COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.199.1.24.BES.A ### 6 VERIFICATION RESULTS The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is \pm -0.2 dB for linearity and \pm -0.15 dB for axial isotropy. Linearity:+/-1.48% (+/-0.06dB) Isotropy: //-0.25% (1/-0.01dB) Page: 9/11 Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vL This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 111 of 212 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.199.1.24.BES.A ### 7 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | |--|----------------------------|--------------------------|---|---| | Equipment Manufacturer / Identification No. Current Calibration Date | | Next Calibration
Date | | | | CALIPROBE Test
Bench | Version 2 | NA | Validated. No cal
required. | Validated. No cal
required. | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2024 | 08/2027 | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2023 | 10/2027 | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 07/2022 | 07/2025 | | Multimeter | Keithley 2000 | 4013982 | 02/2023 | 02/2026 | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 03/2022 | 03/2025 | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Power Meter | NI-USB 5680 | 170100013 | 06/2024 | 06/2027 | | Power Meter | Keysight U2000A | SN: MY62340002 | 10/2022 | 10/2025 | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | Fluoroptic Thermometer | LumaSense Luxtron
812 | 94264 | 09/2022 | 09/2025 | | Coaxial cell | MVG | SN 32/16
COAXCELL_ | Validated. No cal
required. | Validated. No cal
required. | | Wa∨eguide | MVG | SN 32/16 WG2_1 | Validated. No cal
required. | Validated. No cal
required. | | Liquid transition | MVG | SN 32/16
WGLIQ_0G600_ | Validated. No cal
required. | Validated. No cal
required. | | Wa∨eguide | MVG | SN 32/16 WG4_1 | Validated. No cal
required. | Validated. No cal
required. | | Liquid transition | MVG | SN 32/16
WGLIQ_0G900_ | Validated. No cal
required. | Validated. No cal
required. | | Wa∨eguide | MVG | SN 32/16 WG6_1 | Validated. No cal
required. | Validated. No cal
required. | | Liquid transition | MVG | SN 32/16
WGLIQ_1G500_ | Validated. No cal
required. | Validated. No cal
required. | | Wa∨eguide | MVG | SN 32/16 WG8_1 | Validated. No cal
required. | Validated. No cal
required. | Page: 10/11 Template ACR.DDD.N.YY.MVGB.ISSUE COMOSAR Probe vI. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 112 of 212 Edition: B.2 No.: BCTC/RF-EMC-005 #### COMOSAR E-FIELD PROBE CALIBRATION REPORT Ref: ACR.199.1.24.BES.A | Liquid transition | MVG | SN 32/16
WGLIQ_1G800B_1 | Validated. No cal
required. | Validated. No cal required. | |----------------------------------|--------------|----------------------------|--------------------------------|-----------------------------| | Liquid transition | MVG | SN 32/16
WGLIQ_1G800H_ | Validated. No cal
required. | Validated. No cal required. | | Wa∨eguide | MVG | SN 32/16 WG10_1 | Validated. No cal
required. | Validated. No cal required. | | Liquid transition | MVG | SN 32/16
WGLIQ_3G500_ | Validated. No cal
required. | Validated. No cal required. | | Wa∨eguide | MVG | SN 32/16 WG12_1 | Validated. No cal
required. | Validated. No cal required. | | Liquid transition | MVG | SN 32/16
WGLIQ_5G000_ | Validated. No cal
required. | Validated. No cal required. | | Wa∨eguide | MVG | SN 32/16 WG14_1 | Validated. No cal
required. | Validated. No cal required. | | Liquid transition | MVG | SN 32/16
WGLIQ_7G000_1 | Validated. No cal
required. | Validated. No cal required. | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2024 | 06/2027 | Page: 11/11 Template ACR.DDD.N.YY.MVGB.ISSUE COMOSAR Probe vI. This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. ## **SAR Reference Dipole Calibration Report** Ref: ACR.329.8.24.BES.A # SHENZHEN BCTC TECHNOLOGY CO., LTD. 1~2/ F, NO. B FACTORY BUILDING, PENGZHOU INDUSTRIAL PARK, FUYUAN 1ST ROAD, TANGWEI COMMUNITY, FUHAI STREET, BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 750 MHZ SERIAL NO.: SN 47/21 DIP 0G750-620 Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 11/25/2024 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction. #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/13 No.: BCTC/RF-EMC-005 Page 114 of 212 No.: BCTC/RF-EMC-005 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.8.24.BES.A | | Name | Function | Date | Signature | |--------------|--------------|---------------------|------------|--------------| | Prepared by: | Jérôme Luc | Technical Manager | 11/25/2024 | JS | | Checked by : | Jérôme Luc | Technical Manager | 11/25/2024 | J\$ | | Approved by: | Yann Toutain | Laboratory Director | 11/25/2024 | Gann TOUTAAN | 2024.11.25 11:51:55+01'00' | · | Customer Name | |----------------|-----------------| | | Shenzhen BCTC | | Distribution : | Technology Co., | | | Ltd. | | Issue | Name | Date | Modifications | |-------|------------|------------|-----------------| | A | Jérôme Luc | 11/25/2024 | Initial release | | | | | | | | | | | | | | | | Page: 2/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.8.24.BES.A #### TABLE OF CONTENTS | 1 | mur | oduction4 | | |---|------|--|----| | 2 | Dev | ice Under Test4 | | | 3 | Proc | luct Description | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | | | 5 | Mea | surement Uncertainty | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results 6 | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 7 | | 7 | Vali | dation measurement | | | | 7.1 | Head Liquid Measurement | 8 | | | 7.2 | SAR Measurement Result With Head Liquid | 8 | | | 7.3 | Body Liquid Measurement | 11 | | | 7.4 | SAR Measurement Result With Body Liquid | 12 | | 8 | List | of Equipment | | Page: 3/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.8.24.BES.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | |--------------------------------|----------------------------------|--| | Device Type | COMOSAR 750 MHz REFERENCE DIPOLE | | | Manufacturer | MVG | | | Model | SID750 | | | Serial Number | SN 47/21 DIP 0G750-620 | | | Product Condition (new / used) | New | | #### PRODUCT DESCRIPTION 3 #### **GENERAL INFORMATION** 3.1 MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – MVG COMOSAR Validation Dipole Page: 4/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v.J This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 117 of 212 *** No.: BCTC/RF-EMC-005 Edition: B.2 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.8.24.BES.A #### MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.08 LIN | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | |-------------|--------------------------------|--| | 0 - 300 | 0.20 mm | | | 300 - 450 | 0.44 mm | | ### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. Page: 5/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v.J This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 118 of 212 *** No.: BCTC/RF-EMC-005 Edition: B.2 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.8.24.BES.A | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 19 % (SAR) | | 10 g | 19 % (SAR) | ### CALIBRATION MEASUREMENT RESULTS ### RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 750 | -24.50 | -20 | $55.7 \Omega - 1.7 j\Omega$ | ## 6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u> | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 750 | -27.04 | -20 | $53.8 \Omega + 2.3 i\Omega$ | Page: 6/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v.I This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 119 of 212 Edition: B.2 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.8.24.BES.A #### MECHANICAL DIMENSIONS | Frequency MHz | Ln | nm | h m | ım | d r | nm | |---------------|-------------------|----------|-------------------|-----------|-------------------|----------| | | required | measured | required | m easured | required | measured | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35 ±1 %. | | | 450 | 290.0 ±1 %. | | 166.7 ±1 %. | | 6.35 ±1 %. | | | 750 | 176.0 ±1 %. | 177.28 | 100.0 ±1 %. | 99.79 | 6.35 ±1 %. | 6.35 | | 835 | 161.0 ±1 %. | | 89.8 ±1 %. | | 3.6 ±1 %. | | | 900 | 149.0 ±1 %. | | 83.3 ±1 %. | | 3.6 ±1 %. | | | 1450 | 89.1 ±1 %. | | 51.7 ±1 %. | | 3.6 ±1 %. | : | | 1500 | 86.2 ±1 %. | | 50.0 ±1 %. | | 3.6 ±1 %. | | | 1640 | 79.0 ±1 %. | | 45.7 ±1 %. | | 3.6 ±1 %. | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | 1800 | 72.0 ±1 %. | | 41.7 ±1 %. | | 3.6 ±1 %. | | | 1900 | 68.0 ±1 %. | | 39.5 ±1 %. | | 3.6 ±1 %. | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | 2000 | 64.5 ±1 %. | | 37.5 ±1 %. | | 3.6 ±1 %. | | | 2100 | 61.0 ±1 %. | | 35.7 ±1 %. | | 3.6 ±1 %. | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ±1 %. | | | 2450 | 51.5 ±1 %. | | 30.4 ±1 %. | | 3.6 ±1 %. | | | 2600 | 48.5 ±1 %. | | 28.8 ±1 %. | | 3.6 ±1 %. | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | 3300 | 2 | | 2 | | 2 | | | 3500 | 37.0±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3700 | 34.7±1 %. | | 26.4 ±1 %. | | 3.6 ±1 %. | | | 3900 | _ | | = | | 12 | | | 4200 | | | 5. | | a | | | 4600 | - | | = | | - | | | 4900 | = | | = | | = | | #### 7 VALIDATION MEASUREMENT The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. Page: 7/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v.J This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 120 of 212 " No.: BCTC/RF-EMC-005 Edition: B.2 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.8.24.BES.A #### HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative per | mittivity (s _r ') | Conductiv | ity (σ) S/m | |------------------|--------------|--------------------------------------|------------|-------------| | | required | measured | required | measured | | 300 | 45.3 ±10 % | | 0.87 ±10 % | | | 450 | 43.5 ±10 % | | 0.87 ±10 % | | | 750 | 41.9 ±10 % | 41.0 | 0.89 ±10 % | 0.82 | | 835 | 41.5 ±10 % | | 0.90 ±10 % | | | 900 | 41.5 ±10 % | | 0.97 ±10 % | | | 1450 | 40.5 ±10 % | | 1.20 ±10 % | | | 1500 | 40.4±10% | | 1.23 ±10 % | | | 1640 | 40.2 ±10 % | | 1.31 ±10 % | | | 1750 | 40.1 ±10% | | 1.37 ±10 % | | | 1800 | 40.0 ±10 % | | 1.40 ±10 % | | | 1900 | 40.0 ±10 % | | 1.40 ±10 % | | | 1950 | 40.0 ±10 % | | 1.40 ±10 % | | | 2000 | 40.0 ±10 % | | 1.40 ±10 % | | | 2100 | 39.8 ±10 % | | 1.49 ±10 % | | | 2300 | 39.5 ±10 % | | 1.67 ±10 % | | | 2450 | 39.2 ±10 % | | 1.80 ±10 % | | | 2600 | 39.0 ±10 % | | 1.96 ±10 % | | | 3000 | 38.5 ±10 % | | 2.40 ±10 % | | | 3300 | 38.2 ±10 % | | 2.71 ±10 % | | | 3500 | 37.9 ±10 % | | 2.91 ±10 % | | | 3700 | 37.7 ±10 % | | 3.12 ±10 % | | | 3900 | 37.5 ±10 % | | 3.32 ±10 % | | | 4200 | 37.1 ±10% | | 3.63 ±10 % | | | 4600 | 36.7 ±10 % | | 4.04 ±10 % | | | 4900 | 36.3 ±10 % | | 4.35 ±10 % | | ### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. Page: 8/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v.I This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 121 of 212 *** No.: BCTC/RF-EMC-005 Edition: B.2 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.8.24.BES.A | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Head Liquid Values: eps': 41.0 sigma: 0.82 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 750 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70% | | Frequency
MHz | 1 g SAR | 1 g SAR (W/kg/W) | | (W/kg/W) | |------------------|----------|------------------|----------|------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | | 3.06 | | | 750 | 8.49 | 8.58 (0.86) | 5.55 | 5.59 (0.56 | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1800 | 38.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2450 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3300 | - | | 2 | | | 3500 | 67.1 | | 25 | | | 3700 | 67.4 | | 24.2 | | | 3900 | P | | = | | | 4200 | 2 | | 2 | | | 4600 | 8 | | Ē | | | 4900 | ÷ 6 | | × | | Page: 9/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.8.24.BES.A Page: 10/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 Page 123 of 212 " #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.8.24.BES.A ### BODY LIQUID MEASUREMENT | Frequency
MHz | Relative per | Relative permittivity (s _r ') | | ity (σ) S/m | |------------------|--------------|--|------------|-------------| | | required | measured | required | measured | | 150 | 61.9 ±10 % | | 0.80 ±10 % | | | 300 | 58.2 ±10 % | | 0.92 ±10 % | | | 450 | 56.7 ±10 % | | 0.94±10% | | | 750 | 55.5 ±10 % | 52.9 | 0.96 ±10 % | 0.89 | | 835 | 55.2 ±10 % | | 0.97 ±10 % | | | 900 | 55.0 ±10 % | | 1.05 ±10 % | | | 915 | 55.0 ±10 % | | 1.06 ±10 % | | | 1450 | 54.0 ±10 % | | 1.30 ±10 % | | | 1610 | 53.8±10% | | 1.40 ±10 % | | | 1800 | 53.3 ±10 % | | 1.52 ±10 % | | | 1900 | 53.3 ±10 % | | 1.52 ±10 % | | | 2000 | 53.3 ±10 % | | 1.52 ±10 % | | | 2100 | 53.2 ±10 % | | 1.62 ±10 % | | | 2300 | 52.9 ±10 % | | 1.81 ±10 % | | | 2450 | 52.7 ±10 % | | 1.95 ±10 % | | | 2600 | 52.5 ±10 % | | 2.16 ±10 % | | | 3000 | 52.0 ±10 % | | 2.73 ±10 % | | | 3300 | 51.6 ±10 % | | 3.08 ±10 % | | | 3500 | 51.3 ±10 % | | 3.31 ±10 % | | | 3700 | 51.0 ±10 % | | 3.55 ±10 % | | | 3900 | 50.8 ±10 % | | 3.78 ±10 % | | | 4200 | 50.4±10% | | 4.13 ±10 % | | | 4600 | 49.8 ±10 % | | 4.60 ±10 % | | | 4900 | 49.4 ±10 % | | 4.95 ±10 % | | | 5200 | 49.0 ±10 % | | 5.30 ±10 % | | | 5300 | 48.9 ±10 % | | 5.42 ±10 % | | | 5400 | 48.7 ±10% | | 5.53 ±10 % | | | 5500 | 48.6 ±10 % | | 5.65 ±10 % | | | 5600 | 48.5 ±10 % | | 5.77 ±10 % | | | 5800 | 48.2 ±10 % | | 6.00 ±10 % | | Page: 11/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v.I This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 124 of 212 Edition: B.2 No.: BCTC/RF-EMC-005 No.: BCTC/RF-EMC-005 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.8.24.BES.A ### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID | Software | OPENSAR V5 | |---|--| | Phantom | SN 13/09 SAM68 | | Probe | SN 41/18 EPGO333 | | Liquid | Body Liquid Values: eps': 52.9 sigma: 0.89 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution | dx=8mm/dy=8mm | | Zoon Scan Resolution | dx=8mm/dy=8mm/dz=5mm | | Frequency | 750 MHz | | Input power | 20 dBm | | Liquid Temperature | 20 +/- 1 °C | | Lab Temperature | 20 +/- 1 °C | | Lab Humidity | 30-70 % | | Frequency
MHz | 1gSAR(W/kg/W) | 10 g SAR (W/kg/W) | |------------------|---------------|-------------------| | | m easured | measured | | 750 | 8.41 (0.84) | 5.66 (0.57) | Page: 12/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v.I This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.8.24.BES.A ### LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | |---------------------------------------|----------------------------|--------------------|---|---|--|--| | Equipment
Descriptio | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | SAM Phantom | MVG | SN 13/09 SAM68 | Validated. No cal
required. | Validated. No cal
required. | | | | COMOSAR Test Bench | Version 3 | NA | Validated. No cal
required. | Validated. No cal
required. | | | | Network Analyzer | Rohde & Schwarz
ZVM | 100203 | 08/2024 | 08/2027 | | | | Network Analyzer | Agilent 8753ES | MY40003210 | 10/2022 | 10/2025 | | | | Network Analyzer –
Calibration kit | Rohde & Schwarz
ZV-Z235 | 101223 | 05/2022 | 05/2025 | | | | Network Analyzer –
Calibration kit | HP 85033D | 3423A08186 | 06/2021 | 06/2027 | | | | Calipers | Mitutoyo | SN 0009732 | 10/2022 | 10/2025 | | | | Reference Probe | MVG | SN 41/18 EPGO333 | 10/2024 | 10/2025 | | | | Multimeter | Keithley 2000 | 1160271 | 02/2023 | 02/2026 | | | | Signal Generator | Rohde & Schwarz
SMB | 106589 | 04/2022 | 04/2025 | | | | Amplifier | MVG | MODU-023-C-0002 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | NI-USB 5680 | 170100013 | 06/2024 | 06/2027 | | | | Power Meter | Rohde & Schwarz
NRVD | 832839-056 | 11/2022 | 11/2025 | | | | Directional Coupler | Krytar 158020 | 131467 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Temperature / Humidity
Sensor | Testo 184 H1 | 44225320 | 06/2024 | 06/2027 | | | Page: 13/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 126 of 212 *** Edition: B.2 No.: BCTC/RF-EMC-005 ## **SAR Reference Dipole Calibration Report** Ref: ACR.329.9.24.BES.A ## SHENZHEN BCTC TECHNOLOGY CO., LTD. 1~2/ F, NO. B FACTORY BUILDING, PENGZHOU INDUSTRIAL PARK, FUYUAN 1ST ROAD, TANGWEI COMMUNITY, FUHAI STREET, BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 835 MHZ SERIAL NO.: SN 47/21 DIP 0G835-621 #### Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE Calibration date: 11/25/2024 Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr The use of the Cofrac brand and the accreditation references is prohibited from any reproduction #### Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Page: 1/13 No.: BCTC/RF-EMC-005 Page 127 of 212 Edition: B.2 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.24.BES.A | | Name | Function | Date | Signature | |--------------|--------------|---------------------|------------|--------------| | Prepared by: | Jérôme Luc | Technical Manager | 11/25/2024 | JES | | Checked by : | Jérôme Luc | Technical Manager | 11/25/2024 | JES | | Approved by: | Yann Toutain | Laboratory Director | 11/25/2024 | Gann TOUTAAN | 2024.11.25 11:52:29 +01'00' | | Customer Name | |---------------|-----------------| | | Shenzhen BCTC | | Distribution: | Technology Co., | | | Ltd. | | Name | Date | Modifications | |------------|------------|-----------------| | Jérôme Luc | 11/25/2024 | Initial release | | | | | | | | | | | | | | | | | Page: 2/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v.I This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. No.: BCTC/RF-EMC-005 ### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.24.BES.A #### TABLE OF CONTENTS | 1 | Intr | oduction4 | | |---|------|--|---| | 2 | Dev | ice Under Test4 | | | 3 | Pro | duct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | | | 5 | Mea | surement Uncertainty5 | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | 5 | | | 5.3 | Validation Measurement | 5 | | 6 | Cali | bration Measurement Results | | | | 6.1 | Return Loss and Impedance In Head Liquid | 6 | | | 6.2 | Return Loss and Impedance In Body Liquid | 6 | | | 6.3 | Mechanical Dimensions | 7 | | 7 | Vali | dation measurement | | | | 7.1 | Head Liquid Measurement | 8 | | | 7.2 | SAR Measurement Result With Head Liquid | | | | 7.3 | Body Liquid Measurement | | | | 7.4 | SAR Measurement Result With Body Liquid | | | 8 | List | of Equipment 13 | | Page: 3/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.24.BES.A #### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. #### 2 DEVICE UNDER TEST | Device Under Test | | | | | |--------------------------------|----------------------------------|--|--|--| | Device Type | COMOSAR 835 MHz REFERENCE DIPOLE | | | | | Manufacturer | MVG | | | | | Model | SID835 | | | | | Serial Number | SN 47/21 DIP 0G835-621 | | | | | Product Condition (new / used) | New | | | | #### PRODUCT DESCRIPTION 3 #### **GENERAL INFORMATION** 3.1 MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – MVG COMOSAR Validation Dipole Page: 4/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v.J This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. Page 130 of 212 *** No.: BCTC/RF-EMC-005 Edition: B.2 #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.24.BES.A #### MEASUREMENT METHOD The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration. #### MECHANICAL REQUIREMENTS The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper. #### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. #### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | |----------------|-------------------------------------| | 400-6000MHz | 0.08 LIN | #### 5.2 DIMENSION MEASUREMENT The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | |-------------|--------------------------------|--| | 0 - 300 | 0.20 mm | | | 300 - 450 | 0.44 mm | | ### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements. Page: 5/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v.J This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG. #### SAR REFERENCE DIPOLE CALIBRATION REPORT Ref: ACR.329.9.24.BES.A | Scan Volume | Expanded Uncertainty | | |-------------|----------------------|--| | 1 g | 19 % (SAR) | | | 10 g | 10 g 19 % (SAR) | | ### CALIBRATION MEASUREMENT RESULTS ### 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 835 | -24.07 | -20 | $55.3 \Omega - 3.3 j\Omega$ | ### 6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u> | L | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |---|-----------------|------------------|------------------|-----------------------------| | | 835 | -33.13 | -20 | $52.2 \Omega - 0.4 j\Omega$ | Page: 6/13 Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole v.I This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.