Plot 89 LTE Band 66 50%RB Top Edge Low (Distance 10mm) Date: 9/29/2020 Communication System: UID 0, LTE (0); Frequency: 1720 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1720 MHz; $\sigma = 1.303$ S/m; $\epsilon_r = 39.467$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(8.25, 8.25, 8.25); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Top Edge Low/Area Scan (4x8x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.407 W/kg #### Top Edge Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.64 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.587 W/kg #### SAR(1 g) = 0.367 W/kg; SAR(10 g) = 0.213 W/kg Maximum value of SAR (measured) = 0.399 W/kg AR Test Report No.: R2009H0246-S1V2 #### Wi-Fi-Antenna Plot 90 802.11b Left Cheek High Date: 9/10/2020 Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2462 MHz; $\sigma = 1.824$ S/m; $\epsilon_r = 38.534$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.54, 7.54, 7.54); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Left Cheek High /Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.129 W/kg #### Left Cheek High /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.085 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.442 W/kg #### SAR(1 g) = 0.161 W/kg; SAR(10 g) = 0.064 W/kg Maximum value of SAR (measured) = 0.183 W/kg #### Plot 91 802.11b Front Side Low (Distance 15mm) Date: 9/10/2020 Communication System: UID 0, 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.769$ S/m; $\epsilon_r = 38.73$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.54, 7.54, 7.54); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Front Side Low/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.110 W/kg #### Front Side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.314 V/m; Power Drift = -0.035 dB Peak SAR (extrapolated) = 0.243 W/kg #### SAR(1 g) = 0.120 W/kg; SAR(10 g) = 0.061 W/kg Maximum value of SAR (measured) = 0.127 W/kg #### Plot 92 802.11b Right Edge Low (Distance 10mm) Date: 9/10/2020 Communication System: UID 0, 802.11b (0); Frequency: 2412 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2412 MHz; $\sigma = 1.769$ S/m; $\epsilon_r = 38.73$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.54, 7.54, 7.54); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Right Edge Low/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.312 W/kg #### Right Edge Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.037 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.873 W/kg #### SAR(1 g) = 0.397 W/kg; SAR(10 g) = 0.175 W/kg Maximum value of SAR (measured) = 0.464 W/kg #### Plot 93 802.11a U-NII-1 Left Tilt CH48 Date: 9/10/2020 Communication System: UID 0, 802.11a (0); Frequency: 5240 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5240 MHz; $\sigma = 4.847$ S/m; $\epsilon_r = 36.872$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(5.55, 5.55, 5.55); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Left Cheek CH48/Area Scan (12x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.201 W/kg #### Left Cheek CH48/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 3.733 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.597 W/kg #### SAR(1 g) = 0.207 W/kg; SAR(10 g) = 0.074 W/kg Maximum value of SAR (measured) = 0.230 W/kg #### Plot 94 802.11ac-VHT40 U-NII-1 Back Side CH46 (Distance 15mm) Date: 9/10/2020 Communication System: UID 0, 802.11ac VHT 40; Frequency: 5230 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5230 MHz; $\sigma = 4.858$ S/m; $\varepsilon_r = 36.82$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(5.55, 5.55, 5.55); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Back Side CH46/Area Scan (12x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.136 W/kg #### Back Side CH46/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 1.635 V/m; Power Drift = -0.041 dB Peak SAR (extrapolated) = 0.376 W/kg #### SAR(1 g) = 0.139 W/kg; SAR(10 g) = 0.058 W/kg Maximum value of SAR (measured) = 0.160 W/kg #### Plot 95 802.11ac-VHT40 U-NII-1 Top Edge CH46 (Distance 10mm) Date: 9/10/2020 Communication System: UID 0, 802.11ac 40M; Frequency: 5230 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5230 MHz; $\sigma = 4.858$ S/m; $\epsilon_r = 36.82$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(5.55, 5.55, 5.55); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Top Edge CH46/Area Scan (6x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.268 W/kg #### Top Edge CH46/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 5.828 V/m; Power Drift = 0.039 dB Peak SAR (extrapolated) = 0.742 W/kg #### SAR(1 g) = 0.264 W/kg; SAR(10 g) = 0.112 W/kg Maximum value of SAR (measured) = 0.309 W/kg #### Plot 96 802.11a U-NII-2A Left Tilt CH64 Date: 9/10/2020 Communication System: UID 0, 802.11a (0); Frequency: 5320 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5320 MHz; σ = 4.95 S/m; ϵ_r = 36.328; ρ = 1000 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(5.55, 5.55, 5.55); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Left Tilt CH64/Area Scan (12x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.225 W/kg #### Left Tilt CH64/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 3.985 V/m; Power Drift = 0.060 dB Peak SAR (extrapolated) = 0.647 W/kg SAR(1 g) = 0.194 W/kg; SAR(10 g) = 0.069 W/kg Maximum value of SAR (measured) = 0.236 W/kg #### Plot 97 802.11ac-VHT40 U-NII-2A Back Side CH54 (Distance 15mm) Date: 9/10/2020 Communication System: UID 0, 802.11ac VHT 40; Frequency: 5270 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5270 MHz; σ = 4.8 S/m; ϵ_r = 36.809; ρ = 1000 kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(5.55, 5.55, 5.55); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Back Side CH54/Area Scan (12x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.148 W/kg #### Back Side CH54/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 1.717 V/m; Power Drift = -0.039 dB Peak SAR (extrapolated) = 0.396 W/kg #### SAR(1 g) = 0.144 W/kg; SAR(10 g) = 0.059 W/kg Maximum value of SAR (measured) = 0.168 W/kg #### Plot 98 802.11ac-VHT40 U-NII-2A Top Edge CH54(Distance 0mm) Date: 9/10/2020 Communication System: UID 0, 802.11ac 40M; Frequency: 5270 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5270 MHz; $\sigma = 4.8$ S/m; $\epsilon_r = 36.809$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(5.55, 5.55, 5.55); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020
Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Top Edge CH54/Area Scan (6x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.911 W/kg #### Top Edge CH54/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 4.348 V/m; Power Drift = 0.076 dB Peak SAR (extrapolated) = 12.3 W/kg #### SAR(1 g) = 2.1 W/kg; SAR(10 g) = 0.577 W/kg Maximum value of SAR (measured) = 2.272 W/kg #### Plot 99 802.11a U-NII-2C Left Tilt CH140 Date: 9/10/2020 Communication System: UID 0, 802.11a (0); Frequency: 5700 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5700 MHz; $\sigma = 5.38$ S/m; $\epsilon_r = 35.438$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(4.97, 4.97, 4.97); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Left Tilt CH140/Area Scan (12x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.263 W/kg #### Left Tilt CH140/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 5.148 V/m; Power Drift = -0.022 dB Peak SAR (extrapolated) = 0.903 W/kg #### SAR(1 g) = 0.284 W/kg; SAR(10 g) = 0.104 W/kg Maximum value of SAR (measured) = 0.317 W/kg #### Plot 100 802.11ac-VHT40 U-NII-2C Back Side CH110 (Distance 15mm) Date: 9/10/2020 Communication System: UID 0, 802.11 ac 40M; Frequency: 5550 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5550 MHz; $\sigma = 5.137$ S/m; $\epsilon_r = 35.886$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(4.97, 4.97, 4.97); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Back Side CH110/Area Scan (12x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.171 W/kg #### Back Side CH110/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 1.508 V/m; Power Drift = -0.027 dB Peak SAR (extrapolated) = 0.572 W/kg #### SAR(1 g) = 0.190 W/kg; SAR(10 g) = 0.076 W/kg Maximum value of SAR (measured) = 0.218 W/kg #### Plot 101 802.11ac-VHT40 U-NII-2C Top Edge CH110 (Distance 0mm) Date: 9/10/2020 Communication System: UID 0, 802.11ac 40M; Frequency: 5550 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5550 MHz; $\sigma = 5.137$ S/m; $\varepsilon_r = 35.886$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(4.97, 4.97, 4.97); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Top Edge CH110/Area Scan(6x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 5.27 W/kg #### Top Edge CH110/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 11.70 V/m; Power Drift = 0.111 dB Peak SAR (extrapolated) = 11.3 W/kg #### SAR(1 g) = 3.24 W/kg; SAR(10 g) = 0.865 W/kg Maximum value of SAR (measured) = 6.08 W/kg #### Plot 102 802.11a U-NII-3 Left Tilt CH149 Date: 9/10/2020 Communication System: UID 0, 802.11a (0); Frequency: 5745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5745 MHz; $\sigma = 5.48$ S/m; $\varepsilon_r = 35.27$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(5.00, 5.00, 5.00); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Left Tilt CH149/Area Scan (12x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.331 W/kg #### Left Tilt CH149/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 4.353 V/m; Power Drift = 0.082 dB Peak SAR (extrapolated) = 0.894 W/kg #### SAR(1 g) = 0.280 W/kg; SAR(10 g) = 0.103 W/kg Maximum value of SAR (measured) = 0.326 W/kg #### Plot 103 802.11a U-NII-3 Back Side CH149 (Distance 15mm) Date: 9/10/2020 Communication System: UID 0, 802.11a (0); Frequency: 5745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5745 MHz; $\sigma = 5.48$ S/m; $\epsilon_r = 35.27$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section DASY5 Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(5.00, 5.00, 5.00); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Back Side CH149/Area Scan (12x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.184 W/kg #### Back Side CH149/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.021 V/m; Power Drift = 0.052 dB Peak SAR (extrapolated) = 0.506 W/kg #### SAR(1 g) = 0.172 W/kg; SAR(10 g) = 0.074 W/kg Maximum value of SAR (measured) = 0.183 W/kg #### Plot 104 802.11a U-NII-3 Top Edge CH149 (Distance 10mm) Date: 9/10/2020 Communication System: UID 0, 802.11a (0); Frequency: 5745 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5745 MHz; $\sigma = 5.48$ S/m; $\epsilon_r = 35.27$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(5.00, 5.00, 5.00); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) #### Top Edge CH149/Area Scan (12x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.297 W/kg #### Top Edge CH149/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 1.574 V/m; Power Drift = -0.039 dB Peak SAR (extrapolated) = 1.05 W/kg #### SAR(1 g) = 0.347 W/kg; SAR(10 g) = 0.126 W/kg Maximum value of SAR (measured) = 0.406 W/kg Plot 105 BT Left Cheek Middle Date: 9/10/2020 Communication System: UID 0, BT (0); Frequency: 2441 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2441 MHz; $\sigma = 1.801$ S/m; $\varepsilon_r = 38.617$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Left Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.54, 7.54, 7.54); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) Left Cheek Middle/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0664 W/kg Left Cheek Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.197 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.213 W/kg SAR(1 g) = 0.085 W/kg; SAR(10 g) = 0.033 W/kg Maximum value of SAR (measured) = 0.0887 W/kg Report No.: R2009H0246-S1V2 #### Plot 106 BT Right Edge Middle (Distance 10mm) Date: 9/10/2020 Communication System: UID 0, BT (0); Frequency: 2441 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2441 MHz; $\sigma = 1.801$ S/m; $\epsilon_r = 38.617$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C Phantom section: Flat Section **DASY5** Configuration: Sensor-Surface: 1.4mm (Mechanical Surface Detection) Probe: EX3DV4 - SN3677; ConvF(7.54, 7.54, 7.54); Calibrated: 7/6/2020; Electronics: DAE4 SN1291; Calibrated: 2/24/2020 Phantom: SAM1; Type: SAM; Serial: TP-1534 Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.14 (7483) Right Edge Middle /(10x18x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0204 W/kg Right Edge Middle /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.324 V/m; Power Drift = -0.056 dB Peak SAR (extrapolated) = 0.0260 W/kg SAR(1 g) = 0.011 W/kg; SAR(10 g) = 0.00591 W/kg Maximum value of SAR (measured) = 0.0120 W/kg **ANNEX D: Probe Calibration Certificate** E-mail: cttl a chinattl.com Client TA(Shanghai) Certificate No: Z20-60218 Report No.: R2009H0246-S1V2 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN: 3677 Http://www.chinattl.cn Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: July 06, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |--------------------------|-------------|--|-----------------------| | Power Meter NRP2 | 101919 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Power sensor NRP-Z91 | 101547 | 16-Jun-20(CTTL,
No.J20X04344) | Jun-21 | | Power sensor NRP-Z91 | 101548 | 16-Jun-20(CTTL, No.J20X04344) | Jun-21 | | Reference 10dBAttenuator | 18N50W-10dB | 10-Feb-20(CTTL, No.J20X00525) | Feb-22 | | Reference 20dBAttenuator | 18N50W-20dB | 10-Feb-20(CTTL, No.J20X00526) | Feb-22 | | Reference Probe EX3DV4 | SN 3617 | 30-Jan-20(SPEAG, No.EX3-3617_Jan2 | 0/2) Jan-21 | | DAE4 | SN 1556 | 4-Feb-20(SPEAG, No.DAE4-1556_Feb. | 20) Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG3700A | 6201052605 | 23-Jun-20(CTTL, No.J20X04343) | Jun-21 | | Network Analyzer E5071C | MY46110673 | 10-Feb-20(CTTL, No.J20X00515) | Feb-21 | | N | ame | Function | Şignature | | Calibrated by: | /u Zongying | SAR Test Engineer | ANT | | Reviewed by: | in Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | 2 | | | | Issued: July 0 | 8, 2020 | Certificate No: Z20-60218 Page 1 of 9 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.en Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF A,B,C,D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z20-60218 Page 2 of 9 Report No.: R2009H0246-S1V2 Http://www.chinattl.en #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3677 #### **Basic Calibration Parameters** E-mail: cttl a chinattl.com | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.41 | 0.46 | 0.40 | ±10.0% | | DCP(mV)B | 100.7 | 102.6 | 102.1 | | #### **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | |------|------------------------------|---|---------|-----------|-----|---------|----------|---------------------------| | 0 CW | 0 | x | 0.0 | 0.0 | 1.0 | 0.00 | 174.8 | ±2.0% | | | | Y | 0.0 | 0.0 | 1.0 | | 186.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 173.5 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No:Z20-60218 Page 3 of 9 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). B Numerical linearization parameter: uncertainty not required. ^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. AR Test Report No.: R2009H0246-S1V2 Add: No.51 Xue yuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://xww.chinattl.com #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3677 #### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] [©] | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(/∈2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.78 | 9.78 | 9.78 | 0.40 | 0.75 | ±12.1% | | 835 | 41.5 | 0.90 | 9,38 | 9.38 | 9.38 | 0.21 | 1.11 | ±12.1% | | 1750 | 40.1 | 1.37 | 8.25 | 8.25 | 8.25 | 0.26 | 1.05 | ±12.1% | | 1900 | 40.0 | 1.40 | 7.90 | 7.90 | 7.90 | 0.28 | 1.06 | 土12.1% | | 2000 | 40.0 | 1.40 | 7.97 | 7.97 | 7.97 | 0.23 | 1.17 | 士12.1% | | 2300 | 39.5 | 1.67 | 7.69 | 7.69 | 7.69 | 0.66 | 0.68 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.54 | 7.54 | 7.54 | 0.66 | 0.70 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.26 | 7.26 | 7.26 | 0.74 | 0.67 | ±12.1% | | 3300 | 38.2 | 2.71 | 7.07 | 7.07 | 7.07 | 0.48 | 0.97 | ±13.3% | | 3500 | 37.9 | 2.91 | 7.03 | 7.03 | 7.03 | 0.49 | 0.93 | 土13.3% | | 3700 | 37.7 | 3.12 | 6.83 | 6.83 | 6,83 | 0.49 | 0.97 | ±13.3% | | 3900 | 37.5 | 3.32 | 6.76 | 6.76 | 6.76 | 0.40 | 1.20 | ±13.3% | | 4100 | 37.2 | 3.53 | 6.78 | 6.78 | 6.78 | 0.40 | 1.15 | ±13.3% | | 4400 | 36.9 | 3.84 | 6.47 | 6.47 | 6.47 | 0.40 | 1.20 | 土13.3% | | 4600 | 36.7 | 4.04 | 6.42 | 6.42 | 6,42 | 0.50 | 1.13 | 士13.3% | | 4800 | 36.4 | 4.25 | 6.35 | 6.35 | 6.35 | 0.45 | 1.25 | ±13.3% | | 4950 | 36.3 | 4.40 | 6.22 | 6.22 | 6.22 | 0.45 | 1.25 | ±13.3% | | 5250 | 35.9 | 4.71 | 5.55 | 5.55 | 5.55 | 0.50 | 1.15 | 士13.3% | | 5600 | 35.5 | 5.07 | 4.97 | 4.97 | 4.97 | 0.55 | 1.22 | ±13.3% | | 5750 | 35.4 | 5.22 | 5.00 | 5.00 | 5.00 | 0.55 | 127 | ±13.3% | ^G Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10 , 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z20-60218 Page 4 of 9 FAt frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z20-60218 Page 5 of 9 ## Receiving Pattern (Φ), θ=0° ### f=600 MHz, TEM ### f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z20-60218 Page 6 of 9 Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com
Http://www.chinattl.cn ### Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Uncertainty of Linearity Assessment: ±0.9% (k=2) - compensated Certificate No:Z20-60218 Page 7 of 9 —■— not compensated Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### **Conversion Factor Assessment** #### f=750 MHz,WGLS R9(H_convF) #### f=1750 MHz,WGLS R22(H_convF) ### **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z20-60218 Page 8 of 9 Add: No. 51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.com #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3677 #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 115.7 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 10mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z20-60218 Page 9 of 9 ### **ANNEX E: D750V3 Dipole Calibration Certificate** Client TA(Shanghai) Certificate No: Z20-60299 #### CALIBRATION CERTIFICATE Object D750V3 - SN: 1045 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 28, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|---| | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | SN 3617 | 30-Jan-20(SPEAG, No. EX3-3617_Jan20) | Jan-21 | | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | 101369
SN 3617
SN 771
ID#
MY49071430 | 101369 12-May-20 (CTTL, No.J20X02965)
SN 3617 30-Jan-20(SPEAG,No.EX3-3617_Jan20)
SN 771 10-Feb-20(CTTL-SPEAG,No.Z20-60017)
ID# Cal Date(Calibrated by, Certificate No.)
MY49071430 25-Feb-20 (CTTL, No.J20X00516) | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 《老者八字 | | Reviewed by: | Lin Hao | SAR Test Engineer | 型献尧 🕌 | | Approved by: | Qi Dianyuan | SAR Project Leader | -0421 | | | | 1,400 | | Issued: September 3, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory, Certificate No: Z20-60299 Page 1 of 8 S P E B G CALIBRATION LABORATORY Add: No.51 Xueyuna Road, Haidian District; Beijing, 100191, China Tell +86-10-62304633-2079 Fax: 186-10-62304633-2504 B-moil: citi@chmatt.com http://www.chinart.ten Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures slated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60299 Page 2 of a R Test Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.3 ± 6 % | 0.87 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | - | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.37 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.57 W/kg ± 18.7 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.4 ± 6 % | 0.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | - | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.12 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.58 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.70 W/kg ±18.7 % (k=2) | Page 3 of 8 R Test Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax; +86-10-62304633-2504 http://www.chinattl.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.3Ω- 2.29jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 26.6dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.7Ω- 4.58jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.6dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 0.900 ns |
--|----------| | The state of s | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| R Test Report Report Report No.: R2009H0246-S1V2 Date: 08.28.2020 Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1045 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.873$ S/m; $\varepsilon_r = 41.28$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(10.07, 10.07, 10.07) @ 750 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.97 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.00 W/kg SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.38 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid Ratio of SAR at M2 to SAR at M1 = 68.7% Maximum value of SAR (measured) = 2.71 W/kg 0 dB = 2.71 W/kg = 4.33 dBW/kg Page 5 of 8 Test Report Report Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn DASY5 Validation Report for Body TSL Date: 08.28.2020 Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1045 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 54.36$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.8, 9.8, 9.8) @ 750 MHz; Calibrated: 2020-01-30 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.84 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.14 W/kg SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 18.4 mm Ratio of SAR at M2 to SAR at M1 = 67.9% Maximum value of SAR (measured) = 2.80 W/kg 0 dB = 2.80 W/kg = 4.47 dBW/kg Page 7 of 8 Test Report Report Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Body TSL Page 8 of 8 AR Test Report Report No.: R2009H0246-S1V2 # **ANNEX F: D835V2 Dipole Calibration Certificate** Client TA(Shanghai) Certificate No: Z20-60296 ### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d020 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 28, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|---| | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | SN 3617 | 30-Jan-20(SPEAG,No.EX3-3617_Jan20) | Jan-21 | | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | 106276
101369
SN 3617
SN 771
ID#
MY49071430 | 106276 12-May-20 (CTTL, No.J20X02965) 101369 12-May-20 (CTTL, No.J20X02965) SN 3617 30-Jan-20(SPEAG,No.EX3-3617_Jan20) SN 771 10-Feb-20(CTTL-SPEAG,No.Z20-60017) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 25-Feb-20 (CTTL, No.J20X00516) | | | Name | Function | Signature | |-----------------------------|-------------|--
--| | Calibrated by: | Zhao Jing | SAR Test Engineer | 化龙 | | Reviewed by: | Lin Hao | SAR Test Engineer | 图 林光学 | | Approved by: | Qi Dianyuan | SAR Project Leader | THE STATE OF S | | This is the standard at the | | Issu
ced except in full without written a | ed: September 3, 2020 | Certificate No: Z20-60296 Page 1 of 8 In Collaboration with CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cut@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60296 Page 2 of 8 Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.2 ± 6 % | 0.88 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | - | | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.65 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.57 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.37 W/kg ± 18.7 % (k=2) | # Body TSL parameters | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.0 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | 440 | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.42 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.76 W /kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.40 W/kg ± 18.7 % (k=2) | Page 3 of 8 AR Test Report No.: R2009H0246-S1V2 Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en # Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.8Ω+ 1.73jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 26.2dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.0Ω- 2.47jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 26.2dB | | ### General Antenna Parameters and Design | 258 ns | |--------| | 2 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | mandiactared by | 7.60 | Certificate No: Z20-60296 Page 4 of 8 Date: 08.28.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.877$ S/m; $\epsilon_r = 41.23$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.66, 9.66, 9.66) @ 835 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - · Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.09
V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.46 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.57 W/kg Smallest distance from peaks to all points 3 dB below = 16.6 mm Ratio of SAR at M2 to SAR at M1 = 68.1% Maximum value of SAR (measured) = 3.12 W/kg 0 dB = 3.12 W/kg = 4.94 dBW/kg Page 5 of 8 Add: No.51 Xucyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### Impedance Measurement Plot for Head TSL Page 6 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### DASY5 Validation Report for Body TSL L Date: 08.28.2020 Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d020 Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.958$ S/m; $\epsilon_r = 55.02$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(9.53, 9.53, 9.53) @ 835 MHz; Calibrated: 2020-01-30 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) # Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.88 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.59 W/kg Smallest distance from peaks to all points 3 dB below = 15.8 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 3.24 W/kg 0 dB = 3.24 W/kg = 5.11 dBW/kg Page 7 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Body TSL Certificate No: Z20-60296 Page 8 of 8 AR Test Report Report Report No.: R2009H0246-S1V2 # **ANNEX G: D1750V2 Dipole Calibration Certificate** Client TA(Shanghai) Certificate No: Z20-60079 # **CALIBRATION CERTIFICATE** Object D1750V2 - SN: 1033 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: Feburary 25, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Power sensor NRP6A | 101369 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Reference Probe EX3DV4 | SN 3846 | 25-Mar-19(CTTL-SPEAG,No.Z19-60064) | Mar-20 | | DAE4 | SN 1555 | 22-Aug-19(CTTL-SPEAG,No.Z19-60295) | Aug-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 10-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzer E5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|--| | Calibrated by: | Zhao Jing | SAR Test Engineer | | | Reviewed by: | Lin Hao | SAR Test Engineer | 三 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | The state of s | | | | Iss | sued: Feburary 29, 2020 | Issued: Feburary 29, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60079 Page 1 of 8 R Test Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - . SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60079 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Tel: +86-10-62304633-2079 E-mail: ettl@chinattl.com ### **Measurement Conditions** | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.1 ± 6 % | 1.35 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | _ | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 8.93 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 35.9 W/kg ± 18.8 % (k=2) | | SAR averaged over
10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.71 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 18.9 W/kg ± 18.7 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.4 ± 6 % | 1.48 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.24 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 36.9 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 4.95 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.8 W/kg ± 18.7 % (k=2) | Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.8Ω- 0.06 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 38.3 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 44.5Ω- 0.85 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 24.5 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.085 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | 71 - 7 - 0.1 | | |-----------------|-------| | Manufactured by | SPEAG | Certificate No: Z20-60079 Page 4 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### DASY5 Validation Report for Head TSL Date: 02.25.2020 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.349$ S/m; $\varepsilon_r = 39.06$; $\rho = 1000$ kg/m3 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(8.2, 8.2, 8.2) @ 1750 MHz; Calibrated: 2019-03-25 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 2019-08-22 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.26 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.9 W/kg ### SAR(1 g) = 8.93 W/kg; SAR(10 g) = 4.71 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 53.5% Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 13.9 W/kg = 11.43 dBW/kg Certificate No: Z20-60079 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Impedance Measurement Plot for Head TSL Page 6 of 8 Date: 02.25.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en #### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1033 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.482$ S/m; $\epsilon_r = 52.35$; $\rho = 1000$ kg/m3 Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(7.8, 7.8, 7.8) @ 1750 MHz; Calibrated: 2019-03-25 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 2019-08-22 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.32 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 16.9 W/kg SAR(1 g) = 9.24 W/kg; SAR(10 g) = 4.95 W/kg Smallest distance from peaks to all points 3 dB below = 9.2 mm Ratio of SAR at M2 to SAR at M1 = 56% Maximum value of SAR (measured) = 14.1 W/kg 0 dB = 14.1 W/kg = 11.49 dBW/kg Page 7 of 8 Test Report Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Impedance Measurement Plot for Body TSL Certificate No: Z20-60079 Page 8 of 8 ANNEX H: D1900V2 Dipole Calibration Certificate Client TA(Shanghai) Certificate No: Z20-60297 Report No.: R2009H0246-S1V2 # **CALIBRATION CERTIFICATE** Object D1900V2 - SN: 5d060 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 27, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Reference Probe EX3DV4 | SN 3617 | 30-Jan-20(SPEAG,No.EX3-3617_Jan20) | Jan-21 | | DAE4 | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzer E5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | | | | | Name | Function | | |----------------|-------------|--------------------|--| | Calibrated by: | Zhao Jing | SAR Test Engineer | | | Reviewed by: | Lin Hao | SAR Test Engineer | | | Approved by: | Qi Dianyuan | SAR Project Leader | | Issued: September 3, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60297 Page 1 of 8 In Collaboration with S P C B G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en lossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input
power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60297 Page 2 of 8 Report No.: R2009H0246-S1V2 AR Test Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.1 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | - | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.5 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.04 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.2 W/kg ± 18.7 % (k=2) | # **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.5 ± 6 % | 1.51 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | - | ### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.89 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.13 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 W/kg ± 18.7 % (k=2) | Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: enls/chinattl.com http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.5Q+ 6.58JQ | | |--------------------------------------|---------------|--| | Return Loss | - 23 3dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.0Ω+ 6,72jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.9dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.061 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z20-60297 Page 4 of 8 Date: 08.27.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.404$ S/m; $\epsilon_r = 41.12$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.3 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 9.82 W/kg; SAR(10 g) = 5.04 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 51.9% Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Page 6 of 8 Report Report No.: R2009H0246-S1V2 Add: No.51 Xueyaan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com littp://www.chinattl.com DASY5 Validation Report for Body TSL Date: 08.27.2020 Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.508 S/m; ε_t = 53.5; ρ = 1000 kg/m3 Phantom section: Right Section **DASY5 Configuration:** - Probe: EX3DV4 SN3617; ConvF(7.94, 7.94, 7.94) @ 1900 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - · Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.34 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 9.89 W/kg; SAR(10 g) = 5.13 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 55.4% Maximum value of SAR (measured) = 15.3 W/kg 0 dB = 15.3 W/kg = 11.85 dBW/kg Page 7 of 8 R Test Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en # Impedance Measurement Plot for Body TSL Certificate No: Z20-60297 Page 8 of 8 SAR Test Report Report No.: R2009H0246-S1V2 # **ANNEX I: D2450V2 Dipole Calibration Certificate** Client TA(Shanghai) Certificate No: Z20-60298 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 786 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 27, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Power sensor NRP6A | 101369 | 12-May-20 (CTTL, No.J20X02965) | May-21 | | Reference Probe EX3DV4 | SN 3617 | 30-Jan-20(SPEAG,No.EX3-3617_Jan20) | Jan-21 | | DAE4 | SN 771 | 10-Feb-20(CTTL-SPEAG,No.Z20-60017) | Feb-21 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 25-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzer E5071C | MY46107873 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | | | | | | Name | Function | Signature | |-------------|----------------------|--| | Zhao Jing | SAR Test Engineer | 1. 821 A | | Lin Hao | SAR Test Engineer | 一样 36 | | Qi Dianyuan | SAR Project Leader | 12 | | | Zhao Jing
Lin Hao | Zhao Jing SAR Test Engineer Lin Hao SAR Test Engineer | Issued: September 2, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60298 Page 1 of 8 In Collaboration with p е CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail:
cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx, v, z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", September 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60298 Page 2 of 8 Report No.: R2009H0246-S1V2 In Collaboration with p e CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # **Measurement Conditions** | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.5 ± 6 % | 1.79 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | ains; | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13,0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.3 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.99 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 18.7 % (k=2) | # **Body TSL parameters** | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6 % | 1.94 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | 15-6 | 1 | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.1 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 52.4 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.3 W/kg ± 18.7 % (k=2) | Page 3 of 8 R Test Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.5Ω+ 1.44 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 26.9dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.9Ω+ 5.09 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 25.8dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.018 ns | |--|----------| | the state of s | 1.010113 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Test Report Report Report No.: R2009H0246-S1V2 Date: 08.27.2020 In Collaboration with S P e a g CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haldlan District, Beijing, 100191, China Tel: 486-10-62304633-2079 Fax: 486-10-62304633-2504 http://www.chinattl.cn # DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.787$ S/m; $\varepsilon_f = 39.53$; $\rho = 1000$ kg/m³ Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.65, 7.65, 7.65) @ 2450 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.7 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 5.99 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 47% Maximum value of SAR (measured) = 22.0 W/kg 0 dB = 22.0 W/kg = 13.42 dBW/kg Page 5 of 8 R Test Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel:
+86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Head TSL Page 6 of 8 est Report Report No.: R2009H0246-S1V2 Date: 08.27.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn # DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.938 S/m; ε_t = 52.06; ρ = 1000 kg/m³ Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.76, 7.76, 7.76) @ 2450 MHz; Calibrated: 2020-01-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.9 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.9 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.08 W/kg Smallest distance from peaks to all points 3 dB below = 8.5 mm Ratio of SAR at M2 to SAR at M1 = 49.9% Maximum value of SAR (measured) = 21.8 W/kg 0 dB = 21.8 W/kg = 13.38 dBW/kg Page 7 of 8 Add; No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en # Impedance Measurement Plot for Body TSL # **ANNEX J: D2600V2 Dipole Calibration Certificate** 中国认可 CALIBRATION **CNAS L0570** E-mail: cttl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Client TA(Shanghai) Certificate No: Z18-60094 # CALIBRATION CERTIFICATE Object D2600V2 - SN: 1025 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102083 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Power sensor NRV-Z5 | 100542 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Reference Probe EX3DV4 | SN 7464 | 12-Sep-17(SPEAG, No. EX3-7464_Sep17) | Sep-18 | | DAE4 | SN 1525 | 02-Oct-17(SPEAG No.DAE4-1525_Oct17) | Oct-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-18 (CTTL, No.J18X00560) | Jan-19 | | Network Analyzer E5071C | MY46110673 | 24-Jan-18 (CTTL, No.J18X00561) | Jan-19 | | CONTRACTOR AND A | Name | Function | Signature | |------------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | (强制水 | | Reviewed by: | Lin Hao | SAR Test Engineer | ("林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | | Issued: May 5, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60094 Page 1 of 8 In Collaboration with e CALIBRATION LABORATORY Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Heijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattlen Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx.v.z. N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z18-60094 Page 2 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52,10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22,0 °C | 39.0 | 1,96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.1 ± 6% | 2.01 mha/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | - | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.6 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 54.1 mW /g ± 18,8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.03 mW/g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 mW /g ± 18.7 % (k=2) | ### **Body TSL parameters** | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.1 ± 6% | 2.15 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.6 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 54.5 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.06 mW/g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.3 mW /g ± 18.7 % (k=2) | Certificate No: Z18-60094 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattLcom http://www.chinattLcn # Appendix(Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.1Ω- 7.55jΩ | |--------------------------------------|---------------| | Return Loss | - 22.0dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 46.6Ω-7.06jΩ | | |--------------------------------------|--------------|--| | Return Loss | - 21.9dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1,014 ns | | |----------------------------------|----------|--| | The second second second | 10014195 | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order
to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z18-60094 Page 4 of 8 Date: 05.02.2018 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattlen #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1025 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.014$ S/m; $\epsilon r = 40.09$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(7.76, 7.76, 7.76); Calibrated: 9/12/2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1525; Calibrated: 10/2/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.50 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.03 W/kgMaximum value of SAR (measured) = 23.5 W/kg 0 dB = 23.5 W/kg = 13.71 dB W/kg Certificate No: Z18-60094 Page 5 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Certificate No: Z18-60094 Page 6 of 8 eport Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattLen DASY5 Validation Report for Body TSL Date: 05.02.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1025 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.146$ S/m; $\varepsilon_r = 52.09$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(7.84, 7.84, 7.84); Calibrated: 9/12/2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1525; Calibrated: 10/2/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 83.79 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 29.7 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.06 W/kg Maximum value of SAR (measured) = 23.6 W/kg 0 dB = 23.6 W/kg = 13.73 dB W/kg Certificate No: Z18-60094 Page 7 of 8 R Test Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Body TSL Certificate No: Z18-60094 Page 8 of 8 R Test Report No.: R2009H0246-S1V2 ## **ANNEX K: D5GHzV2 Dipole Calibration Certificate** Client TA(Shanghai) Certificate No: Z20-60080 #### **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1151 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: Feburary 27, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106276 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | Power sensor NRP6A | 101369 | 11-Apr-19 (CTTL, No.J19X02605) | Apr-20 | | ReferenceProbe EX3DV4 | SN 3846 | 25-Mar-19(CTTL-SPEAG,No.Z19-60064) | Mar-20 | | DAE4 | SN 1555 | 22-Aug-19(CTTL-SPEAG,No.Z19-60295) | Aug-20 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 10-Feb-20 (CTTL, No.J20X00516) | Feb-21 | | NetworkAnalyzerE5071C | MY46110673 | 10-Feb-20 (CTTL, No.J20X00515) | Feb-21 | | gnature | |---------| | 墨松 | | 165 | | | | | Issued: Feburary 29, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60080 Page 1 of 14 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z20-60080 Page 2 of 14 Report No.: R2009H0246-S1V2 In Collaboration with # S P E A C Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | #### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.9 ± 6 % | 4.59 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 11 | _ | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.76 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.0 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 W/kg ± 24.2 % (k=2) | Certificate No: Z20-60080 Page 3 of 14 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters
 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) "C | 36.3 ± 6 % | 4.96 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 1 | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.5 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 24.2 % (k=2) | #### Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.1 ± 6 % | 5.12 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 1 (144) | - | #### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.72 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 77.4 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.9 W/kg ± 24.2 % (k=2) | Certificate No: Z20-60080 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn Body TSL parameters at 5250 MHz | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.1 ± 6 % | 5.27 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | _ | SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.37 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.4 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.09 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.8 W/kg ± 24.2 % (k=2) | Body TSL parameters at 5600 MHz | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.4 ± 6 % | 5.74 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | وسق | | SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.78 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 77.4 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.0 W/kg ± 24.2 % (k=2) | Certificate No: Z20-60080 Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.ehinattl.en #### Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.1 ± 6 % | 5.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | #### SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.38 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.5 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.07 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 W/kg ± 24.2 % (k=2) | Certificate No: Z20-60080 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn E-mail: cttl@chinattl.com ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 52.4Ω - 6.47jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 23.4dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 57.0Ω - 3.86jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 22.6dB | | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 55.9Ω + 0.16jΩ | |--------------------------------------|----------------| | Return Loss | - 25.0dB | #### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 51.6Ω - 5.33jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 25.3dB | | #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 57.6Ω - 2.15jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 22.7dB | | #### Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | $55.4\Omega + 1.94j\Omega$ | |--------------------------------------|----------------------------| | Return Loss | - 25.2dB | Certificate No: Z20-60080 Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.066 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Unaudi principalità | | |---------------------|-------| | Manufactured by | SPEAG | Certificate No: Z20-60080 Page 8 of 14 Date: 02.24.2020 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Medium parameters used: f = 5250 MHz; σ = 4.592 S/m; ϵ_r = 36.91; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 4.963 S/m; ϵ_r = 36.29; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.123 S/m; ϵ_r = 36.06; ρ = 1000 kg/m3, Phantom section: Center Section #### DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(5.4, 5.4, 5.4) @ 5250 MHz; ConvF(4.64, 4.64, 4.64) @ 5600 MHz; ConvF(4.92, 4.92, 4.92) @ 5750 MHz; Calibrated: 2019-03-25 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 2019-08-22 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.08 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 33.7 W/kg SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63% Maximum value of SAR (measured) = 18.7 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.02 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 36.2 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 61.4% Maximum value of SAR (measured) = 19.7 W/kg Certificate No: Z20-60080 Page 9 of 14 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.01 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) =
37.0 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.18 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 59.9% Maximum value of SAR (measured) = 19.2 W/kg 0 dB = 19.2 W/kg = 12.83 dBW/kg Certificate No: Z20-60080 Page 10 of 14 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### Impedance Measurement Plot for Head TSL Certificate No: Z20-60080 Page 11 of 14 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn **DASY5 Validation Report for Body TSL** Date: 02.27.2020 Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1151 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Medium parameters used: f = 5250 MHz; σ = 5.267 S/m; ϵr = 48.1; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.736 S/m; ϵr = 47.44; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.963 S/m; ϵr = 47.11; ρ = 1000 kg/m3, Phantom section: Right Section #### DASY5 Configuration: - Probe: EX3DV4 SN3846; ConvF(5.01, 5.01, 5.01) @ 5250 MHz; ConvF(4.29, 4.29, 4.29) @ 5600 MHz; ConvF(4.32, 4.32, 4.32) @ 5750 MHz; Calibrated: 2019-03-25, - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1555; Calibrated: 2019-08-22 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.50 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 7.37 W/kg; SAR(10 g) = 2.09 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.9% Maximum value of SAR (measured) = 17.2 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.00 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.21 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.4% Maximum value of SAR (measured) = 18.6 W/kg Certificate No: Z20-60080 Page 12 of 14 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.00 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 7.38 W/kg; SAR(10 g) = 2.07 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 61.1% Maximum value of SAR (measured) = 17.8 W/kg 0 dB = 17.8 W/kg = 12.50 dBW/kg Test Report Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### Impedance Measurement Plot for Body TSL Certificate No: Z20-60080 Page 14 of 14 Client : ## **ANNEX L:DAE4 Calibration Certificate** Add: No.51 Xueyuan Road, Haidian District, Betjing, 100191, C Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn TA(Shanghai) Certificate No: Z20-60078 Report No.: R2009H0246-S1V2 ## **CALIBRATION CERTIFICATE** Object DAE4 - SN: 1291 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: February 24, 2020 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 24-Jun-19 (CTTL, No.J19X05126) Jun-20 Name Function Signature Calibrated by: Yu Zongving SAR Test Engineer Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: February 26, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z20-60078 Page 1 of 3 In Collaboration with S P e a g CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z20-60078 Report No.: R2009H0246-S1V2 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1......+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 402.573 ± 0.15% (k=2) | 403.248 ± 0.15% (k=2) | 403.162 ± 0.15% (k=2) | | Low Range | 3.97616 ± 0.7% (k=2) | 3.98005 ± 0.7% (k=2) | 3.97509 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 166.5° ± 1 ° | |---|--------------| |---|--------------| SAR Test Report No.: R2009H0246-S1V2 ## **ANNEX M: The EUT Appearance** The EUT Appearance are submitted separately. # **ANNEX N: Test Setup Photos** The Test Setup Photos are submitted separately.