

RF TEST REPORT

Report No.: 20240317G03742X-W6

Product Name: Cobra-SC120

Model No.: SC120, SC110 Series

FCC ID: BBOSC120

Applicant: Cobra Electronics Corporation

1701 Golf Road Suite 3-900, Rolling Meadows, IL 60008, United Address:

States.

Dates of Testing: 03/06/2024 - 04/03/2024

Issued by: CCIC Southern Testing Co., Ltd.

Electronic Testing Building, No. 43 Shahe Road, Xili Street,

Lab Location:

Nanshan District, Shenzhen, Guangdong, China.

This test report consists of 25 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report

Product....: Cobra-SC120

Brand Name....: Cobra

Trade Name: Cobra

Applicant.....: Cobra Electronics Corporation

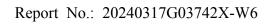
United States.

Manufacturer.....: Cobra Electronics Corporation

Manufacturer Address.....: 1701 Golf Road Suite 3-900, Rolling Meadows, IL 60008,

United States.

Test Standards.....: 47 CFR Part 15 Subpart E 15.407


Test Result.....: Pass

Chuiwang Zhang, Test Engineer

Chris You, Senior Engineer

Approved by.....: 2024.04.03

Yang Fan, Manager

Table of Contents

1. GENERAL INFORMATION	5
1.1. EUT Description	5
1.2. Test Standards and Results	6
1.3. Laboratory Facilities	6
2. U-NII DFS RULE REQUIREMENTS	7
2.1. Working modes and required test items	7
2.2. Test limits and radar signal parameters	8
3. TEST PROCEDURE	11
3.1. DFS Test Setup configuration	11
3.2. BVADT DFS Measurement system	12
4. U-NII DFS RULE REQUIREMENTS	22
5. U-NII DFS RULE REQUIREMENTS	25

Change History				
Issue Date Reason for change				
1.0	2024.04.03	First edition		

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Cobra-SC120
Model No.	SC120, SC110 Series
Hardware Version	90100S00002757
Software Version	V1.5
	☐ Master device
Operation	☐ Slaver device with radar detection function
	⊠ Slaver device without radar detection function
TPC	Not suppport
EUT supports Radios application	WLAN5.0GHz 802.11a/n/ac
Modulation Type	802.11a/n: OFDM (BPSK/QPSK/16QAM/64QAM)
Modulation Type	802.11ac: OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)
	802.11a: 54/48/36/24/18/12/9/6 Mbps
Transfer Rate	802.11n: up to 150 Mbps
	802.11ac: up to 433.333 Mbps
	UNII-1: 5150 ~ 5250MHz
r n	UNII-2a: 5250 ~ 5350MHz
Frequency Range	UNII-2c: 5470 ~ 5725MHz
	UNII-3: 5725 ~ 5850MHz
	802.11a: 20MHz
Channel Bandwidth	802.11n: 20MHz/40MHz
	802.11ac: 20MHz/40MHz/80MHz
Antenna Type	Internal Antenna
Antenna Gain	1.47dBi
Power supply	DC 5V(USB)

Note 1: The information of antenna gain and cable loss is provided by the manufacturer and our lab is not responsible for the accuracy of the antenna gain and cable loss information.

Note 2: Model: SC120, SC110 Series have the same PCB board, electromagnetic emissions and electromagnetic compatibility characteristics. The below table show differences:

Model No.	Differences
SC120	With SD card
SC110 Series	Without SD card

1.2. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart E and RSS 247 Issue 2:

No.	Identity	Document Title		
1	47 CFR Part 15	Padio Fraguenay Davisas		
1	Subpart E §15.407	Radio Frequency Devices		
2	KDB Publication 905462	LINIII DEC Complian de Duc de dumas Mary Dulos		
D02v02		UNII DFS Compliance Procedures New Rules		
2	KDB Publication 905462	LINII Cliente Without Dader Detection New Dules		
3	D03v01	UNII Clients Without Radar Detection New Rules		

Test detailed items/section required by FCC/IC rules and results are as below:

No.	FCC Rule	Description	Result
1		PASS	
2	15.407 (h)(2) Channel Closing Transmission T		PASS
3		Non- Occupancy Period	PASS

1.3. Laboratory Facilities

FCC-Registration No.: 406086

CCIC Southern Testing Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Designation Number: CN1283, valid time is until Jun. 30th, 2025.

ISED Registration: 11185A

CCIC Southern Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A on Aug. 04, 2016, valid time is until Jun. 30th, 2025.

CAB number: CN0064

A2LA Code: 5721.01

CCIC-SET is a third party testing organization accredited by A2LA according to ISO/IEC 17025. The accreditation certificate number is 5721.01.

2. U-NII DFS Rule Requirements

2.1. Working modes and required test items

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

Table 1: Applicability of DFS Requirements prior to use a channel

	Operational Mode			
Requirement	Mostor	Client without radar	Client with radar	
	Master	detection	detection	
Non-Occupancy Period	√	Not required	√	
DFS Detection Threshold	√	Not required	√	
Channel Availability Check Time	√	Not required	Not required	
Uniform Spreading	√	Not required	Not required	
U-NII Detection Bandwidth	√	Not required	$\sqrt{}$	

Table 2: Applicability of DFS Requirements during normal operation

	Operational Mode				
Requirement	Mostor	Client without radar	Client with radar		
	Master	detection	detection		
DFS Detection Threshold	√	Not required	√		
Channel Closing Transmission Time	√	√	√		
Channel Move Time	√	√	√		
U-NII Detection Bandwidth	√	Not required	√		

2.2. Test limits and radar signal parameters

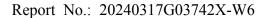
DFS Detection thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (See Note 1 and 2)
≥ 200 millwatt	-64 dBm
< 200 millwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

DFS Response requirement values


Parameter	Value		
Non-occupancy period	Minimum 30 minutes		
Channel Availability Check Time	60 seconds		
Channel Move Time	10 seconds See Note 1.		
	200 milliseconds + an aggregate of 60		
Channel Closing Transmission Time	milliseconds over remaining 10 second period.		
	See Notes 1 and 2.		
U-NII Detection Bandwidth	100% of the UNII transmission power		
U-INIT Detection Bandwidth	bandwidth. See Note 3.		

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Parameters of DFS test signals

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short pluse radar test waveforms

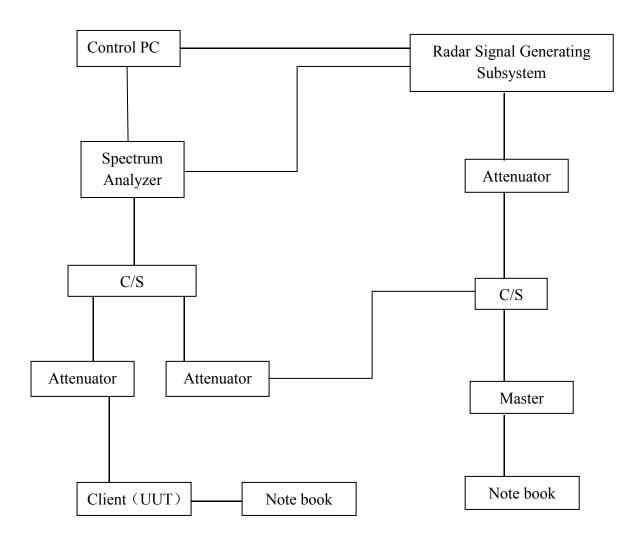
Radar Type	Pulse width (μsec)	PRI (μsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
1	1	Test A:15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B:15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1µsec, excluding PRI values selected in Test A	Roundup $ \begin{cases} \left(\frac{1}{360}\right). \\ \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu\text{vec}}}\right) \end{cases} $	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggregate (Radar Types 1-4)				120

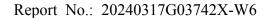
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Long pulse radar test waveform

Radar Type	Pulse Width (μsec)	Chirp Width (MHz)	PRI (μsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

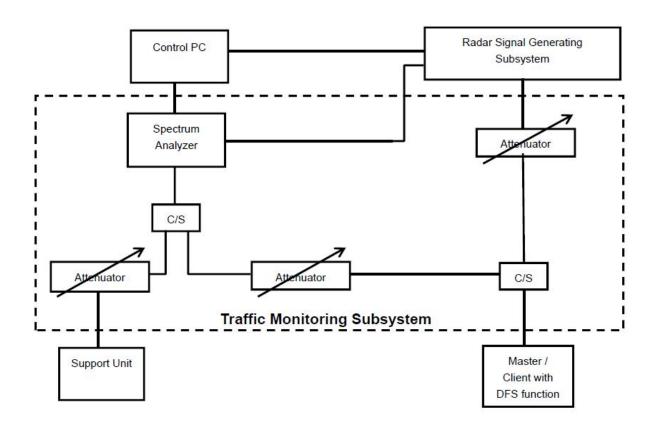
Frequency hopping radar test waveform

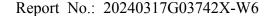

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30


3. Test Procedure

3.1. DFS Test Setup configuration

Client without Radar Detection Mode

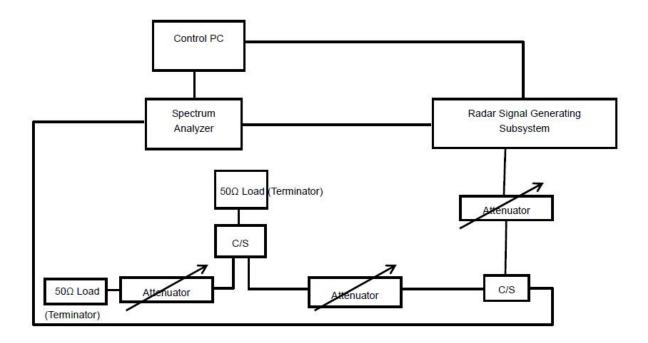

The UUT is a UNII device operating in client mode without radar detection. The radar test signals are injected into the master device.



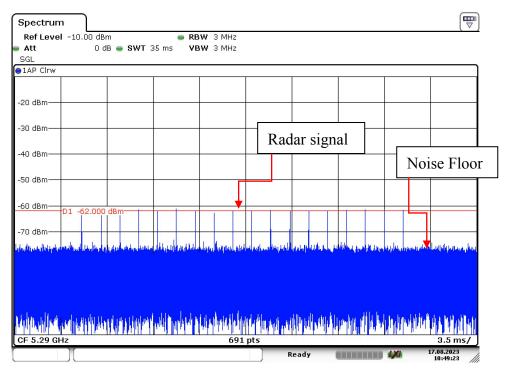
3.2. BVADT DFS Measurement system

A complete BVADT DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating Subsystem and (2) the Traffic Monitoring Subsystem. The control PC is necessary for generating the Radar waveforms in Table 1, 2. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

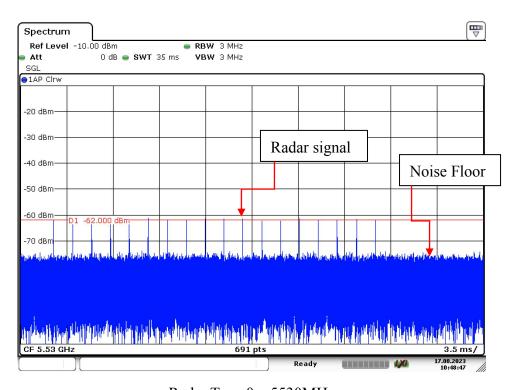
The test transmission will always be from the Master Device to the Client Device. While the Client device is set up to associate with the Master device and play the MPEG file (6 1/2Magic Hours) from Master device, the designated MPEG test file and instructions are located at: http://ntiacsd.ntia.doc.gov/dfs/.



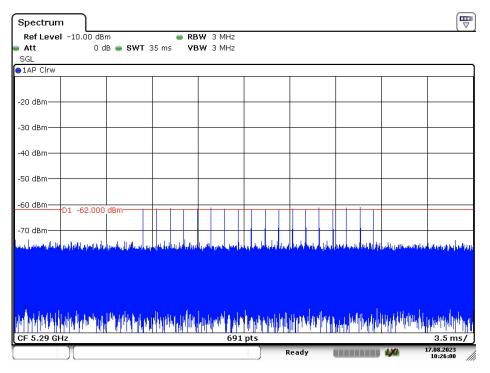
Calibration of DFS detection threshold level:

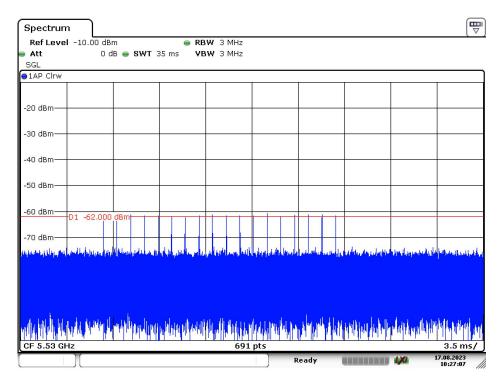

The measured channel is 5290 MHz and 5530MHz in 80MHz Bandwidth. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time.

Conducted setup configuration of calibration of DFS detection threshold level

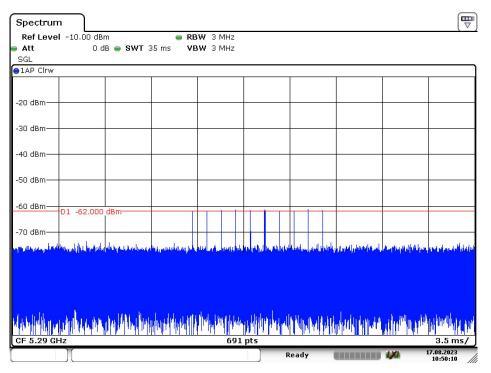


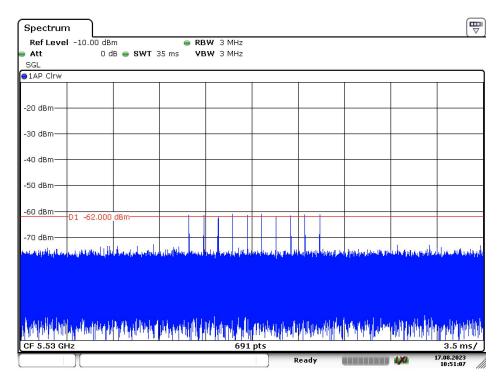
Calibration plots for each of the required radar waveforms Radar type $\boldsymbol{0}$


Radar Type 0 – 5290MHz

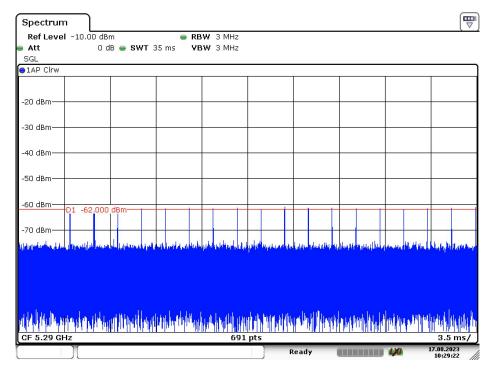

Radar Type 0 - 5530 MHz

Radar type 1A

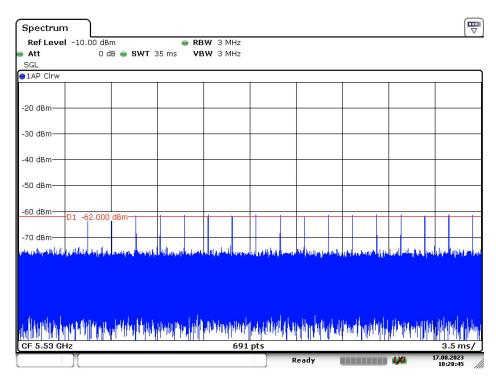

Radar Type 1A – 5290MHz


Radar Type 1A – 5530MHz

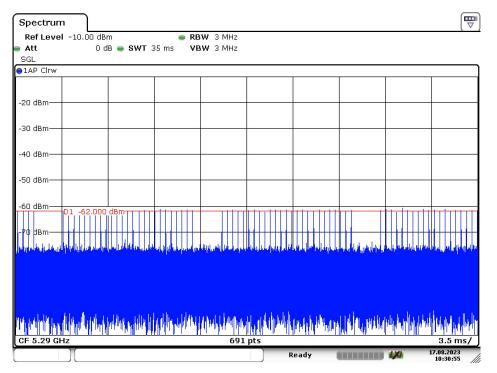
Radar type 1B



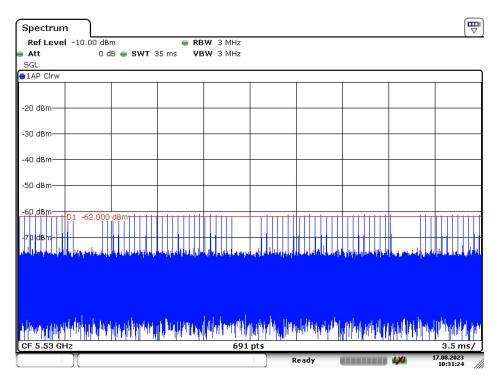
Radar Type 1B - 5290MHz



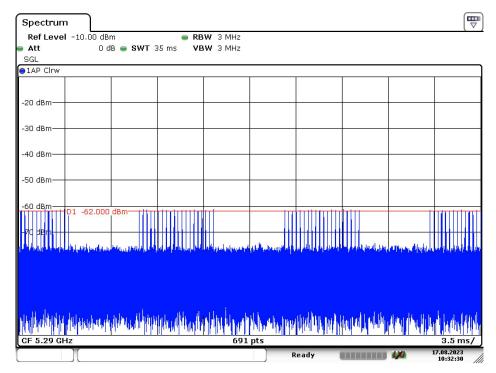
Radar Type 1B – 5530MHz



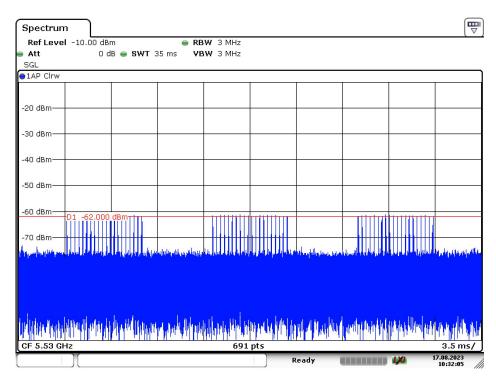
Radar Type 2 – 5290MHz



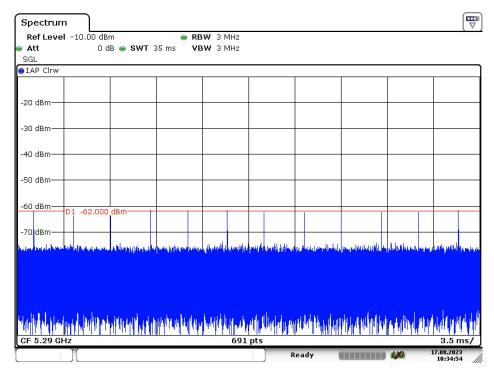
Radar Type 2 – 5530MHz



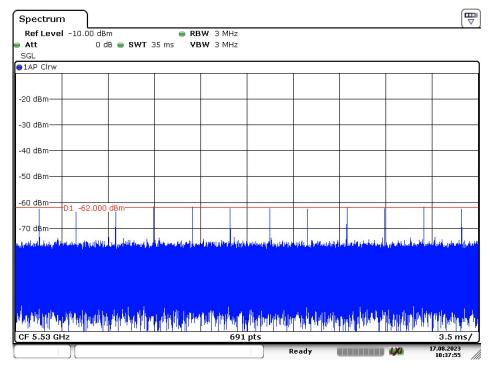
Radar Type 3 – 5290MHz



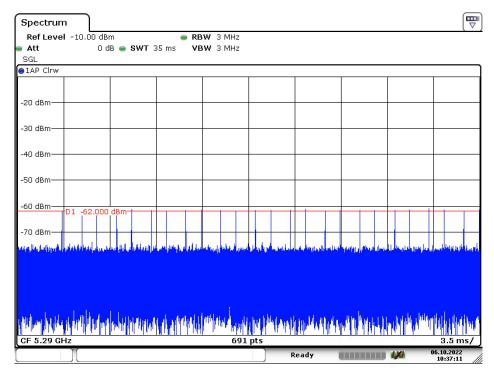
Radar Type 3 – 5530MHz



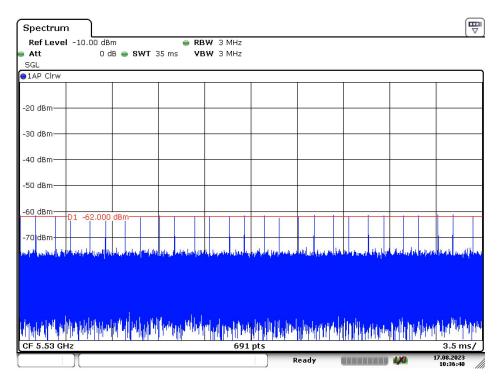
Radar Type 4 – 5290MHz



Radar Type 4 – 5530MHz

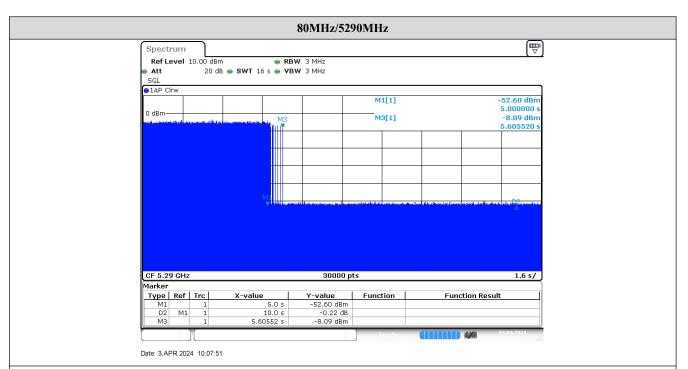


Radar Type 5 – 5290MHz

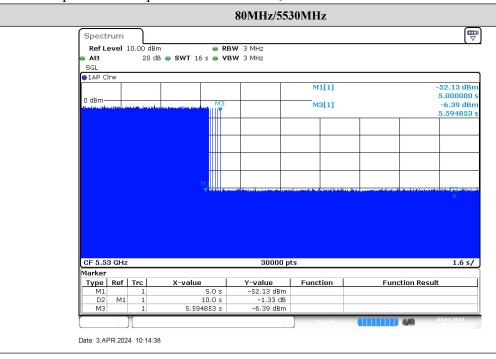


Radar Type 5 – 5530MHz

Radar Type 6 – 5290MHz

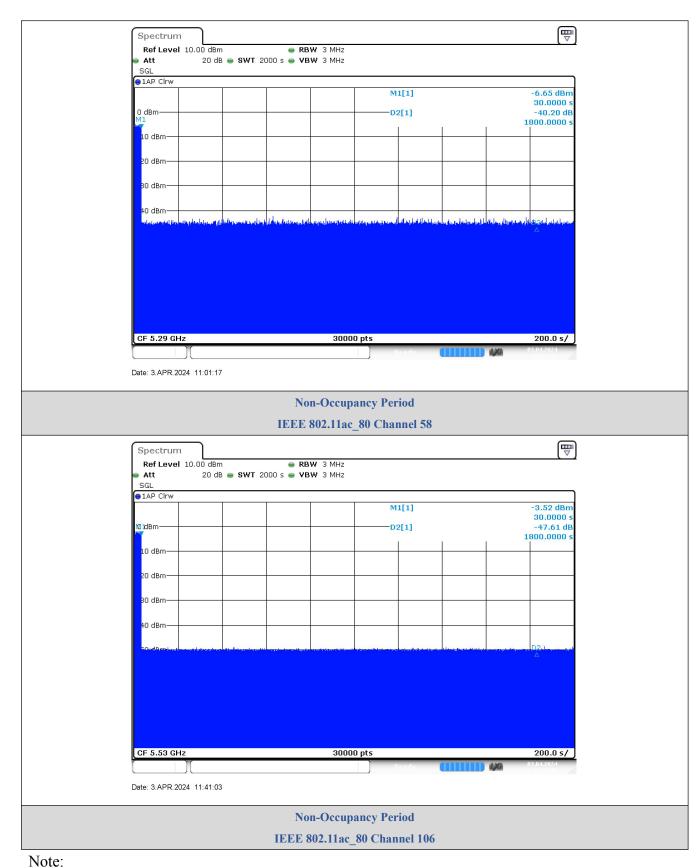

Radar Type 6 – 5530MHz

4. U-NII DFS Rule Requirements


BW/Frequency	Test Item	Test Result(ms)	Limit	Result
	Channel Move Time	605.52	< 10000ms	PASS
80MHz/5290MHz	Channel Closing	32.53	< 260ms	PASS
0011112/32/011112	Transmission Time	32.33	< 200ms	
	Non-Occupancy period	No transmission	≥ 30 minutes	PASS
	Channel Move Time	594.85	< 10000ms	PASS
80MHz/5530MHz	Channel Closing	28.8	< 260ms	PASS
801/11112/33301/11112	Transmission Time	20.0		
	Non-Occupancy period	No transmission	≥ 30 minutes	PASS

Note:

- 1) Mark1 Time: 5000ms, Mark2 Time:15000ms, On time Points:61
- 2) Dwell = Sweep Time/Sweep Points = 0.5334ms, C = N x Dwell = $61 \times 0.5334 = 32.53$ ms


Note:

- 1) Mark1 Time: 5000ms, Mark2 Time: 15000ms, On time Points: 54
- 2) Dwell = Sweep Time/Sweep Points = 0.5334ms, C = N x Dwell = $54 \times 0.5334 = 28.8$ ms

Note:

- 1) M1 time indicates the time to join the radar signal.
- 2) D2 time indicates the time difference with M1(Limits for channel move time).
- 3) M3 time indicates Channel Move Time(M3-M1).

- 1) M1 time indicates the time to join the radar signal.
- 2) D2 time indicates the time difference with M1(Limits for non-occupancy periods).

5. U-NII DFS Rule Requirements

DFS Test System						
No.	Equipment Name	Serial No.	Model No.	Manufacturer	Cal Date	Due Date
1	Spectrum Analyzer	A140801886	FSV-40	R&S	2023.10.20	2024.10.19
2	Vector Signal Generator	A130901494	SMBV100A	R&S	2024.01.18	2025.01.17

Support Unit used in test configuration and system					
Equipment	Brand Name	Model Name	FCC ID		
WLAN AP	ASUS	GT-AXE11000	MSQ-RTAXJF00		
Notebook	НР	TPN-Q221	N/A		

** END OF REPORT **