5	P-Mangin dB

The following table shows the highest levels of Radiated Emissions on both polarization of horizontal and vertical.

Humidity Lev	el : 20 %	Temperature : 4
Limit apply to	FCC CFR	47, PART 15, SUBPART B
Type of Tests	: CLASS B	
Date	: DEC. 15, 1998	
Result	: PASSED BY 4	.0 dB

EUT : 19" COLOR MONITOR

Operating Condition : 1600 X 1200 Non-Interlaced (Hf : 93.5 kHz, Vf : 75 Hz)Detector: CISPR Quasi-Peak (6 dB Bandwidth : 120 KHz)

Radiated Emissions		Ant.	Correction Factors	Total	FCC Class B	
Freq. (MHz)	Ampl. (dBuV)	Pol.	Antenna & Cable Loss (dB/m)	Ampl. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
40.4	17.5	V	15.2	32.7	40.0	-7.3
141.5	22.1	V	15.9	38.0	43.5	-5.5
202.2	19.0	Н	19.6	38.6	43.5	4.9
262.9	20.1	Н	20.5	40.6	46.0	-5.4
364.1	21.6	Н	19.8	41.4	46.0	-4.6
371.1	20.5	Н	20.0	40.5	46.0	-5.5
505.8	19.6	Н	22.2	41.8	46.0	-4.2
586.7	16.6	V	23.4	40.0	46.0	-6.0
607.0	17.4	Н	23.8	41.2	46.0	-4.8
627.2	17.9	Н	24.1	42.0	46.0	-4.0
647.4	17.3	V	24.7	42.0	46.0	-4.0
667.6	15.3	Н	24.9	40.2	46.0	-5.8
748.6	15.4	V	26.1	41.5	46.0	-4.5
829.5	11.9	V	27.6	39.5	46.0	-6.5
930.6	10.9	V	29.1	40.0	46.0	-6.0
950.9	11.1	V	29.5	40.6	46.0	-5.4

NOTE:

1.All video modes and resolutions were investigated and the worst-case emissions are reported.

2.Other video modes & resolution were tested and found to be in compliance.

3. The EUT was test up to 2GHz and no significant emission was found.

Measured by : Sang Jun, Lee / Engineer

The field strength is calculated by adding the Antenna Factor and Cable Factor. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = **Cable Attenuation Factor**

Assume a receiver reading of 21.5 dBuV is obtained. The Antenna Factor of 7.4 and a Cable Factor of 1.1 is added. The 30 dBuV/m value was mathematically converted to its corresponding level in uV/m.

FS = 21.5 + 7.4 + 1.1 = 30 dBuV/m

Level in uV/m = Common Antilogarithm [(30 dBuV/m)/20] = 31.6 uV/m