

1F., BlockA of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Report Template Version: V03

Telephone: +86-755-26648640 +86-755-26648637 Fax:

Website: Report Template Revision Date: Mar.1st, 2017 www.cqa-cert.com

Test Report

Report No.: CQASZ20190600481E-01

Dynamox Solucoes Criativas Ltda - ME **Applicant:**

Address of Applicant:

Rodovia SC 401 KM 1 - Edificio Celta Sala G1 09-SN, Florianopolis, Brazil

Dynamox Solucoes Criativas Ltda - ME Manufacturer:

Address of Manufacturer: Rodovia SC 401 KM 1 - Edificio Celta Sala G1 09-SN, Florianopolis, Brazil

Equipment Under Test (EUT):

Product: Data Logger

Model No.: DynaLogger TcA

Brand Name: Dynamox

FCC ID: 2AT3M010202 47 CFR Part 15, Subpart C

Date of Test: 2019-06-28 to 2019-07-17

Date of Issue: 2019-07-17 Test Result: PASS*

Tested By:

Standards:

(Tom Chen)

Reviewed By:

Aaron Ma)

Approved By:

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20190600481E-01	Rev.01	Initial report	2019-07-17

Test Item	FCC Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	N/A
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

3 Contents

			Page
1	CO	OVER PAGE	1
2	VF	ERSION	2
3		ONTENTS	
4	GE	ENERAL INFORMATION	5
	4.1	CLIENT INFORMATION	5
	4.2	GENERAL DESCRIPTION OF EUT	5
	4.3	ADDITIONAL INSTRUCTIONS	
	4.4	Test Environment	
	4.5	DESCRIPTION OF SUPPORT UNITS	
	4.6	TEST LOCATION	
	4.7	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	4.8	TEST FACILITY	
	4.9	DEVIATION FROM STANDARDS	
	4.10	ABNORMALITIES FROM STANDARD CONDITIONS	
	4.11	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.12	EQUIPMENT LIST	
5	TE	EST RESULTS AND MEASUREMENT DATA	12
	5.1	Antenna Requirement	12
	5.2	CONDUCTED PEAK OUTPUT POWER	
	5.3	6DB OCCUPY BANDWIDTH	16
	5.4	POWER SPECTRAL DENSITY	19
	5.5	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	5.6	Spurious RF Conducted Emissions	
	5.7	RADIATED SPURIOUS EMISSION	
	5.8	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	
6	PH	HOTOGRAPHS - EUT TEST SETUP	44
	6.1	RADIATED SPURIOUS EMISSION	44
7	PH	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	45

Report No.: CQASZ20190600481E-01

4 General Information

4.1 Client Information

Applicant:	Dynamox Solucoes Criativas Ltda - ME
Address of Applicant:	Rodovia SC 401 KM 1 - Edificio Celta Sala G1 09-SN, Florianopolis, Brazil
Manufacturer:	Dynamox Solucoes Criativas Ltda - ME
Address of Manufacturer:	Rodovia SC 401 KM 1 - Edificio Celta Sala G1 09-SN, Florianopolis, Brazil

4.2 General Description of EUT

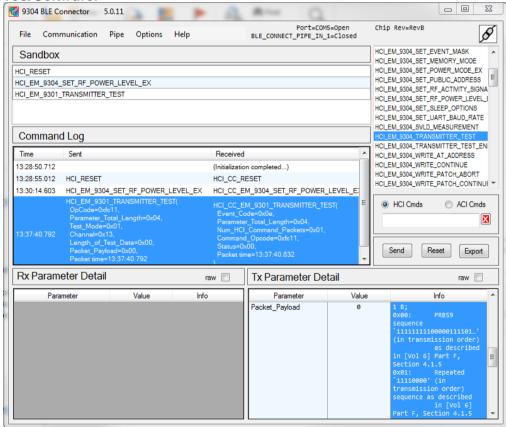
D 1 (N)	
Product Name:	Data Logger
Model No.:	DynaLogger TcA
Trade Mark:	Dynamox
Hardware Version:	1.0ver
Software Version:	1.0ver
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	5.0
Modulation Type:	GFSK
Transfer Rate:	1Mbps
Number of Channel:	40
Product Type:	☐ Mobile ☐ Portable ☐ Fix Location
Test Software of EUT:	9304 BLE Connector 5.0.11 (manufacturer declare)
Antenna Type:	Wire Antenna
Antenna Gain:	-0.6dBi
EUT Power Supply:	DC 3.0V via internal non rechargeable lithium battery

Report No.: CQASZ20190600481E-01

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:


Channel	Frequency	
The lowest channel (CH0)	2402MHz	
The middle channel (CH19)	2440MHz	
The highest channel (CH39)	2480MHz	

4.3 Additional Instructions

EUT Test Software Settings:					
Mode:		⊠ Special software is used.			
		☐ Through engineering command into the engineering mode.			
		engineering command: *#*;	#3646633#*#*		
EUT Power lev	EUT Power level: 0.4dBm (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep				
transmitting of the E	UT.				
Note: In the process	of transmit	ting of EUT, the duty cycle \geq	98%.		
	Test M	ode	Channel	Frequency(MHz)	
Mode a GFSK_1Mbps			CH0	2402	
Mode b		GFSK_1Mbps	CH19	2440	
Mode c		GFSK_1Mbps	CH39	2480	

Test Software:

Report No.: CQASZ20190600481E-01

4.4 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1001mbar	

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Description Manufacturer		Remark	FCC certification	
PC	Lenovo	Lenovo ThinkPad E450c Provide by lab		ID	
AC/DC Adapter	Lenovo	ADLX65NLC3A	Provide by lab	SDOC	

4.6 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.,

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

4.7 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device

Hereafter the best measurement capability for CQA laboratory is reported:

No.	Item	Uncertainty	Notes
1	Radiated Emission (Below 1GHz)	±5.12dB	(1)
2	Radiated Emission (Above 1GHz)	±4.60dB	(1)
3	Conducted Disturbance (0.15~30MHz)	±3.34dB	(1)
4	Radio Frequency	3×10 ⁻⁸	(1)
5	Duty cycle	0.6 %.	(1)
6	Occupied Bandwidth	1.1%	(1)
7	RF conducted power	0.86dB	(1)
8	RF power density	0.74	(1)
9	Conducted Spurious emissions	0.86dB	(1)
10	Temperature test	0.8℃	(1)
11	Humidity test	2.0%	(1)
12	Supply voltages	0.5 %.	(1)
13	time	0.6 %.	(1)
14	Frequency Error	5.5 Hz	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: CQASZ20190600481E-01

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: ISED#: 22984

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements

A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Deviation from Standards

None.

4.10 Abnormalities from Standard Conditions

None.

4.11 Other Information Requested by the Customer

None.

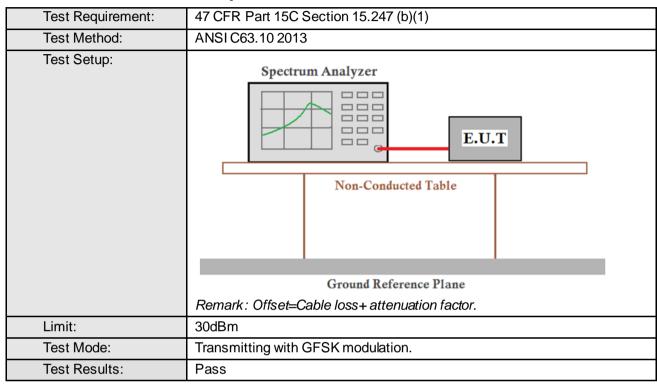
4.12Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2018/9/26	2019/9/25
Spectrum analyzer	R&S	FSU26	CQA-038	2018/10/28	2019/10/27
Preamplifier	MITEQ	AFS4-00010300-18-10P- 4	CQA-035	2018/9/26	2019/9/25
Preamplifier	MITEQ	AMF-6D-02001800-29- 20P	CQA-036	2018/11/2	2019/11/1
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2018/10/28	2020/10/27
Bilog Antenna	R&S	HL562	CQA-011	2018/9/26	2020/9/25
Horn Antenna	R&S	HF906	CQA-012	2018/9/26	2020/9/25
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2018/9/26	2020/9/25
Coaxial Cable (Above 1GHz)	CQA	N/A	C019	2018/9/26	2019/9/25
Coaxial Cable (Below 1GHz)	CQA	N/A	C020	2018/9/26	2019/9/25
Antenna Connector	CQA	RFC-01	CQA-080	2018/9/26	2019/9/25
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2018/9/26	2019/9/25
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2018/9/26	2019/9/25

Note:

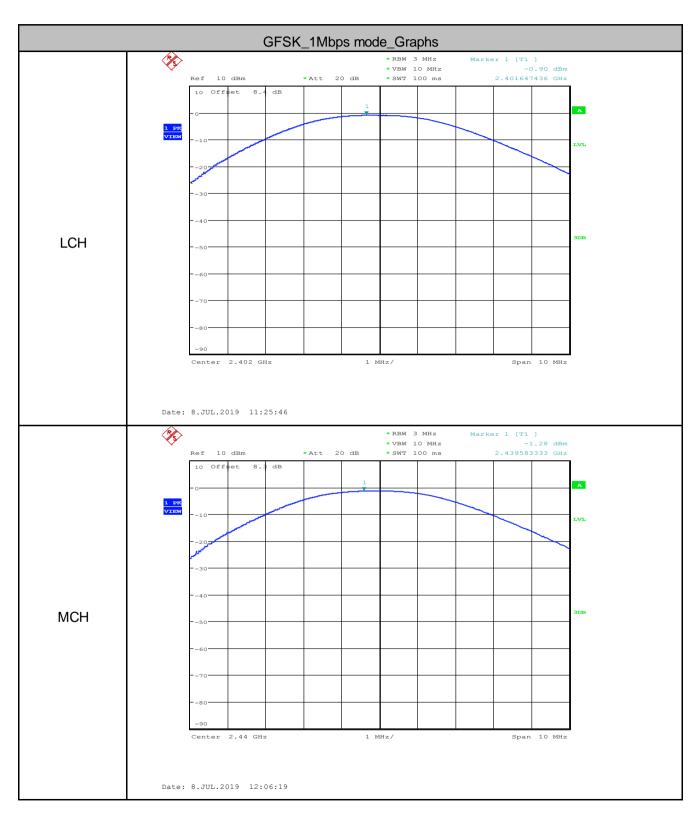
The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

5 Test results and Measurement Data


5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
EUT Antenna:	1084

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.6Bi.

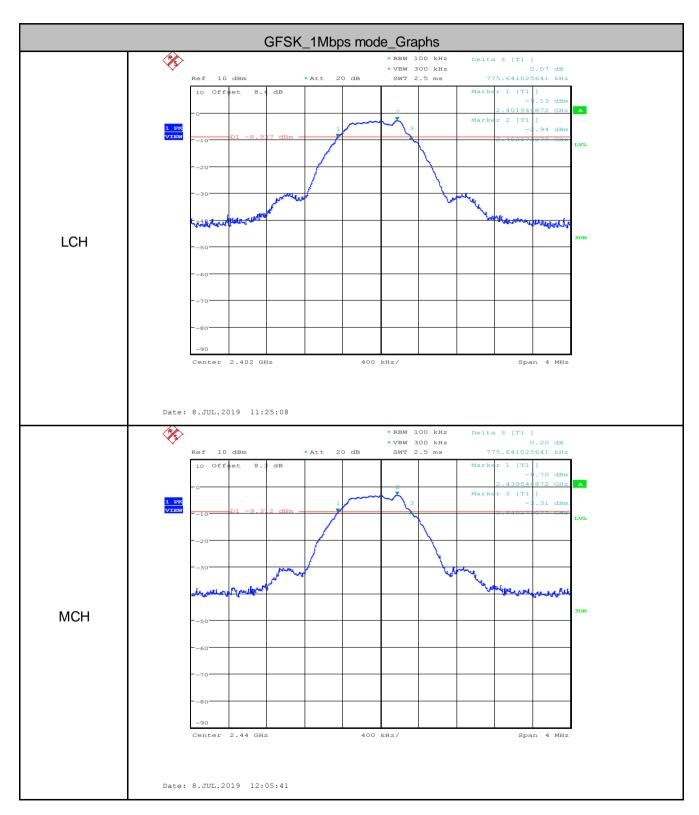

5.2 Conducted Peak Output Power

Measurement Data

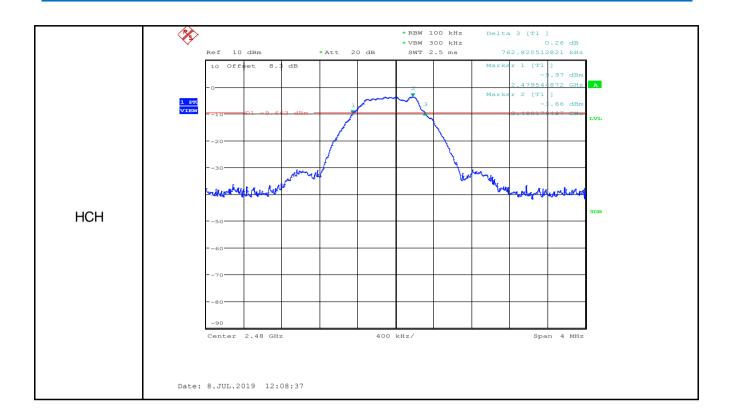
mododi omone Bata							
	GFSK_1Mbps mode						
Test channel	Peak Output Power (dBm)	Result					
Lowest	-0.9	30.00	Pass				
Middle	-1.28	30.00	Pass				
Highest	-1.62	30.00	Pass				

Test plot as follows:

5.3 6dB Occupy Bandwidth

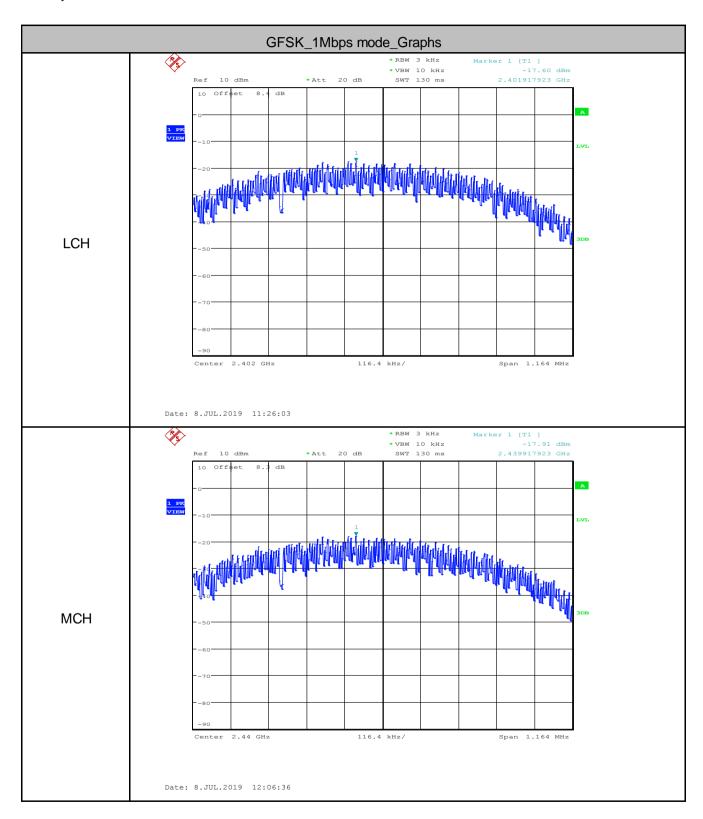


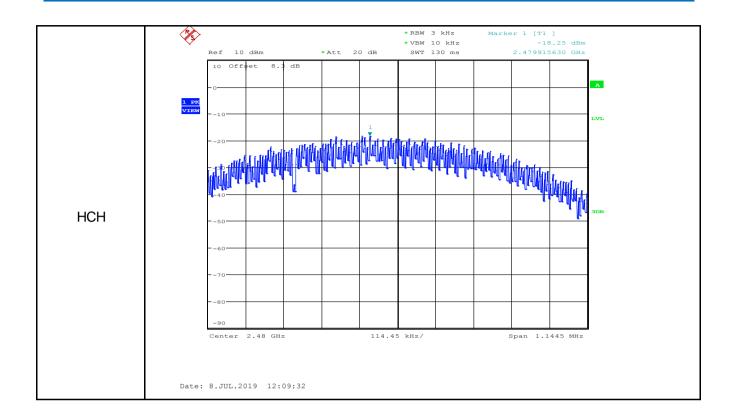
Measurement Data


	GFSK_1Mbps mode						
Test channel	6dB Occupy Bandwidth (MHz)	Limit (MHz)	Result				
Lowest	0.776	≥0.5	Pass				
Middle	0.776	≥0.5	Pass				
Highest	0.763	≥0.5	Pass				

Test plot as follows:

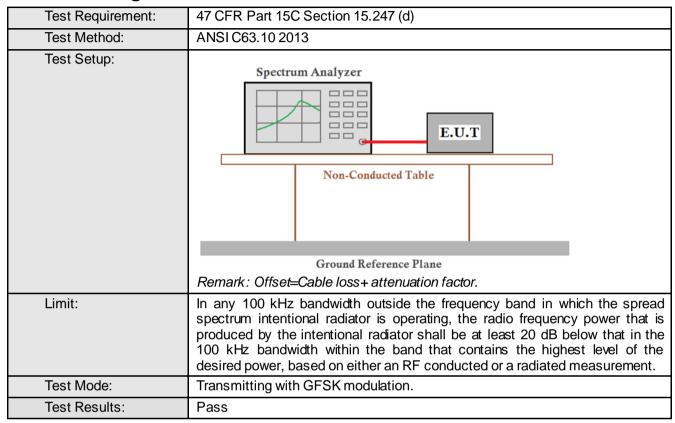


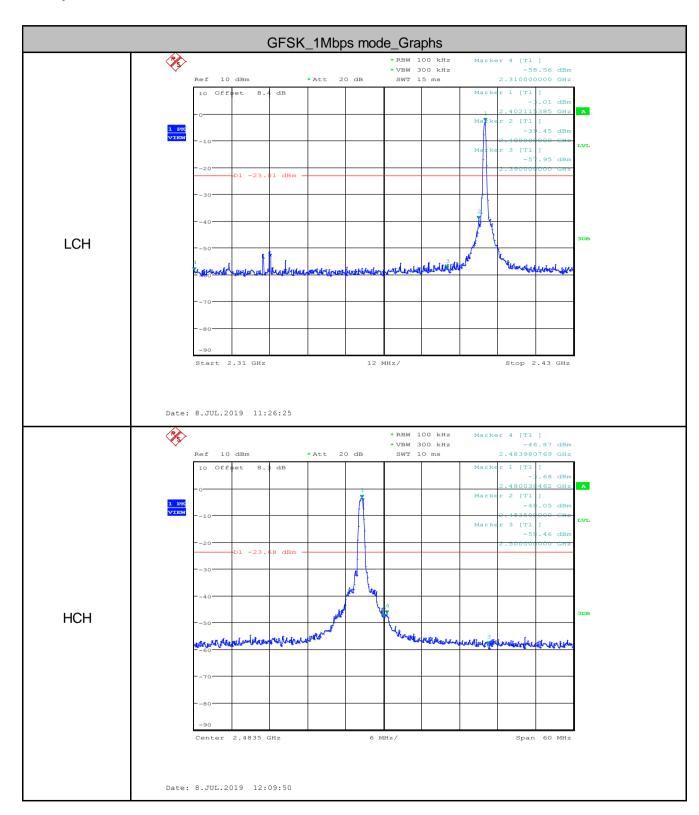

5.4 Power Spectral Density


Measurement Data

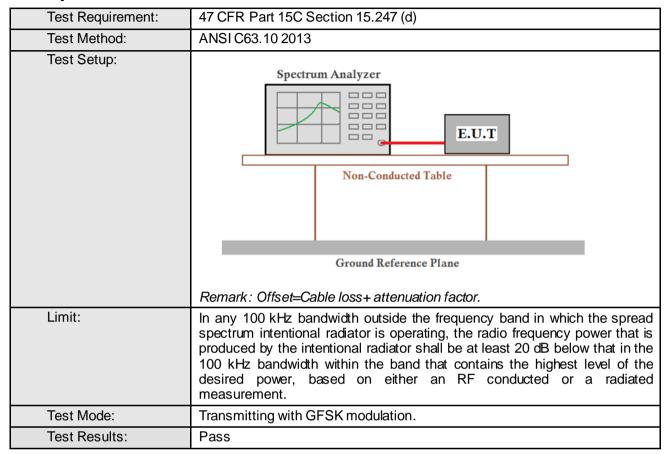
GFSK_1Mbps mode						
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-17.600	≤8.00	Pass			
Middle	-17.910	≤8.00	Pass			
Highest	-18.250	≤8.00	Pass			

Test plot as follows:

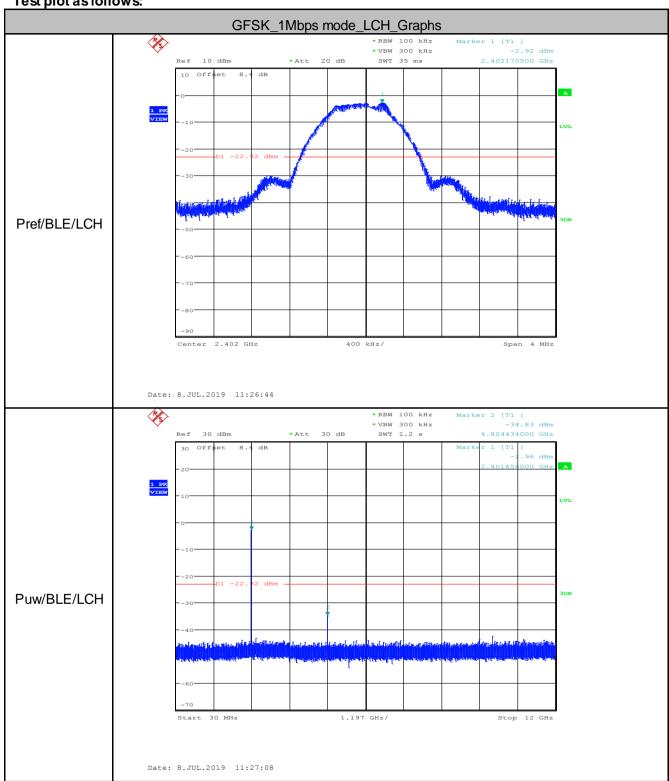


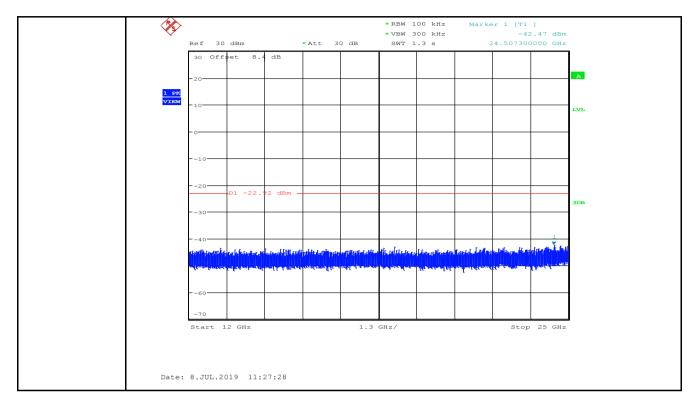


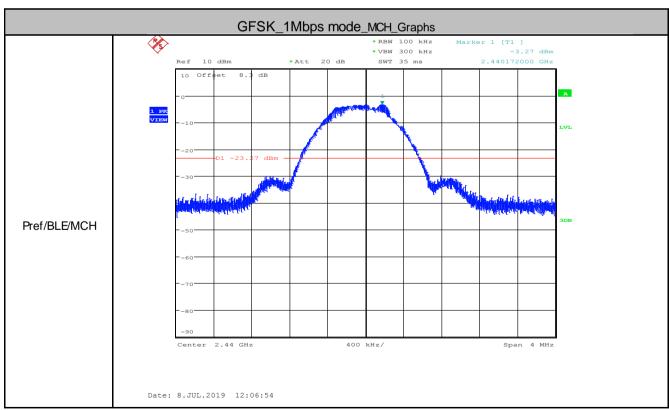
5.5 Band-edge for RF Conducted Emissions


GFSK_1Mbps mode					
Test channel	Frequency(MHz)	Emission Level(dBm)	Limit(dBm)	Result	
Lowest	2400	-39.450	-23.01	Pass	
Highest	2483.5	-48.050	-23.68	Pass	

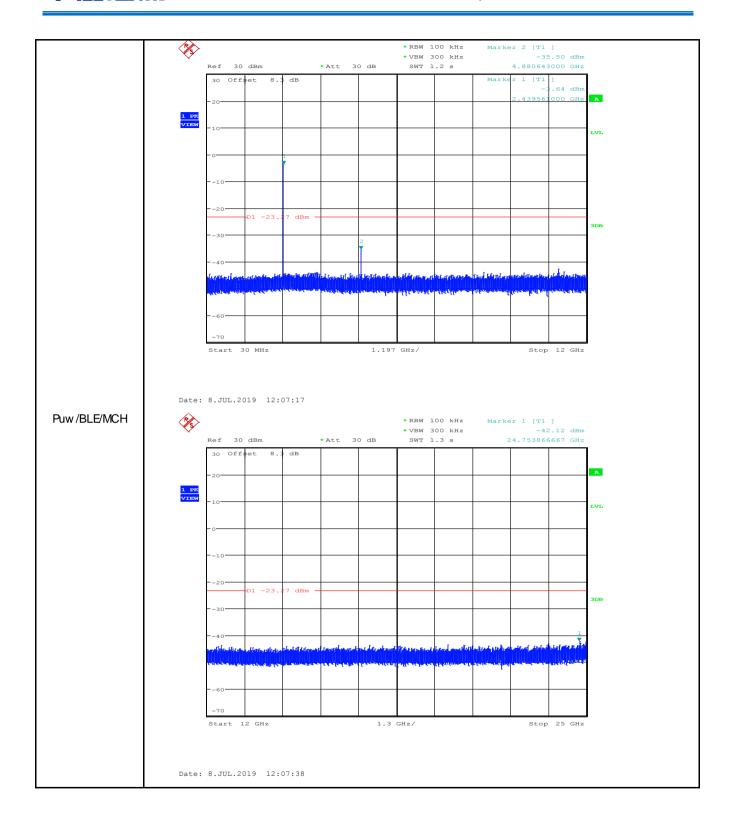
Test plot as follows:

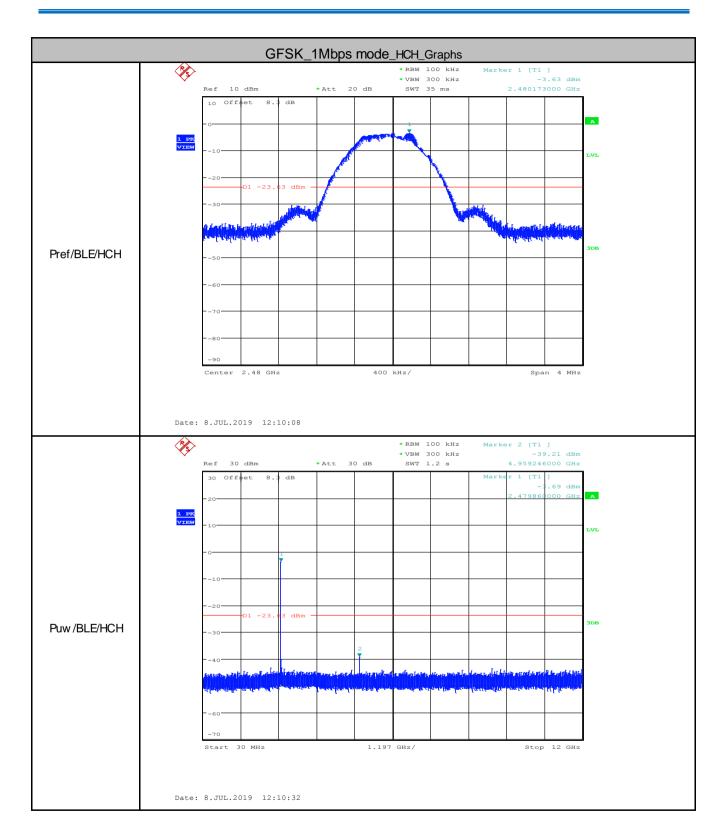


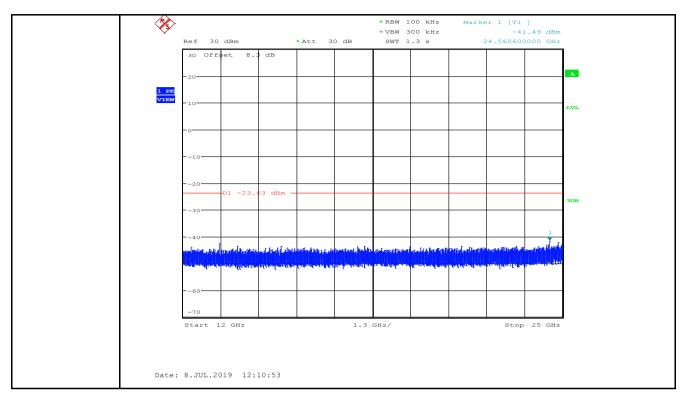

5.6 Spurious RF Conducted Emissions



Test plot as follows:



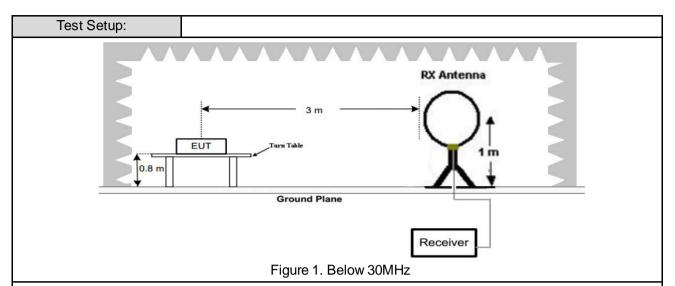




Report No.: CQASZ20190600481E-01

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.



5.7 Radiated Spurious Emission

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance	e: 3n	n (Semi-Anec	hoic Chan	nbe	r)		
Receiver Setup:	Frequency		Detector	RBW		VBW	Remark	
	0.009MHz-0.090MH	łz	Peak	10kHz	Z	30kHz	Peak	
	0.009MHz-0.090MH	łz	Average	10kHz	Z	30kHz	Average	
	0.090MHz-0.110MH	łz	Quasi-peak	10kHz	Z	30kHz	Quasi-peak	
	0.110MHz-0.490MH	łz	Peak	10kHz	Z	30kHz	Peak	
	0.110MHz-0.490MH	łz	Average	10kHz	Z	30kHz	Average	
	0.490MHz -30MHz	-	Quasi-peak	10kHz	Z	30kHz	Quasi-peak	
	30MHz-1GHz		Quasi-peak	100 kH	lz	300kHz	Quasi-peak	
	Above 1GHz		Peak	1MHz		3MHz	Peak	
	Above 1GHz		Peak	1MHz	<u> </u>	10Hz	Average	
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m) Rem		Remark	Measureme distance (m	
	0.009MHz-0.490MHz	2	400/F(kHz)	-			300	
	0.490MHz-1.705MHz	24	000/F(kHz)			30		
	1.705MHz-30MHz		30			30		
	30MHz-88MHz		100	40.0	Q	uasi-peak	3	
	88MHz-216MHz	ИНz 150		43.5	Q	uasi-peak	3	
	216MHz-960MHz 200		46.0	Q	uasi-peak			
	960MHz-1GHz 500		54.0	Q	uasi-peak	3		
	Above 1GHz		500	54.0		Average	3	

Antenna Tower

Antenna Tower

Antenna Tower

Ground Reference Plane

Test Receiver

Angeler

Controller

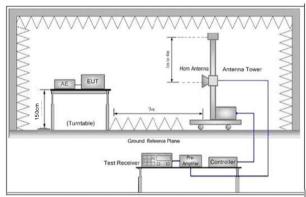


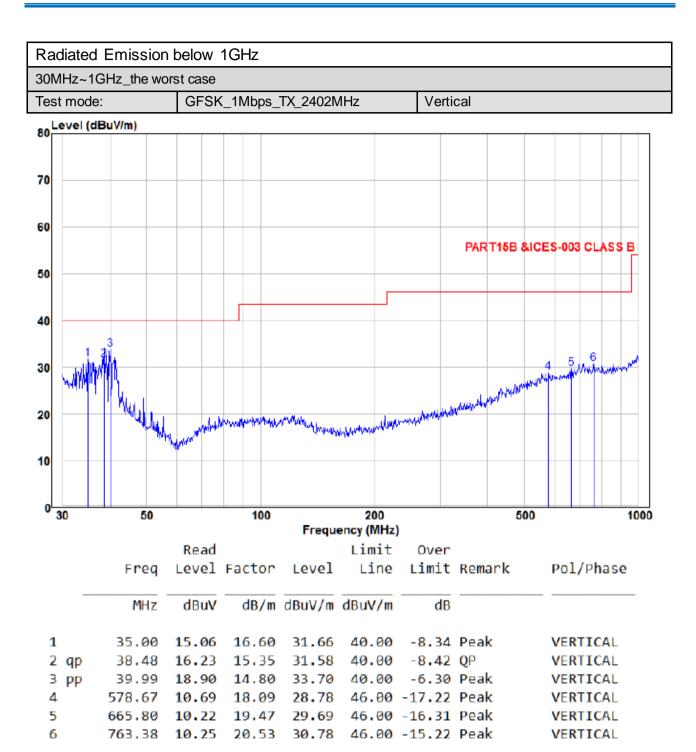
Figure 2. 30MHz to 1GHz

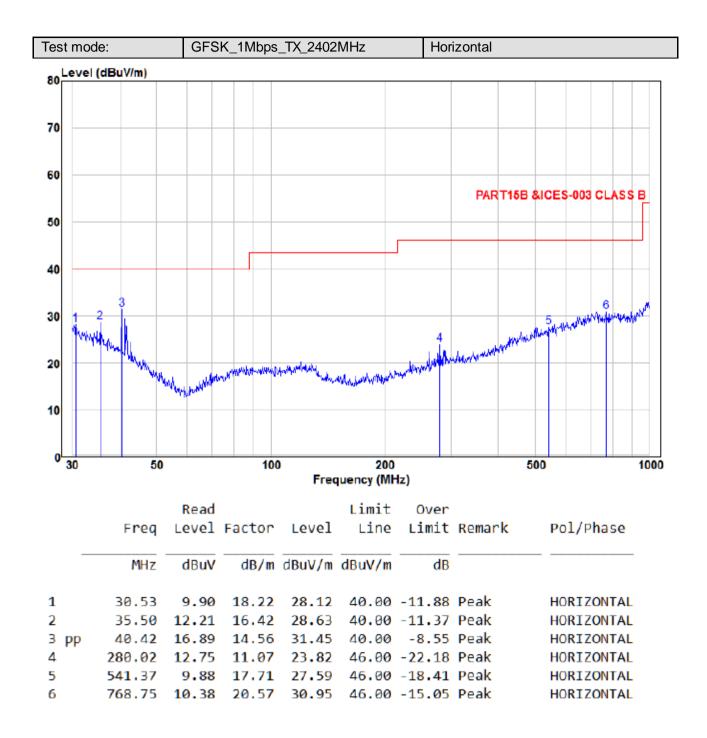
Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.


- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

	 horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with GFSK modulation. Transmitting mode.
Final Test Mode:	Transmitting with GFSK modulation.
	Pretest the EUT at Transmitting mode, found Transmitting mode which it is worse case.
	For below 1GHz part, through pre-scan, the worst case is mode a.
	Only the worst case is recorded in the report.
Test Results:	Pass

Transmitter Emission above 1GHz

Test mode:		GFSK_1Mbps_TX_2402MHz					
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4804	58.64	-1.33	57.31	74	-16.69	Peak	Н
4804	41.17	-1.33	39.84	54	-14.16	Average	Н
7206	47.5	5.98	53.48	74	-20.52	Peak	Н
7206	36.6	5.98	42.58	54	-11.42	Average	Н
4804	54.48	-1.33	53.15	74	-20.85	Peak	V
4804	37.33	-1.33	36	54	-18	Average	V
7206	47.37	5.98	53.35	74	-20.65	Peak	V
7206	36.45	5.98	42.43	54	-11.57	Average	V
Test mode:		GFSK_1Mbp	os_TX_2440	MHz			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4880	62.17	-0.82	61.35	74	-12.65	Peak	Н
4880	45.99	-0.82	45.17	54	-8.83	Average	Н
7320	47.53	5.91	53.44	74	-20.56	Peak	Н
7320	36.66	5.91	42.57	54	-11.43	Average	Н
4880	57.84	-0.82	57.02	74	-16.98	Peak	V
4880	42.14	-0.82	41.32	54	-12.68	Average	V
7320	47.53	5.91	53.44	74	-20.56	Peak	V
7320	36.56	5.91	42.47	54	-11.53	Average	V
Test mode:		GFSK_1Mbp	os_TX_2480	MHz			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		H/V
4960	63.55	-0.45	63.1	74	-10.9	Peak	Н
4960	47.46	-0.45	47.01	54	-6.99	Average	Н
7440	47.53	5.77	53.3	74	-20.7	Peak	Н
7440	36.67	5.77	42.44	54	-11.56	Average	Н
4960	59.29	-0.45	58.84	74	-15.16	Peak	V
4960	42.78	-0.45	42.33	54	-11.67	Average	V
7440	48.12	5.77	53.89	74	-20.11	Peak	V
7440	36.69	5.77	42.46	54	-11.54	Average	V

Report No.: CQASZ20190600481E-01

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 8GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

5.8 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10 2013							
Test Site:	Measurement Distance	e: 3n	n (Semi-Anec	hoic Chan	nbe	r)		
Receiver Setup:	Frequency		Detector	RBW		VBW	Remark	
	0.009MHz-0.090MH	łz	Peak	10kHz	Z	30kHz	Peak	
	0.009MHz-0.090MH	lz	Average	10kHz	Z	30kHz	Average	
	0.090MHz-0.110MH	lz	Quasi-peak	10kHz	Z	30kHz	Quasi-peak	
	0.110MHz-0.490MH	lz	Peak	10kHz	Z	30kHz	Peak	
	0.110MHz-0.490MH	lz	Average	10kHz	Z	30kHz	Average	
	0.490MHz -30MHz		Quasi-peak	10kHz	Z	30kHz	Quasi-peak	
	30MHz-1GHz		Quasi-peak	100 kH	lz	300kHz	Quasi-peak	
	Above 1GHz		Peak	1MHz		3MHz	Peak	
	Above 1GHz		Peak	1MHz	<u> </u>	10Hz	Average	
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	I Pamare		Measureme distance (m	
	0.009MHz-0.490MHz	2	400/F(kHz)	-			300	
	0.490MHz-1.705MHz	24	000/F(kHz)			30		
	1.705MHz-30MHz		30			30		
	30MHz-88MHz		100	40.0	40.0 Quasi-peak		3	
	88MHz-216MHz	150		43.5	Q	uasi-peak	3	
	216MHz-960MHz	16MHz-960MHz 200		46.0		uasi-peak		
	960MHz-1GHz	960MHz-1GHz 500		54.0	Q	uasi-peak	3	
	Above 1GHz		500	54.0	,	Average	3	

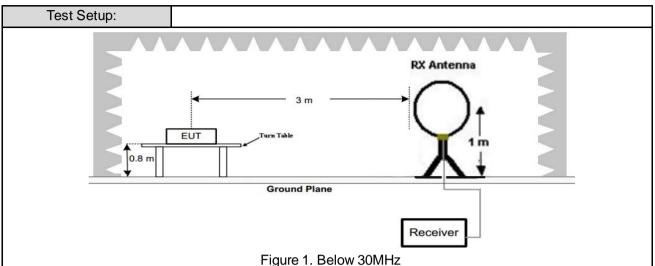
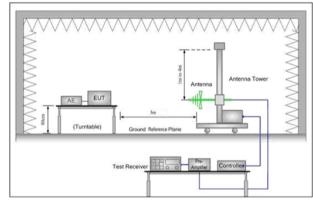



Figure 1. Below 30MHz

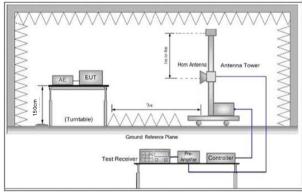


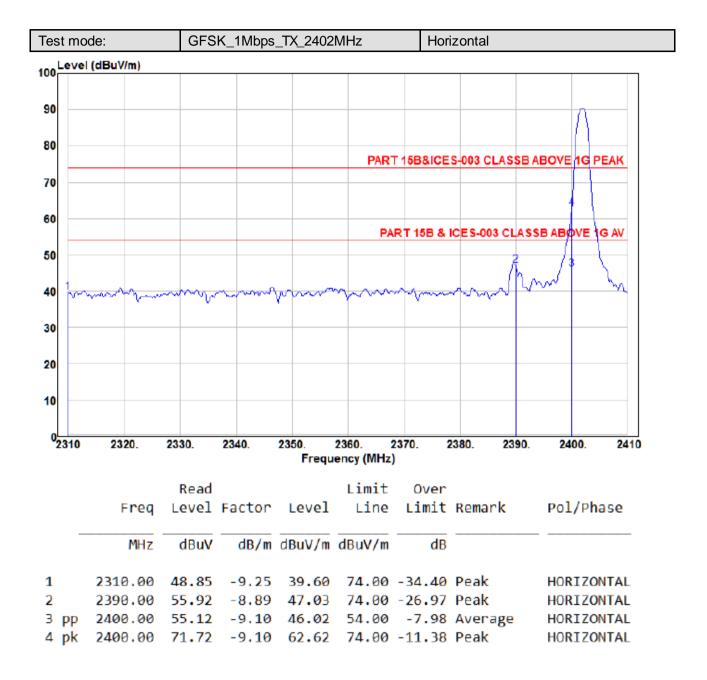
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

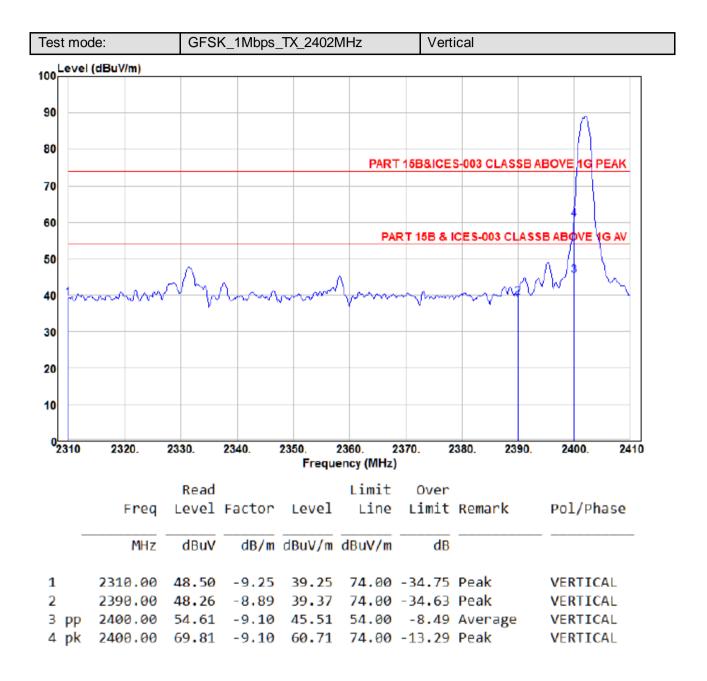
Test Procedure:

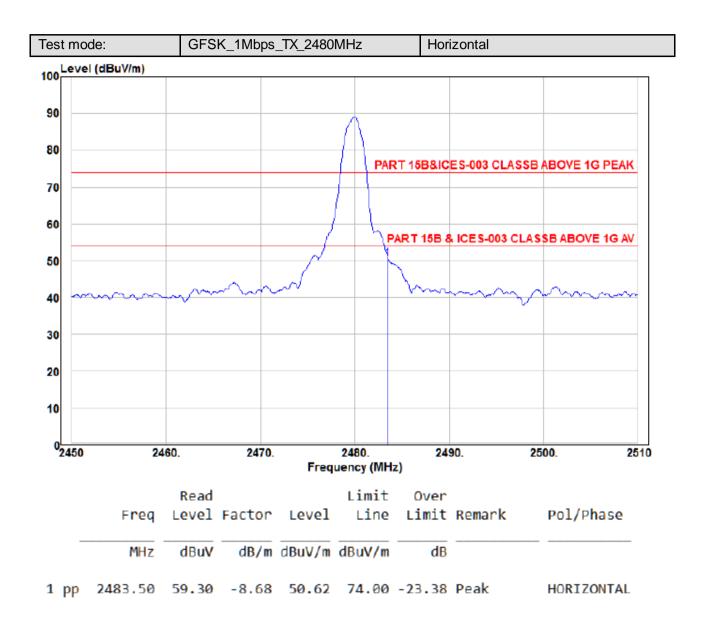
- j. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- I. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

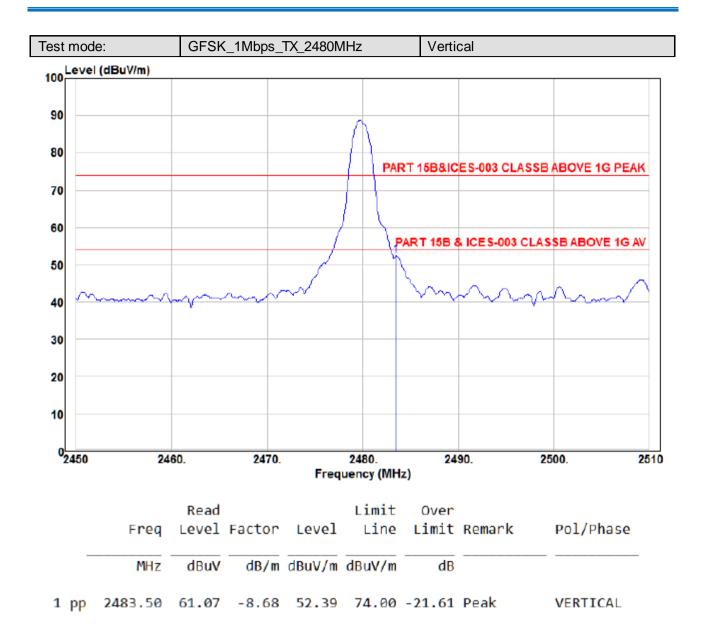

	horizontal and vertical polarizations of the antenna are set to make the measurement.
	m. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	p. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	r. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting with GFSK at lowest, middle and highest channel.
Test Results:	Pass


Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Note:

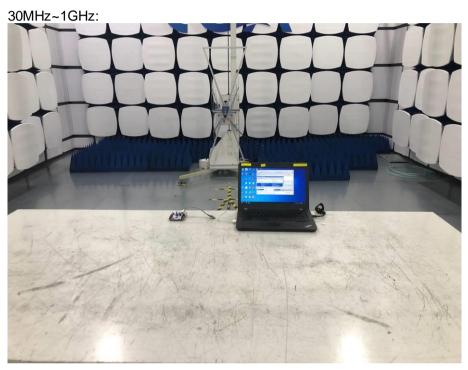
The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:



Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: CQASZ20190600481E-01



Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

6 Photographs - EUT Test Setup

6.1 Radiated Spurious Emission

7 Photographs - EUT Constructional Details

END OF THE REPORT