

TESTING CENTRE TE	TEST REP	PORT	Γ				
FCC ID::	2AVYW-AD900BT						
Test Report No::	TCT230403E028						
Date of issue::	Apr. 17, 2023						
Testing laboratory:	SHENZHEN TONGCE	SHENZHEN TONGCE TESTING LAB					
Testing location/ address:	2101 & 2201, Zhenchan Subdistrict, Bao'an Distr People's Republic of Ch	ict, Shenz					
Applicant's name::	TOPDON TECHNOLOG	SY Co., Lt	d.				
Address:	Unit 2005 20/F, Qianhai kong Cooperation Zone		7 7		en-Hong		
Manufacturer's name:	TOPDON TECHNOLOG	SY Co., Lt	d.				
Address:	Unit 2005 20/F, Qianhai kong Cooperation Zone				en-Hong		
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01						
Product Name::	Professional Diagnostic	Tool					
Trade Mark:	TOPDON			(c)			
Model/Type reference:	ArtiDiag900 BT						
Rating(s)::	Adapter Information: Model: PSYB0502500 Input: AC 100-240V, 50, Output: DC 5.0V, 2.5A, Rechargeable Li-ion Bar	12.5W					
Date of receipt of test item:	Apr. 03, 2023						
Date (s) of performance of test:	Jul. 12, 2022 - Apr. 17, 2023						
Tested by (+signature):	Aaron MO		Aaron A	RONGCETA			
Check by (+signature):	Beryl ZHAO Roy ZETCT						
Approved by (+signature):	Tomsin Jomsin 33						

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. General Product Information		
1.1. EUT description	(<u>C</u>)	3
• /		
1.3. Test Frequency		4
2. Test Result Summary	(6)	5
3. General Information		6
3.2. Description of Support Units	S	7
4. Facilities and Accreditations	s	8
4.1. Facilities	<u>((C)</u>	8
4.2. Location		8
	/74	
5. Test Results and Measurement	ent Data	9
5.1. Antenna requirement		9
	<u> </u>	
5.3. Maximum Conducted Output	t Power	14
5.4. 6dB Emission Bandwidth		16
	ccupied Bandwidth	
5.6. Power Spectral Density		18
5.8. Unwanted Emissions		32
5.9. Frequency Stability Measure	ement	45
Appendix A: Test Result of Co	onducted Test	
Appendix B: Photographs of	Test Setup	
Appendix C: Photographs of	EUT	
= =		

1. General Product Information

1.1. EUT description

Product Name:	Professional Diagnostic Tool	
Model/Type reference:	ArtiDiag900 BT	
Sample Number:	TCT230403E018-0101	
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 3: 5745 MHz ~ 5825 MHz	
Channel Bandwidth::	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz, 80MHz	
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)	
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK	
Antenna Type:	FPC Antenna	
Antenna Gain:	Band 1: 3.30dBi Band 3: 3.29dBi	(d)
Rating(s)::	Adapter Information: Model: PSYB0502500 Input: AC 100-240V, 50/60Hz, 0.6A Max Output: DC 5.0V, 2.5A, 12.5W Rechargeable Li-ion Battery DC 7.6V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Test Frequency

Band 1

20N	1Hz	40MHz		80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180	38	5190	42	5210
40	5200	46	5230		
48	5240				

Band 3

20N	1Hz	40MHz		80	MHz
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
157	5785	159	5795		
165	5825				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 4 of 126

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25 GHz, EUT meet the requirements of 15.407(a)(ii).

Page 5 of 126

3. General Information

3.1. Test environment and mode

Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineer mode:	Keep the EUT in continuous transmitting by select channel and modulations with max. duty cycle.

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	6.5 Mbps
802.11n(HT40)	13.5 Mbps
802.11ac(VHT20)	6.5 Mbps
802.11ac(VHT40)	13.5 Mbps
802.11ac(VHT80)	29.3 Mbps

Page 6 of 126

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1		

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 126

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

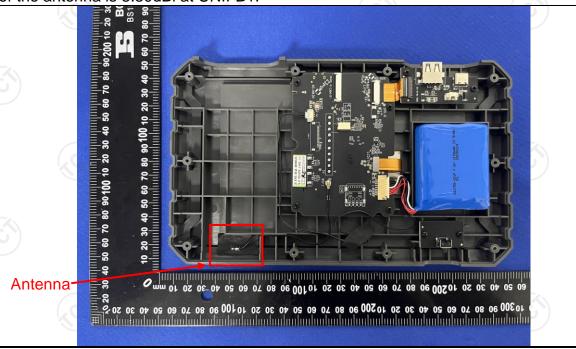
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT230403E028

5. Test Results and Measurement Data

5.1. Antenna requirement


Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is FPC antenna which permanently attached, and the maximum gain of the antenna is 3.30dBi at UNII-B1.

Page 9 of 126

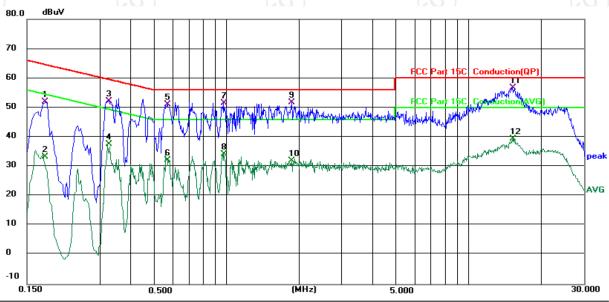
5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	CÍ)	(C)			
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto			
	Frequency range	Frequency range Limit (dBuV)				
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Reference	e Plane				
Test Setup:	E.U.T AC power EMI Receiver					
Test Mode:	Charging + Transmitting Mode					
Test Procedure:	 The E.U.T and simulation power through a line (L.I.S.N.). This proimpedance for the m The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferer emission, the relative the interface cables ANSI C63.10: 2013 	e impedance stab ovides a 500hm leasuring equipme les are also conne SN that provides with 500hm term diagram of the line are checkence. In order to fire e positions of equals must be chang	ilization network /50uH coupling ent. ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum of the maximum ipment and all of ed according to			
Test Result:	PASS					

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESCI3	100898	Jul. 03, 2023	
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 20, 2024	
Line-5	TCT	CE-05	/	Jul. 03, 2024	
EMI Test Software	Shurple Technology	EZ-EMC	1 (6)	1 6	



5.2.3. Test data

Report No.: TCT230403E028

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

.1 Temperature: 23.5 (°C)

Humidity: 52 %

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1779	41.78	10.13	51.91	64.58	-12.67	QP	
2	0.1779	23.27	10.13	33.40	54.58	-21.18	AVG	
3	0.3260	42.70	9.61	52.31	59.55	-7.24	QP	
4	0.3260	27.95	9.61	37.56	49.55	-11.99	AVG	
5	0.5700	41.62	9.39	51.01	56.00	-4.99	QP	
6	0.5700	22.71	9.39	32.10	46.00	-13.90	AVG	
7	0.9738	42.48	9.02	51.50	56.00	-4.50	QP	
8	0.9738	25.24	9.02	34.26	46.00	-11.74	AVG	
9	1.8620	41.83	10.02	51.85	56.00	-4.15	QP	
10	1.8620	21.84	10.02	31.86	46.00	-14.14	AVG	
11 *	15.1578	46.48	10.25	56.73	60.00	-3.27	QP	
12	15.1578	29.15	10.25	39.40	50.00	-10.60	AVG	

Note:

Freq. = Emission frequency in MHz

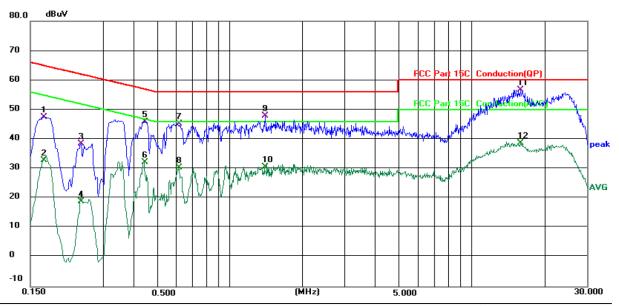
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: N

Temperature: 23.5 (℃)

Humidity: 52 %

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1700	37.48	10.11	47.59	64.96	-17.37	QP	
2		0.1700	22.79	10.11	32.90	54.96	-22.06	AVG	
3		0.2419	28.45	9.95	38.40	62.03	-23.63	QP	
4		0.2419	8.95	9.95	18.90	52.03	-33.13	AVG	
5		0.4460	36.51	9.50	46.01	56.95	-10.94	QP	
6		0.4460	22.70	9.50	32.20	46.95	-14.75	AVG	
7		0.6179	35.86	9.35	45.21	56.00	-10.79	QP	
8		0.6179	21.14	9.35	30.49	46.00	-15.51	AVG	
9		1.4100	37.87	10.01	47.88	56.00	-8.12	QP	
10		1.4100	20.59	10.01	30.60	46.00	-15.40	AVG	
11	*	15.9337	46.52	10.27	56.79	60.00	-3.21	QP	
12		15.9337	28.38	10.27	38.65	50.00	-11.35	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

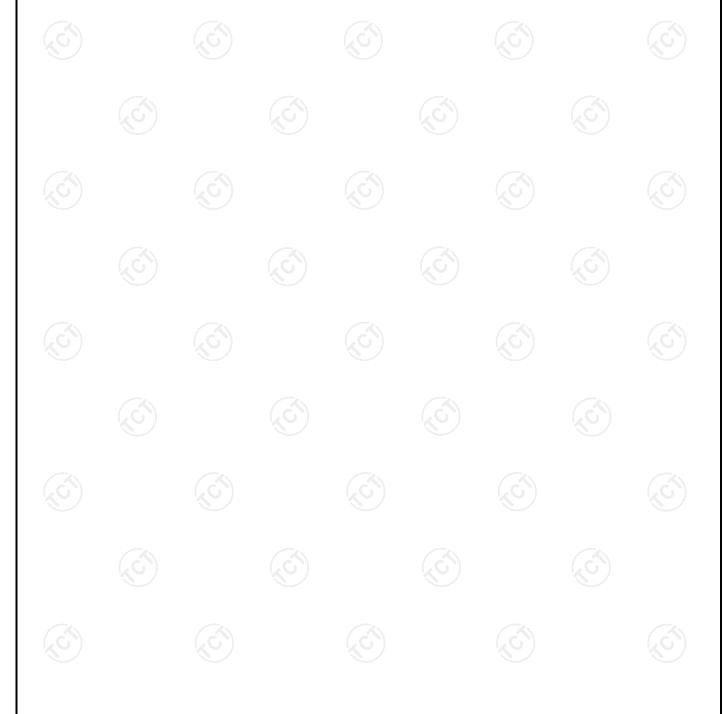
Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Highest channel and 802.11a) was submitted only.

5.3. Maximum Conducted Output Power


5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)& Part 2 J Section 2.1046						
Test Method:		Iltiple Transmitter Output v02r01 neral UNII Test Procedures New n E					
	Frequency Band (MHz)	Limit					
	5180 - 5240	24dBm(250mW) for client device					
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz					
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz					
	5745 - 5825	30dBm(1W)					
Test Setup:	Power meter	EUT					
Test Mode:	Transmitting mode w	vith modulation					
Test Procedure:	KDB789033 D02 Rules v02r01 Set 2. The RF output of I meter by RF cabl compensated to to 3. Set to the maximum EUT transmit cor	EUT was connected to the power le and attenuator. The path loss was the results for each measurement. Impower setting and enable the attinuously.					
Test Result:	PASS						
Remark:	+10log(1/x) X is duty	ower= measurement power cycle=1, so 10log(1/1)=0 ower= measurement power					

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Power Meter	Agilent	E4418B	MY45100357	Jul. 04, 2023
Power Sensor	Agilent	8481A	MY41091497	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1 (6)	1 (3

Page 16 of 126

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Limit:	No restriction limits
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1	1

Page 17 of 126

5.6. Power Spectral Density

5.6.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F
Limit:	≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470-5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz The e.i,r,p spectral density for Band 1 5150MHz – 5250 MHz should not exceed 10dBm/MHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.
Test Result:	PASS

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		

Page 18 of 126

5.7. Band edge

5.7.1. Test Specification

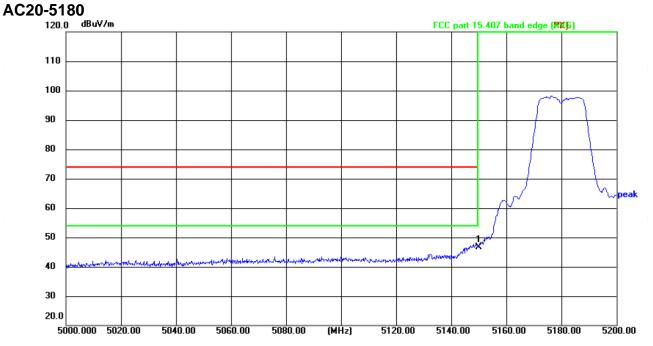
Test Requirement:	FCC CFR47 Part 15E Section 15.407							
Test Method:	ANSI C63.10 2013							
	In un-restricted band: For Band 1&2A&2C: -27dBm/MHz For Band 3:							
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)				
	< 5650	-27	5850~5855	27~15.6				
Limit:	5650~5700	-27~10	5855~5875	15.6~10				
Lillin.	5700~5720	10~15.6	5875~5925	10~-27				
	5720~5725	15.6~27	> 5925	-27				
	E[dBµV/m] = EIR In restricted band:		/					
	Detec		Limit@					
	Peal		74dBµ					
	AVG	AVG 54dBµV/m						
Test Setup:	Ground Reference Plate Test Receiver Test R							
Test Mode:	Transmitting mo	de with modu	ulation					
Test Procedure:	1. The EUT was meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a vari 3. The antennameters above the value of the field polarizations of measurement. 4. For each sus to its worst case heights from 1 returned from 0 domaximum readings. The test-received from and Spread to the substitution and s	ne ground at a degrees to degree	a 3 meter cambed as away from the particular and tower. The form one modetermine the rooth horizontal agare set to make antenna was sters and the rooth degrees to fin was set to Peak	per. The table position of the consition of the constitution of th				

Mode.

Report No.: TCT230403E028

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be

(stopped reported 10dB m quasipe	l and the p d. Otherwis argin woul	eak values se the emis d be re-tes age metho	of the EU ⁻ sions that ted one by	Γ would be did not hav one using ied and the	e peak,
Test	Result:	PASS		(c')			


5.7.2. Test Instruments

	Radiated Er	nission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Feb. 20, 2024
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Feb. 20, 2024
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2023
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2023
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2023
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 24, 2024
Coaxial cable	SKET	RC-18G-N-M) 1	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	/	Feb. 24, 2024
Antenna Mast	Keleto	CC-A-4M	(0)	1 6
EMI Test Software	Shurple Technology	EZ-EMC	1	

5.7.3. Test Data

Report No.: TCT230403E028

Site: #3 3m Anechoic Chamber Temperature: 21.3(°C) Humidity: 50 % Polarization: Horizontal

Limit: FCC part 15.407 band edge (PK)

5040.00 5060.00

Power: DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	(
1 *	5150.000	56.46	-9.85	46.61	74.00	-27.39	peak	Р						
	120.0 dBuV/m							FCC	part 15.407 I	band ed	ge (R)	(js)		
	110													
	""													
	100									_			\dashv	
	90										لسسا	money	\neg	
	80												_	
												\		
	70									 		 	\dashv	
	60													
	50									 			\vdash	
									- 1 M	and the			W.,	peak
	40 мироналичина	and the same of th	AND THE PROPERTY OF THE PROPER	A CONTRACTOR OF THE PARTY OF TH	and the same	to the control of the special	articles across-sector	wandhalf ar	and the state of t				\neg	
	30													
	20.0													

Site: #3 3m Anechoic Chamber Temperature: 21.3(°C) Humidity: 50 % Polarization: Vertical

5080.00

Limit: FCC part 15.407 band edge (PK)

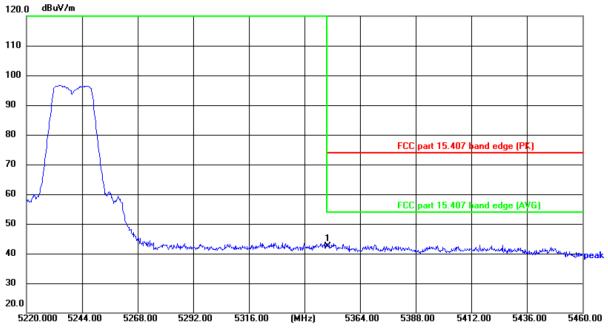
5000.000 5020.00

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5150 000	48 80	-9.85	38 95	74 00	-35 05	neak	Р	

(MHz)

Power: DC 7.6 V

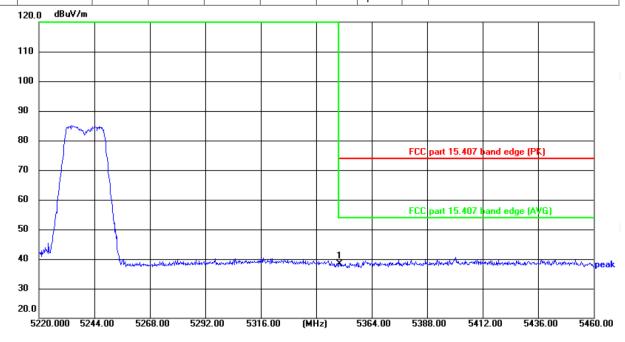
5120.00 5140.00


5160.00

5180.00

5200.00

AC20-5240



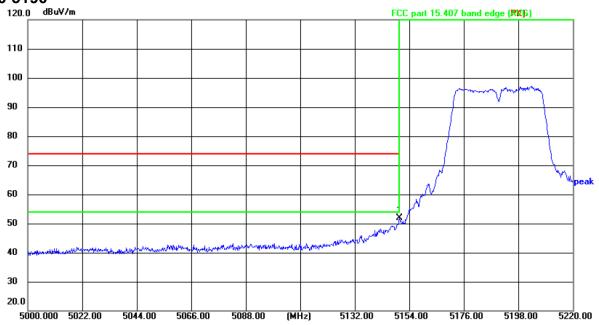
Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5350.000	51.74	-9.43	42.31	74.00	-31.69	peak	Р	

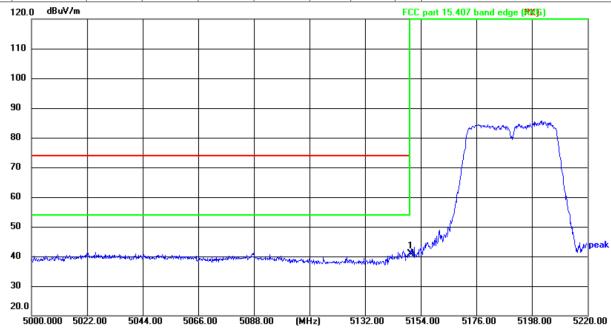
Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %


Limit: FCC part 15.407 band edge (PK)

Power:	DC 7.6	3 V
--------	--------	-----

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5350.000	47.89	-9.43	38.46	74.00	-35.54	peak	Р	

AC40-5190

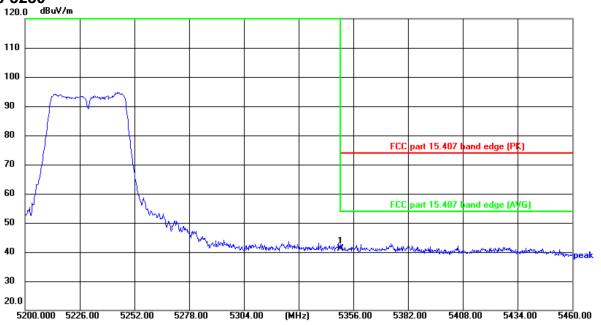


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5150.000	61.62	-9.85	51.77	74.00	-22.23	peak	Р	

Power: DC 7.6 V


Temperature: 21.3(°C) Humidity: 50 % Site: #3 3m Anechoic Chamber Polarization: Vertical

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5150.000	50.77	-9.85	40.92	74.00	-33.08	peak	Р	

AC40-5230

Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 7.6 V

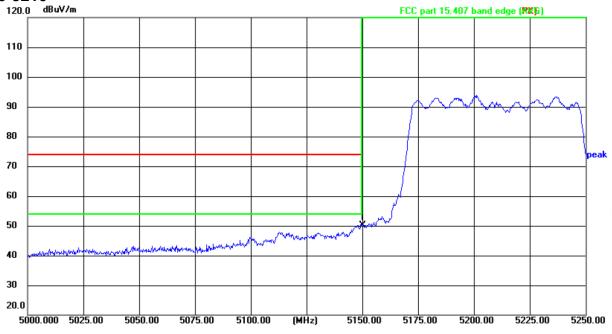
No.	Fre	equency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detec	or P	/F	Remark		
1 *	53	350.000	50.48	-9.43	41.05	74.00	-32.95	pea	(Р			
	120.0	dBuV/m											
	110												
	100												
	100												
	90												
	_	anno albi	James James										
	80		\ \ \							FCC	part 15.407 I	and edge (P	K)
	70	\longrightarrow											
			\					Ш					
	60									FCC	nart 15 407 I	and edge (A)	/G)

20.0 5200.000 5226.00 5252.00 5278.00 5304.00 (MHz) 5356.00 5382.00 5408.00 5434.00 5460.00

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

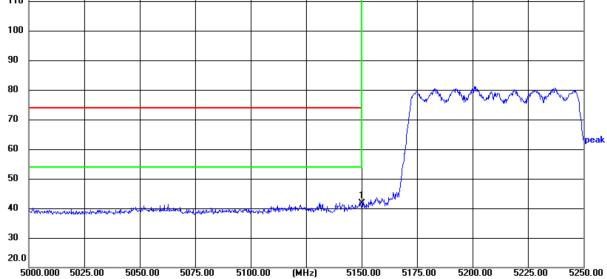
50


40

30

No.	Frequency (MHz)			Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5350.000	47.80	-9.43	38.37	74.00	-35.63	peak	Р	

AC80-5210



Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

Power: DC 7.6 V

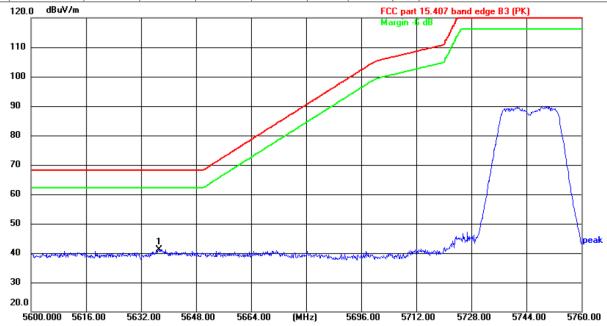
NIa	Frequency	Reading	Factor	Level	Limit	Margin	Datastas	D/F	Damade			
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F	Remark			
1 *	5150.000	59.96	-9.85	50.11	74.00	-23.89	peak	Р				
	120.0 dBuV/m							FCC	part 15.407 b	and edge (M	(F)	
	110											
	'''											
	100											
	100											
	90											
,	30											
	80											

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge (PK)

N	lo.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	*	5150.000	51.48	-9.85	41.63	74.00	-32.37	peak	Р	

AC20-5745

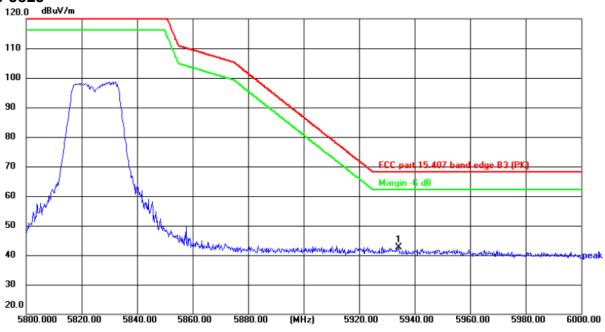


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: DC 7.6 V

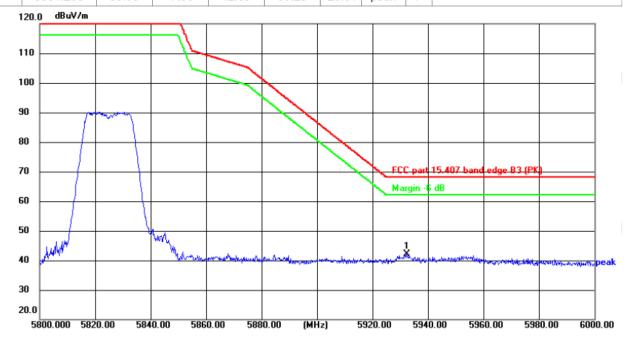
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5626.560	51.56	-8.96	42.60	68.20	-25.60	peak	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5637.120	50.06	-8.86	41.20	68.20	-27.00	peak	Р	

AC20-5825

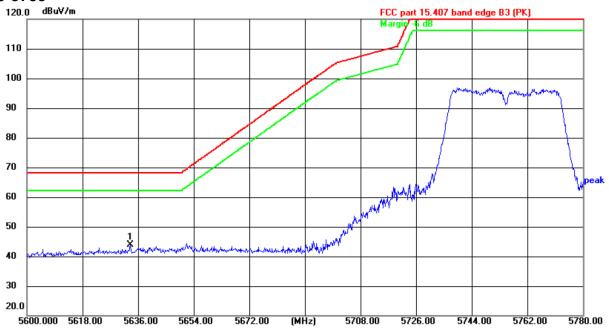


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: DC 7.6 V

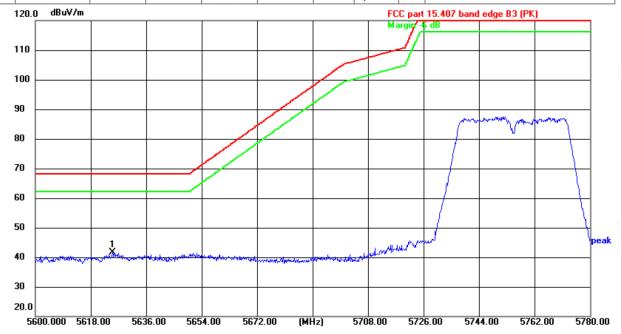
No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5934.200	50.65	-7.96	42.69	68.20	-25.51	peak	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5932.500	50.02	-7.96	42.06	68.20	-26.14	peak	Р	

AC40-5755

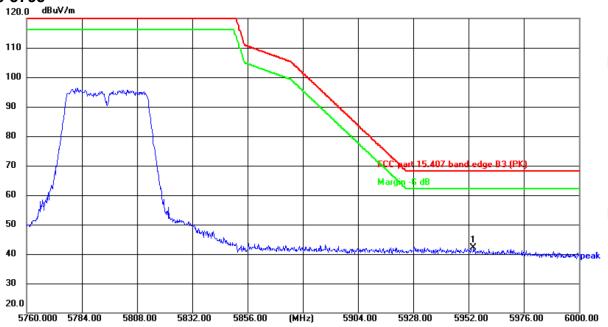


Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: DC 7.6 V

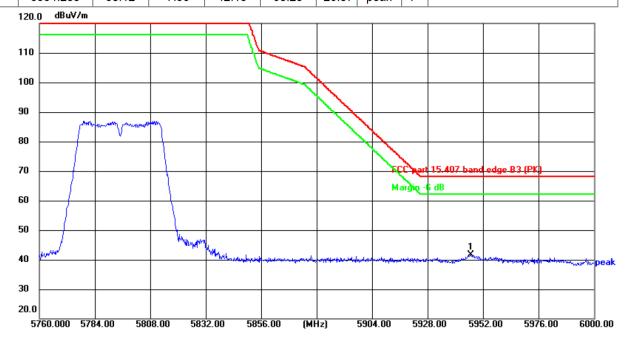
No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5633.570	52.80	-8.89	43.91	68.20	-24.29	peak	Р	


Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK) Power:DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5625.020	50.50	-8.97	41.53	68.20	-26.67	peak	Р	

AC40-5795



Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK)

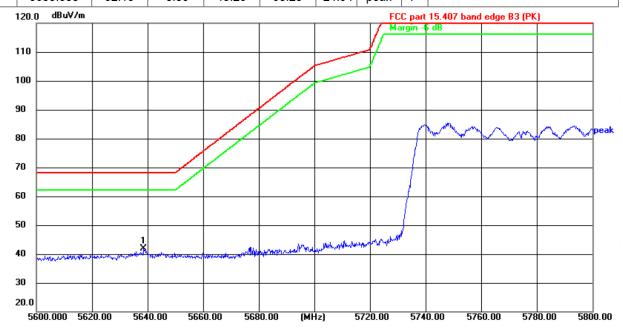
Power: DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5954 280	50 12	-7 99	42 13	68 20	-26 07	peak	Р	

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5946.720	49.71	-7.97	41.74	68.20	-26.46	peak	Р	



AC80-5775

Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK) Power: DC 7.6 V Limit Frequency Reading Factor Level Margin Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 * 5633.300 52.15 -8.89 43.26 68.20 -24.94 peak

Site: #3 3m Anechoic Chamber Polarization: Vertical Temperature: 21.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK) Power:DC 7.6 V

1	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1 *	5638.600	50.80	-8.85	41.95	68.20	-26.25	peak	Р	

Note: All modulation (802.11a, 802.11n, 802.11ac) have been tested, only the worst case in 802.11ac be reported.

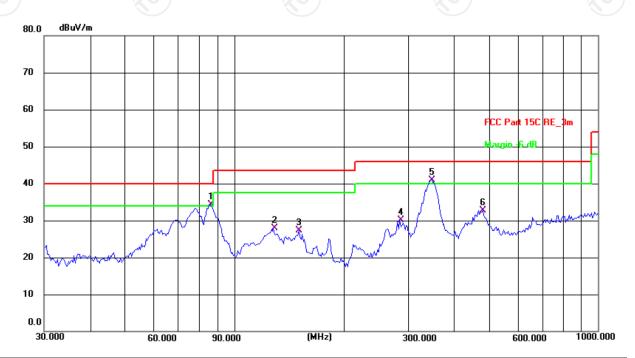
5.8. Unwanted Emissions

5.8.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 Se	ection 15.	407 & 1	5.209 & 15.205
Test Method:	KDB 789033	D02 v02r	01		
Frequency Range:	9kHz to 40G	Hz			
Measurement Distance:	3 m	(.0			(3)
Antenna Polarization:	Horizontal &	Vertical			
Operation mode:	Transmitting	mode with	n modulat	ion	
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz Above 1GHz	Detector Quasi-peak Quasi-peak Quasi-peak Peak		VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value
Limit:	per FCC Par	t15.205 shill strength bands:	Detection Detection of the complete of the com	y with the torth in t	Limit@3m 74dBµV/m 54dBµV/m Measurement Distance (meters) 300 3 30 3 3 3
Test setup:	For radiated	Distance = 3m Turn table	below 30	OMHz	Computer Pre -Amplifier Receiver

5.8.2. Test Instruments

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 20, 2024
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 20, 2024
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2023
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2023
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2023
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 24, 2024
Antenna Mast	Keleto	RE-AM	1	(E)
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	1	Feb. 24, 2024
EMI Test Software	Shurple Technology	EZ-EMC		1



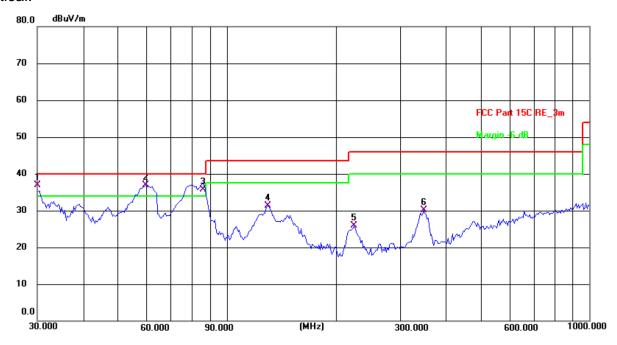
5.8.3. Test Data

Please refer to following diagram for individual

Below 1GHz

Horizontal:

Site: #1 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.3(C) Humidity: 54 %


Limit: FCC Part 15C RE_3m Power: DC 7.6 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1!	85.8984	24.66	9.73	34.39	40.00	-5.61	QP	Р	
2	128.1129	14.71	13.12	27.83	43.50	-15.67	QP	Р	
3	150.5377	12.79	14.47	27.26	43.50	-16.24	QP	Р	
4	284.9767	16.65	13.48	30.13	46.00	-15.87	QP	Р	
5 *	349.2500	25.92	15.08	41.00	46.00	-5.00	QP	Р	
6	482.2155	14.58	18.21	32.79	46.00	-13.21	QP	Р	

Vertical:

Temperature: 25.3(C) Humidity: 54 % Site: #1 3m Anechoic Chamber Polarization: Vertical

Ļimit: FCC Part 15C RE_3m				Power: DC 7.6 V					
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	30.0000	23.95	13.00	36.95	40.00	-3.05	QP	Р	
2!	59.6492	23.92	12.98	36.90	40.00	-3.10	QP	Р	
3 !	85.8983	25.98	9.73	35.71	40.00	-4.29	QP	Р	
4	129.9225	18.23	13.13	31.36	43.50	-12.14	QP	Р	
5	224.5192	14.24	11.66	25.90	46.00	-20.10	QP	Р	
6	349.2500	14.95	15.08	30.03	46.00	-15.97	QP	Р	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ac(VHT80) and the worst case Mode (Highest channel and 802.11a) was submitted only.
- 3.Measurement (dBµV) = Reading level + Correction Factor , correction Factor= Antenna Factor + Cable loss -Pre-amplifier.

			N/	lodulation T	Tyne: Band	1			
			ıv		5180MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	38.47		8.02	46.49		68.2		-21.71
15540	H	38.86	-7 (A)	9.87	48.73		74	54	-5.27
	(H)		740			J)		(QL)	
				T					
10360	V	38.53		8.02	46.55		68.2		-21.65
15540	V	38.64		9.87	48.51		74	54	-5.49
KO	V	(470)					(0 -j-		(بلغ
				11a CH40:	5200MHz				
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	Н	39.85		7.97	47.82	(αΒμ ۷/ΙΙΙ)	68.2		-20.38
15600	H	39.03		9.83	48.86		74	54	-5.14
	H								
10400	V	41.36		7.97	49.33		68.2		-18.87
15600	V	38.57		9.83	48.4		74	54	-5.6
	V		- -		(
				11a CH48:	5240MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	38.92		7.97	46.89		68.2		-21.31
15720	Н	37.78		9.83	47.61		74	54	-6.39
	TH.		K		/	Z\		(74)	
	(C)		KO.		K	\mathcal{O}		(C)	
10480	٧	39.19		7.97	47.16		68.2		-21.04
15720	V	36.54		9.83	46.37		74	54	-7.63
	V	77			<u></u>				
				n(HT20) Ch	136: 5180M	Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		n Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(1011 12)	I 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμ ν/ιιι)	(ασμν/π)	(ub)
10360	H	41.44		8.02	49.46) 	68.2		-18.74
15540	Н	38.28		9.87	48.15		74	54	-5.85
	Н								
				(è					
10360	V	42.55		8.02	50.57		68.2		-17.63
15540	V	38.02		9.87	47.89		74	54	-6.11
	V								

Report No.: TCT230403E028 11n(HT20) CH40: 5200MHz ΑV Peak Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10400 Н 40.68 7.97 48.65 68.2 -19.5515600 Н 38.95 9.83 ---48.78 ---74 54 -5.22Н ---10400 V 40.53 7.97 68.2 -------48.5 -19.715600 38.14 9.83 47.97 74 54 -6.03 -------------------------11n(HT20) CH48: 5240MHz ΑV Peak Correctio **Emission Level** Peak limit **AV limit** Frequency Ant. Pol. Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10480 H 41.73 7.97 68.2 ----18.5 49.7 Н 15720 40.16 9.83 49.99 74 54 -4.01 Н ---------------------------10480 40.99 7.97 68.2 48.96 -19.2415720 ٧ 40.07 9.83 49.9 ---74 54 -4.1 ٧ 11n(HT40) CH38: 5190MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10380 Н 39.33 7.75 47.08 68.2 ----21.12 15570 Η 37.68 9.87 47.55 74 54 -6.45Η 10380 40.84 7.75 48.59 68.2 -19.61 15570 V 38.38 9.87 -4-48.25 ---74 54 -5.75 V 11n(HT40) CH46: 5230MHz Peak ΑV Correctio **Emission Level** Ant. Pol. Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV (dBµV) (dB/m) Peak (dBµV) (dBµV/m) (dBµV/m) 10460 Н 41.47 7.97 49.44 68.2 -18.76 15690 H 39.15 9.83 48.98 74 54 -5.02 --4 .---H L., u. 10460 ٧ 42.03 7.97 50 ---68.2 -18.2٧ 15690 39.11 9.83 48.94 74 54 -5.06٧ ---1-14 ----------------------

Report No.: TCT230403E028 11ac(VHT20) CH36: 5180MHz ΑV Peak Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) (dBµV/m) 10360 Н 41.24 8.02 49.26 68.2 -18.9415540 Η 37.55 9.87 ---47.42 ---74 54 -6.58Н ---38.67 10360 V 68.2 -------8.02 46.69 -21.51 15540 40.09 9.87 49.96 74 54 -4.04 ----------------------------11ac(VHT20) CH40: 5200MHz ΑV Peak Correctio **Emission Level** Ant. Pol. Peak limit **AV limit** Frequency Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10400 H 39.88 ----7.97 47.85 68.2 ----20.35 Н 15600 39.37 9.83 49.2 74 54 -4.8 Н ---------------------------10400 40.13 7.97 68.2 -20.148.1 15600 ٧ 38.49 9.83 48.32 ---74 54 -5.68٧ 11ac(VHT20) CH48:5240 Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10480 Н 38.24 7.97 68.2 46.21 ----21.99 15720 Η 38.06 9.83 47.89 74 54 -6.11Η 47.24 10480 39.27 7.97 68.2 -20.96 15720 V 38.66 9.83 -4-48.49 ---74 54 -5.51 V 11ac(VHT40) CH38:5190 Peak ΑV Correctio **Emission Level** Ant. Pol. Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV (dBµV) (dB/m) Peak (dBµV) (dBµV/m) (dBµV/m) 10380 Н 40.89 7.75 48.64 68.2 -19.56 H 40.37 15570 9.87 50.24 74 54 -3.76--4 .---H L., u. 10380 ٧ 39.45 7.75 47.2 ---68.2 -21 ٧ 15570 38.85 9.87 48.72 74 54 -5.28٧ ---إندر ----------------------

Report No.: TCT230403E028 11ac(VHT40) CH46:5230 Peak ΑV Correctio **Emission Level** Ant. Pol. Peak limit **AV** limit Frequency Margin n Factor reading reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) AV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) Η 7.97 10460 38.67 46.64 68.2 -21.56 15690 39.04 Η 9.83 48.87 74 54 -5.13Н 10460 V 40.45 7.97 68.2 ---48.42 -19.7815690 37.69 9.83 47.52 74 54 -6.48-------------------11ac(VHT80) CH42:5210 ΑV Correctio Peak **Emission Level** Ant. Pol. Peak limit **AV limit** Frequency Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10420 H 42.08 7.96 50.04 68.2 ----18.16 Н 40.34 15630 9.84 50.18 74 54 -3.82Н ---------------------------10420 V 41.96 7.96 49.92 68.2 -18.28

Note:

15630

٧

٧

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

49.35

74

54

-4.65

9.84

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

39.51

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

			N.	/lodulation ∃	Гуре: Band	3			
				11a CH149	• •				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
, ,		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(* · ·)	(* * /	(- /
11490	Н	37.88		8.09	45.97		74	54	-8.03
17235	H,	37.44		9.67	47.11		68.2		-21.09
	H		1, C		()		(G-)	
				/			•		
11490	V	41.52		8.09	49.61		74	54	-4.39
17235	V	39.38		9.67	49.05		68.2		-19.15
	V			(, c			-		
				11a CH157	7: 5785MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Peak	on Level AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
					(dBµV/m)	(dBµV/m)			
11570	H	39.97	-	8.10	48.07		74	54	-5.93
17355	Н	38.86		9.65	48.51		68.2		-19.69
<u> </u>	Н	<i>(/</i>)			·		(\- -		(K)
(0)		(20)		K)		(0)		(40)
11570	V	38.63		8.10	46.73		74	54	-7.27
17355	V	40.05		9.65	49.7		68.2		-18.5
	V							7	
				11a CH165	5: 5825MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	37.44		8.12	45.56		74	54	-8.44
17475	Н	36.84		9.62	46.46		68.2		-21.74
	Н								
			(.c.						
11650	V	39.53	-	8.12	47.65		74	54	-6.35
17475	V	38.72		9.62	48.34		68.2		-19.86
	V	-							
			11r	(HT20) CH	149: 5745N	ЛНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	(H)	38.95	-1,0	8.09	47.04	O ')	74	54	-6.96
17235	Н	38.86		9.67	48.53		68.2		-19.67
	Н								
					7.	•			
11490	V	39.97		8.09	48.06		74	54	-5.94
17235	V	38.22		9.67	47.89		68.2		-20.31
	V								

			11n	(HT20) CH	157: 5785N	ИНz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dΒμV/m)	Margin (dB)
11570	Н	38.89		8.10	, ,	, ,	74	54	-7.01
17355	H	39.67		9.65	46.99 49.32		68.2		-18.88
	Н	39.01		3.03	49.32				-10.00
11570	V	39.25		8.10	47.35	<u> </u>	74	54	-6.65
17355	V	39.48		9.65	49.13		68.2		-19.07
	V								
	V			(HT20) CH	٥.				
		Peak	AV	Correctio					
Frequency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	KH/	39.12	-120	8.12	47.24	97	74	54	-6.76
17475	Н	37.54		9.62	47.16		68.2		-21.04
	Н								
11650	V	38.69		8.12	46.81		74	54	-7.19
17475	V	39.92		9.62	49.54		68.2		-18.66
	V								
			11n	(HT40) CH	151: 5755N	ЛHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	,	, ,	, ,
11510	Н	41.12		8.09	49.21		74	54	-4.79
17265	Н	37.73		9.67	47.4		68.2		-20.8
	Н								
				1					
11510	V	42.35		8.09	50.44	<u>(</u>	74	54	-3.56
17265	V	38.96		9.67	48.63		68.2	\	-19.57
	V								
				(HT40) CH	159: 5795N	ЛHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		n Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(111112)	11/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αΣμ ν/ιιι)	(αδμ ν/ιιι)	(42)
11590	H	39.33	K	8.10	47.43	Z\	74	54	-6.57
17385	(H)	38.97	1,0	9.65	48.62	O ')	68.2	(ZC1.)	-19.58
	Н					<u> </u>			
	·			Ī	Ī	T		-	
11590	V	38.95		8.10	47.05		74	54	-6.95
17385	V	38.11		9.65	47.76		68.2		-20.44
	V						<u></u>		

11510

17265

1-14

٧

٧

٧

41.13

36.47

Report No.: TCT230403E028 11ac(VHT20) CH149: 5745MHz ΑV Peak Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) ΑV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) $(dB\mu V/m)$ 11490 Н 41.07 8.09 49.16 74 54 -4.8417235 Η 38.36 9.67 ---48.03 ---68.2 ----20.17Н ------11490 V 40.84 ----8.09 48.93 74 54 -5.07 17235 39.15 9.67 48.82 68.2 -19.38 -------------------------11ac(VHT20) CH157: 5785MHz ΑV Peak Correctio **Emission Level** Peak limit **AV limit** Frequency Ant. Pol. Margin reading reading n Factor (MHz) H/V $(dB\mu V/m)$ $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11570 H 38.38 ----8.10 46.48 -7.52 74 54 Н 17355 36.73 9.65 46.38 68.2 -21.82 Н ---------------------------11570 38.29 8.10 46.39 54 -7.6174 9.65 17355 ٧ 38.97 48.62 ---68.2 ----19.58٧ 11ac(VHT20) CH165: 5825MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin n Factor reading reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11650 Н 40.89 8.12 49.01 ----4.9974 54 17475 38.52 Η 9.62 48.14 68.2 -20.06Η 11650 39.33 8.12 47.45 74 54 -6.5517475 V 40.81 9.62 ---50.43 ---68.2 ----17.77 V 11ac(VHT40) CH151: 5755MHz Peak ΑV Correctio **Emission Level** Ant. Pol. Peak limit **AV limit** Frequency Margin reading n Factor reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV (dBµV) (dB/m) Peak (dBµV) (dBµV/m) (dBµV/m) 11510 Н 39.62 47.71 8.09 74 54 -6.2917265 H 38.35 9.67 68.2 --4 48.02 .-------20.18 <u>u</u> H L.,

-4.78

-22.06

8.09

9.67

49.22

46.14

74

68.2

54

Report No.: TCT230403E028 11ac(VHT40) CH159: 5795MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading n Factor reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) AV Peak (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11590 Η 40.89 8.10 48.99 74 54 -5.01 17385 Н 38.49 9.65 48.14 ---68.2 -20.06 ------Н ---11590 V 40.15 8.10 48.25 -5.75 74 54 38.72 17385 9.65 48.37 68.2 -19.83 ----------------------11ac(VHT80) CH155: 5775MHz ΑV Peak Correctio **Emission Level** Peak limit Frequency Ant. Pol. **AV limit** Margin reading reading n Factor H/V (dBµV/m) (MHz) $(dB\mu V/m)$ (dB) Peak AV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 11550 H 41.51 ----8.09 49.6 74 54 -4.4 17325 Н 38.93 9.66 -19.61 48.59 68.2 Η ---------------------------11550 42.17 8.09 50.26 74 54 -3.74

Note:

17325

٧

٧

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

49.02

9.66

68.2

-19.18

2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$

39.36

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055					
Test Method:	ANSI C63.10: 2013					
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.					
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply					
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.					
Test Result:	PASS					
Remark:	Pre-scan was performed at all models(11a,11n,11ac), the worst case (11ac) was found and test data was shown in this report.					

Report No.: TCT230403E028

Test plots as follows:

Test mode:	802.11ac	(HT20) Frequency(MHz):		5180		
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta	Result	
Temperature (C)	voltage(vDC)	Frequen	cy(MHz)	Frequency(F	Hz)	
45		5180	0.04	40000	PASS	
35		5180	0.02	20000	PASS	
25	7.6V	51	80	0	PASS	
15	7.00	5180	0.02	20000	PASS	
5		5180	0.02	20000	PASS	
0		51	80	0	PASS	
	7.2V	5180	0.02	20000	PASS	
25	7.6V	51	80	0.0	PASS	(C)
	8.6V	5179	9.98	-20000	PASS	

Test mode:	802.11ac(HT20) Freque	ency(MHz):	5200
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5200.02	20000	PASS
35		5200.02	20000	PASS
25	7.6V	5200	0	PASS
15	7.0V	5200	0	PASS
5		5200	0	PASS
0	(c)	5199.98	-20000	PASS
	7.2V	5200.02	20000	PASS
25	7.6V	5199.96	-40000	PASS
	8.6V	5200.02	20000	PASS

Test mode:	802.11ac(HT20) Fre	quency(MHz):	5240
Temperature (°C)	Voltage(VDC)	Measuremer Frequency(MF		Hz) Result
45	\scale=\scale_C	5240	(0) 0	PASS
35		5239.98	-20000	PASS
25	7.6V	5239.98	-20000	PASS
15	7.00	5240	0	PASS
5		5240	0	PASS
0		5239.98	-20000	PASS
	7.2V	5240	0	PASS
25	7.6V	5240.02	20000	PASS
	8.6V	5240	0	PASS

Test mode:	802.11ac	(HT20)	Freque	ency(MHz):	cy(MHz): 5745		
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta		Result	
remperature (C)	voltage(vDC)	Frequen	cy(MHz)	Frequency(Hz)			
45		57	45	0		PASS	
35		574	5.04	40000		PASS	
25	7.6V	5745.02		20000		PASS	
15	7.00	574	4.98	-20000		PASS	
5		574	4.98	-20000		PASS	
0		574	4.98	-20000		PASS	
	7.2V	57	45	0		PASS	
25	7.6V	574	5.02	20000		PASS	X\
$(^{\circ}C)$	8.6V	57	45	0.0)	PASS	((

Test mode:	802.11ac(HT20) Free	quency(MHz):	5785
Temperature (°C)	Voltage(VDC)	Measuremen Frequency(MH		Hz) Result
45		5785	0	PASS
35		5784.98	-20000	PASS
25	7.6V	5784.98	-20000	PASS
15	7.0V	5785.02	20000	PASS
5		5785.02	20000	PASS
0		5785.02	20000	PASS
(,c ¹)	7.2V	5785.02	20000	PASS
25	7.6V	5785	0	PASS
	8.6V	5785	0	PASS

Test mode:	802.11ac	(HT20) Freque	ency(MHz):	5825
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5825.02	20000	PASS
35		5825	0	PASS
25	7.6V	5825.02	20000	PASS
15	7.0V	5824.98	-20000	PASS
5		5824.98	-20000	PASS
0		5825.02	20000	PASS
	7.2V	5825	0	PASS
25	7.6V	5825.02	20000	PASS
	8.6V	5825	0	PASS

Test mode:	802.11ac	(HT40)	Freque	ency(MHz):	ncy(MHz): 5190		
Temperature (°C)	Voltage(VDC)	Measu	rement	Delta		Result	
remperature (C)	voltage(vDC)	Frequen	cy(MHz)	Frequency(Hz)		Kesuit	
45		5189	9.96	-40000		PASS	
35		51	90	0		PASS	
25	7.6V	51	90	0		PASS	
15	7.00	5189	9.96	-40000		PASS	
5		5189	9.96	-40000		PASS	
0		51	90	0		PASS	
	7.2V	5189	9.96	-40000		PASS	
25	7.6V	51	90	0		PASS	
(C)	8.6V	51	90	0.0)	PASS	O_{\bullet}

Test mode:	802.11ac(HT40) Freque	ency(MHz):	5230
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5230.04	40000	PASS
35		5230	0	PASS
25	7.6V	5230	0	PASS
15	7.00	5230	0	PASS
5		5230	0	PASS
0		5230.04	40000	PASS
(,c)	7.2V	5230.04	40000	PASS
25	7.6V	5230.2	200000	PASS
	8.6V	5230	0	PASS

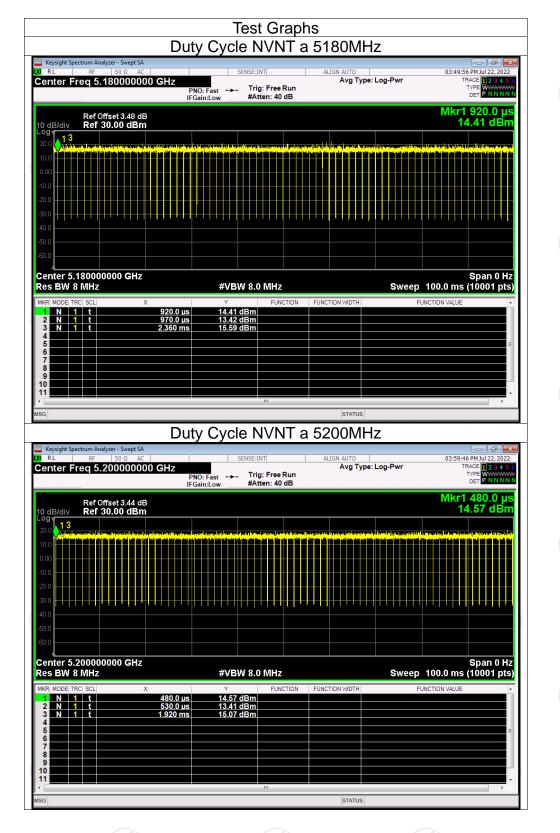
Test mode:	802.11ac	(HT40) Freque	ency(MHz):	5755
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5755.04	40000	PASS
35		5755	0	PASS
25	7.6V	5755.08	80000	PASS
15		5755.04	40000	PASS
5		5755.04	40000	PASS
0		5755	0	PASS
	7.2V	5755.04	40000	PASS
25	7.6V	5755.04	40000	PASS
	8.6V	5755.04	40000	PASS

Test mode:		802.11ac(HT40)		Frequency(MHz):			5795	
Temperature (°C)	Voltage(VDC)		Measurement		Delta		Result	
Temperature (C)			Frequency(MHz)		Frequency(Hz)			
45	(6)		5794.96		-40000		PASS	
35			5795		0		PASS	
25		7.6V	5795		0		PASS	
15	7.00		5794.96		-40000		PASS	
5 (0)	5 ()		579	4.96	-40000)	PASS	
0			57	95	0		PASS	
		7.2V	57	95	0		PASS	
25		7.6V	57	95	0	Žι	PASS	
$(C_{\mathcal{O}})$		8.6V	57	95	0	(` ر	PASS	$\langle O_{i} \rangle$

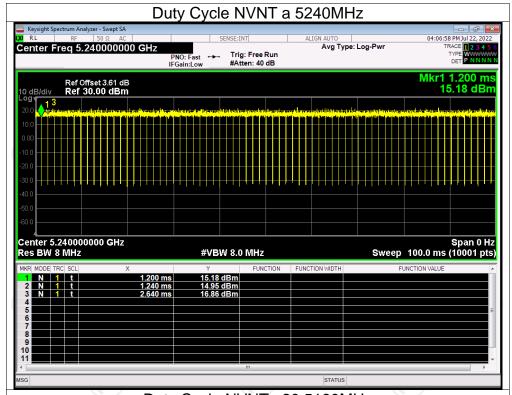
Test mode:	802.11a	802.11ac(VHT80) Frequ		ency(MHz):	5210
Temperature (°C)	Voltage(VDC		rement ncy(MHz)	Delta Frequency(H	Hz) Result
45	45		210	0	PASS
35		52	210	0	PASS
25	7.6V	521	80.0	80000	PASS
15	7.00	52	210	0	PASS
5		52	210	0	PASS
0		52	210	0	PASS
(C)	7.2V	52	210	0	PASS
25	7.6V	52	210	0	PASS
	8.6V	52	210	0	PASS

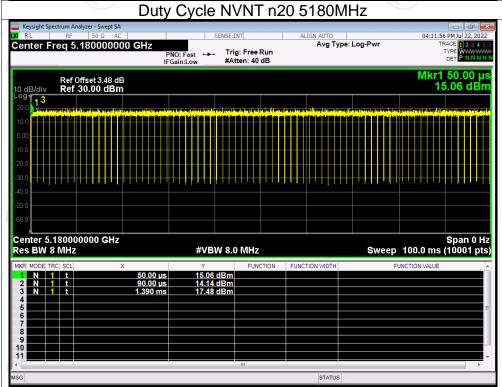
Test mode:	802.11ac(\	/HT80) Frequ	ency(MHz):	5775	
Temperature (°C)	Voltage(VDC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result	
45		5775.08	80000	PASS	
35		5775	0	PASS	
25	7.6V	5775	0	PASS	
15	7.00	5775.08	80000	PASS	
5		5775.08	80000	PASS	
0		5775.08	80000	PASS	
	7.2V	5775	0	PASS	
25	7.6V	5775.08	80000	PASS	
(20)	8.6V	5775.08	80000	PASS	

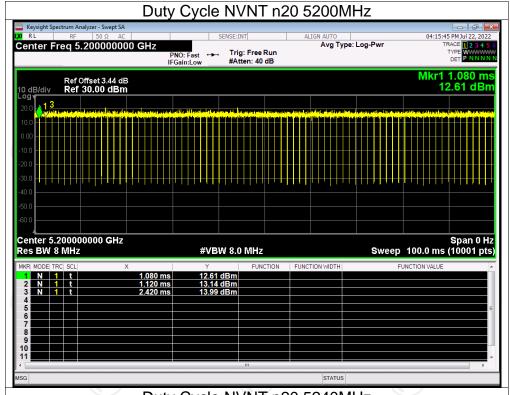
Appendix A: Test Result of Conducted Test

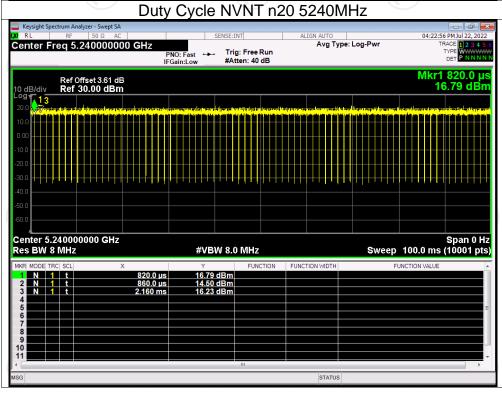

Duty	Cycle
------	-------

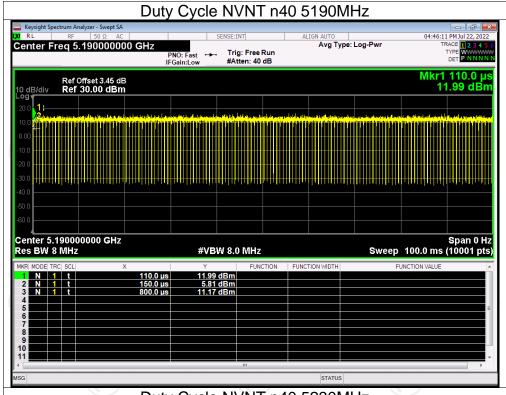
			Duty Cycle		
Condition	Mode	Frequency	Duty Cycle	Correction Factor	1/T
A IV /A IT		(MHz)	(%)	(dB)	(kHz)
NVNT	a	5180	97.66	0.10	0.72
NVNT	а	5200	97.62	0.10	0.72
NVNT	a	5240	97.66	0.10	0.71
NVNT	n20	5180	97.48	0.11	0.77
NVNT	n20	5200	97.46	0.11	0.77
NVNT	n20	5240	97.50	0.11	0.77
NVNT	n40	5190	95.15	0.22	1.54
NVNT	n40	5230	95.16	0.22	1.52
NVNT	ac20	5180	97.51	0.11	0.76
NVNT	ac20	5200	97.48	0.11	0.76
NVNT	ac20	5240	97.54	0.11	0.76
NVNT	ac40	5190	95.19	0.21	1.54
NVNT	ac40	5230	95.15	0.22	1.54
NVNT	ac80	5210	90.72	0.42	3.03
NVNT	а	5745	97.62	0.10	0.72
NVNT	а	5785	97.62	0.10	0.71
NVNT	а	5825	97.62	0.10	0.72
NVNT	n20	5745	97.44	0.11	0.77
NVNT	n20	5785	97.45	0.11	0.77
NVNT	n20	5825	97.43	0.11	0.77
NVNT	n40	5755	95.11	0.22	1.54
NVNT	n40	5795	95.12	0.22	1.56
NVNT	ac20	5745	97.49	0.11	0.76
NVNT	ac20	5785	97.46	0.11	0.76
NVNT	ac20	5825	97.51	0.11	0.76
NVNT	ac40	5755	95.19	0.21	1.54
NVNT	ac40	5795	95.16	0.22	1.52
NVNT	ac80	5775	90.81	0.42	3.03

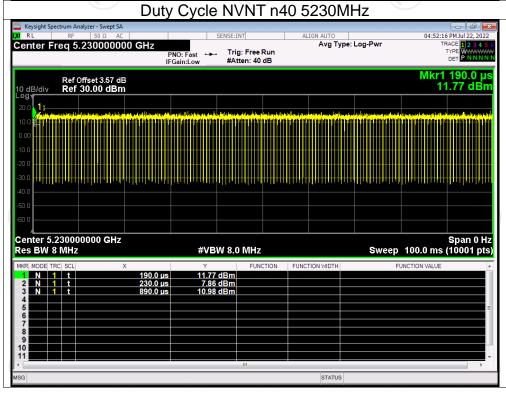


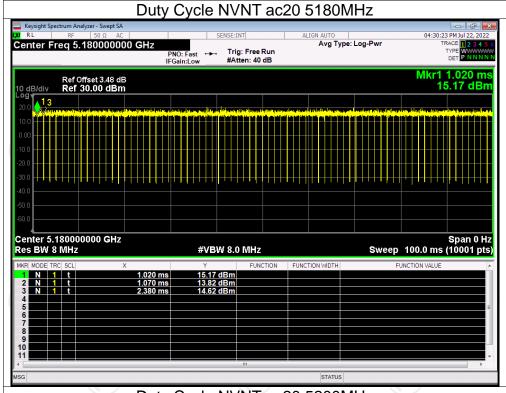


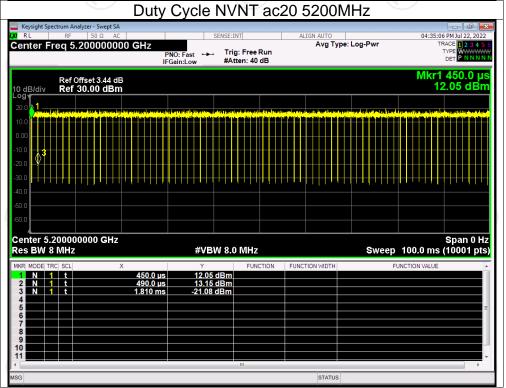


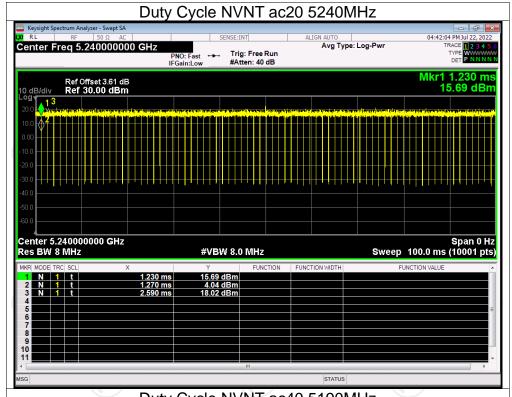


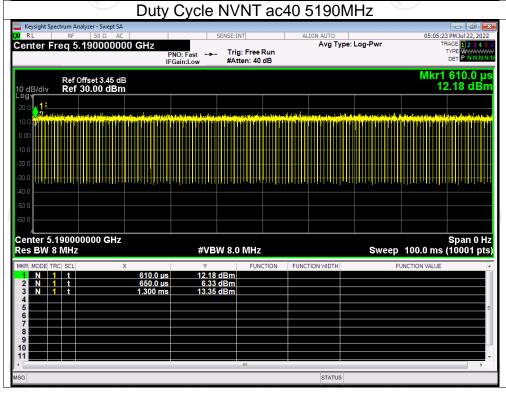


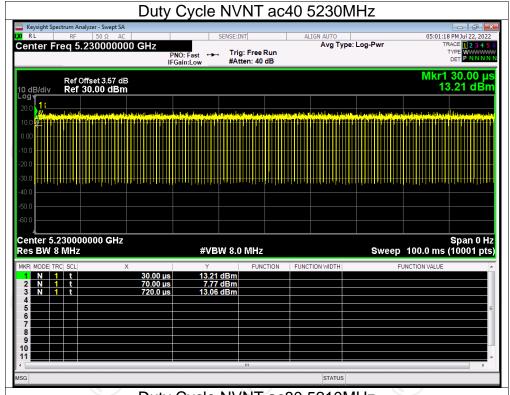


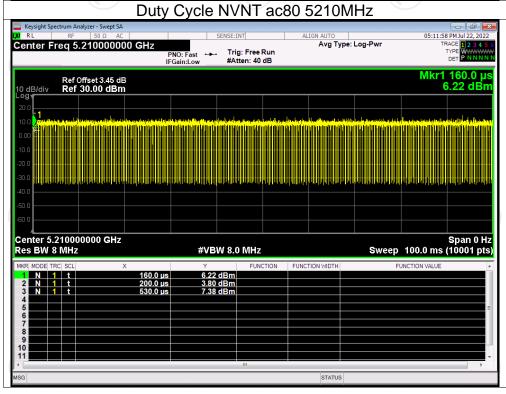


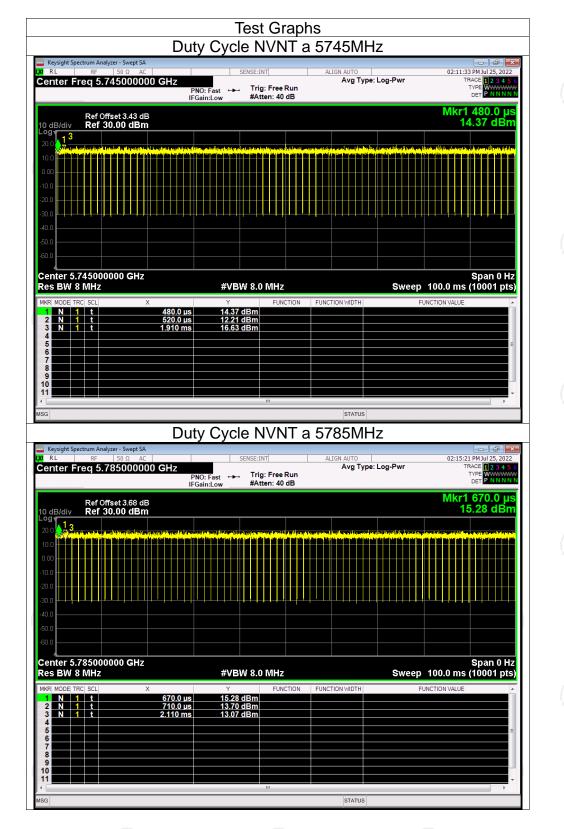


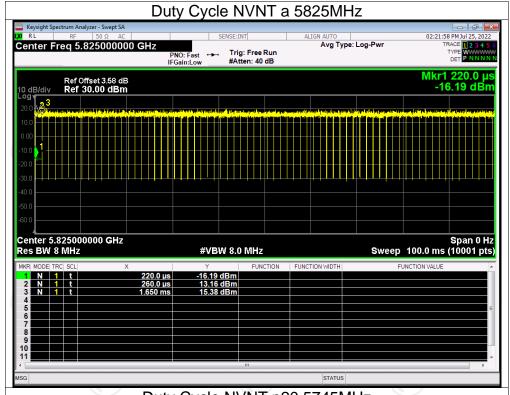


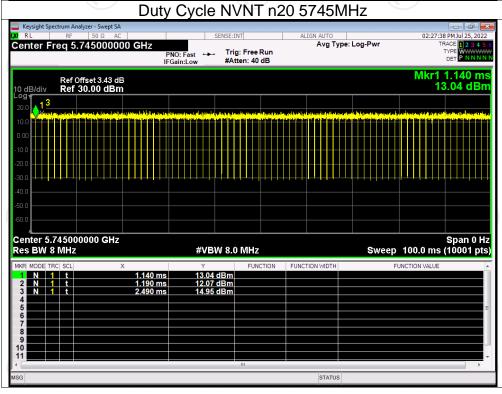


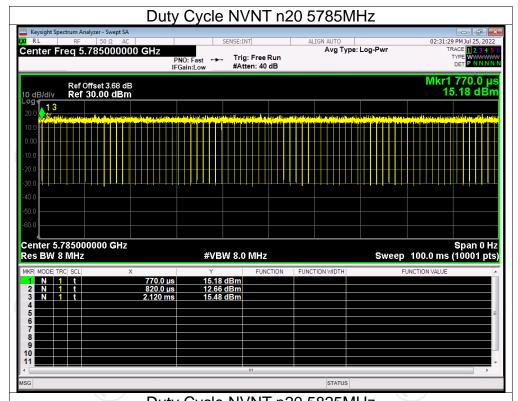


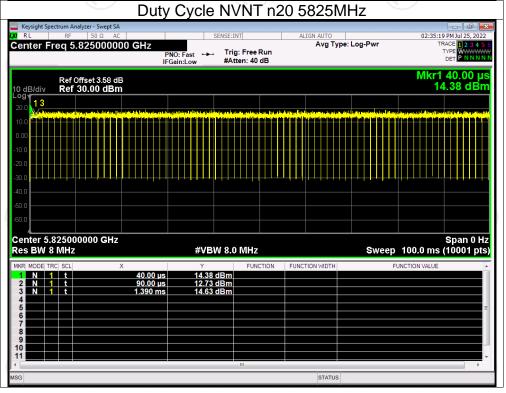


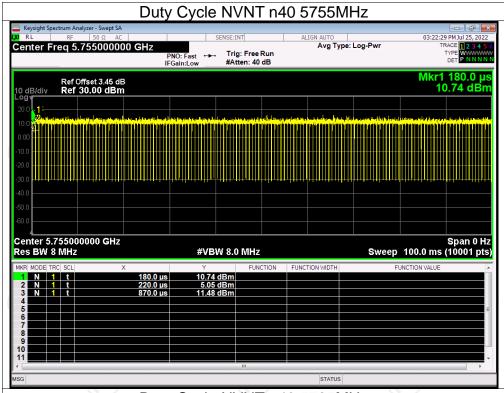


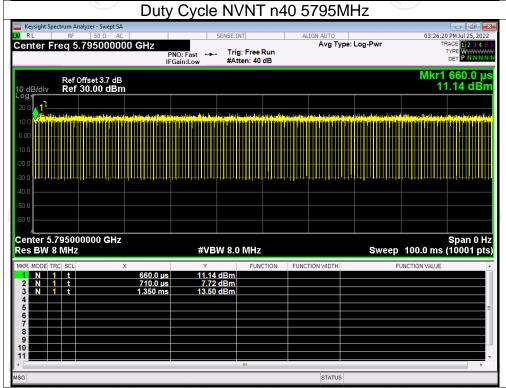


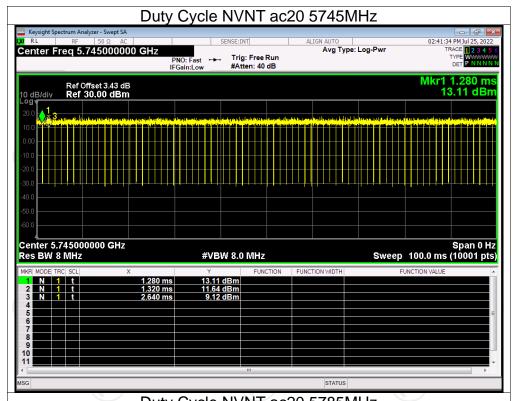


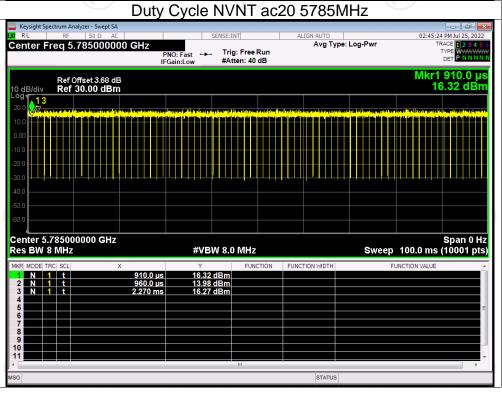


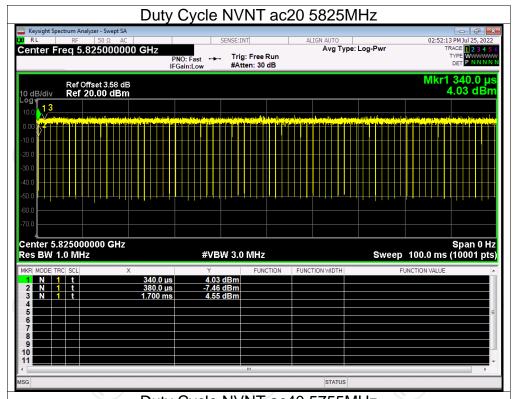


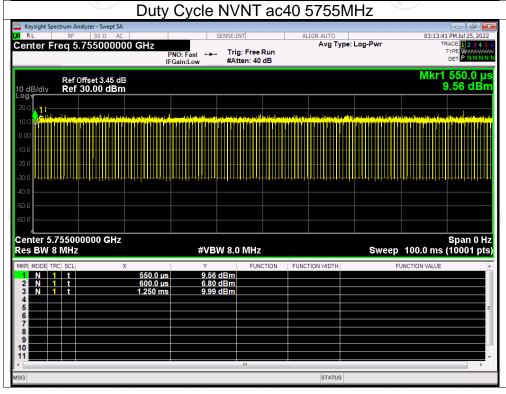


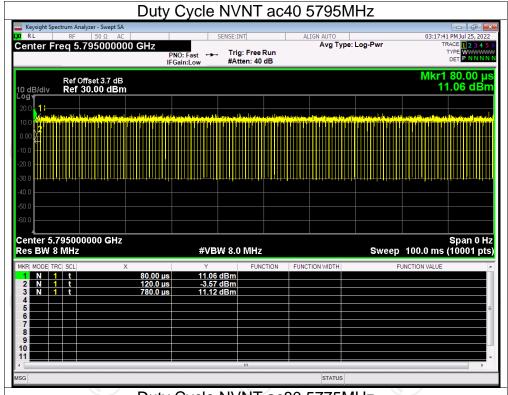


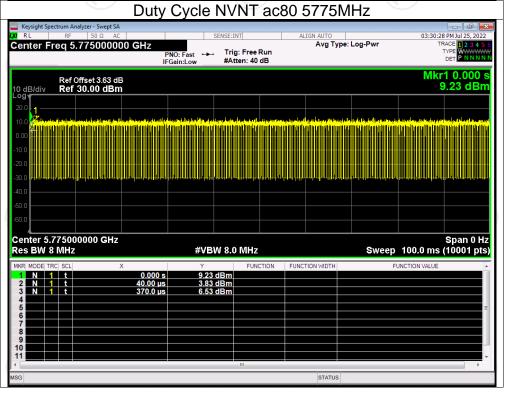


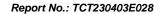




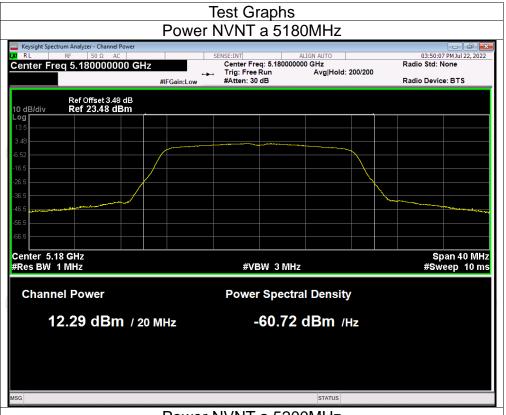


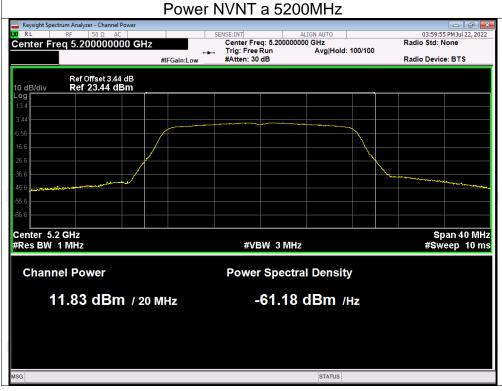






Report No.: TCT230403E028


Maximum Conducted Output Power


Condition	Mode	Frequency	Conducted	Duty Factor	Total Power	Limit	Verdict
		(MHz)	Power (dBm)	(dB)	(dBm)	(dBm)	
NVNT	а	5180	12.29	0.10	12.39	24	Pass
NVNT	а	5200	11.83	0.10	11.93	24	Pass
NVNT	а	5240	13.32	0.10	13.42	24	Pass
NVNT	n20	5180	12.21	0.11	12.32	24	Pass
NVNT	n20	5200	11.72	0.11	11.83	24	Pass
NVNT	n20	5240	13.14	0.11	13.25	24	Pass
NVNT	n40	5190	11.48	0.22	11.70	24	Pass
NVNT	n40	5230	12.40	0.22	12.62	24	Pass
NVNT	ac20	5180	11.97	0.11	12.08	24	Pass
NVNT	ac20	5200	11.47	0.11	11.58	24	Pass
NVNT	ac20	5240	12.96	0.11	13.07	24	Pass
NVNT	ac40	5190	11.71	0.21	11.92	24	Pass
NVNT	ac40	5230	12.64	0.22	12.86	24	Pass
NVNT	ac80	5210	11.55	0.42	11.97	24	Pass
NVNT	а	5745	10.46	0	10.46	30	Pass
NVNT	а	5785	12.19	0.10	12.29	30	Pass
NVNT	а	5825	11.46	0.10	11.56	30	Pass
NVNT	n20	5745	9.98	0.11	10.09	30	Pass
NVNT	n20	5785	10.75	0.11	10.86	30	Pass
NVNT	n20	5825	10.67	0.11	10.78	30	Pass
NVNT	n40	5755	10.01	0.22	10.23	30	Pass
NVNT	n40	5795	11.26	0.22	11.48	30	Pass
NVNT	ac20	5745	9.68	0.11	9.79	30	Pass
NVNT	ac20	5785	11.33	0.11	11.44	30	Pass
NVNT	ac20	5825	10.90	0.11	11.01	30	Pass
NVNT	ac40	5755	10.05	0.21	10.26	30	Pass
NVNT	ac40	5795	10.98	0.22	11.20	30	Pass
NVNT	ac80	5775	10.61	0.42	11.03	30	Pass

