Derivation of Field Strengths

 Frequency kHz 	+ Peak Spectrum Analyser Reading dBuV V	+ Antenna Factor K 	+ Field at 3 m E dBuV/m Note 1	Correction factor to convert from 3m to 300m Note 2	Corrected field strength for 300m dBuV/m
133.702	+ 89.07	+ -41.3	+ 99.27	+ -80	+ 19.27
400.48	+ 44.36	+ -41.4	+ 54.46	+	+
667.904	41.36	-41.5	51.36	-80	-28.64
934.76	43	-41.5	53	-80	-27
1069	42	-41.5	52	-80	-28
1203	40	-41.5	50	-80	-30
 1470 	44 +	-41.5 +	54 +	-80 +	-26 +

1. For the detection method peak measurements were taken.

Actual readings and corrections:

Note 1:

2.

Formula used to obtain field E at 3 m

E (dBuV/m) = V (dBuV) + K (dB S/m) + 51.5

This formula is taken from the National Physical Laboratory calibration report for the antenna (copied on the following page).

Note 2:

The correction factor of -80dB to convert from field measured at 3m to field at 300m is taken from 47 CFR 15.31 f (2) (page 661, 10-1-99 edition) which states that an inverse linear distance extrapolation factor of 40dB/decade can be used. There are 2 decades of distance from 3m to 300m, therefore the extrapolation factor is -2x40 = -80dB

NATIONAL PHYSICAL LABORATORY

MEASUREMENTS

The loop was positioned at the centre of a Crawford Type TEM Cell with the plane of the loop perpendicular to the magnetic field and parallel to the direction of propagation. The output from the loop was connected through a coaxial cable to a calibrated 50 Ω receiver. A tracking generator was used to set up a calculable, linearly polarised, electromagnetic field in the TEM cell, approximating to a plane wave of 13 μ A/m (5 mV/m).

At each frequency, the ratio of the applied TEM cell voltage to the terminated loop output voltage, was used to calculate the antenna factor according to the following definition.

 $H [dB (\mu A/m)] = V [dB (\mu V)] + K [dB (S/m)]$

where: H is the magnetic field strength

V is the correctly terminated output voltage from the loop K is the magnetic antenna factor

The **free space equivalent** electric field strength can be calculated for linearly polarised plane wave conditions, and is given by:

 $E (dB \mu V/m) = V (dB \mu V) + K + 51.5$

The reflection coefficients of the loop antenna was measured using a calibrated Hewlett Packard 8753 network analyser.

Reference: CEM/17/98/15/9

Checked by: 77