

TESTING CENTRE TEC	TEST REPOR	Т				
FCC ID :	2APJ4-SLM550					
Test Report No:	TCT221019E903	CT221019E903				
Date of issue:	Oct. 27, 2022					
Testing laboratory::	SHENZHEN TONGCE TESTING LAB					
Testing location/ address:	2101 & 2201, Zhenchang Factor Subdistrict, Bao'an District, Shen People's Republic of China					
Applicant's name::	MeiG Smart Technology Co., Ltd	t (C)				
	2nd Floor, Office Building, No.5 I Fuyong Street, Bao'an District, sl		lang,			
Manufacturer's name :	MeiG Smart Technology Co., Ltd	t (3)				
Address:: Standard(s):	2nd Floor, Office Building, No.5 L Fuyong Street, Bao'an District, sl FCC CFR Title 47 Part 15 Subpa FCC KDB 558074 D01 15.247 M	henzhen, China art C Section 15.247				
Product Name:	ANSI C63.10:2013 Smart module					
Trade Mark:	MEIGLink					
Model/Type reference:	SLM550					
Rating(s):	DC 3.8V					
Date of receipt of test item	Oct. 19, 2022					
Date (s) of performance of test:	Jul. 14, 2022 - Oct. 27, 2022					
Tested by (+signature) :	Rleo LIU	Preo Un NONGCE				
Check by (+signature) :	Beryl ZHAO	Boyl 20 2 TCT	TING			
Approved by (+signature):	Tomsin	Tomsmis	\$¥			
Remark:	This test report was based on TC software version and software co					

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	General Pr							
	1.1. EUT des							
	1.2. Model(s)							
	1.3. Operatio	on Frequenc	у					4
2.	Test Resul	t Summar	y		<u> </u>			5
3.	General Inf							
	3.1. Test env	ironment ar	nd mode					6
	3.2. Descript	ion of Supp	ort Units.			\sim		7
4.	Facilities a							
	4.1. Facilities	S						8
	4.2. Location							8
	4.3. Measure							
5.	Test Result	ts and Mea	asureme	ent Data .		<u>(6)</u>		9
	5.1. Antenna	requiremer	nt					9
	5.2. Conduct							
	5.3. Maximur	n Conducte	d (Averag	je) Output	Power		<u>(6)</u>	11
	5.4. Emissio							
	5.5. Power S	pectral Den	sity					13
	5.6. Conduct	ed Band Ed	ge and S	purious Er	nission N	leasureme	nt	14
	5.7. Radiated	l Spurious E	Emission	Measurem	ent			16
Α	opendix A: 1	Fest Resul	t of Con	ducted T	est			
Α	ppendix B: I	Photograp	hs of Te	est Setup				
	ppendix C: I							

1. General Product Information

1.1. EUT description

Product Name:	Smart module
Model/Type reference:	SLM550
Sample Number:	TCT220714E017-0101
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)) 2422MHz~2452MHz (802.11n(HT40))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20) 7 for 802.11n(HT40)
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n: Orthogonal Frequency Division Multiplexing(OFDM)
Data speed:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps 802.11n: Up to 150Mbps
Antenna Type:	External Antenna
Antenna Gain:	2.2dBi
Rating(s):	DC 3.8V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Page 3 of 80

1.3. Operation Frequency

For 802.11b/g/n(HT20)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
/	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

For 802.11n (HT40)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		(
(G`)	(5)5	2432MHz	8	2447MHz	G`)	(2
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (HT40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	N/A
Conducted Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 5 of 80

3. General Information

3.1. Test environment and mode

Operating Er	nvironment:		
Con	dition	Radiated Emission	
Temperat	ure:	25.1 °C	
Humidity:		55 % RH	
Atmosphe	eric Pressure:	1010 mbar	
Test Software	e:		
Software	Information:	QRCTExternal Licensed	Ś
Power Le	evel:	802.11b: 16 802.11g\n(HT20)\ n(HT40): 13	
Test Mode:			
Enginoari	ing mode:	Keep the EUT in continuous transmitting by select	
The sample above the gr polarities we the EUT con	was placed 0. ound plane of 3 re performed. I ntinuously work	channel 0.8m & 1.5m for the measurement below & above 10 3m chamber. Measurements in both horizontal and ver During the test, each emission was maximized by: ha king, investigated all operating modes, rotated about a posidered typical configuration to obtain worst posi-	tica ving all 3
The sample above the gro colarities we the EUT con axis (X, Y manipulating from 1m to	was placed 0. ound plane of 3 re performed. I ntinuously work & Z) and cor interconnectin o 4m in both	0.8m & 1.5m for the measurement below & above 10 3m chamber. Measurements in both horizontal and ver During the test, each emission was maximized by: ha king, investigated all operating modes, rotated about a onsidered typical configuration to obtain worst posi ng cables, rotating the turntable, varying antenna he n horizontal and vertical polarizations. The emiss	tical ving all 3 tion, eight
The sample above the gr polarities we the EUT con axis (X, Y manipulating from 1m to	was placed 0. ound plane of 3 re performed. I ntinuously work & Z) and cor interconnectin o 4m in both	0.8m & 1.5m for the measurement below & above 10 3m chamber. Measurements in both horizontal and ver During the test, each emission was maximized by: ha king, investigated all operating modes, rotated about a onsidered typical configuration to obtain worst posing ng cables, rotating the turntable, varying antenna he	tical ving all 3 tion, eight
The sample above the gr polarities we the EUT con axis (X, Y manipulating from 1m to worst-case(2 We have ver were carried	was placed 0. ound plane of 3 re performed. I atinuously work & Z) and cor interconnectin 0 4m in both Z axis) are show	0.8m & 1.5m for the measurement below & above 10 3m chamber. Measurements in both horizontal and ver During the test, each emission was maximized by: ha king, investigated all operating modes, rotated about a onsidered typical configuration to obtain worst posi- ing cables, rotating the turntable, varying antenna he n horizontal and vertical polarizations. The emiss own in Test Results of the following pages.	tical ving all 3 tion, eight ions
The sample above the group polarities we the EUT con axis (X, Y manipulating from 1m to worst-case(2 We have ver were carried report and de Per-scan all	was placed 0. ound plane of 3 re performed. Intinuously work & Z) and cor interconnectin o 4m in both Z axis) are show ified the constru- out with the EU efined as follow kind of data ra	0.8m & 1.5m for the measurement below & above 10 3m chamber. Measurements in both horizontal and ver During the test, each emission was maximized by: ha king, investigated all operating modes, rotated about a onsidered typical configuration to obtain worst posi- ing cables, rotating the turntable, varying antenna he n horizontal and vertical polarizations. The emiss own in Test Results of the following pages.	tical ving all 3 tion, eight ions des est
The sample above the gro- polarities we the EUT con axis (X, Y manipulating from 1m to worst-case(2 We have ver were carried report and de Per-scan all	was placed 0. ound plane of 3 re performed. Intinuously work & Z) and cor interconnectin o 4m in both Z axis) are show ified the constru- out with the EU efined as follow kind of data ra	0.8m & 1.5m for the measurement below & above 10 3m chamber. Measurements in both horizontal and ver During the test, each emission was maximized by: ha king, investigated all operating modes, rotated about a onsidered typical configuration to obtain worst posi- ing cables, rotating the turntable, varying antenna he horizontal and vertical polarizations. The emiss own in Test Results of the following pages.	tical ving all 3 tion, eight ions des est
The sample above the gro colarities we the EUT con axis (X, Y manipulating from 1m to worst-case(2 We have ver were carried report and de Per-scan all	was placed 0. ound plane of 3 re performed. I atinuously work & Z) and cor interconnectin o 4m in both Z axis) are show ified the constru- out with the EU efined as follow kind of data ra	0.8m & 1.5m for the measurement below & above 10 3m chamber. Measurements in both horizontal and ver During the test, each emission was maximized by: ha king, investigated all operating modes, rotated about a onsidered typical configuration to obtain worst posi- ing cables, rotating the turntable, varying antenna he is horizontal and vertical polarizations. The emiss own in Test Results of the following pages. ruction and function in typical operation. All the test mod UT in transmitting operation, which was shown in this ter ws: rate in lowest channel, and found the follow list which	tical ving all 3 tion, ight ions des est
The sample above the gro- polarities we the EUT con axis (X, Y manipulating from 1m to worst-case(2 We have ver were carried report and de Per-scan all	was placed 0. ound plane of 3 re performed. I atinuously work & Z) and cor interconnectin o 4m in both Z axis) are show ified the constru- out with the EU efined as follow kind of data ra- ase. Mode	D.8m & 1.5m for the measurement below & above 10 3m chamber. Measurements in both horizontal and ver During the test, each emission was maximized by: ha king, investigated all operating modes, rotated about a onsidered typical configuration to obtain worst posing ables, rotating the turntable, varying antenna he horizontal and vertical polarizations. The emiss own in Test Results of the following pages. ruction and function in typical operation. All the test mod UT in transmitting operation, which was shown in this te ws: rate in lowest channel, and found the follow list which Data rate	tical ving all 3 tion, ight ions des est
The sample above the gr polarities we the EUT con axis (X, Y manipulating from 1m to worst-case(2 We have ver were carried report and de	was placed 0. ound plane of 3 re performed. I atinuously work & Z) and cor interconnectin o 4m in both Z axis) are show ified the constru- out with the EU efined as follow kind of data ra ase. Mode 802.11b	D.8m & 1.5m for the measurement below & above 10 3m chamber. Measurements in both horizontal and ver During the test, each emission was maximized by: haking, investigated all operating modes, rotated about a bonsidered typical configuration to obtain worst posing cables, rotating the turntable, varying antenna her horizontal and vertical polarizations. The emiss own in Test Results of the following pages. ruction and function in typical operation. All the test model operation and function, which was shown in this terms ruction and function in typical operation. All the test model operation and function in typical operation. All the follow list which was shown in this terms rate in lowest channel, and found the follow list which was a follow list which was a shown in the follow list which was	tical ving all 3 tion, ight ions des est

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Mother board	MEIG_EVB_V2.03	1	/	
WIFI Antenna	SKYLINK	1	/	/
Notebook Computer	G3 3500	00342-36088-9 9832-AAOEM		DELL

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB
 - CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

20

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is external antenna which permanently attached, and the best case gain of the antenna is 2.2dBi.

o mm of 02 06 04 07 09 07 08 06 00101 02 06 04 03 09 07 08 06 00201 03 06 04 03

Antenna

5.2. Conducted Emission

5.2.1. Test Specification

Test Method: ANSI C63.10:2013 Frequency Range: 150 kHz to 30 MHz Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Frequency range UT Quasi-peak Average 0.5-5 56 46 5-30 60 Solution flame Frederence Plane Frederence Plane Frederence Plane Frederence Plane Reference Plane Referen	Test Requirement:	FCC Part15 C Section	15.207	K		
Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits:	Test Method:	ANSI C63.10:2013				
Limits: Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Test Setup: Reference Plane Test table/Insulation plane Ferrari E.U.TAC power Test Mode: Transmitting Mode 1. The E.U.T is connected to the main power through line impedance stabilization network (L.I.S.N.). Th provides a 500hm/50UH coupling impedance for th measuring equipment. Test Procedure: Test Procedure: A convert through a LISN that provides a 500hm/50U coupling impedance with 500hm termination. (Pleas refer to the block diagram of the test setup ar photographs). Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10.2013 on conducted measurement.	Frequency Range:	150 kHz to 30 MHz				
Limits: (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Image: transmitting the processing of the procesesing of the processing of the processing of the proces	Receiver setup:	RBW=9 kHz, VBW=30	RBW=9 kHz, VBW=30 kHz, Sweep time=auto			
Imits: (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Imit for the power Imit for the power E.U.T E.U.T E.U.T Periatik E.U.T E.U.T E.U.T Present the height=0 Reference Stabilization Network Acc power Test Mode: Transmitting Mode 1. The E.U.T is connected to the main power through line impedance Stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. Test Procedure: The peripheral devices are also connected to the main power through line impedance with 500hm termination. (Please refer to the block diagram of the test setup ar photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement.		Frequency range	Limit (dBuV)		
0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">Image: Colspan="2"			Quasi-peak	Average		
Test Setup: 5-30 60 50 Reference Plane Image: E.U.T and power Test Setup: Remark: E.U.T Equament Under Test LUT Equament Under Test LISE Equament Under Test LISE Equament Under Test LISE Equation Interveries Test Mode: Transmitting Mode 1. The E.U.T is connected to the main power through line impedance stabilization network (L.I.S.N.). The provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50u coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup ar photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement.	Limits:	0.15-0.5	66 to 56*	56 to 46*		
Test Setup: Reference Plane Image: Test Setup: Image: Test table/Insulation plane Remark: EUT Fourment Under Test USN Line Impedence Stabilization Network Test Mode: Transmitting Mode 1. The E.U.T is connected to the main power through line impedance stabilization network (L.I.S.N.). The provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through line impedance with 50ohm termination. (Pleas refer to the block diagram of the test setup ar photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement.		0.5-5	56	46		
Test Setup: Image: Stable/Insulation plane Remark: E.U.T. Fac power E.U.T. Explanment Under Test LISN L Image: Insulation plane Remark: E.U.T. Explanment Under Test LISN L Image: Insulation plane Test Mode: Transmitting Mode 1. The E.U.T is connected to the main power through line impedance stabilization network (L.I.S.N.). The provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50ul coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup ar photographs). 3. Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement.		5-30	60	50		
Test Setup: Image: Constraint of the set o		Referenc	e Plane			
 Test Procedure: Test Procedure: Test Procedure: The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50u coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup are photographs). Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement. 	•	Test table/Insulation plane Remarkc E.U.T. Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	EMI Receiver	AC power		
 Test Procedure: Ine impedance stabilization network (L.I.S.N.). The provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the man power through a LISN that provides a 50ohm/50u coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup are photographs). Both sides of A.C. line are checked for maximu conducted interference. In order to find the maximu emission, the relative positions of equipment and all the interface cables must be changed according ANSI C63.10:2013 on conducted measurement. 	Test Mode:	Transmitting Mode		0		
Test Desults N/A	Test Procedure:	 line impedance star provides a 500hm/s measuring equipme 2. The peripheral device power through a Licoupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferent emission, the relative 	bilization network 50uH coupling im ont. ces are also conne ISN that provides with 50ohm tern diagram of the . line are checke nce. In order to fin re positions of equ	k (L.I.S.N.). This pedance for the ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum nd the maximum ipment and all o		

Page 10 of 80

5.3. Maximum Conducted (Average) Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	
Test Mode:	Spectrum Analyzer EUT Transmitting mode with modulation Image: Contract of the second secon
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report.
Test Result:	PASS
(\mathcal{G})	

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		

Page 11 of 80

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	KDB 558074 D01 v05r02	KDB 558074 D01 v05r02				
Limit:	>500kHz					
Test Setup:						
	Spectrum Analyzer	EUT				
Test Mode:	Transmitting mode with m	odulation				
Test Procedure:	EUT transmit continuo 2. Make the measuremen resolution bandwidth (I Video bandwidth (VBW	t with the spectrum analyzer's RBW) = 100 kHz. Set the V) = 300 kHz. In order to make nent. The 6dB bandwidth must Hz.				
Test Result:	PASS					
K ^w /						

5.4.2. Test Instruments

Ś	Name	Manufacturer	Model No.	Serial Number	Calibration Due
	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
	Combiner Box	Ascentest	AT890-RFB	<u>େ</u> /	

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

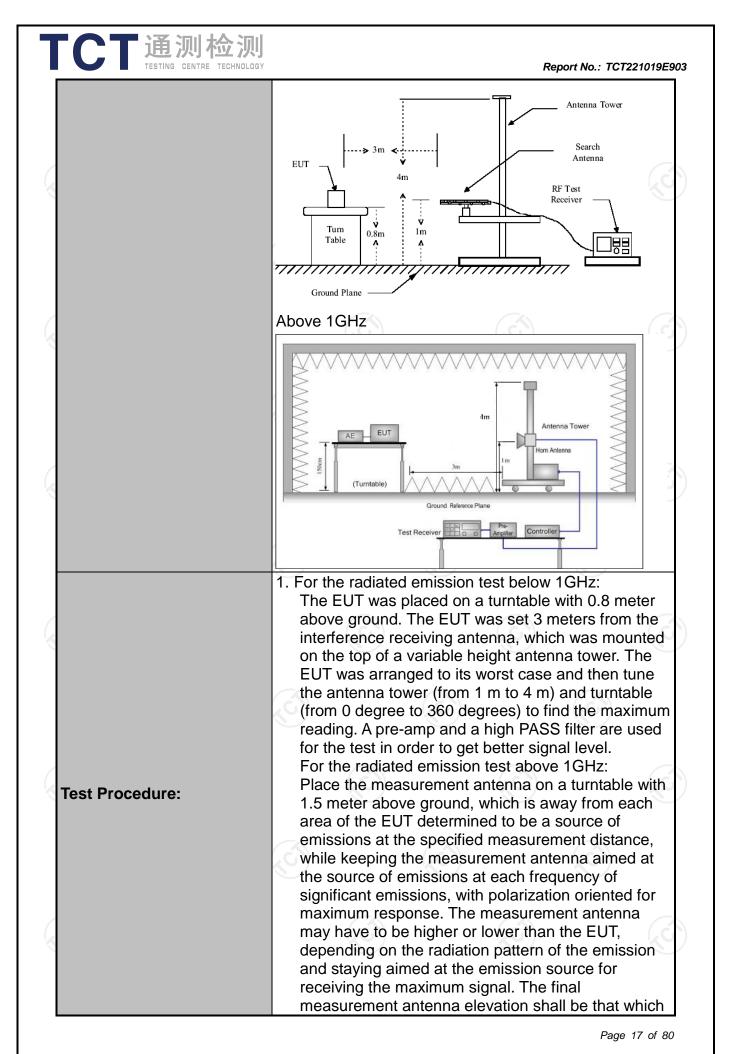
5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the
Test Procedure:	 maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

5.6.2. Test Instruments

	Model No.	Serial Number	Calibration Due
Agilent	N9020A	MY49100619	Jul. 04, 2023
Ascentest	AT890-RFB	1	1



5.7. Radiated Spurious Emission Measurement

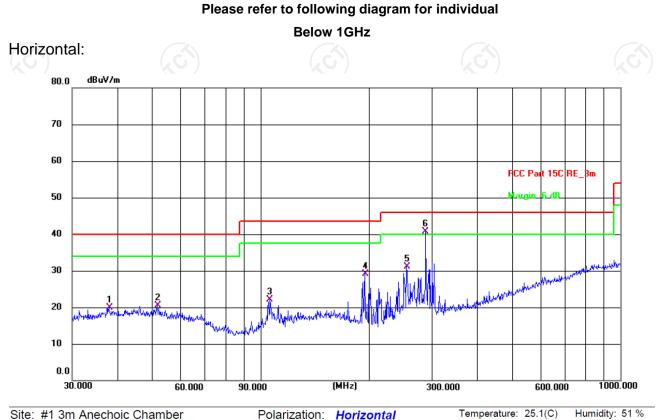
5.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10:2013					
Frequency Range:	9 kHz to 25 (9 kHz to 25 GHz				
Measurement Distance:	3 m		<u>(</u> ()		6	•)
Antenna Polarization:	Horizontal &	Vertical				
Operation mode:	Transmitting	Transmitting mode with modulation				
	Frequency	Detector	RBW	VBW	F	Remark
	9kHz- 150kHz	Quasi-pea		1kHz		i-peak Value
Receiver Setup:	150kHz- 30MHz	Quasi-pea		30kHz		i-peak Value
•	30MHz-1GHz	Quasi-pea	k 120KHz	300KHz	Quasi	i-peak Value
		Peak	1MHz	3MHz		ak Value
	Above 1GHz	Peak	1MHz	10Hz	Ave	rage Value
	Frequen	icy	Field Stre (microvolts			asurement nce (meters)
	0.009-0.4	490	2400/F(ł	(Hz)		300
	0.490-1.7		24000/F(KHz)		30
	1.705-3		30			30
	30-88		<u> </u>		3	
	88-216		150		3	
Limit:	216-960		200			3
	Above 960		500			3
	Above 1GHz (microv		d Strength ovolts/meter) 500 5000	Measurer Distand (meters 3 3	ce	Detector <u>Average</u> Peak
Test setup:	For radiated	stance = 3m	s below 30	Pre -A	Compute	
	30MHz to 10	~				

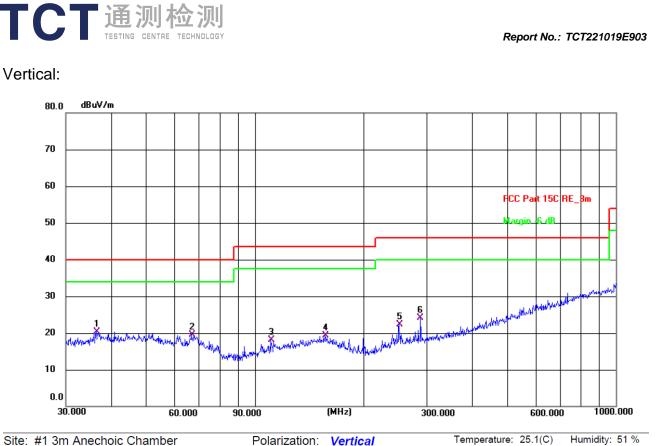
Page 16 of 80

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

TESTING CENTRE TECHNOLOGY	Report No.: TCT221019E903
	 Report No.: TCT221019E903 maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Span shall wide enough to fully capture the emission being measured; Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the
	transmitter is on and is transmitting at its maximum
	power control level for the tested mode of operation.
Test results:	PASS


5.7.2. Test Instruments

Radiated Emission Test Site (966)					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023	
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023	
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023	
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 24, 2023	
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023	
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2024	
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2024	
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2024	
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023	
Antenna Mast	Keleto	RE-AM	1		
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 24, 2024	
Coaxial cable	SKET	RC_40G-K-M	1	Feb. 24, 2024	
EMI Test Software	Shurple Technology	EZ-EMC	6	, «	



5.7.3. Test Data

Limit:	FCC Part 15C F	RE_3m				Power:	DC 3.8 V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	37.9450	6.48	13.51	19.99	40.00	-20.01	QP	Ρ	
2	51.6616	7.21	13.24	20.45	40.00	-19.55	QP	Ρ	
3	106.3850	11.61	10.42	22.03	43.50	-21.47	QP	Ρ	
4	195.1365	18.54	10.47	29.01	43.50	-14.49	QP	Ρ	
5	254.7284	18.89	12.31	31.20	46.00	-14.80	QP	Ρ	
6 *	287.9904	27.38	13.25	40.63	46.00	-5.37	QP	Ρ	

Limit: F	FCC Part 15C F	RE_3m				Power:	DC 3.8 V	/	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	36.3814	6.96	13.36	20.32	40.00	-19.68	QP	Р	
2	66.9669	8.12	11.29	19.41	40.00	-20.59	QP	Р	
3	110.9571	7.28	10.82	18.10	43.50	-25.40	QP	Р	
4	156.4578	6.08	13.26	19.34	43.50	-24.16	QP	P	
5	251.1804	10.01	12.30	22.31	46.00	-23.69	QP	Р	
6	287.9904	10.94	13.25	24.19	46.00	-21.81	QP	Р	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode (Lowest channel and 802.11b) was submitted only.

3. Freq. = Emission frequency in MHz

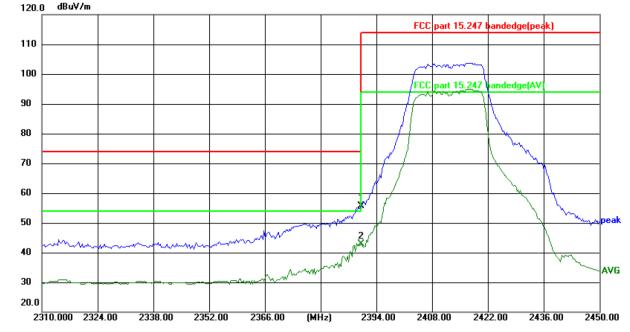
 $\textit{Measurement (dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)}$

Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

Limit $(dB\mu V/m) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m)

* is meaning the worst frequency has been tested in the test frequency range.



Humidity: 52 %

Test Result of Radiated Spurious at Band edges

T (

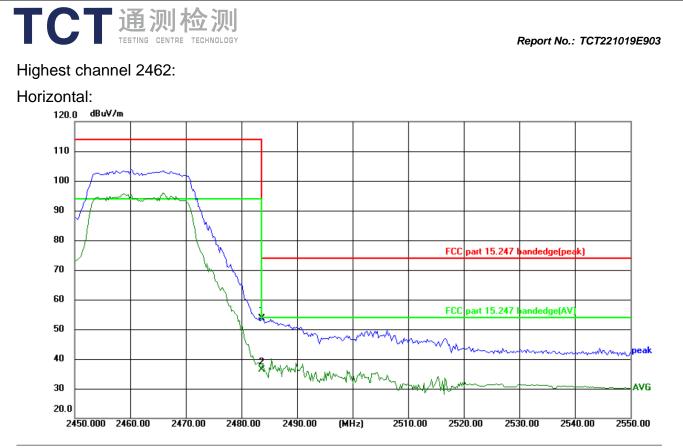
Site: #3 3m Anechoic Chamber Polarization: Horizontal Temperature: 24(°C)

Limit: FCC part 15.247 bandedge(peak)

Reading Factor Level Limit Margin Frequency Detector P/F Remark No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2390.000 70.65 -14.99 55.66 74.00 -18.34 Ρ 1 peak Ρ 2390.000 57.97 -14.99 42.98 54.00 2 * -11.02 AVG

K.

Power: DC 3.8 V

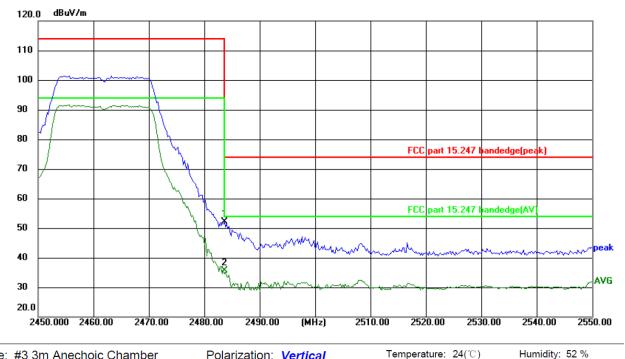

Page 22 of 80

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2390.000	70.86	-14.99	55.87	74.00	-18.13	peak	Ρ	
2 *	2390.000	51.11	-14.99	36.12	54.00	-17.88	AVG	Ρ	

Note: Measurements were conducted in all two channels (high, low) and all modulation (802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode 802.11n(HT20) was submitted only.

Polarization: Horizontal Humidity: 52 % Site: #3 3m Anechoic Chamber Temperature: 24(℃)

	1 4 5 0 4 7		
Limit: FCC	part 15.247	bandedge(peak)	


Limit: I	FCC part 15.2	247 banded	lge(peak)		Po	wer:DC	3.8 V		
No.	Frequency (MHz)	Reading (dBuV)	Level (dBuV/m)	Level Limit Margin BuV/m) (dBuV/m) (dB) Detector F				Remark	
1	2483.500	68.12	-14.58	53.54	74.00	-20.46	peak	Р	
2 *	2483.500	51.02	-14.58	36.44	54.00	-17.56	AVG	Р	

Page 24 of 80

Vertical:

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Site: #3 3m Anechoic Chamber Temperature: 24(°C) Polarization: Vertical

Limit: FCC part 15.247 bandedge(peak)

	-								
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	66.82	-14.58	52.24	74.00	-21.76	peak	Ρ	
2 *	2483.500	50.27	-14.58	35.69	54.00	-18.31	AVG	Ρ	

Power: DC 3.8 V

Note:

- Peak Final Emission Level=Peak Reading + Correction Factor;
 - 2. Correction Factor= Antenna Factor + Cable loss - Pre-amplifier
 - 3. Measurements were conducted in all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode 802.11n(HT20) was submitted only.

Above 1GHz Modulation Type: 802.11b Low channel: 2412 MHz AV reading Correction **Emission Level** Peak Frequency Ant. Pol. Peak limit AV limit Margin reading Factor Peak AV (MHz) (dBuV) (dBµV/m) (dBµV/m) (dB) H/V (dBµV) (dB/m)(dBµV/m) (dBµV/m) 74 4824 -7.47 Н 45.78 ---0.75 46.53 54 7236 Н 34.62 ---9.87 44.49 ---74 54 -9.51 ---Н -------------------------4824 V 45.14 0.75 45.89 74 -8.11 54 ------7236 V 34.37 9.87 44.24)----74 54 -9.76 ----V -----------------------------

			Μ	iddle chann	el: 2437 MI	Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	44.31		0.97	45.28		74	54	-8.72
7311	Н	34.59		9.83	44.42		74	54	-9.58
	H				(
			KO.		X	0)			
4874	V	45.92		0.97	46.89	<u> </u>	74	54	-7.11
7311	V	36.85		9.83	46.68		74	54	-7.32
	V								
				((

	High channel: 2462 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
4924	Н	44.49		1.18	45.67		74	54	-8.33				
7386	Ŧ	35.18		10.07	45.25		74	54	-8.75				
	Η												
4924	V	44.95		1.18	46.13		74	54	-7.87				
7386	V	34.77		10.07	44.84		74	54	-9.16				
	V			🤍	J								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

CT 通测检测 TESTING CENTRE TECHNOLOGY

	TESTI	NG CENTRE TEC	HNOLOGY				Repo	ort No.: TCT2	21019E903
			Μ	odulation T	ype: 802.11	lg			
			L	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	45.87		0.75	46.62		74	54	-7.38
7236	Н	36.04		9.87	45.91		74	54	-8.09
	Н			0	J		<u> </u>		
4824	V	44.36		0.75	45.11		74	54	-8.89
7236	V	34.52	()	9.87	44.39		74	54	-9.61
	V					5		(<u>_</u> G)	

	Middle channel: 2437 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)			AV limit (dBµV/m)	Margin (dB)				
4874	Н	46.46		0.97	47.43		74	54	-6.57				
7311	Н	36.75		9.83	46.58		74	54	-7.42				
	Н												
				2	(
4874	V	45.27		0.97	46.24	<u> </u>	74	54	-7.76				
7311	V	36.40		9.83	46.23		74	54	-7.77				
	V												

			h F	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H.	45.15		1.18	46.33		74	54	-7.67
7386	Н	34.79		10.07	44.86	<u> </u>	74	54	-9.14
	H			/				· · · · ·	
4924	V	46.43		1.18	47.61		74	54	-6.39
7386	V	34.52		10.07	44.59		74	54	-9.41
$(- \mathbf{G})$	V	(JC)		(, ($\mathcal{S}^{\rightarrow}$		(6.)
Mada									

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

○T 通测检测

TC		的加松					Repo	ort No.: TCT2	21019E903
			Modu	lation Type	: 802.11n (l	HT20)			
			L	ow channe.	I: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	45.87		0.75	46.62		74	54	-7.38
7236	Н	36.19		9.87	46.06		74	54	-7.94
· · · · ·	Н			(· · · ·		<u> </u>		
4824	V	47.54		0.75	48.29		74	54	-5.71
7236	N-	36.91		9.87	46.78		74	54	-7.22
	V)	(G`)		(\mathcal{A}^{-})	

Middle channel: 2437 MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
4874	Н	45.41		0.97	46.38		74	54	-7.62		
7311	Н	34.52		9.83	44.35		74	54	-9.65		
	Н										
				2	(
4874	V	45.71		0.97	46.68	<u> </u>	74	54	-7.32		
7311	V	35.38		9.83	45.21		74	54	-8.79		
	V										

(c)		()	F	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H_	46.78		1.18	47.96		74	54	-6.04
7386	H	35.22		10.07	45.29		74	54	-8.71
	Н			/	(· · · · ·		· · · · ·	
4924	V	45.46		1.18	46.64		74	54	-7.36
7386	V	34.71		10.07	44.78		74	54	-9.22
$(-\Theta)$	V	Ú ,		(, (5)		<u>, 6</u> +		(-6)
Matai			/						

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

TC	T	的加松					Rep	ort No.: TCT2	21019E903
			Modu	lation Type	: 802.11n (l	HT40)			
			L	ow channe	I: 2422 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4844	Н	45.51		0.75	46.26		74	54	-7.74
7266	Н	34.34		9.87	44.21		74	54	-9.79
· · · · ·	Н			0	· · · ·		<u> </u>		
4824	V	46.56		0.75	47.31		74	54	-6.69
7236	V	36.02	6	9.87	45.89	~	74	54	-8.11
	V)		G`)		(<u>, G</u>)	

Middle channel: 2437 MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
4874	Н	45.35		0.97	46.32		74	54	-7.68		
7311	Н	35.14		9.83	44.97		74	54	-9.03		
	Н										
				2	(
4874	V	46.79		0.97	47.76		74	54	-6.24		
7311	V	37.12		9.83	46.95		74	54	-7.05		
	V										

				ligh channe	el: 2452 MH	7			
L.C.		<u> </u>		<u> </u>					<u> </u>
Fraguanay	Ant Dol	Peak	AV reading	Correction	Emissio	on Level	Peak limit	AV limit	Morgin
Frequency		reading	AV reading (dBµV)	Factor	Peak	AV			Margin
(MHz)	H/V	(dBµV)	(αΒμν)	(dB/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
4904	H	46.81		1.18	47.99		74	54	-6.01
7356	Н	36.66		10.07	46.73	<u> </u>	74	54	-7.27
	H			/					
4904	V	45.38		1.18	46.56		74	54	-7.44
7356	V	34.99		10.07	45.06		74	54	-8.94
(\mathbf{G})	V	[-0`		(, 0	(`		\mathcal{S}^{2}		(
Mada						•			

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

TCT通测检测 TESTING CENTRE TECHNOLOGY

		Duty	^v Cycle	
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	b	2412	99.32	0
NVNT	b	2437	98.71	0
NVNT	b	2462	99.23	0
NVNT	g	2412	98.78	0
NVNT	g	2437	98.80	0,00
NVNT	g	2462	98.80	0
NVNT	n20	2412	98.70	0
NVNT	n20	2437	98.70	0
NVNT	n20	2462	98.70	0
NVNT	n40	2422	96.03	0.18
NVNT	n40	2437	95.92	0.18
NVNT	n40	2452	95.97	0.18
(C)		(LO)		(C)

Page 30 of 80

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

STATUS

Center Freq 2.41200000	PNO: Fast +++ Trig. Free Run	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET P N N N N
Ref Offset 2.72 dB 10 dB/div Ref 30.00 dBm			Mkr1 7.060 ms 10.87 dBm
	3		
-200 -300 -400 -500 -600			
Center 2.412000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 10	Span 0 Hz).0 ms (10001 pts)
MKR MODE TRC SCL X 1 N 1 t 1 1 2 N 1 t 1 t 1	Y FUNCTION 7.060 ms 10.87 dBm 7.160 ms 11.07 dBm 19.37 ms -11.06 dBm	FUNCTION WIDTH FUNCTION	DN VALUE
8 9 10 11 • •	Tuty Cycle NVNT b 2	STATUS	•
Keysight Spectrum Analyzer - Swept SA K RL RF 50 Ω AC Center Freq 2.437000000	0 GHz PNO: Fast IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr	05:19:44 PM Jul 19, 2022 TRACE 1 2 3 4 5 6 TYPE WWWWWW OET PNNNNN Mkr1 2.120 ms
Ref Offset 2.81 dB 10 dB/div 10 0 10 0 10 0 10 0 -10			9.85 dBm
-200 -300 -400 -500 -600 -700			
Center 2.437000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz		Span 0 Hz 0.0 ms (10001 pts)
MKR MODE TRC SCL X 1 N 1 t 1	Y FUNCTION 2.120 ms 9.85 dBm 2.250 ms 6.24 dBm 14.46 ms 9.86 dBm	FUNCTION WIDTH FUNCTION	DN VALUE

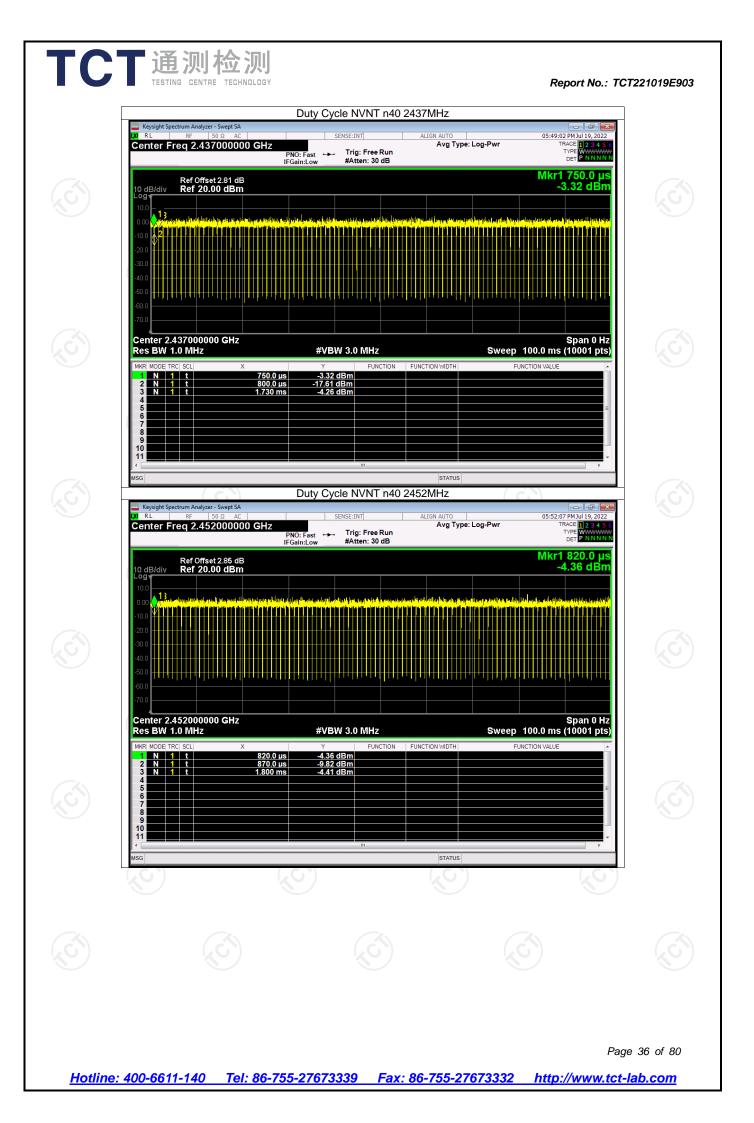
Test Graphs Duty Cycle NVNT b 2412MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spectrum Analyzer - Swept SA

Report No.: TCT221019E903

05:17:55 PM Jul 19, 2022

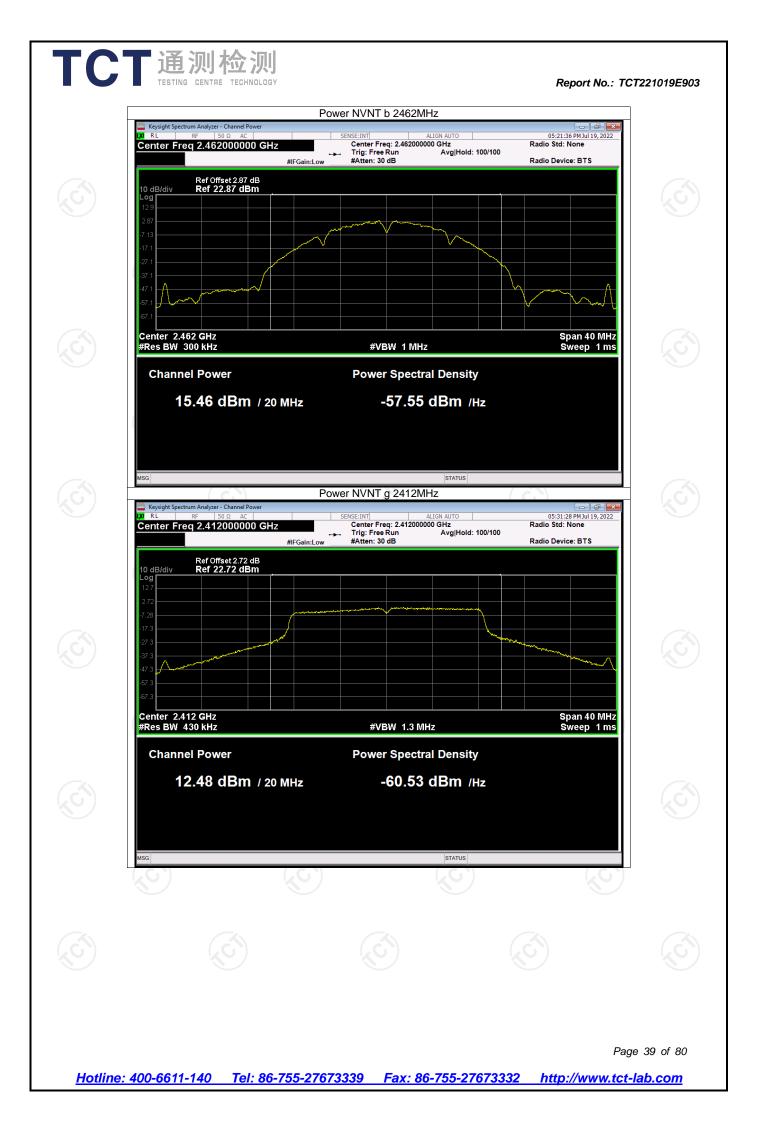

TC	TESTING CENTRE TECHNOLOGY Report No.: TCT	221019E903
	Duty Cycle NVNT b 2462MHz	
	Keysight Spectrum Analyzer - Swept SA	
	XX RF 50 Ω AC SENSE:INT ALIGN AUTO 05:21:31 PMJul 19, 2022 Center Freq 2.462000000 GHz Trig: Free Run IEGaind ow Trig: Free Run #Atten: 30 dB Trig: Free Run Det P NNNNN	
	Mkr1 150 0 us	
	10 dB/div Ref 20.00 dBm 10.09 dBm	
	-10.0	
	-30.0	
	-40.0	
	-70.0	
	Center 2.462000000 GHz Span 0 Hz	
	Res BW 1.0 MHz #VBW 3.0 MHz Sweep 100.0 ms (10001 pts) MKR_MODE[TRC] SCI X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE	
	MKR MODE TAC SCI X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 t 150.0 µs 10.09 dBm 1 1 1 1 10.09 dBm 1	
	3 N 1 t 12.45 ms 10.13 dBm	
	5 S	
	9 10 11	
	۲. III ا	
	MSG STATUS Duty Cycle NVNT g 2412MHz	
	🔤 Keysight Spectrum Analyzer - Swept SA	
	X RL RF 50 Ω AC SENSE:INT ALIGN AUTO 05:31:20 PMJul 19:2022 Center Freq 2.412000000 GHz Avg Type: Log-Pwr Trace II 2:34:50 Trace II 2:34:50 Trace II 2:34:50	
	IFGain:Low #Atten: 30 dB DET La Catalogue	
	Ref Offset 2.72 dB Mkr1 600.0 μs 10 dB/div Ref 20.00 dBm 1.17 dBm	
	-60.0	
	Center 2.412000000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 100.0 ms (10001 pts)	
	MKR MODE[TRC] SCI X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 t 600.0 µs 1.17 dBm FUNCTION FUNCTION VALUE FUNCTI	
	2 N 1 t 630.0 µs -5.85 dBm 3 N 1 t 2.660 ms 3.89 dBm	
	4 =	
	9 10	
	MSG STATUS	
	Page	32 of 80

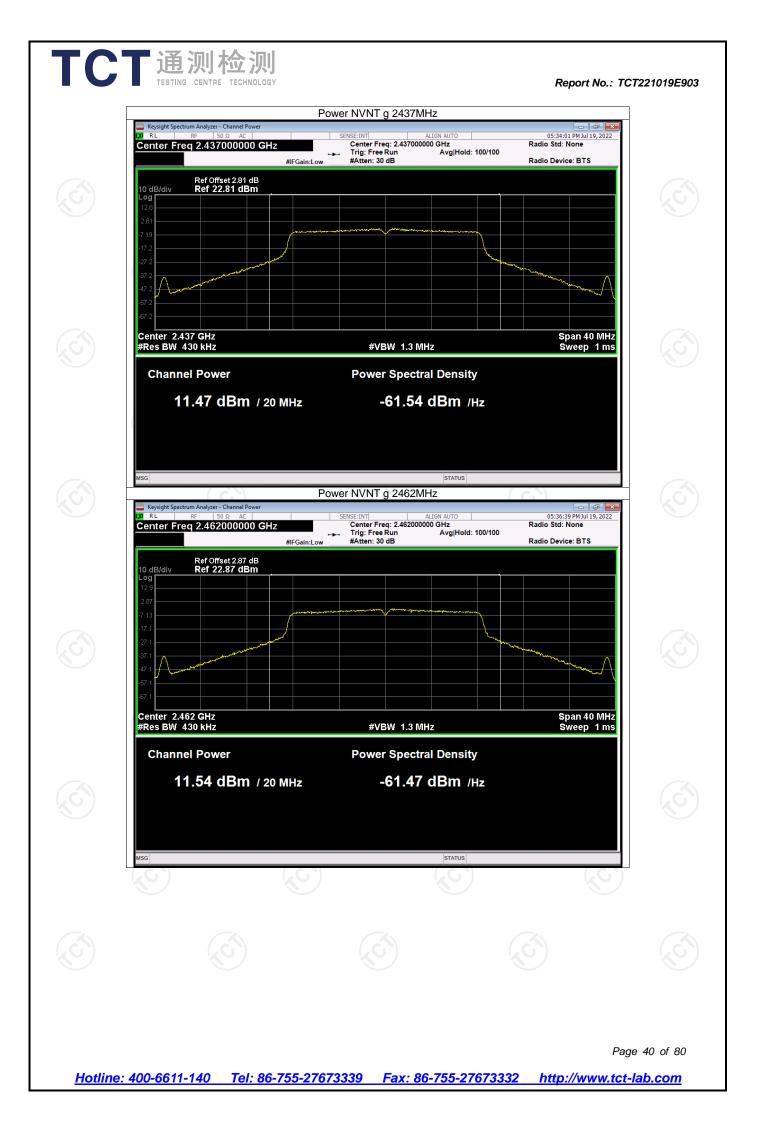
	通测检测 TESTING CENTRE TECHNOLOGY Report No.: TC Duty Cycle NVNT g 2437MHz	T221019E903
L XI	nter Freq 2.437000000 GHz Avg Type: Log-Pwr TRACE 12.3.4.5.6	
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Ref Offset 2.81 dB Ref 20.00 dBm	
-30. -40. -60. -70.		
Re	S BW 1.0 MHz #VBW 3.0 MHz Sweep 100.0 ms (10001 pts) MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE N 1 t 1.030 ms 3.36 dBm FUNCTION WIDTH FUNCTION VALUE FUNCTION VALUE N 1 t 1.070 ms -8.66 dBm FUNCTION VALUE FUNCTION VALUE FUNCTION VALUE N 1 t 3.100 ms 2.75 dBm FUNCTION VALUE FUNCTION VALUE FUNCTION VALUE	
MSG	STATUS Duty Cycle NVNT g 2462MHz Keysight Spectrum Analyzer - Swept SA	
	nter Freq 2.462000000 GHz PNO: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Ref Offset 2.87 dB Ref 20.00 dBm 1.3 2.4 1.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2	
	nter 2.462000000 GHz Span 0 Hz	
Re MKF	s BW 1.0 MHz #VBW 3.0 MHz Sweep 100.0 ms (10001 pts) Model TRC SCL X Y FUNCTION FUNCTION VIDTH FUNCTION VALUE	
2 3 4 5 6 6 7 7 8 9 10 11	N 1 t 1.690 ms -8.11 dBm N 1 t 3.720 ms 5.31 dBm I I I I III dBm I I III dBm III dBm III dBm I I III dBm III dBm III dBm I III dBm III dBm III dBm III dBm I III dBm III dBm III dBm III dBm	
MSG	STATUS	

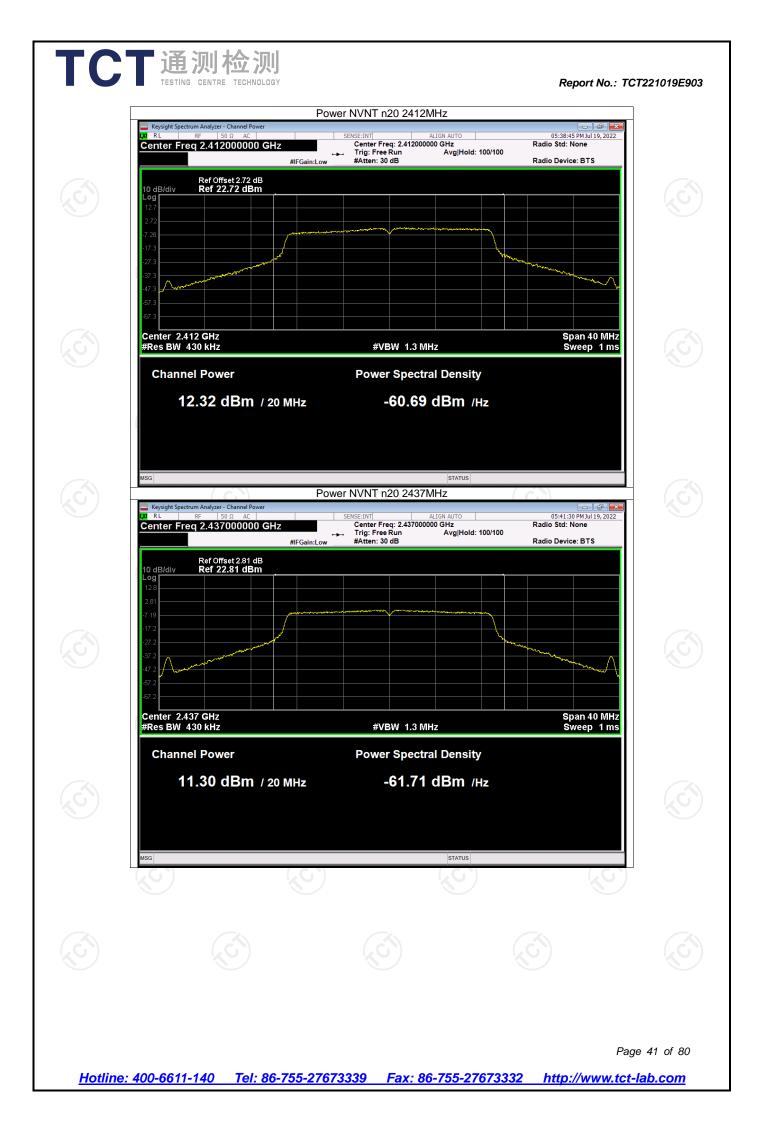
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

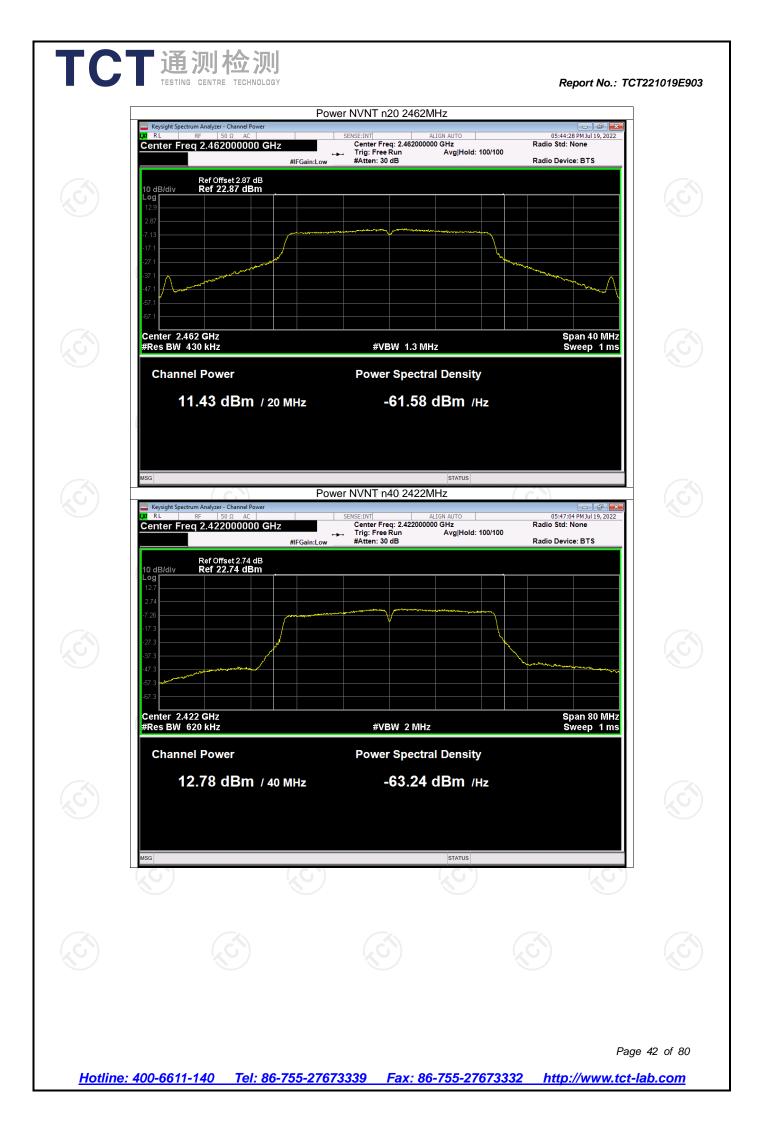
	Keysight Spectrum Analyzer - Swept SA	Duty Cycle NVNT n20 2			
	RL RF 50 Ω AC enter Freq 2.412000000 GHz	PNO: Fast +++ Irig: Free Run	ALIGN AUTO Avg Type: Log-Pwr	05:38:38 PM Jul 19, 2022 TRACE 123456 TYPE WWWWWW DET PNNNN	
~	Ref Offset 2.72 dB dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB		Mkr1 490.0 µs	
) La	dB/div Ref 20.00 dBm			-7.47 dBm	
0 -10 -20 -30 -40 -50					
	enter 2.412000000 GHz es BW 1.0 MHz	#VBW 3.0 MHz	Sweep	Span 0 Hz 100.0 ms (10001 pts)	
	N 1 t 2.41(0 µs -7.47 dBm 0 µs -7.21 dBm		NCTION VALUE	
MSC		Duty Cycle NVNT n20 2	status 437MHz		
LXI	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC	SENSE:INT	ALIGN AUTO	05:41:23 PMJul 19, 2022	
Ce	nter Freq 2.437000000 GHz	PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWW DET P N N N N	
10	Ref Offset 2.81 dB dB/div Ref 20.00 dBm			Mkr1 1.460 ms 2.31 dBm	
-16 -10 -20 -30 -40 -50 -60 -70	9 1.3 				
C R	enter 2.437000000 GHz es BW 1.0 MHz	#VBW 3.0 MHz	Sweep	Span 0 Hz 100.0 ms (10001 pts)	
	N 1 t 3.380	Y FUNCTION ms 2.31 dBm ms -8.31 dBm ms 5.39 dBm m m	FUNCTION WIDTH FUI		

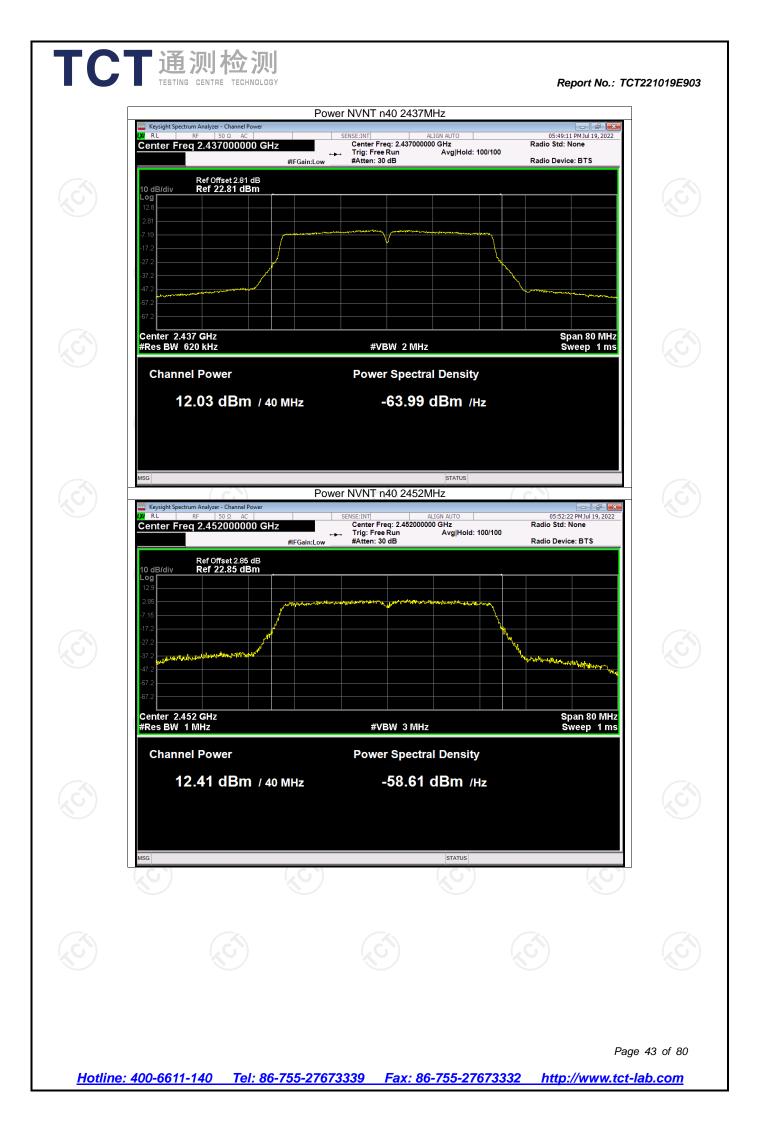
TC	通测检测 TESTING CENTRE TECHNOLOGY Report No.: TO	CT221019E903
	Duty Cycle NVNT n20 2462MHz]
	^C Keysight Spectrum Analyzer - Swept SA ^C SENSE:INT ^C ALIGN AUTO ^C O5:44:20 PM Jul 19, 2022 ^C Center Freq 2.462000000 GHz ^{SENSE:INT} ^C ALIGN AUTO ^O O5:44:20 PM Jul 19, 2022 ^C Center Freq 2.462000000 GHz ^{PNO: Fast} ^{Free} Run ^C Avg Type: Log-Pwr ^{TRACE} ^I Center Freq 2.462000000 GHz ^{PNO: Fast} ^{Free} Run ^{Trig: Free Run ^{Trig: Free Run ^I Control Free Run ^I Control Free Run ^I Control Free Run ^D Control Free Run ^D Control Free Run ^I Control Free Run ^I Control Free Run ^D Control Free Run ^D Control Free Run ^I Control Free Run ^I Control Free Run ^D Control Free Run ^I Control Free Run ^I Control Free Run ^I Control Free Run ^D Control Free Run ^D Control Free Run ^I Control Free Run}}	
	Bef Offset 287 dB Mkr1 440.0 µs	
	10 dB/div Ref 20.00 dBm 2.51 dBm 2.51 dBm 10.00 dBm 10.0	$\langle \mathcal{G} \rangle$
	Center 2.46200000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 100.0 ms (10001 pts)	
	MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 t 440.0 µs 2.51 dBm	
	Duty Cycle NVNT n40 2422MHz Seysight Spectrum Analyzer - Swept SA Image: Walk Rk Sex	
	Center Freq 2.42200000 GHz PN0: Fast +++ Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Trace III 2: 4: 5: 6: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:	
	MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 1 1 570.0 us -4.58 dBm -4.58 d	Ś
		J
	Pa	ge 35 of 80
<u>Hotline:</u>	400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct	

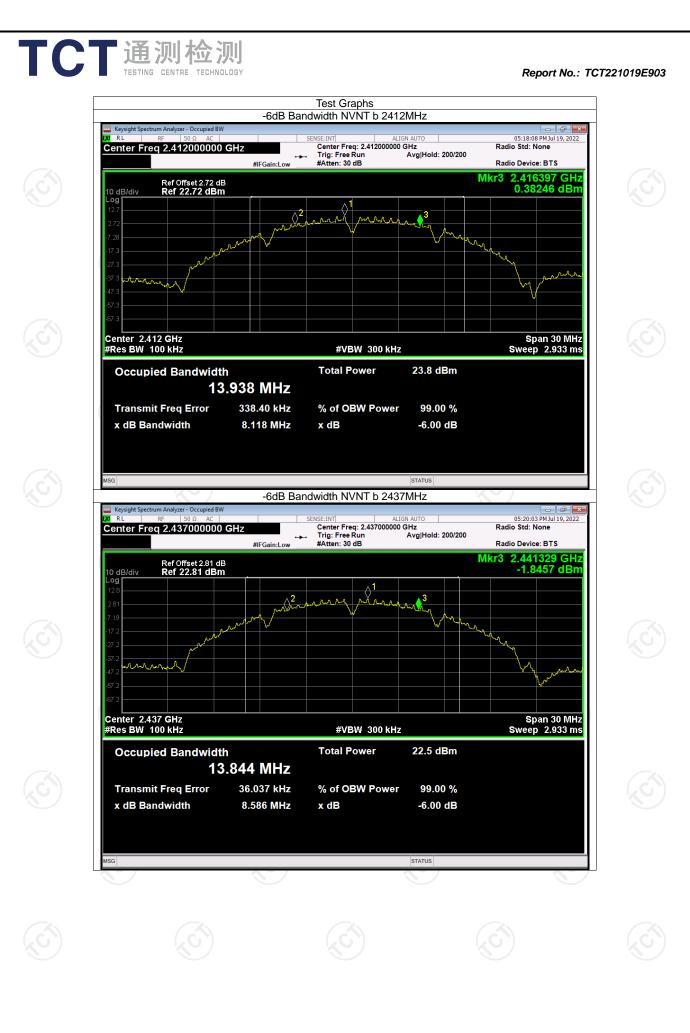

Report No.: TCT221019E903

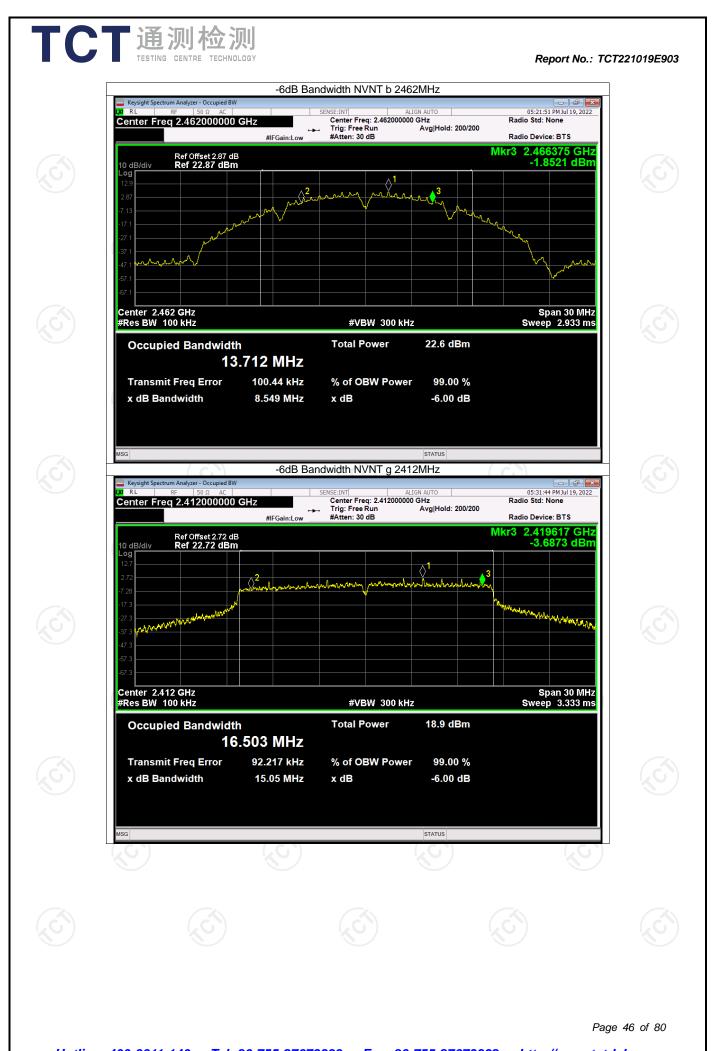

		Maxima		Output			
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	16.55	0	16.55	30	Pass
NVNT	b	2437	15.28	0	15.28	30	Pass
NVNT	b	2462	15.46	0	15.46	30	Pass
NVNT	g	2412	12.48	0	12.48	30	Pass
NVNT	g	2437	11.47	0	11.47	30	Pass
NVNT	g	2462	11.54	0	11.54	30	Pass
NVNT	n20	2412	12.32	0	12.32	30	Pass
NVNT	n20	2437	11.30	0	11.30	30	Pass
NVNT	n20	2462	11.43	0	11.43	30	Pass
NVNT	n40	2422	12.78	0.18	12.96	30	Pass
NVNT	n40	2437	12.03	0.18	12.21	30	Pass
NVNT	n40	2452	12.41	0.18	12.59	30	Pass
	(C)		G`)	$(\mathcal{L}\mathcal{G})$		(\mathcal{G})	

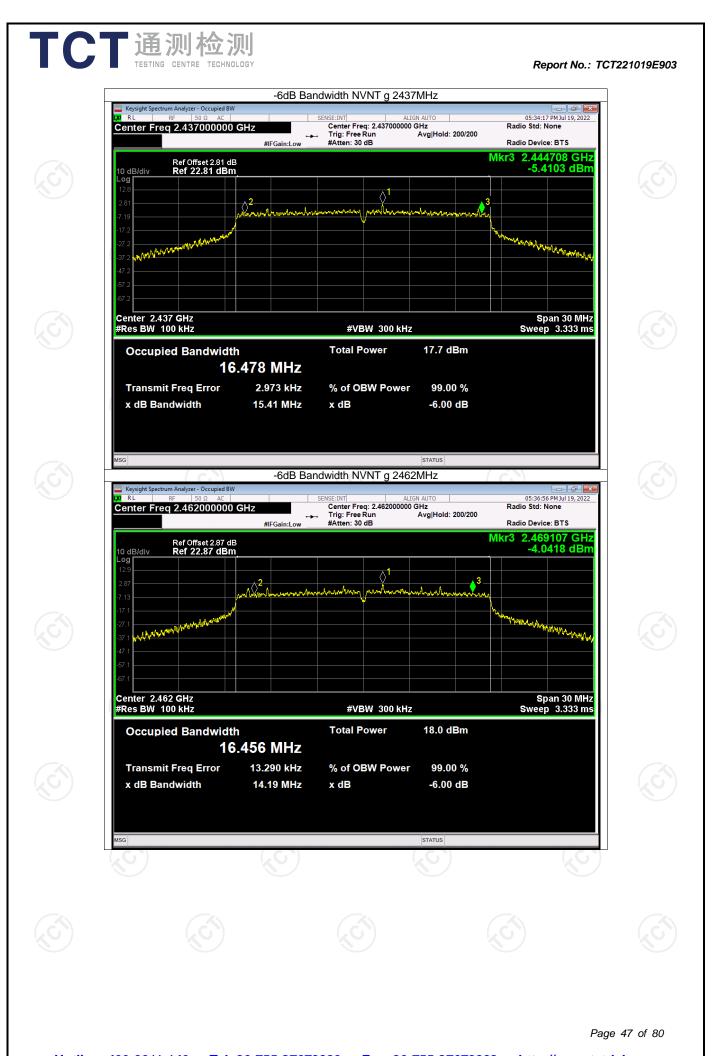

Maximum Conducted Output Power

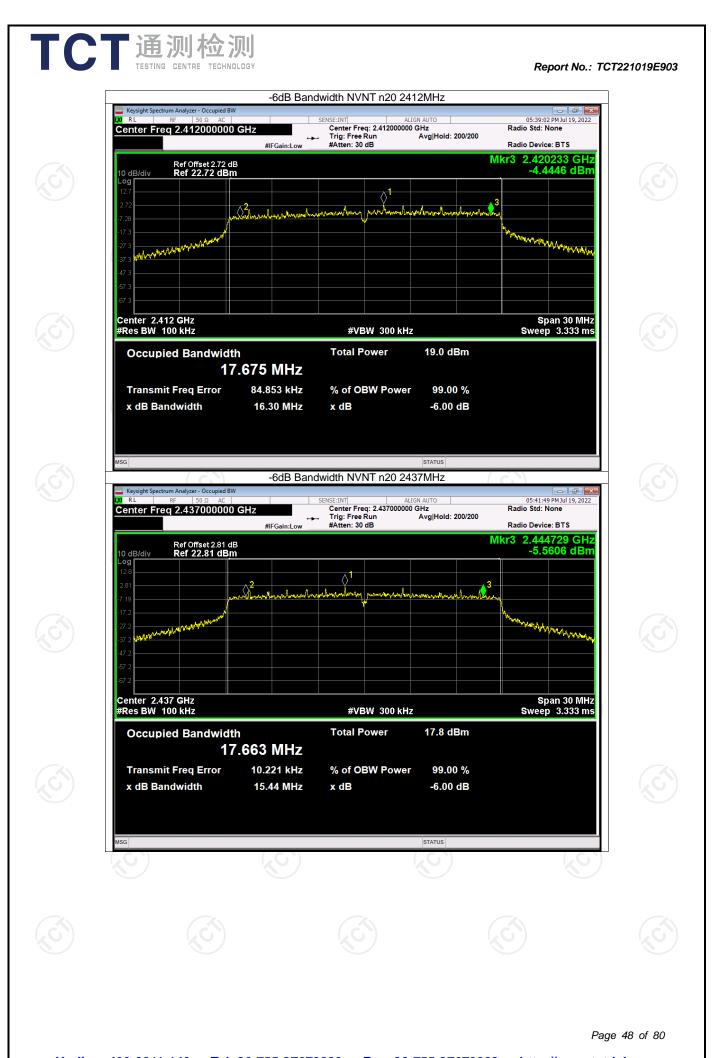


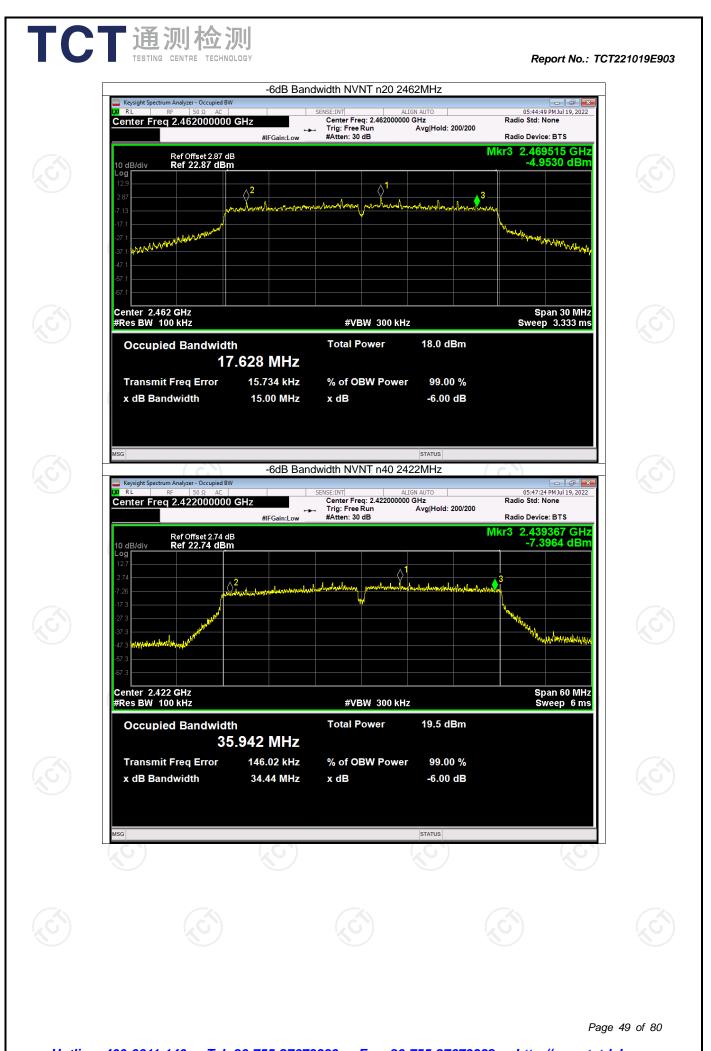


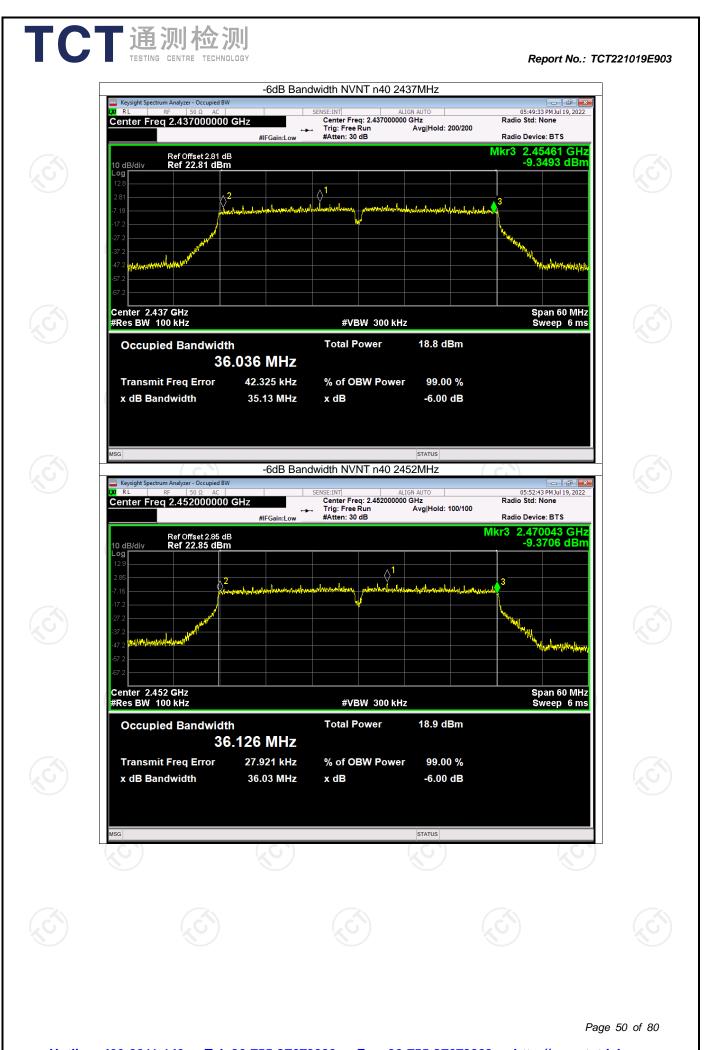




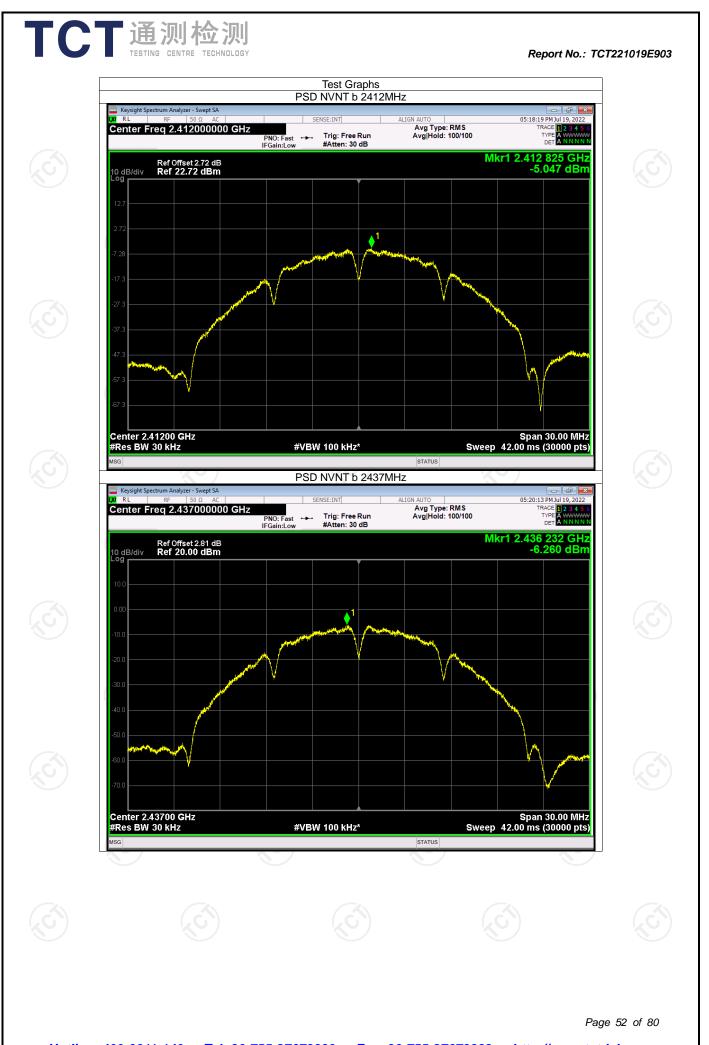

	-6	6dB Bandwidth		
Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
b	2412	8.118	0.5	Pass
b	2437	8.586	0.5	Pass
b	2462	8.549	0.5	Pass
g	2412	15.050	0.5	Pass
g	2437	15.409	0.5	Pass
	2462	14.188	0.5	Pass
n20	2412	16.297	0.5	Pass
n20	2437	15.438	0.5	Pass
n20	2462	14.998	0.5	Pass
n40	2422	34.441	0.5	Pass
n40	2437	35.135	0.5	Pass
n40	2452	36.029	0.5	Pass
	b b g g g n20 n20 n20 n20 n40 n40	ModeFrequency (MHz)b2412b2437b2462g2412g2437g2462n202412n202437n202462n402422n402437	Mode(MHz)(MHz)b24128.118b24378.586b24628.549g241215.050g243715.409g246214.188n20241216.297n20243715.438n20246214.998n40242234.441n40243735.135	ModeFrequency (MHz)-6 dB Bandwidth (MHz)Limit -6 dB Bandwidth (MHz)b24128.1180.5b24378.5860.5b24628.5490.5g241215.0500.5g243715.4090.5g246214.1880.5n20241216.2970.5n20246214.9980.5n40242234.4410.5n40243735.1350.5

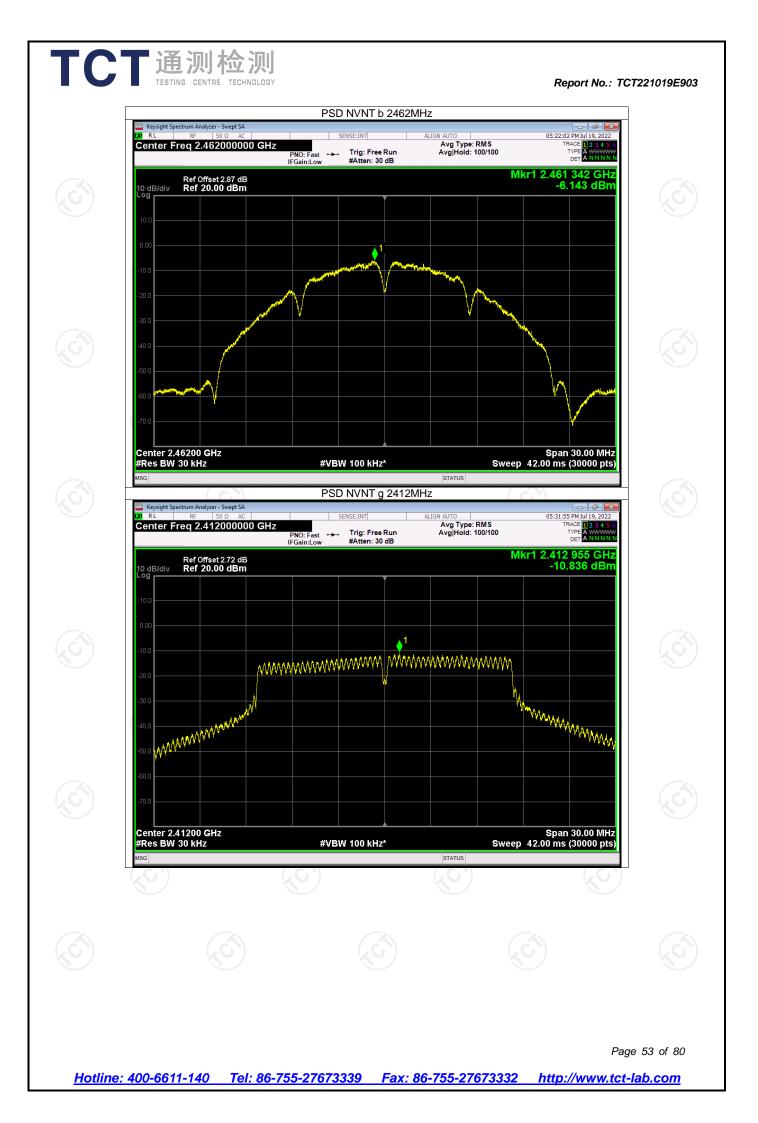

TCT通测检测 TESTING CENTRE TECHNOLOGY



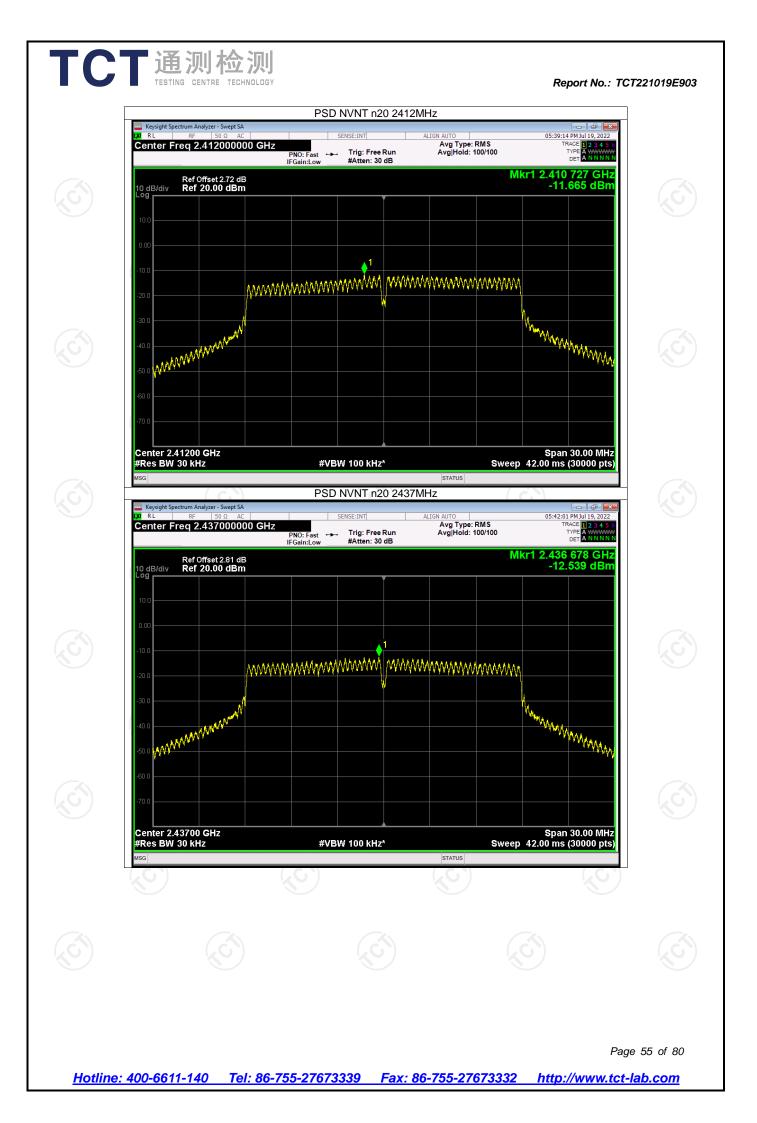

Page 45 of 80

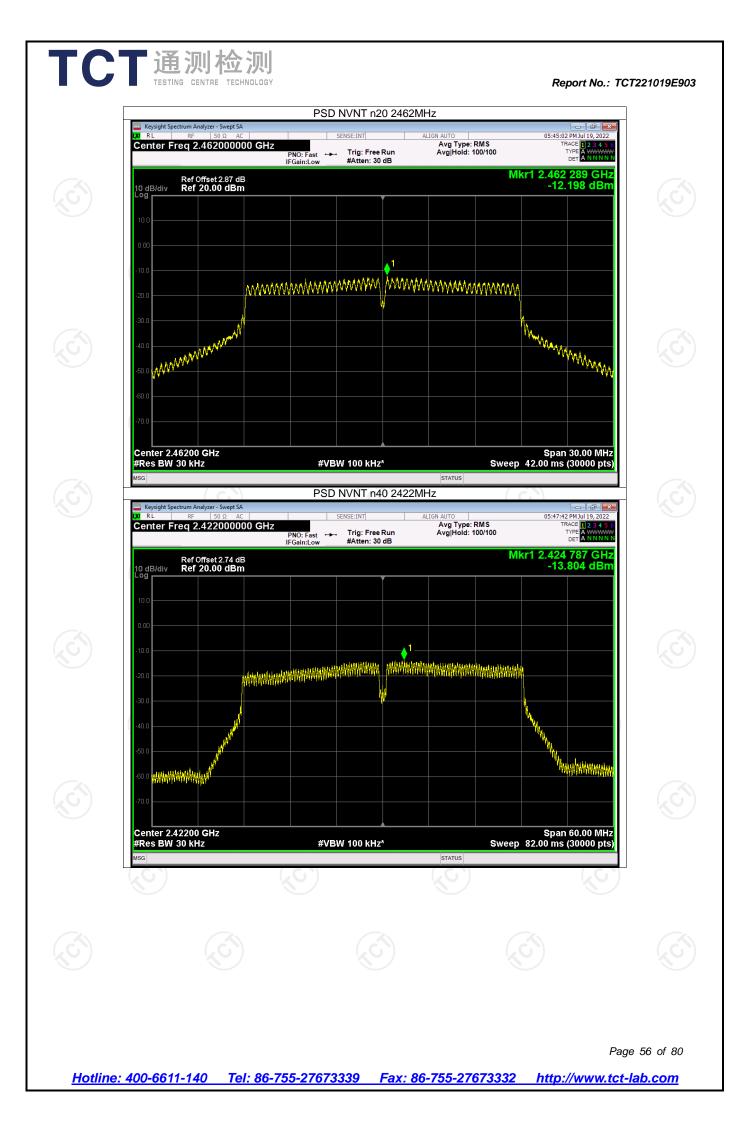
		INIAA		ei ope				
Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/30kHz)	Duty Factor (dB)	Total PSD (dBm/30kHz)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	b	2412	-5.05	0	-5.05	-15.05	8	Pass
NVNT	b	2437	-6.26	0	-6.26	-16.26	8	Pass
NVNT	b	2462	-6.14	0	-6.14	-16.14	8	Pass
NVNT	g	2412	-10.84	0	-10.84	-20.84	8	Pass
NVNT	g	2437	-12.26	0	-12.26	-22.26	8	Pass
NVNT	g	2462	-11.28	0	-11.28	-21.28	8	Pass
NVNT	n20	2412	-11.67	0	-11.67	-21.67	8	Pass
NVNT	n20	2437	-12.54	0	-12.54	-22.54	8	Pass
NVNT	n20	2462	-12.20	0	-12.20	-22.20	8	Pass
NVNT	n40	2422	-13.80	0.18	-13.62	-23.62	8	Pass
NVNT	n40	2437	-13.67	0.18	-13.49	-23.49	8	Pass
NVNT	n40	2452	-13.72	0.18	-13.54	-23.54	8	Pass
Note: T	otal PS	D (dBm/3kH	r) – Total PS	D (dBm	(30 kHz) + 10 kHz	na(3kHz/30kl	H7)	

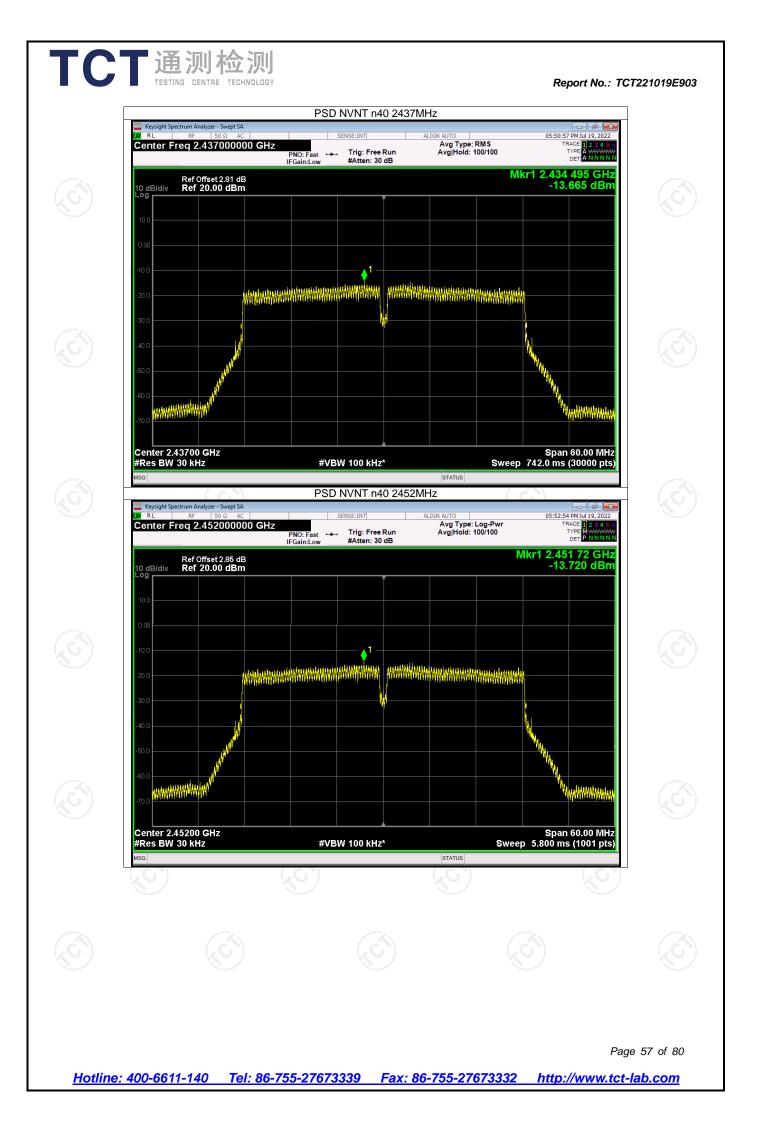

Maximum Power Spectral Density Level


TCT通测检测 TESTING CENTRE TECHNOLOGY


Note: Total PSD (dBm/3kHz) = Total PSD (dBm/30kHz) +10log(3kHz/30kHz)


Page 51 of 80


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



		Band	d Edge		
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-62.61	-30	Pass
NVNT	b	2462	-62.97	-30	Pass
NVNT	g	2412	-54.19	-30	Pass
ŃVNT	g	2462	-55.22	-30	Pass
NVNT	n20	2412	-49.73	-30	Pass
NVNT	n20	2462	-54.96	-30	Pass
	n40	2422	-44.47	-30	Pass
NVNT	n40	2452	-46.46	-30	Pass

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 58 of 80

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 59 of 80

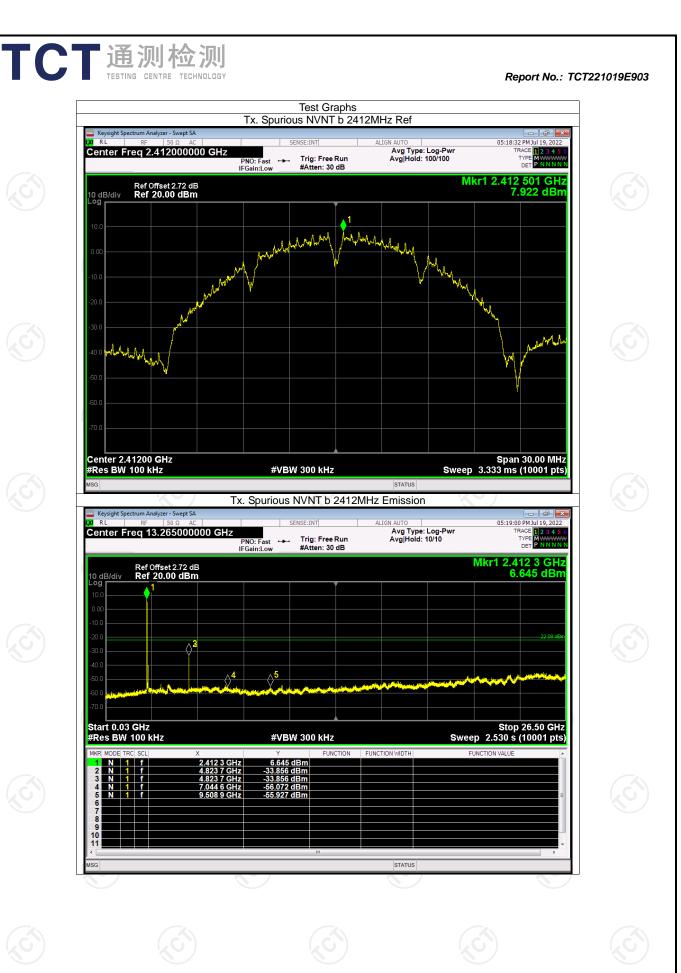
	Keysight Spectrum Analyzer - Swept SA	Band Edge NVNT g 2412	MHz Ref	
C C	RL RF 50 Ω AC Center Freq 2.412000000 GHz	PNO: Fast ++++ Trig: Free Run	ALIGN AUTO 0 Avg Type: Log-Pwr Avg Hold: 100/100	5:32:01 PM Jul 19, 2022 TRACE 1, 2:34 5:6 TYPE MWWWWW DET P.NNNNN
	Ref Offset 2.72 dB I0 dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mkr1 2	2.418 27 GHz 1.991 dBm
	- og 10.0			
	0.00	waynant water from the provident	1 Invirialized menting	
	10.0	Weildowy Control Williams		
	20.0			holy de march
Zh I	30.0 10.0 10 10 10 10 10 10 10 10 10 10 10 10 10			- CARANAN
	50.0			
	60.0			
	70.0			
(#	Center 2.41200 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 2.93	Span 30.00 MHz 3 ms (1001 pts)
		Band Edge NVNT g 2412MH	status z Emission	
	Keysight Spectrum Analyzer - Swept SA RL	SENSE:INT	Avg Type: Log-Pwr	5:32:04 PM Jul 19, 2022 TRACE 12 3 4 5 6
	Ref Offset 2.72 dB	PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hoid: 1007100 Mkr1	2.413 3 GHz 3.395 dBm
	10 dB/div Ref 20.00 dBm	The second se		3.395 dBm
	0.00		- Invariantly	
	-20.0			
	-40.0	المراجع	Supervised to	
	-60.0 ///////////////////////////////////	er-deligter allehourse sond to be and the solution of the last solution of the solution of the solution of the		
	Start 2.32700 GHz #Res BW 100 kHz MKR MODE TRC SCL	#VBW 300 kHz	Ste Sweep 9.60	op 2.42700 GHz 0 ms (1001 pts)
	1 N 1 f 2.413 3 2 N 1 f 2.400 0 3 N 1 f 2.390 0	GHz 3.395 dBm GHz28.198 dBm GHz53.187 dBm		
3	4 N 1 f 2.389 9 5 6 7 9	GHz -52.205 dBm		
	8 9 10 11			
N	isg	m	STATUS	•

	Keysight Spectrum Analyzer - Swept SA Μ RF S0 Ω AC Center Freq 2.412000000 G	Band Edge NVNT n20 2	412MHz Ref	05:39:21 PM Jul 19, 2022 TRACE	
		PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN Kr1 2.409 48 GHz	
3)	Ref Offset 2.72 dB 10 dB/div Ref 20.00 dBm			0.742 dBm	
	0.00	langrun hour whowhoug me	wythymether man		
	-10.0	have have have a providence of the providence of			
	-20.0 -30.0			and and a shere	
3)	-40.0				
	-50.0				
	-70.0				
	Center 2.41200 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep	Span 30.00 MHz 2.933 ms (1001 pts)	
3	MSG	Band Edge NVNT n20 241	status 2MHz Emission		
	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 2.3770000000 G	PNO: Fast +++ Irig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	05:39:24 PM Jul 19, 2022 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P. NNNNN	
	Ref Offset 2.72 dB 10 dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	N	/kr1 2.413 3 GHz 3.638 dBm	
	0.00		مراجع المراجع المراجع مراجع المراجع ال	1	
	-20.0		and the second sec	-29 28 19m	
	-40.0		A Description		
	-60.0 Mileson Andread Antropy and Antropy			Stop 2.42700 GHz	
	#Res BW 100 kHz	#VBW 300 kHz		9.600 ms (1001 pts)	
~	2 N 1 f 2.400 3 N 1 f 2.390 4 N 1 f 2.389 5	13 GHz 3.638 dBm 10 GHz -28.848 dBm 10 GHz -51.738 dBm 18 GHz -48.999 dBm		E	
	6 7 8 9 10				
	MSG		STATUS	*	
	S.	NO.	No.	S.	

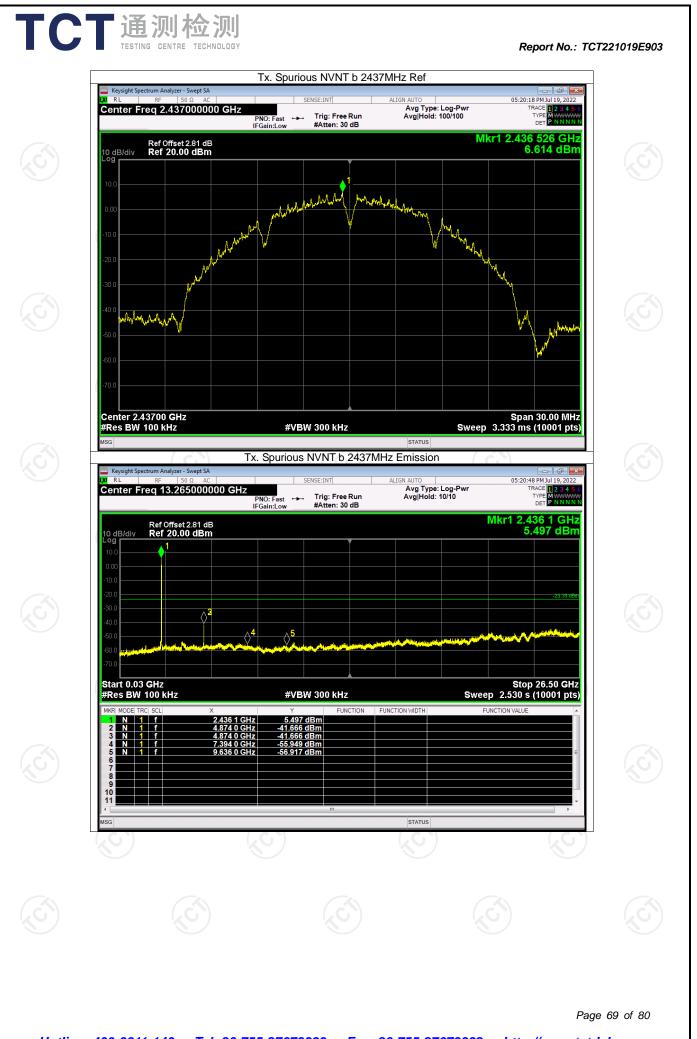
	🚾 Keysight Spectrum Analyzer - Swept SA 🗱 RL RF 50 Ω AC	Band Edge NVNT n20 246	ALIGN AUTO	05:45:10 PM Jul 19, 2022	
	Center Freq 2.462000000 GHz	PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	
	Ref Offset 2.87 dB 10 dB/div Ref 20.00 dBm		MKT	2.460 77 GHz 1.030 dBm	
	10.0				
	0.00	man have been and more	venturenting		
	-10.0				
	-30.0 -20.0		ر بر المراجع (1997) . المراجع (1996) . المراجع (1996) .	wonly MM WM	
	-40.0 Militar			· · · · · · · · · · · · · · · · · · ·	
	-50.0				
	-60.0				
	Center 2.46200 GHz			Span 30.00 MHz	
	#Res BW 100 kHz	#VBW 300 kHz	Sweep 2.9	033 ms (1001 pts)	
) F	Keysight Spectrum Analyzer - Swept SA	Band Edge NVNT n20 2462M			
	🕅 RL RF 50Ω AC Center Freq 2.497000000 GHz	SENSE:INT PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	05:45:13 PM Jul 19, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN	
	Ref Offset 2.87 dB 10 dB/div Ref 20.00 dBm		Mkr	1 2.460 7 GHz 1.903 dBm	
	-10.0			-28.97 dBm	
	-30.0	¹			
	-60.0	3	well level where a surger of a level of a liter of a	مروح والمعالية والمعا	
(Start 2.44700 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 9.6	top 2.54700 GHz 600 ms (1001 pts)	
	MKR MODE TRC SCL X 1 N 1 f 2.460 7 2 N 1 f 2.483 5 3 N 1 f 2.500 0	Y FUNCTION F	UNCTION WIDTH FUNCTION		
	3 N 1 f 2.500 0 4 N 1 f 2.484 5 5 6	GHz -54.213 dBm GHz -59.771 dBm GHz -53.933 dBm		=	
	7 8 9 9				
	11 4 MSG	III	STATUS	*	
		KC)	(s ^c)	$\langle \mathcal{O} \rangle$	

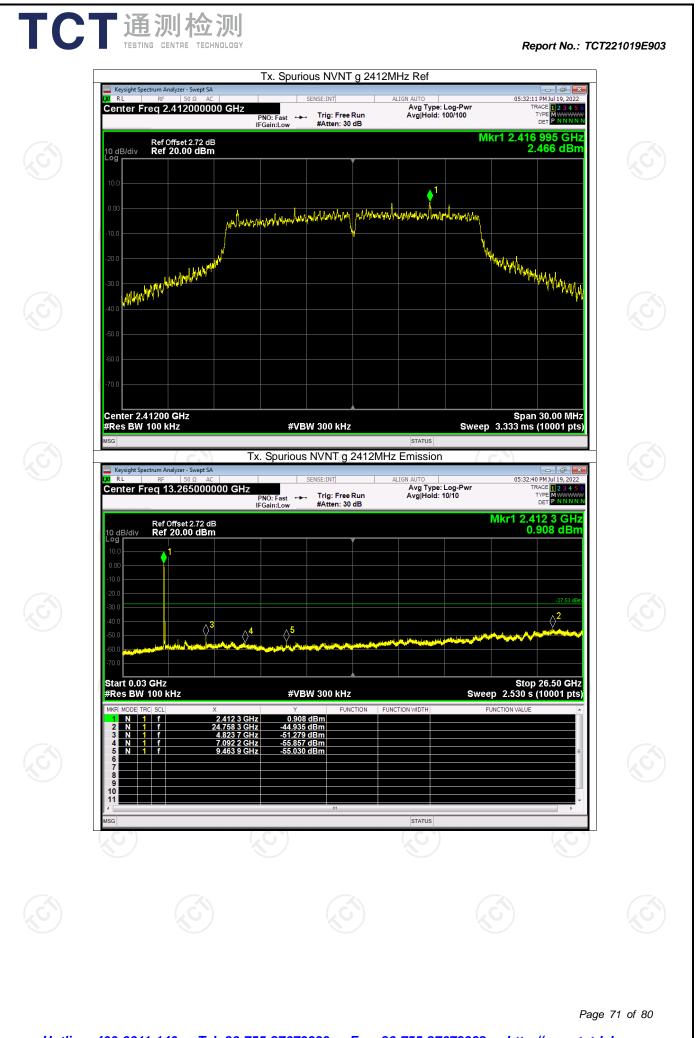
and K	leysight Spectrum Analyzer - Swept SA	Band Edge NVNT n40 24	22MHz Ref		
Ce	RL RF 50 Ω AC nter Freq 2.422000000 G	HZ PNO: Fast IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	05:47:55 PM Jul 19, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNN	
10 0	Ref Offset 2.74 dB IB/div Ref 20.00 dBm		Mk	r1 2.424 52 GHz -0.415 dBm	
Lõĝ 10.1					
0.0		•	1		
-10.0		elleterned www.ukeneydwale	dimater and the second second second		
-20.0		Y		<u>.</u>	
-30.0				MAN KA	
-40.0	manation and the state of the s			"h man and the second second	
-60.0					
-70.0	D				
Cei	nter 2.42200 GHz			Span 60.00 MHz	
#R MSG	es BW 100 kHz	#VBW 300 kHz	STATUS	5.800 ms (1001 pts)	
	Ceysight Spectrum Analyzer - Swept SA R L RF 50 Ω AC	Band Edge NVNT n40 2422	MHz Emission	05:47:58 PM Jul 19, 2022	
	nter Freq 2.402000000 G		Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN	
10 d Log	Ref Offset 2.74 dB B/div Ref 20.00 dBm		м	kr1 2.425 8 GHz -0.191 dBm	
10. 0.0	0		1 1 1 1 1		
-10.			alghaber and an and production of the		
-30.	0	- As another		30.42 dBm	
-50. -60.	annan ann an ann ann ann ann ann ann an	understander of global and g			
-70. Sta	art 2.35200 GHz			Stop 2.45200 GHz	
	es BW 100 kHz	#VBW 300 kHz Y FUNCTION 5 8 GHz -0.191 dBm		9.600 ms (1001 pts)	
2 3 4 5	N 1 f 2.40 N 1 f 2.39	0 0 GHz -42.539 dBm 0 0 GHz -48.950 dBm 9 5 GHz -48.886 dBm			
6 7 8					
9 10 11					
MSG	())	(203)	STATUS	(.G [*])	

	Keysight Spectrum Analyzer - Swept SA	Band Edge NVNT n40 2			
	RL RF 50 Ω AC enter Freq 2.452000000 GHz	PNO: Fast ++++ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	05:53:03 PM Jul 19, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNN	
	Ref Offset 2.85 dB dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	N	lkr1 2.447 02 GHz -0.611 dBm	
	dB/div Ref 20.00 dBm			C.OTT UDIN	
1	.0				
0	00 Minuhan	wellinger where we well with a failing of the	alutronantophaloment		
		· · · · · · · · · · · · · · · · · · ·			
	1.0 John Market 1.0			M.	
				William Contraction	
-4	Monthe separation and a second second			Mu alphymprov	
-5					
-6					
-71					
C #F	enter 2.45200 GHz Res BW 100 kHz	#VBW 300 kHz	Sweep	Span 60.00 MHz 5.800 ms (1001 pts)	
MS		Band Edge NVNT n40 245	STATUS	- \	
	Keysight Spectrum Analyzer - Swept SA R L RF 50 Ω AC	SENSE:INT	ALIGN AUTO	05:53:06 PM Jul 19, 2022	
C	enter Freq 2.472000000 GHz	PNO: Fast ↔→ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N	
10	Ref Offset 2.85 dB dB/div Ref 20.00 dBm			Wkr1 2.447 0 GHz -0.733 dBm	
	dB/div Ref 20.00 dBm	1			
	00 00 00 00 00 00 00 00 00 00 00 00 00	man marindrahadara ala an harala hara			
	1.0 1.0			-20.61 dBm	
-4	0.0 4 million 10 milli	بېر لور	Manna 2 4		
-6			3	han and the second s	
S	art 2.42200 GHz			Stop 2.52200 GHz	
м	Res BW 100 kHz R MODE TRC SCL X	#VBW 300 kHz Y FUNCTION	-	9.600 ms (1001 pts)	
	N 1 f 2.447 0 2 N 1 f 2.483 5 3 N 1 f 2.500 0 1 f 2.500 0 1.000 2	GHz -60.683 dBm			
	4 N 1 f 2.488 3 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	GHz -47.072 dBm		E	
	8 9 0				
1 MS			STATUS		
m3	(G ¹)	(₂ G [*])			


TCT通测检测 TESTING CENTRE TECHNOLOGY

Conducted RF Spurious Emission


			punous Ennissio		
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-41.77	-30	Pass
NVNT	b	2437	-48.27	-30	Pass
NVNT	b	2462	-48.01	-30	Pass
ŃVNT	g	2412	-47.40	-30	Pass
NVNT	g	2437	-46.74	-30	Pass
NVNT	g	2462	-45.95	-30	Pass
	n20	2412	-46.83	-30	Pass
NVNT	n20	2437	-46.60	-30	Pass
NVNT	n20	2462	-45.68	-30	Pass
NVNT	n40	2422	-46.13	-30	Pass
NVNT	n40	2437	-43.90	-30	Pass
ŃVNT	n40	2452	-43.80	-30	Pass

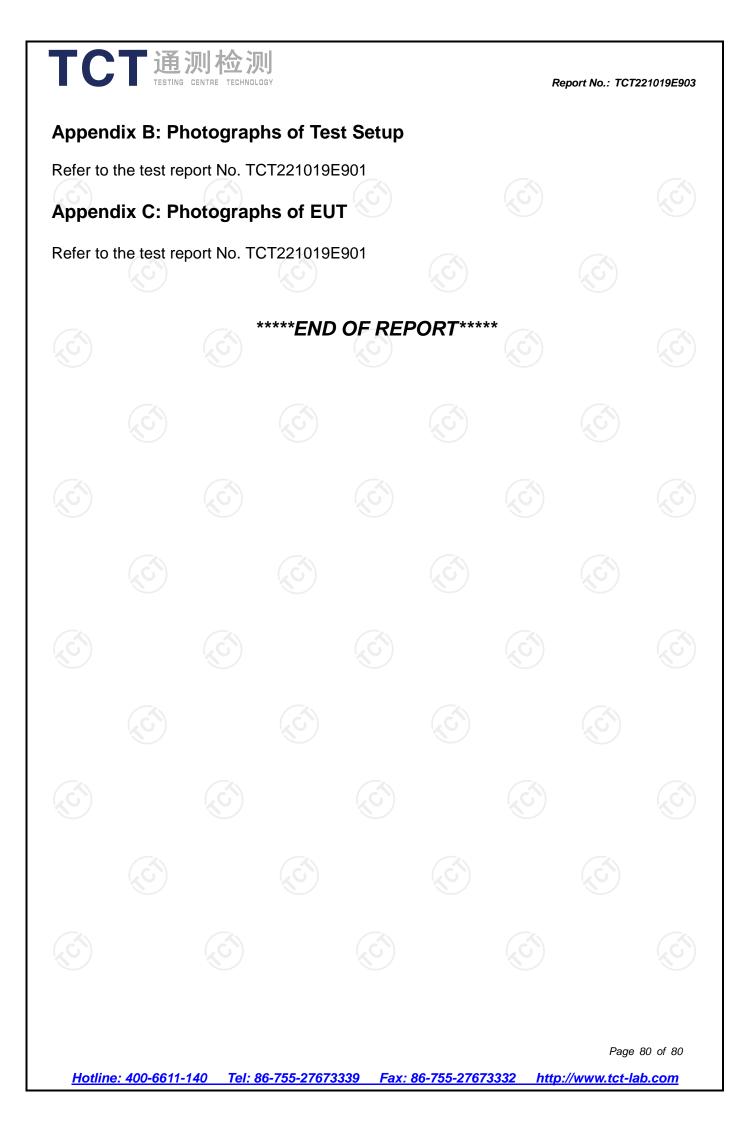

Page 67 of 80

Page 68 of 80

	Keysight Spectrum Analyzer - Swept SA	Tx. Spurious NVNT g 2	2437MHz Ref		
C	RL RF 50 Ω AC enter Freq 2.437000000 GH	PNO: Fast ++++ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	05:34:35 PM Jul 19, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	
11	Ref Offset 2.81 dB dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mł	r1 2.435 755 GHz 1.525 dBm	
	g				
	00	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓			
-1	المهم المحالية محالية	umbrahmanapanan way	Amountandundundun		
-2	1.0		\	Ned.	
-3	O WANNA WANNA WANNA WANNA			Wanny Many Many Many	
-4					
-5	.0				
	.0				
#1	enter 2.43700 GHz Res BW 100 kHz	#VBW 300 kHz		Span 30.00 MHz 3.333 ms (10001 pts)	
MS		Tx. Spurious NVNT g 243	7MHz Emission		
	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Sonter Freq 13.265000000 GH	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	05:35:04 PM Jul 19, 2022 TRACE 1 2 3 4 5 6	
		PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN Nkr1 2.444 1 GHz	
	Ref Offset 2.81 dB dB/div Ref 20.00 dBm			-0.020 dBm	
c.					
-2	0.0			-28.48 dBm	
-4					
-6					
s	art 0.03 GHz	#\/DW/ 200 L/H>		Stop 26.50 GHz	
M	Res BW 100 kHz IR MODE TRC SCL X 1 1 f 2.444 1	#VBW 300 kHz Y FUNCTION GHz -0.020 dBm		D 2.530 s (10001 pts)	
	2 N 1 f 25.142 1 3 N 1 f 4.863 4 4 N 1 f 7.153 1	GHz -45.211 dBm GHz -53.752 dBm GHz -56.190 dBm			
	5 N 1 f 9.548 6 6 7 8 8	i GHz -56.643 dBm			
	9 D 1				
MS	3	""	STATUS		

	05:37:25 PM Jul 19, 2022	ALIGN AUTO	Tx. Spurious NVN	50 Ω AC	Keysight Spectrum /
-			PNO: Fast +++ Trig: Fr IFGain:Low #Atten:	462000000 GHz	
	1.515 dBm			offset 2.87 dB 20.00 dBm	10 dB/div Ref
			 1		10.0
	when when	nownlowinghoursed	nennennennennen	mm	-10.0
	WWWWWWW			1	-20.0
Ć	WWWWWWWWWWWW			Att Water	-30.0 -40.0
					-50.0
					-60.0
					-70.0
z))	Span 30.00 MHz Sweep 3.333 ms (10001 pts)		#VBW 300 ki		Center 2.4620 #Res BW 100
		STATUS 2462MHz Emission	x. Spurious NVNT		MSG Keysight Spectrum
	05:37:53 PM Jul 19, 2022 : Log-Pwr TRACE 1 2 3 4 5 6	Run Avg Hold:	PNO: Fast +>+ Trig: Fr IEGain: ow #Atten:	50 Ω AC 3.265000000 GHz	
ī	Mkr1 2.470 5 GHz 0.149 dBm	ub	IFGain:Low #Atten:	offset 2.87 dB 20.00 dBm	10 dB/div Re
				1	10.0
					-10.0
	0.0.75				-20.0
ć			×4 ×5	. ^3	-20.0
Ŕ	<u></u>		× 5		-40.0 -50.0 -60.0
	2 →2 →2 →2 →2 →2 →2 →2 →2 →2 →				-40.0
			#VBW 300 kl	Hz	-40.0 -50.0 -60.0 -70.0 Start 0.03 GH2 #Res BW 100 MRR MODE TRC SCL -1 N 1 f
	Stop 26.50 GHz Sweep 2.530 s (10001 pts)		#VBW 300 k z 0.149 dBm z -44.439 dBm z -54.678 dBm z -56.305 dBm	Hz	-40.0 -50.0 -60.0 -70.0 Start 0.03 GH2 #Res BW 100 MKR MODE TRC SCL
	Stop 26.50 GHz Sweep 2.530 s (10001 pts)		#VBW 300 k z 0.149 dBm z -44.439 dBm z -54.678 dBm z -56.305 dBm	Hz 2.470 5 G 25.036 2 G 4.921 7 G 7.563 4 G	-40.0 -50.0 -60.0 Start 0.03 GHz #Res BW 100 MKR MODE TRC SCL 1 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f
	Stop 26.50 GHz Sweep 2.530 s (10001 pts)		#VBW 300 k z 0.149 dBm z -44.439 dBm z -54.678 dBm z -56.305 dBm	Hz 2.470 5 G 25.036 2 G 4.921 7 G 7.563 4 G	-40.0 -50.0 -70.0 Start 0.03 GH: #Res BW 100 MKR MODE TRC SCL 1 N 1 f 2 N 1 f 5 N 1 f 6 7 8 9 9
	Stop 26.50 GHz Sweep 2.530 s (10001 pts)		#VBW 300 k z 0.149 dBm z -44.439 dBm z -54.678 dBm z -56.305 dBm	Hz 2.470 5 G 25.036 2 G 4.921 7 G 7.563 4 G	-40.0 -50.0 -70.0 Start 0.03 GH; #Res BW 100 MKR MODE TRC SCL 1 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f 6 N 1 f 8 9 9 10 11 1
	Stop 26.50 GHz Sweep 2.530 s (10001 pts)		#VBW 300 k z 0.149 dBm z -44.439 dBm z -54.678 dBm z -56.305 dBm	Hz 2.470 5 G 25.036 2 G 4.921 7 G 7.563 4 G	-40.0 -50.0 -70.0 Start 0.03 GH; #Res BW 100 MKR MODE TRC SCL 1 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f 6 N 1 f 8 9 9 10 11 1
	Stop 26.50 GHz Sweep 2.530 s (10001 pts)		#VBW 300 k z 0.149 dBm z -44.439 dBm z -54.678 dBm z -56.305 dBm	Hz 2.470 5 G 25.036 2 G 4.921 7 G 7.563 4 G	-40.0 -50.0 -70.0 Start 0.03 GH; #Res BW 100 MKR MODE TRC SCL 1 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f 6 N 1 f 8 9 9 10 11 1

	Keysight Spectrum Analyzer - Swept SA C RL RF 50 Ω AC	Tx. Spurious NVNT n20 2412MH	AUTO 05:39:32 PM Jul 19, 2022	
	Center Freq 2.412000000 GHz	PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100 Det P NNNNN	
	Ref Offset 2.72 dB Ref 20.00 dBm		Mkr1 2.413 248 GHz 3.176 dBm	
	10.0	1		
	0.00	mound when the post of the second	terrational	
	10.0		<u> </u>	
			"Manhan Viala Manhan	
Z\	40.0			6
	50.0			
	60.0			
	70.0			
	Center 2.41200 GHz ¢Res BW 100 kHz	#VBW 300 kHz	Span 30.00 MHz Sweep 3.333 ms (10001 pts)	
	isg	x. Spurious NVNT n20 2412MHz I	status Emission	
	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 13.265000000 GH3	7	I AUTO 05:40:01 PM Jul 19, 2022 Avg Type: Log-Pwr TRACE 12:34:5 6	
		PN0: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 10/10 Mkr1 2.414 9 GHz	
	Ref Offset 2.72 dB 10 dB/div Ref 20.00 dBm -og		-1.631 dBm	
	-20.0		-26 82 dBm	(č
	-40.0	4 5		
	-60.0			
	Start 0.03 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 26.50 GHz Sweep 2.530 s (10001 pts)	
	MKR MODE TRC SCL X 1 N 1 f 2.414.9 0 2 N 1 f 25.134.1 0	GHz -43.657 dBm	N WIDTH FUNCTION VALUE	
	3 N 1 f 4.82370 4 N 1 f 7.10280 5 N 1 f 9.55390 6 1	Hz -55.992 dBm		
2	7 8 9 9 1010			
	11 III	m	STATUS	


U I	Keysight Spectrum Analyzer - Swept SA RL	Tx. Spurious NVNT n20 2437MH	AUTO 05:42:09 PM Jul 19, 2022	
		PNO: Fast Trig: Free Run A IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100 TRACE 2345 6 Det P.NNNNN Mkr1 2.439 496 GHz	
3)	0 dB/div Ref 20.00 dBm		1.132 dBm	
	10.0	▲ 1		
	0.00	wellow we we we we we wanted the second second	munnhuidhnny	
	20.0			
3	20.0 30.0 40.0		Million Martin Martin	
	40.0			
	60.0			
	70.0			
0	Center 2.43700 GHz Res BW 100 kHz	#VBW 300 kHz	Span 30.00 MHz Sweep 3.333 ms (10001 pts)	
	SG		STATUS	
	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 13.265000000 GH	SENSE:INT ALIGN	AUTO 05:42:38 PM Jul 19, 2022 Avg Type: Log-Pwr TRACE 12,844,56	
		PNO: Fast ↔ Trig: Free Run A IFGain:Low #Atten: 30 dB	Avg Hold: 10/10	
	Ref Offset 2.81 dB 10 dB/div Ref 20.00 dBm -og		Mkr1 2.430 8 GHz -0.258 dBm	
	0.00			
	30.0		-26.67 dbm	6
	40.0 50.0 60.0		and the second	
	70.0		01-7 20 50 01-	
			Stop 26.50 GHz	
5	Start 0.03 GHz #Res BW 100 kHz MKR MODE TRC SCL X	#VBW 300 kHz	Sweep 2.530 s (10001 pts)	
5	KR NODE TRC SCL X 1 N 1 f 2.430 8 2 N 1 f 25.086 5 3 N 1 f 4.879 3	Y FUNCTION FUNCTION GHz -0.258 dBm	Sweep 2.530 s (10001 pts)	
5	#Res BW 100 kHz MKR MODE TRC SCL X 1 1 f 2.430 8 2 N 1 f 2.508 6 3 N 1 f 4.879 3 4 N 1 f 7.322 5 5 N 1 f 9.564 5 6 7 7 7 7	Y FUNCTION FUNCTION GHz -0.258 dBm GHz -45.474 dBm GHz -54.743 dBm GHz -55.835 dBm	Sweep 2.530 s (10001 pts)	6
Č.	#Res BW 100 kHz MKR MODE TRC SCL X 1 1 f 2.430 8 2 N 1 f 2.606 5 3 N 1 f 4.879 3 4 N 1 f 7.322 5 5 N 1 f 9.654 5	Y FUNCTION FUNCTION GHz -0.258 dBm GHz -64.743 dBm GHz -54.743 dBm GHz -55.835 dBm GHz -56.470 dBm GHz -66.470 dBm	Sweep 2.530 s (10001 pts)	Ś
3	#Res BW 100 kHz MKR MODE TRC SCL X 1 1 f 2.430 8 2 N 1 f 2.430 8 3 N 1 f 2.430 8 5 N 1 f 7.322 5 5 N 1 f 7.322 5 7 8 9 9 9 9 9 9 9 9	Y FUNCTION FUNCTION GHz -0.258 dBm GHz GHz	Sweep 2.530 s (10001 pts)	Ś
3	#Res BW 100 kHz MKR MODE TRC SCL X 1 N 1 f 2.430 8 2 N 1 f 2.430 8 3 N 1 f 4.879 3 4 N 1 f 7.322 5 5 N 1 f 9.664 5 7 - - - - 8 - - - - 10 - - - - 4 - - - -	Y FUNCTION FUNCTION GHz -0.258 dBm GHz GHz	Sweep 2.530 s (10001 pts) I WIDTH FUNCTION VALUE	
3	#Res BW 100 kHz MKR MODE TRC SCL X 1 N 1 f 2.430 8 2 N 1 f 2.430 8 3 N 1 f 4.879 3 4 N 1 f 7.322 5 5 N 1 f 9.664 5 7 - - - - 8 - - - - 10 - - - - 4 - - - -	Y FUNCTION FUNCTION GHz -0.258 dBm GHz GHz	Sweep 2.530 s (10001 pts) I WIDTH FUNCTION VALUE	
3	#Res BW 100 kHz MKR MODE TRC SCL X 1 N 1 f 2.430 8 2 N 1 f 2.430 8 3 N 1 f 4.879 3 4 N 1 f 7.322 5 5 N 1 f 9.664 5 7 - - - - 8 - - - - 10 - - - - 4 - - - -	Y FUNCTION FUNCTION GHz -0.258 dBm GHz GHz	Sweep 2.530 s (10001 pts) I WIDTH FUNCTION VALUE	

	Keysight Spectrum Analyzer - Swept SA RL RF 50Ω AC	Tx. Spurious NVNT n20 2462M		ー () () () () () () () () () (
	enter Freq 2.462000000 GHz	PNO: Fast ++- Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr TRA Avg Hold: 100/100 Tr	CE 1 2 3 4 5 6 PE MWWWWW ET P N N N N N
10 Lo	Ref Offset 2.87 dB dB/div Ref 20.00 dBm		Mkr1 2.465 0.9	759 GHz 175 dBm
	.0			
0.		t . I . I		
-10	0	when he we have a service of the second	hable of the stand and the start	
-20	0		Windwinny	
-30	WITH WATT			MANY WYWW
-40				
-50				
-70	0			
C	nter 2.46200 GHz		Span	30.00 MHz
#F	es BW 100 kHz	#VBW 300 kHz	Sweep 3.333 ms (10001 pts)
	Keysight Spectrum Analyzer - Swept SA	x. Spurious NVNT n20 2462MHz		
	RL RF 50 Ω AC enter Freq 13.265000000 GHz	PNO: Fast +++ Trig: Free Run	N AUTO 05:45:51 Avg Type: Log-Pwr TR# Avg Hold: 10/10 T	MJul 19, 2022 CE 1 2 3 4 5 6 PE MWWWWW ET P N N N N N
10	Ref Offset 2.87 dB dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mkr1 2.46	
L c 1	g 			
-11				
	.0			-29.03 dBm
-41 -51 -61		<u>,</u> 4 <u>,</u> 5 <u>,</u> 5	man man man and the	
		السبي المتعلق الأكتمال السبي المتعلم الأكتمال		
#F	art 0.03 GHz Res BW 100 kHz	#VBW 300 kHz	Sweep 2.530 s (26.50 GHz 10001 pts)
	N 1 f 2.462 6 G N 1 f 25.057 4 G N 1 f 4.924 3 G	Hz 2.060 dBm Hz -44.705 dBm	DN WIDTH FUNCTION VALUE	
	N 1 f 7.383 4 G N 1 f 10.035 7 G	Hz55.102 dBm Hz55.428 dBm Hz56.327 dBm		
1 • MSC			STATUS	
MSC	57)	(LO)		(20)

LXI	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC	SENSE:INT	n40 2422MHz Ref	05:48:0	BACE 2.2.4.5.6	
Ce	nter Freq 2.422000000	CHZ PNO: Fast ↔→→ Trig: Free IFGain:Low #Atten: 30	Run Avg Hold: 100	Mkr1 2.425		
10	dB/div Ref 20.00 dBm			0	.405 dBm	
10.			∮ ¹			
-10.	o	have been and the second s	procentraliteteten jon providen och ander	when have be		
-20.			Y			
-30.				Mary Mary		
-50.	All had to vie What as a f				and the second states of the s	
-60.	0					
-70.						
#R	nter 2.42200 GHz es BW 100 kHz	#VBW 300 kH:		Spar Sweep 6.000 ms	60.00 MHz (10001 pts)	
MSG	Keysight Spectrum Analyzer - Swept SA	Tx. Spurious NVNT n4	STATUS O 2422MHz Emission	(. <i>č.</i>)		
1,00		GHz	ALIGN AUTO Avg Type: Los	05:48:3 g-Pwr T	6 PM Jul 19, 2022	
		PNO: Fast Trig: Free	Run Avg Hold: 10/1	10	RACE 123456 TYPE MWWWWW	
10	Ref Offset 2.74 dB	PNO: Fast Trig: Free IFGain:Low #Atten: 30	Run Avg Hold: 10/1	¹⁰ Mkr1 2.4	TYPE NNNNN DET PNNNNN 584 dBm	
10 10 0.0	dB/div Ref 20.00 dBm		Run Avg Hold: 10/1	¹⁰ Mkr1 2.4	176 GHz	
Lo: 10	dB/div Ref 20.00 dBm		Run Avg Hold: 10/1	¹⁰ Mkr1 2.4	17 6 GHZ 584 dBm	
Lo 10 0.0 -10 -20 -30 -40	dB/div Ref 20.00 dBm	IFGain:Low #Atten: 3	Run Avg Hold: 10/1	¹⁰ Mkr1 2.4	176 GHz	
Lo; 10 -10 -20 -30	dB/div Ref 20.00 dBm		Run Avg Hold: 10/7	¹⁰ Mkr1 2.4	17 6 GHz 584 dBm	
Lo 10 -10 -20 -30 -40 -50 -50 -70 -50	dB/div Ref 20.00 dBm	IFGain:Low #Atten: 3	Run Avg Hold: 10/7	Mkr1 2.4 -0.	17 6 GHz 584 dBm -23 00 dbm ↓2 26.50 GHz	
Lo 10 -10 -20 -30 -40 -50 -50 -70 St #R	dB/div Ref 20.00 dBm Image: State of the state	IFGain:Low #Atten: 30 4 5	Run Avg Hold: 10/7	Mkr1 2.4 -0.	17 6 GHz 584 dBm -23 00 dbm ↓2 26.50 GHz	
Lo 10 -10 -20 -30 -40 -50 -50 -70 -50 -70 -50 -70 -50 -70 -50 -70 -70 -70 -70 -70 -70 -70 -70 -70 -7	dB/div Ref 20.00 dBm Image: State of the state	IFGain:Low #Atten: 30	Run Avg Hold: 10/-	Mkr1 2.4 -0.	17 6 GHz 584 dBm -23 00 dbm ↓2 26.50 GHz	
Lo 10 -10 -20 -40 -50 -50 -70 -50 -70 -50 -70 -50 -70 -50 -70 -50 -70 -70 -70 -70 -70 -70 -70 -70 -70 -7	dB/div Ref 20.00 dBm Image: State of the state	IFGain:Low #Atten: 30	Run Avg Hold: 10/-	Mkr1 2.4 -0.	17 6 GHz 584 dBm -23 00 dbm ↓2 26.50 GHz	
Lo 10 -10 -20 -30 -40 -50 -50 -50 -70 -50 -70 -50 -70 -50 -70 -50 -70 -50 -70 -77 -70 -77 -77 -77 -77 -77 -77 -7	dB/div Ref 20.00 dBm Image: State of the state	IFGain:Low #Atten: 30	Run Avg Hold: 10/-	Mkr1 2.4 -0.	17 6 GHz 584 dBm -23 00 dbm ↓2 26.50 GHz	
Lo 10 -10 -20 -30 -40 -50 -50 -70 -70 -70 -70 -70 -70 -70 -70 -77 -77	dB/div Ref 20.00 dBm Image: State of the state	IFGain:Low #Atten: 30	Run Avg Hold: 10/-	Mkr1 2.4 -0.	17 6 GHz 584 dBm -23 00 dbm ↓2 2 26.50 GHz	
Lo 10 -10 -20 -30 -40 -50 -50 -70 -70 -70 -70 -70 -70 -70 -70 -77 -77	dB/div Ref 20.00 dBm Image: State of the state	IFGain:Low #Atten: 30	Run Avg Hold: 10/-	Mkr1 2.4 -0.	17 6 GHz 584 dBm -23 00 dbm ↓2 2 26.50 GHz	
Lo 10 -10 -20 -30 -40 -50 -50 -70 -50 -70 -51 -50 -70 -51 -50 -70 -51 -51 -51 -51 -51 -51 -51 -51 -51 -51	dB/div Ref 20.00 dBm Image: State of the state	IFGain:Low #Atten: 30	Run Avg Hold: 10/-	Mkr1 2.4 -0.	17 6 GHz 584 dBm -23 00 dbm ↓2 2 26.50 GHz	

LXI R		Tx. Spurious NVNT n4	ALIGN AUTO	05:51:09 PM Jul 19, 2022	
Cer	nter Freq 2.437000000 GH	Z PNO: Fast Trig: Free Rui IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr n Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MMANANA DET P N N N N Mkr1 2.431 990 GHz	
10 d Log	Ref Offset 2.81 dB B/div Ref 20.00 dBm			-1.004 dBm	(C
10.0					
0.00	planetrel	water motion and such a bronned area of	united and the second	hyp	
-20.0					
-30.0					
-40.0	and a stand and a stand			Mullewere a	
-60.0					
-70.0					
	ter 2.43700 GHz s BW 100 kHz	#VBW 300 kHz	Swe	Span 60.00 MHz ep 6.000 ms (10001 pts)	
MSG		Tx. Spurious NVNT n40 2	STATUS		C
LXI R	eysight Spectrum Analyzer - Swept SA	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	05:51:37 PM Jul 19, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW	R C
		PNO: Fast Trig: Free Rui IFGain:Low #Atten: 30 dB	n Avg Hold: 10/10	Mkr1 2.433 5 GHz	
10 c Log				-1.861 dBm	
0.00					
-20.0				-31.00 dBm	.C
-40.0 -50.0 -60.0	3			a to a second by the standard states and a	
-70.0					
#Re	rt 0.03 GHz es BW 100 kHz MODE TRC SCL X	#VBW 300 kHz		Stop 26.50 GHz veep 2.530 s (10001 pts)	
1 2 3 4	N 1 f 2.433 5 N 1 f 24.808 6 N 1 f 5.019 6 N 1 f 7.158 4	GHz -44.908 dBm			
5 6 7 8	N 1 f 9.906 0) GHz -55.314 dBm		=	
9 10 11					
MSG		(LG [*])	STATUS	(G)	

	Keysight Spectrum Analyzer - Swept SA K RL RF 50 Ω AC	Tx. Spurious NVNT n40 245	52MHz Ref	05:53:15 PM Jul 19, 2022	
	Center Freq 2.452000000 GHz	PNO: Fast ← Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	
	Ref Offset 2.85 dB 10 dB/div Ref 20.00 dBm		Mkr	1 2.455 72 GHz -0.703 dBm	
2	10.0				
			1		
	-10.0	arthographication burner provident	alasta and a second a		
	-20.0	W			
	-30.0			n _u	
$\hat{\boldsymbol{S}}$	-40.0			May have a	
	-50.0			My all Allo Adur	
	-60.0				
(-70.0				
	Center 2.45200 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 5	Span 60.00 MHz .800 ms (1001 pts)	
	иза	x. Spurious NVNT n40 2452N	STATUS /Hz Emission	~	
	Keysight Spectrum Analyzer - Swept SA RL	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	05:53:44 PM Jul 19, 2022	
-		PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold: 10/10	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNN	
	Ref Offset 2.85 dB 10 dB/div Ref 20.00 dBm Log	Y	N	lkr1 2.439 GHz -2.213 dBm	
	0.00				
	-10.0			-20.70 dBm	
\mathbf{S}	-30.0			<mark>2</mark>	
	-50.0 3 -60.0 merutanta hard and and and and and and a second and a	4 5	and the stand water and the stand of the sta		
	-70.0			Stop 26.50 GHz	
	#Res BW 100 kHz	#VBW 300 kHz	-	2.530 s (1001 pts)	
	1 N 1 f 2.439 (2000) 2 N 1 f 24.674 (2000) 3 N 1 f 4.900 (2000)	Hz -2.213 dBm Hz -44.510 dBm Hz -55.102 dBm			
	4 N 1 f 7.468 0 5 N 1 f 9.956 0 6 7	GHz -55.986 dBm GHz -56.598 dBm		E	
	8 9 10				
	11 / · · · · · · · · · · · · · · ·	m	STATUS		
	<u>(</u> 0)	KC)	KC)	(sc)	

