FCC RF Test Report

APPLICANT : ZTE CORPORATION

EQUIPMENT: LTE/WCDMA/GSM(GPRS)Multi-Mode Digital Mobile

Phone

BRAND NAME : ZTE

MODEL NAME : Z6530M

FCC ID : SRQ-Z6530M

STANDARD : FCC Part 15 Subpart C §15.225

CLASSIFICATION: (DXX) Low Power Communication Device Transmitter

The product was received on May 16, 2019 and testing was completed on Jul. 08, 2019. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Reviewed by: Jason Jia / Supervisor

JasonJia

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300

People's Republic of China

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX: 86-512-57900958 FCC ID: SRQ-Z6530M Page Number : 1 of 21
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Cert #5145.02

Report No.: FR951606D

TABLE OF CONTENTS

TABI	LE OF CONTENTS	
REV	ISION HISTORY	· · · · · · · · · · · · · · · · · · ·
SUM	IMARY OF THE TEST RESULT	
	ENERAL DESCRIPTION	
1.		
1.	•••	
1.	· ·	
1.	·	
1.		
1.	· ·	
2. TE	EST CONFIGURATION OF EQUIPMENT UNDER TEST	
2.		
2.	.2 Connection Diagram of Test System	(
2.		
2.	.4 EUT Operation Test Setup	
3. TE	EST RESULTS	10
3.	.1 AC Power Line Conducted Emissions Measurement	10
3.	.2 20dB and 99% OBW Spectrum Bandwidth Measurement	
3.	·	
3.	4 Field Strength of Fundamental Emissions and Mask Measurement	14
3.		16
3.	6 Antenna Requirements	19
4. LI	ST OF MEASURING EQUIPMENT	20
5. UN	NCERTAINTY OF EVALUATION	21
APP	ENDIX A. TEST RESULTS OF CONDUCTED EMISSION TEST	
APP	ENDIX B. TEST RESULTS OF CONDUCTED TEST ITEMS	

B1. Test Result of 20dB Spectrum Bandwidth B2. Test Result of Frequency Stability

APPENDIX C. TEST RESULTS OF RADIATED TEST ITEMS

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

APPEDNIX D. SETUP PHOTOGRAPHS

TEL: 86-512-57900158 FAX: 86-512-57900958 FCC ID: SRQ-Z6530M

Page Number : 2 of 21 Report Issued Date: Jul. 22, 2019

Report No.: FR951606D

Report Version : Rev. 01

REVISION HISTORY

Report No.: FR951606D

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR951606D	Rev. 01	Initial issue of report	Jul. 22, 2019

 Sporton International (Kunshan) Inc.
 Page Number
 : 3 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

SUMMARY OF THE TEST RESULT

Report No. : FR951606D

Report Section	FCC Rule	Description of Test	Result	Remark
3.1	15.207	AC Power Line Conducted Emissions	Complies	Under limit 5.95 dB at 0.152MHz
	15.215(c)	20dB Spectrum Bandwidth	Complies	-
3.2	-	99% OBW Spectrum Bandwidth	Complies	-
3.3	15.225(e)	Frequency Stability	Complies	-
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Complies	Max level 55.32 dBµV/m at 13.560 MHz
3.5	15.225(d) & 15.209	Radiated Spurious Emissions	Complies	Under limit 3.26 dB at 40.670MHz
3.6	15.203	Antenna Requirements	Complies	-

 Sporton International (Kunshan) Inc.
 Page Number
 : 4 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

1. General Description

1.1 Applicant

ZTE CORPORATION

ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, 518057, P.R.China

Report No.: FR951606D

1.2 Product Feature of Equipment Under Test

Product Feature				
Equipment LTE/WCDMA/GSM(GPRS)Multi-Mode Digital Mobile Ph				
Brand Name	ZTE			
Model Name	Z6530M			
FCC ID	SRQ-Z6530M			
	GSMWCDMA/LTE/NFC			
	WLAN 2.4GHz 802.11b/g/n HT20/HT40			
EUT supports Radios application	WLAN 5Ghz 802.11n H20/H40			
EOT Supports Radios application	WLAN 5GHz 802.11ac VHT20/VHT40/VHT80			
	Bluetooth BR/EDR/LE			
	FM Receiver / GNSS			
	Conducted: 861884040022860			
IMEI Code	Conduction: 861884040024809			
	Radiation: 862616040000614			
HW Version	Z6530MHW1.0			
SW Version	Z6530MV1.0.0B11			
EUT Stage	Identical Prototype			

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

 Sporton International (Kunshan) Inc.
 Page Number
 : 5 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

1.3 Product Specification of Equipment Under Test

Standards-related Product Specification		
Tx/Rx Frequency Range	13.553 ~ 13.567MHz	
Channel Number	1	
20dBW	2.49 KHz	
99%OBW	2.10 KHz	
Antenna Type	Loop Antenna	
Type of Modulation	ASK	

Report No.: FR951606D

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

 Sporton International (Kunshan) Inc.
 Page Number
 : 6 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

1.5 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Report No.: FR951606D

Test Firm	Sporton International (Kunshan) Inc.				
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone				
Test Site Location	Jiangsu Pro	vince 215300 P	eople's Republic	of China	
rest Site Location	TEL: +86-5	12-57900158			
	FAX : +86-5	12-57900958			
		Cnorton Cito N	10	FCC Designation	FCC Test Firm
Test Site No.		Sporton Site N	IO.	No.	Registration No.
	TH01-KS	03CH02-KS	CO01-KS		
Test Engineer	Lex Wu	Jack Guo Amos Zhang		CN4057	24.4200
Temperature	22~24 ℃	21~22°C 23.6~24.2°C 41~42% 41~43%		CN1257	314309
Relative Humidity	53~55%				

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.225
- ANSI C63.10-2013

 Sporton International (Kunshan) Inc.
 Page Number
 : 7 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

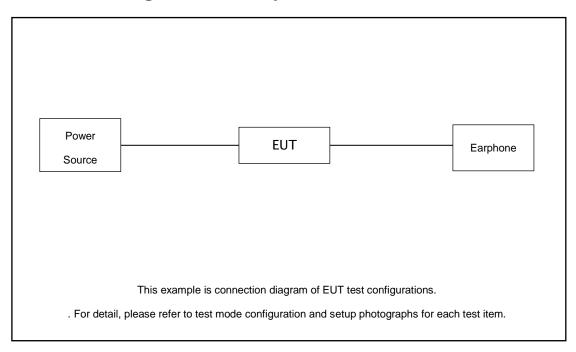
Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.

Test Items		
AC Power Line Conducted Emissions	Field Strength of Fundamental Emissions	
20dB Spectrum Bandwidth	Frequency Stability	
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz	

Report No.: FR951606D

The EUT pre-scanned in four NFC type, A, B, V. The worst type (type B) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Y plane as worst plane) from all possible combinations.


	Test Cases				
AC	Mode 1: GSM850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB Cable 2(Charging				
Conducted	from Adapter 2) + Earphone+ NFC Tx				
Emission	Hom Adapter 2) + Larphone+ Nr C 1X				

 Sporton International (Kunshan) Inc.
 Page Number
 : 8 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

2.2 Connection Diagram of Test System

2.3 Table for Supporting Units

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded,1.8m
2.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
						shielded cable DC O/P
3.	Notebook	Lenovo	G480	PRC4	N/A	1.8m, Unshielded AC
						I/P cable 1.8m
						shielded cable DC
4.	WLAN AP	LINKSYS	WRT600N	Q87-WRT600NV11	N/A	O/P1.8m,
						Unshielded AC I/P1.8m
5.	Earphone	Lenovo	LH102	N/A	N/A	Unshielded,1.2m
6.	SD Card	Kingston	SDC4/4GB	N/A	N/A	N/A

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 3 cm gap to the EUT.

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX: 86-512-57900958 FCC ID: SRQ-Z6530M Page Number : 9 of 21
Report Issued Date : Jul. 22, 2019

Report No.: FR951606D

Report Version : Rev. 01

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR951606D

Frequency of Emission	Conducted Limit (dBμV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

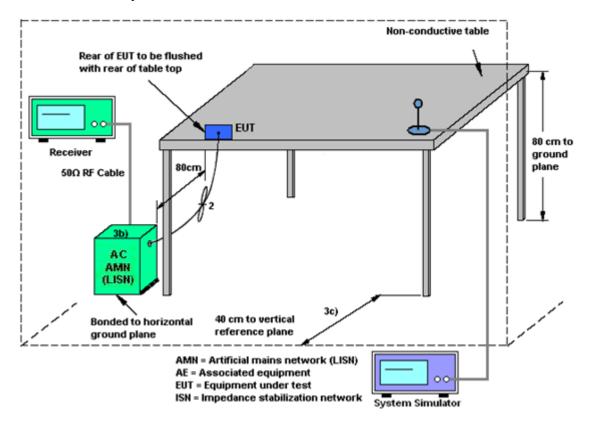
^{*}Decreases with the logarithm of the frequency.

For terminal test result, the testing follows FCC KDB 174176.

3.1.2 Measuring Instruments

See list of measuring instruments of this test report.

3.1.3 Test Procedures


- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

 Sporton International (Kunshan) Inc.
 Page Number
 : 10 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

3.1.4 Test setup

3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX: 86-512-57900958 FCC ID: SRQ-Z6530M Page Number : 11 of 21
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

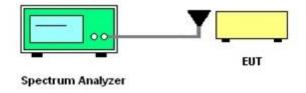
Report No.: FR951606D

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.

Report No.: FR951606D


3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

 Sporton International (Kunshan) Inc.
 Page Number
 : 12 of 21

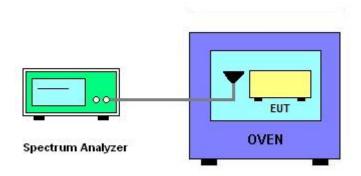
 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 100 ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX: 86-512-57900958 FCC ID: SRQ-Z6530M Page Number : 13 of 21
Report Issued Date : Jul. 22, 2019

Report No.: FR951606D

Report Version : Rev. 01

3.4 Field Strength of Fundamental Emissions and Mask Measurement

Report No.: FR951606D

3.4.1 Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225			
Description	Compliance with the spectrum mask is tested with RBW set to 9kHz.			o 9kHz.
From of Emission (MUT)	Field Strength	Field Strength	Field Strength	Field Strength
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m
1.705~13.110	30	29.5	48.58	69.5
13.110~13.410	106	40.5	59.58	80.5
13.410~13.553	334	50.5	69.58	90.5
13.553~13.567	15848	84.0	103.08	124.0
13.567~13.710	334	50.5	69.58	90.5
13.710~14.010	106	40.5	59.58	80.5
14.010~30.000	30	29.5	48.58	69.5

3.4.2 Measuring Instruments

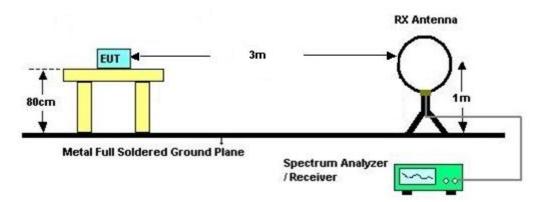
See list of measuring instruments of this test report.

 Sporton International (Kunshan) Inc.
 Page Number
 : 14 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

3.4.3 Test Procedures


 Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.

Report No.: FR951606D

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- Compliance with the spectrum mask is tested with RBW set to 9kHz.
 Note: Emission level (dBμV/m) = 20 log Emission level (μV/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

 Sporton International (Kunshan) Inc.
 Page Number
 : 15 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Report No.: FR951606D

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

The following table is the setting of receiver.

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.

 Sporton International (Kunshan) Inc.
 Page Number
 : 16 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

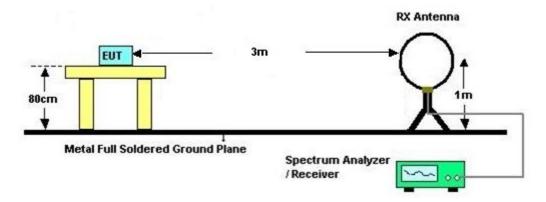
 FAX: 86-512-57900958
 Report Version
 : Rev. 01

3.5.4 Test Procedures

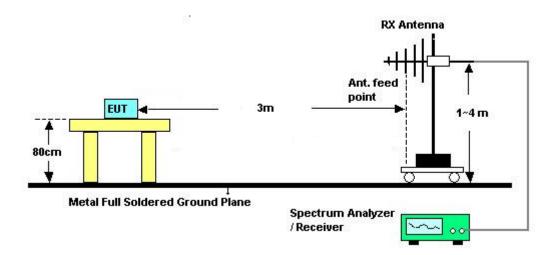
 Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.

Report No.: FR951606D

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. Antenna Requirements


 Sporton International (Kunshan) Inc.
 Page Number
 : 17 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019


 FAX: 86-512-57900958
 Report Version
 : Rev. 01

3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

Remark: There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

Sporton International (Kunshan) Inc.

TEL: 86-512-57900158 FAX: 86-512-57900958 FCC ID: SRQ-Z6530M Page Number : 18 of 21
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Report No.: FR951606D

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: FR951606D

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

 Sporton International (Kunshan) Inc.
 Page Number
 : 19 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 7, 2018	Jun. 18, 2019	Aug. 6, 2019	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 14, 2019	Jun. 18, 2019	Jan. 13, 2020	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 14, 2019	Jun. 18, 2019	Jan. 13, 2020	Conducted (TH01-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 16, 2019	May 31, 2019	Apr. 15, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 12, 2018	May 31, 2019	Oct. 11, 2019	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Nov. 17, 2018	May 31, 2019	Nov. 16, 2019	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2018	May 31, 2019	Oct. 11, 2019	Conduction (CO01-KS)
EMI Test Receiver	R&S	ESR7	101403	9kHz~7GHz;Ma x 30dBm	Aug. 06. 2018	Jul. 08, 2019	Aug. 05. 2019	Radiation (03CH02-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44G,MAX 30dB	Apr. 16, 2019	Jul. 08, 2019	Apr. 15, 2020	Radiation (03CH02-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 19, 2018	Jul. 08, 2019	Oct. 18, 2019	Radiation (03CH02-KS)
Bilog Antenna	TeseQ	CBL6112D	23182	30MHz-2GHz	Dec. 29, 2018	Jul. 08, 2019	Dec. 28, 2019	Radiation (03CH02-KS)
Amplifier	SONOMA	310N	187289	9KHz-1GHz	Aug06.2018	Jul. 08, 2019	Aug.05.2019	Radiation (03CH02-KS)
AC Power Source	Chroma	61601	616010002 473	N/A	NCR	Jul. 08, 2019	NCR	Radiation (03CH02-KS)
Turn Table	MF	MF7802	N/A	0~360 degree	NCR	Jul. 08, 2019	NCR	Radiation (03CH02-KS)
Antenna Mast	MF	MF7802	N/A	1 m~4 m	NCR	Jul. 08, 2019	NCR	Radiation (03CH02-KS)

Report No.: FR951606D

 Sporton International (Kunshan) Inc.
 Page Number
 : 20 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

5. Uncertainty of Evaluation

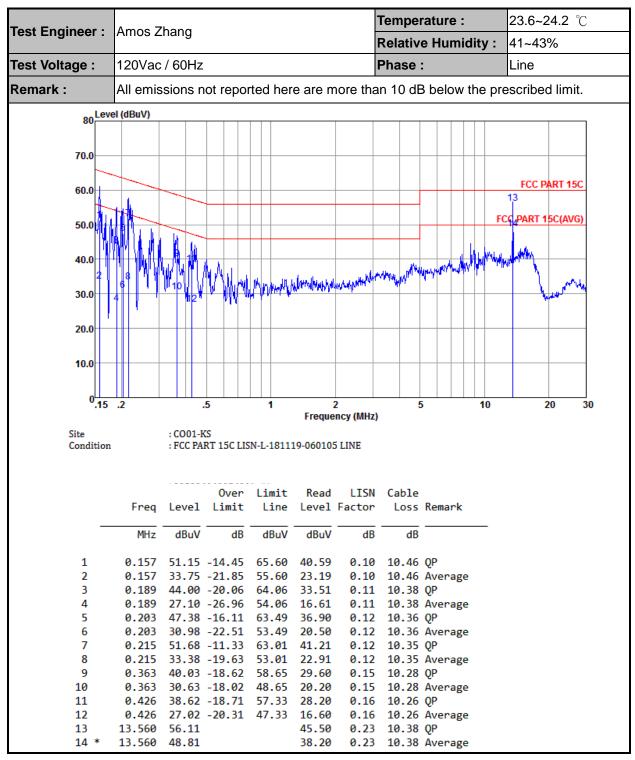
The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Report No.: FR951606D

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.906

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>


Measuring Uncertainty for a Level of Confidence	4.8dB
of 95% (U = 2Uc(y))	4.0UD

 Sporton International (Kunshan) Inc.
 Page Number
 : 21 of 21

 TEL: 86-512-57900158
 Report Issued Date
 : Jul. 22, 2019

 FAX: 86-512-57900958
 Report Version
 : Rev. 01

Appendix A. Test Results of Conducted Emission Test

(1) with antenna

Remark: 13.560MHz is the NFC RF fundamental signal.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: SRQ-Z6530M Page Number : A1 of A4
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Report No.: FR951606D

Toot Engineer	A	7ha==					Tem	perat	ture	:	23	3.6~24	.2 ℃		
Test Engineer :	Amos	Amos Zhang Relative F						ve Humidity :			41~43%				
Test Voltage :	120Va	c / 60H	Z				Phas	se :			Neutral				
Remark :	All emi	All emissions not reported here are more than 10 dB below the prescribed limit.													
on Lev	el (dBuV)														
80															
70.0															
_	\perp														
60.0										1	o FCC F	PART 150	-		
										FC ²	ODART	15C(AVG			
50.0												ISC(AVO)	4		
40.0			h.			rannadydd y f			Market	of the party designation of the party designat	mark-ly				
40.0	8	`\^\\\	Mali				adh. M	Wanted To	N.		1				
30.0	³	18	LL MANA			(Markens) Africa (Market)	K K. LAMMA				H	, MA			
30.0		16	11111	it la la la								\	^N		
20.0												ļ ".			
10.0													-		
0.15	2		5	1				 5		10		20	30		
.13															
			3	•		ncy (MHz)				10		20			
Site		: CO01-K	IS		Freque	ncy (MHz)				10		20			
Site Condition		: CO01-K	IS		Freque					10		20			
		: CO01-K	IS		Freque	ncy (MHz)				10		20			
		: CO01-K	IS		Freque	ncy (MHz) 5 NEUTRAI				10		20			
		: CO01-K	S RT 15C LIS Over	N-N-1811 Limit	Freque 19-06010 Read	ncy (MHz) 5 NEUTRAI	L Cable	Remar		10		20			
		: CO01-K : FCC PAI	S RT 15C LIS Over	N-N-1811 Limit	Freque 19-06010 Read	ncy (MHz) 5 NEUTRAI	L Cable			_		20			
Condition	Freq	: CO01-K : FCC PAI Level	Over Limit dB	N-N-1811 Limit Line dBuV	Read Level	LISN Factor	Cable Loss	Remar		_		20			
	Freq MHz 0.152	: CO01-K : FCC PAI Level	Over Limit dB -5.95	N-N-1811 Limit Line dBuV 65.91	Read Level	LISN Factor dB	Cable Loss dB	Remar	rk	_		20			
Condition — 1	Freq MHz 0.152	: CO01-K : FCC PAI Level dBuV 59.96 44.86	Over Limit dB -5.95	N-N-1811 Limit Line dBuV 65.91 55.91	Read Level dBuV 49.30 34.20	LISN Factor dB 0.18 0.18	Cable Loss	Remar QP Avera	rk	_		20			
Condition 1 2 3 4	Freq MHz 0.152 0.152 0.157 0.157	:CO01-K :FCC PAI Level dBuV 59.96 44.86 55.84 38.84	Over Limit dB -5.95 -11.05 -9.76 -16.76	N-N-1811 Limit Line dBuV 65.91 55.91 65.60 55.60	Read Level dBuV 49.30 34.20 45.20 28.20	LISN Factor dB 0.18 0.18 0.18 0.18 0.18	Cable Loss dB 10.48 10.48 10.46 10.46	QP Avera QP Avera	rk age			20			
Condition 1 2 3 4 5	Freq MHz 0.152 0.152 0.157 0.157	:CO01-K :FCC PAI Level dBuV 59.96 44.86 55.84 38.84 48.19	Over Limit dB -5.95 -11.05 -9.76 -16.76 -16.36	N-N-1811 Limit Line dBuV 65.91 55.91 65.60 55.60 64.55	Read Level dBuV 49.30 34.20 45.20 28.20 37.60	LISN Factor dB 0.18 0.18 0.18 0.18 0.18 0.18 0.18	Cable Loss dB 10.48 10.48 10.46 10.46 10.41	QP Avera QP Avera QP	rk age	_		20			
Condition 1 2 3 4	Freq MHz 0.152 0.152 0.157 0.157	:CO01-K :FCC PAI Level dBuV 59.96 44.86 55.84 38.84 48.19 31.19	Over Limit dB -5.95 -11.05 -9.76 -16.76	N-N-1811 Limit Line dBuV 65.91 65.60 55.60 64.55 54.55	Read Level dBuV 49.30 34.20 45.20 28.20 37.60 20.60	LISN Factor dB 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	Cable Loss dB 10.48 10.48 10.46 10.46 10.41 10.41	QP Avera QP Avera QP Avera	rk age	_		20			
1 2 3 4 5 6 7 8	Freq MHz 0.152 0.152 0.157 0.157 0.179 0.179	:CO01-K :FCC PAI Level dBuV 59.96 44.86 55.84 38.84 48.19 31.19 56.03	Over Limit dB -5.95 -11.05 -9.76 -16.76 -16.36 -23.36	N-N-1811 Limit Line dBuV 65.91 65.60 64.55 54.55 63.10	Read Level dBuV 49.30 34.20 45.20 28.20 37.60 20.60 45.50	LISN Factor dB 0.18 0.18 0.18 0.18 0.18 0.18 0.17 0.17	Cable Loss dB 10.48 10.48 10.46 10.41 10.41 10.36 10.36	QP Avera QP Avera QP Avera QP Avera QP Avera	nge age			20			
1 2 3 4 5 6 7 8	Freq MHz 0.152 0.157 0.157 0.179 0.179 0.213 0.213 0.240	:CO01-K :FCC PAI :FCC PAI :FCC PAI :GBuV 59.96 44.86 55.84 38.84 48.19 31.19 56.03 36.83 45.71	Over Limit dB -5.95 -11.05 -9.76 -16.76 -16.36 -7.07 -16.27 -16.37	N-N-1811 Limit Line dBuV 65.91 55.91 65.60 64.55 54.55 63.10 53.10 62.08	Read Level dBuV 49.30 34.20 45.20 28.20 37.60 20.60 45.50 26.30 35.20	LISN Factor dB 0.18 0.18 0.18 0.18 0.18 0.17 0.17	Cable Loss dB 10.48 10.48 10.46 10.41 10.41 10.36 10.36 10.34	QP Avera QP Avera QP Avera QP Avera QP Avera QP	nk age age age			20			
Condition 1 2 3 4 5 6 7 8 9 10	Freq MHz 0.152 0.157 0.157 0.179 0.179 0.213 0.213 0.240 0.240	:CO01-K :FCC PAI :FCC PAI :FCC PAI :GBuV 59.96 44.86 55.84 38.84 48.19 31.19 56.03 36.83 45.71 27.11	Over Limit dB -5.95 -11.05 -9.76 -16.76 -16.36 -7.07 -16.27 -16.37 -24.97	N-N-1811 Limit Line dBuV 65.91 55.91 65.60 64.55 54.55 63.10 53.10 62.08 52.08	Read Level 49.30 34.20 45.20 28.20 37.60 20.60 45.50 26.30 35.20 16.60	LISN Factor dB 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17	Cable Loss dB 10.48 10.48 10.46 10.41 10.36 10.36 10.34 10.34	QP Avera QP Avera QP Avera QP Avera QP Avera	nk age age age	_		20			
Condition 1 2 3 4 5 6 7 8 9 10 11	Freq MHz 0.152 0.152 0.157 0.157 0.179 0.213 0.213 0.240 0.240 0.264	:CO01-K :FCC PAI :FCC PAI :FCC PAI :GBuV 59.96 44.86 55.84 38.84 48.19 31.19 56.03 36.83 45.71 27.11 40.79	Over Limit dB -5.95 -11.05 -9.76 -16.76 -16.36 -7.07 -16.27 -16.37 -24.97 -20.50	N-N-1811 Limit Line dBuV 65.91 55.91 65.60 64.55 54.55 63.10 53.10 62.08 52.08 61.29	Freque 19-06010 Read Leve1 dBuV 49.30 34.20 45.20 28.20 37.60 20.60 45.50 26.30 35.20 16.60 30.31	LISN Factor dB 0.18 0.18 0.18 0.18 0.19 0.17 0.17 0.17 0.16	Cable Loss dB 10.48 10.48 10.46 10.41 10.36 10.36 10.34 10.34 10.32	QP Avera QP Avera QP Avera QP Avera QP Avera QP Avera	age age age age						
Condition 1 2 3 4 5 6 7 8 9 10	Freq MHz 0.152 0.152 0.157 0.157 0.179 0.213 0.213 0.240 0.264 0.264	:CO01-K :FCC PAI :FCC PAI :FCC PAI :GUID PAI :FCC PAI :GUID PAI :FCC PAI :GUID PAI :FCC PAI :GUID PAI :FCC PAI :GUID	Over Limit dB -5.95 -11.05 -9.76 -16.76 -16.36 -7.07 -16.27 -16.37 -24.97	N-N-1811 Limit Line dBuV 65.91 55.91 65.60 64.55 54.55 63.10 53.10 62.08 52.08 61.29 51.29	Read Level 49.30 34.20 45.20 28.20 37.60 20.60 45.50 26.30 35.20 16.60 30.31 13.51	LISN Factor dB 0.18 0.18 0.18 0.18 0.19 0.17 0.17 0.17 0.16 0.16	Cable Loss dB 10.48 10.48 10.46 10.41 10.36 10.36 10.34 10.34	QP Avera QP Avera QP Avera QP Avera QP Avera QP Avera	age age age age						
Condition 1 2 3 4 5 6 7 8 9 10 11 12	Freq MHz 0.152 0.152 0.157 0.157 0.179 0.213 0.213 0.240 0.264 0.264	:CO01-K :FCC PAI :FCC PAI :FCC PAI :GUID PAI :FCC PAI :GUID PAI :FCC PAI :GUID PAI :FCC PAI :GUID PAI :FCC PAI :GUID	Over Limit dB -5.95 -11.05 -9.76 -16.76 -16.36 -7.07 -16.27 -16.37 -24.97 -20.50 -27.30	N-N-1811 Limit Line dBuV 65.91 55.91 65.60 64.55 54.55 63.10 53.10 62.08 52.08 61.29 51.29 60.32	Read Level 49.30 34.20 45.20 28.20 37.60 20.60 45.50 26.30 35.20 16.60 30.31 13.51 33.50	LISN Factor dB 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.16 0.16 0.16	Cable Loss dB 10.48 10.48 10.46 10.41 10.36 10.36 10.34 10.34 10.32	Remar QP Avera QP Avera QP Avera QP Avera QP Avera QP	age age age age						
Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Freq MHz 0.152 0.152 0.157 0.157 0.179 0.213 0.213 0.240 0.264 0.264 0.297 0.360	:CO01-K :FCC PAI :FCC PAI :FCC PAI :GUID PAI :FCC PAI :GUID PAI :FCC PAI :GUID PAI :FCC PAI :GUID PAI :FCC PAI :GUID	Over Limit -5.95 -11.05 -9.76 -16.76 -16.36 -7.07 -16.27 -16.37 -24.97 -20.50 -27.30 -16.35 -23.25 -14.80	N-N-1811 Limit Line dBuV 65.91 55.91 65.60 64.55 54.55 63.10 53.10 62.08 52.08 61.29 51.29 60.32 50.32 58.74	Read Level 49.30 34.20 45.20 28.20 37.60 20.60 45.50 26.30 35.20 16.60 30.31 13.51 33.50 16.60 33.50	LISN Factor dB 0.18 0.18 0.18 0.18 0.19 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16	Cable Loss dB 10.48 10.48 10.46 10.41 10.36 10.34 10.32 10.32 10.31 10.31	Remar QP Avera QP Avera QP Avera QP Avera QP Avera QP Avera QP	age age age age age						
Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Freq MHz 0.152 0.152 0.157 0.157 0.179 0.213 0.213 0.240 0.264 0.264 0.297 0.360 0.360	:CO01-K :FCC PAI :FCC PAI :FCC PAI :GUIDE STATE	Over Limit -5.95 -11.05 -9.76 -16.76 -16.36 -7.07 -16.27 -16.37 -24.97 -20.50 -27.30 -16.35 -23.25 -14.80 -21.70	M-N-1811 Limit Line dBuV 65.91 55.91 65.60 64.55 54.55 63.10 62.08 52.08 61.29 51.29 60.32 50.32 58.74 48.74	Read Level 49.30 34.20 45.20 28.20 37.60 20.60 45.50 26.30 35.20 16.60 30.31 13.51 33.50 16.60 33.50	LISN Factor dB 0.18 0.18 0.18 0.18 0.19 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16	Cable Loss dB 10.48 10.48 10.46 10.41 10.36 10.34 10.32 10.32 10.31 10.31 10.28 10.28	Remar QP Avera QP Avera QP Avera QP Avera QP Avera QP Avera QP Avera	age age age age age						
Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	Freq MHz 0.152 0.152 0.157 0.157 0.179 0.213 0.213 0.240 0.264 0.264 0.297 0.360 0.360	:CO01-K :FCC PAI :FCC PAI :FCC PAI :GUIDE STATE	Over Limit -5.95 -11.05 -9.76 -16.76 -16.36 -7.07 -16.27 -16.37 -24.97 -20.50 -27.30 -16.35 -23.25 -14.80	M-N-1811 Limit Line dBuV 65.91 55.91 65.60 64.55 54.55 63.10 62.08 52.08 61.29 51.29 60.32 50.32 58.74 48.74	Read Level 49.30 34.20 45.20 28.20 37.60 20.60 45.50 26.30 35.20 16.60 30.31 13.51 33.50 16.60 33.50	LISN Factor dB 0.18 0.18 0.18 0.18 0.19 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16	Cable Loss dB 10.48 10.48 10.46 10.41 10.36 10.34 10.32 10.32 10.31 10.31	Remar QP Avera QP Avera QP Avera QP Avera QP Avera QP Avera QP Avera	age age age age age						
Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Freq MHz 0.152 0.152 0.157 0.157 0.179 0.213 0.240 0.244 0.264 0.264 0.297 0.360 0.360 0.435	:CO01-K :FCC PAI dBuV 59.96 44.86 55.84 38.84 48.19 31.19 56.03 36.83 45.71 27.11 40.79 23.99 43.97 27.07 43.94 27.04 41.91 29.01	Over Limit -5.95 -11.05 -9.76 -16.76 -16.36 -7.07 -16.27 -16.37 -24.97 -20.50 -27.30 -16.35 -23.25 -14.80 -21.70	N-N-1811 Limit Line dBuV 65.91 65.60 55.60 64.55 54.55 63.10 62.08 52.08 61.29 50.32 50.32 50.32 50.32 50.32 50.32	Read Level	LISN Factor dB 0.18 0.18 0.18 0.18 0.19 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.15	Cable Loss dB 10.48 10.46 10.41 10.36 10.34 10.32 10.32 10.31 10.32 10.32 10.32 10.35	Remar QP Avera QP Avera QP Avera QP Avera QP Avera QP Avera QP Avera	nge age age age age						
Condition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	Freq MHz 0.152 0.152 0.157 0.157 0.179 0.213 0.240 0.240 0.264 0.264 0.297 0.297 0.360 0.360 0.435	:CO01-K :FCC PAI dBuV 59.96 44.86 55.84 38.84 48.19 31.19 56.03 36.83 45.71 27.11 40.79 23.99 43.97 27.07 43.94 27.04 41.91 29.01 58.61	Over Limit -5.95 -11.05 -9.76 -16.76 -16.36 -7.07 -16.27 -16.37 -24.97 -20.50 -27.30 -16.35 -23.25 -14.80 -21.70 -15.24	N-N-1811 Limit Line dBuV 65.91 65.60 55.60 64.55 54.55 63.10 62.08 52.08 61.29 50.32 50.32 50.32 50.32 50.32 50.32	Read Level	LISN Factor dB 0.18 0.18 0.18 0.18 0.19 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.13	Cable Loss dB 10.48 10.46 10.41 10.36 10.34 10.32 10.32 10.31 10.32 10.32 10.31 10.28 10.25	Remar QP Avera QP Avera QP Avera QP Avera QP Avera QP Avera QP Avera QP	nge age age age age						

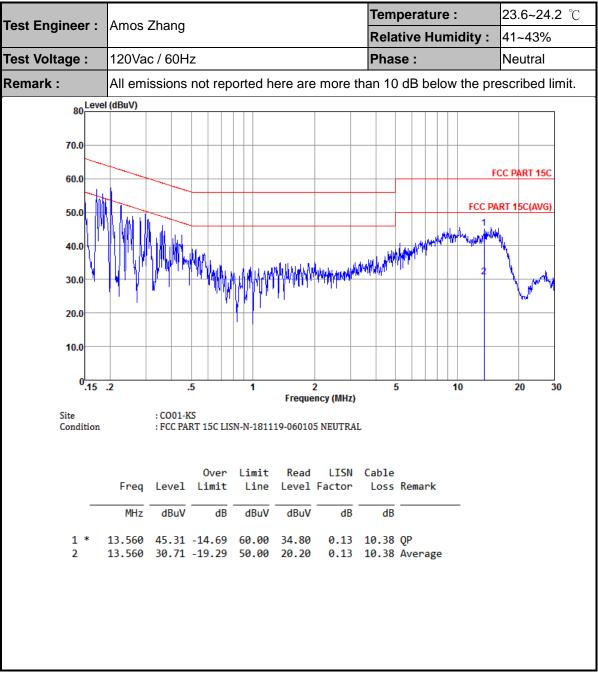
(1) with antenna

Remark: 13.560MHz is the NFC RF fundamental signal.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: SRQ-Z6530M Page Number : A2 of A4
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Report No.: FR951606D


Temperature : 23.6~24.2 ℃ Test Engineer: Amos Zhang Relative Humidity: 41~43% Test Voltage: 120Vac / 60Hz Phase: Line All emissions not reported here are more than 10 dB below the prescribed limit. Remark: 70.0 FCC PART 15C 60.0 FCC PART 15C(AVG) 50.0 40.0 30.0 20.0 10.0 0.15 .2 .5 5 10 20 Frequency (MHz) Site : CO01-KS Condition : FCC PART 15C LISN-L-181119-060105 LINE LISN Cable Over Limit Read Level Level Factor Loss Remark MHz dBuV dBuV dB dBuV dΒ dΒ 13.560 43.21 -16.79 60.00 32.60 0.23 10.38 QP 13.560 28.41 -21.59 50.00 17.80 0.23 10.38 Average

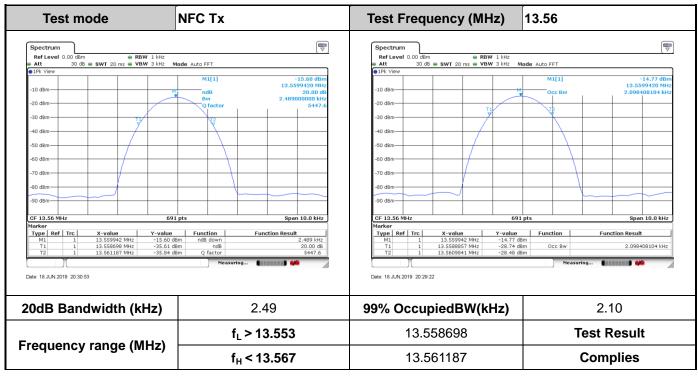
(2) With dummy load

Remark: Only the fundamental NFC signal needs to be retested per KDB 174176.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: SRQ-Z6530M Page Number : A3 of A4
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Report No.: FR951606D

(2) With dummy load


Remark: Only the fundamental NFC signal needs to be retested per KDB 174176.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: SRQ-Z6530M Page Number : A4 of A4
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Report No.: FR951606D

Appendix B. Test Results of Conducted Test Items

B1. Test Result of 20dB Spectrum Bandwidth

Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

Sporton International (Kunshan) Inc.

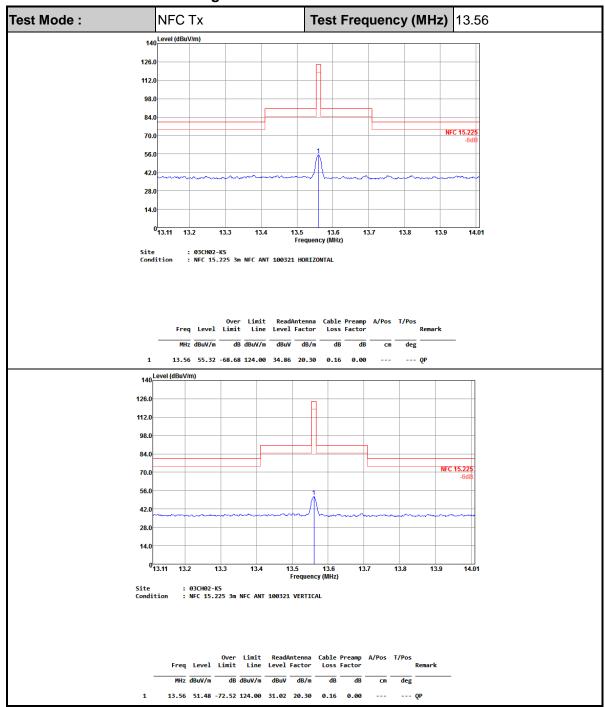
TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: SRQ-Z6530M Page Number : B1 of B2
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Report No.: FR951606D

B2. Test Result of Frequency Stability

B3. Voltage vs. Fre	quency Stability	Temperature vs. Fre	equency Stability		
Voltage (Vac)	Measurement Frequency (MHz)	Temperature (℃)	Measurement Frequency (MHz)		
120	13.559943	-20	13.559943		
102	13.559943	-10	13.559943		
138	13.559943	0	13.559943		
-	-	10	13.559943		
-	-	20	13.559943		
-	-	30	13.559943		
-	-	40	13.559943		
-	-	50	13.559943		
Max.Deviation (MHz)	-0.000058	Max.Deviation (MHz)	-0.000058		
Max.Deviation (ppm)	-4.2404	Max.Deviation (ppm)	-4.2404		
Limit	FS < ±100 ppm	Limit	FS < ±100 ppm		
Test Result	PASS	Test Result	PASS		

Sporton International (Kunshan) Inc.


TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: SRQ-Z6530M Page Number : B2 of B2
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Report No.: FR951606D

Appendix C. Test Results of Radiated Test Items

C1. Test Result of Field Strength of Fundamental Emissions

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: SRQ-Z6530M Page Number : C1 of C5
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Report No.: FR951606D

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)

Test Mode :	Test Mode : NFC Tx			Polariz	ation :	Hor	izontal		
Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Ant Pos	Table Pos	Remark
(MHz)	(dBµV/m	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(cm)	(deg)	
0.07118	51.6	-58.95	110.55	32.19	19.4	0.01	-	-	Average
0.14337	43.87	-60.59	104.46	24.77	19.09	0.01	-	-	Average
0.15	52.26	-51.81	104.07	33.08	19.17	0.01	-	-	Average
2.582	41.12	-28.42	69.54	20.08	21	0.04	-	-	QP
12.811	39.38	-30.16	69.54	18.95	20.28	0.15	-	-	QP
27.555	38.09	-31.45	69.54	17.94	19.84	0.31	-	-	QP

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: SRQ-Z6530M Page Number : C2 of C5
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Report No.: FR951606D

Test Mode :	: NFC	Tx		Polariz	Polarization :			Vertical		
Frequency (MHz)	Level (dBµV/m)	Over Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB)	Cable Loss (dB)	Ant Pos (cm)	Table Pos (deg)	Remark	
0.06343	50.98	-60.57	111.55	31.57	19.4	0.01	-	-	Average	
0.15948	44.76	-58.78	103.54	25.58	19.17	0.01	-	-	Average	
2.834	40.32	-29.22	69.54	19.28	21	0.04	-	-	QP	
8.476	38.64	-30.9	69.54	17.88	20.66	0.1	-	-	QP	
19.611	38.92	-30.62	69.54	18.09	20.6	0.23	-	-	QP	
27.115	38.23	-31.31	69.54	18.02	19.9	0.31	-	-	QP	

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);
- 3. Limit line = specific limits $(dB\mu V)$ + distance extrapolation factor.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: SRQ-Z6530M Page Number : C3 of C5
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Report Template No.: BU5-FR15CNFC Version 2.0

Report No.: FR951606D

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Test Mode : NFC Tx				Polarization :					Horizontal			
Frequency	Leve	el	Over Limit	Limit Line	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Ant Pos	Table Pos	Remark	
(MHz)	(dBµV	/m)	(dB)	(dBµV/m)	(dBµV)	(dB)	(dB)	(dB)	(cm)	(deg)		
40.67	24.3	5	-15.65	40	36.44	19.16	0.71	31.96	-	-	Peak	
45.52	24.1	7	-15.83	40	38.7	16.63	0.78	31.94	-	-	Peak	
174.53	29.3	1	-14.19	43.5	43.53	16.17	1.53	31.92	100	0	Peak	
227.88	29.1	9	-16.81	46	42.25	17.11	1.76	31.93	-	-	Peak	
784.66	27.2	9	-18.71	46	27.93	28.29	3.23	32.16	-	-	Peak	
936.95	29.1	6	-16.84	46	26.28	30.47	3.52	31.11	-	-	Peak	

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: SRQ-Z6530M Page Number : C4 of C5
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Report No.: FR951606D

Test Mode	Test Mode : NFC Tx					olarization	:	Vertical			
Frequency (MHz)	Leve		Over Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
34.85	28.3		-11.67	40	37.46	22.1	0.73	31.96	-	-	Peak
40.67	36.7	4	-3.26	40	48.83	19.16	0.71	31.96	100	45	QP
45.52	35.9	7	-4.03	40	50.5	16.63	0.78	31.94	100	112	QP
226.91	26.7	2	-19.28	46	39.85	17.04	1.76	31.93	-	-	Peak
489.78	28.8	5	-17.15	46	34.69	23.89	2.52	32.25	-	-	Peak
915.61	29.2	2	-16.78	46	27.33	29.73	3.48	31.32	-	-	Peak

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: SRQ-Z6530M Page Number : C5 of C5
Report Issued Date : Jul. 22, 2019
Report Version : Rev. 01

Report No.: FR951606D