

RADIO TEST REPORT FCC ID: 2BOZP-RC330B

Product: Robot vacuum cleaner

Trade Mark: N/A

Model No.: RC330B RC331B, RC332B, RC333B, RC334B, Family Model: RC335B, RC336B, RC337B, RC338B, RC339B Report No.: S25031407002001 Issue Date: Apr. 24, 2025

Prepared for

Huyang Innovation Co., Ltd.

513, 5th Floor, A3 Building, Yuan chuang kong jian - xue xiang yuan, Xiangjiaotang Community, Bantian Street, Longgang District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China

Tel. 0755-23200050 Website: http://www.ntek.org.cn

		Table of Contents	Page
1	TF	EST RESULT CERTIFICATION	
2	SU	JMMARY OF TEST RESULTS	4
3	FA	CILITIES AND ACCREDITATIONS	5
	3.1	FACILITIES	
	3.2	LABORATORY ACCREDITATIONS AND LISTINGS	
	3.3	MEASUREMENT UNCERTAINTY	
4		ENERAL DESCRIPTION OF EUT	
5		ESCRIPTION OF TEST MODES	
6	SE	TUP OF EQUIPMENT UNDER TEST	9
	6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
	6.2	SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	
_	6.3	EQUIPMENTS LIST FOR ALL TEST TIEMS	
7	TE	-	
	7.1	CONDUCTED EMISSIONS TEST	
	7.2	RADIATED SPURIOUS EMISSION	
	7.3 7.4	6DB BANDWIDTH DUTY CYCLE	
	7.4 7.5	PEAK OUTPUT POWER	
	7.5 7.6	POWER SPECTRAL DENSITY	
	7.7	CONDUCTED BAND EDGE MEASUREMENT	
	7.8	SPURIOUS RF CONDUCTED EMISSIONS	
	7.9	ANTENNA APPLICATION	
8	TF	EST RESULTS	34
ĺ	8.1	1M	
	8.2	2M	56

1 TEST RESULT CERTIFICATION

Applicant's name Huyang Innovation Co., Ltd.	
Address	513, 5th Floor, A3 Building, Yuan chuang kong jian - xue xiang yuan, Xiangjiaotang Community, Bantian Street, Longgang District, Shenzhen, China
Manufacturer's Name:	
Address	
Product description	
Product name:	Robot vacuum cleaner
Trade Mark:	N/A
Model and/or type reference:	
Family Model	RC331B, RC332B, RC333B, RC334B, RC335B, RC336B, RC337B, RC338B, RC339B
Test Sample number:	S250314070002
Date of Test:	Mar. 11, 2025 ~ Apr. 24, 2025

Measurement Procedure Used:

APPLICABLE STANDARDS		
APPLICABLE STANDARD/ TEST PROCEDURE TEST RESULT		
FCC 47 CFR Part 2, Subpart J		
FCC 47 CFR Part 15, Subpart C	Complied	
ANSI C63.10-2013	Complied	
KDB 558074 D01 15.247 Meas Guidance v05r02		

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared By: Joe Yan (Decised Engineer) By: Aavon Cheng (Supervisor) Approved By: Alex Li (Manager) (Project Engineer) (Supervisor) (Manager)

2 SUMMARY OF TE	SUMMARY OF TEST RESULTS						
	FCC Part15 (15.247), Subpart C						
Standard Section	Standard Section Test Item Verdict Remark						
15.207	15.207 Conducted Emission						
15.247 (a)(2)	15.247 (a)(2) 6dB Bandwidth						
15.247 (b)	15.247 (b) Peak Output Power						
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS					
15.247 (e)	Power Spectral Density	PASS					
15.247 (d)	15.247 (d)Band Edge Emission15.247 (d)Spurious RF Conducted Emission						
15.247 (d)							
15.203	Antenna Requirement	PASS					

Remark:

- "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan
	District, Shenzhen, Guangdong, People's Republic of China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification					
Equipment Robot vacuum cleaner					
Trade Mark	N/A				
FCC ID	2BOZP-RC330B				
Model No.	RC330B				
Family Model	RC331B, RC332B, RC333B, RC334B, RC335B, RC336B, RC337B, RC338B, RC339B				
Model Difference	All models have the same circuit and RF module, except for the model name and the color and pattern of the appearance				
Operating Frequency	2402~2480 MHz				
Modulation	GFSK				
Number of Channels	Please refer channel list				
Antenna Type	Ceramics Antenna				
Antenna Gain	4.3dBi				
Power supply parameters	Charging base station: Input: 100-120VAC, 50/60Hz Output: DC 19V, 0.6A				
Battery	DC 14.4V, 3200mAh, 46.08Wh				
Power supply	DC 12~16.8V from battery or DC 19V from Charging base station				
HW Version	VB1				
SW Version	N/A				
considered as an ITE/C User's Manual.	pplication, features, or specification exhibited in User's Manual, the EUT is Computing Device. More details of EUT technical specification, please refer to the ng test program was provided and the EUT was programmed to be in continuously				

Revision History

			
Report No.	Version	Description	Issued Date
S25031407002001	Rev.01	Initial issue of report	Apr. 24, 2025

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps/2Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency (MHz)
00	2402
01	2404
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases				
Test Item	Data Rate/ Modulation			
AC Conducted Emission	Mode 1: normal link mode			
	Mode 1: normal link mode			
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps			
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps			
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps			
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps			
Conducted Test	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps			
00363	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps			

Note:

- 1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.
- 2. AC power line Conducted Emission was tested under maximum output power.
- For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

6 SETUP OF EQUIPMENT UNDER TEST 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
For AC Conducted Emission Mode	
AC PLUG	
AE-2 AE-1 Charging base station EUT	
For Radiated Test Cases	
AE-1 EUT	
For Conducted Test Cases	
Measurement C-1 AE-1 Instrument EUT	
Note: The temporary antenna connector is soldered on the PCB board in order tests and this temporary antenna connector is listed in the equipment list.	to perform conducted

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Robot vacuum cleaner	RC330B	N/A	EUT
AE-2	Charging base station	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

adiatio	on& Conducted 1	lest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.07.17	2025.07.16	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.07.17	2025.07.16	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.07.17	2025.07.16	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.07.17	2025.07.16	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.05.12	2025.05.11	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2024.07.17	2025.07.16	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.05.12	2027.05.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2024.05.12	2027.05.11	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2024.07.18	2025.07.17	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2024.05.17	2027.05.16	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2024.07.17	2025.07.16	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2024.04.26	2027.04.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	onduction Test	equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.07.17	2025.07.16	1 year
2	LISN	R&S	ENV216	101313	2024.07.17	2025.07.16	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.07.17	2025.07.16	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2024.04.26	2027.04.25	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

Measurement Software

Item	Manufacturer	Software Name	Software Version	Description
1	MWRFtest	MTS 8310 2.4GHz/5GHz	2.0	RF Conducted Test
2	Farad	EZ-EMC_RE	AIT-03A	RadiatedTest
3	Farad	EZ-EMC_CE	AIT-03A	AC Conducted Test

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

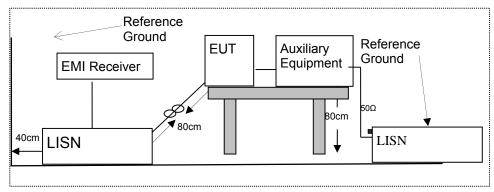
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Frequency(MHz)	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

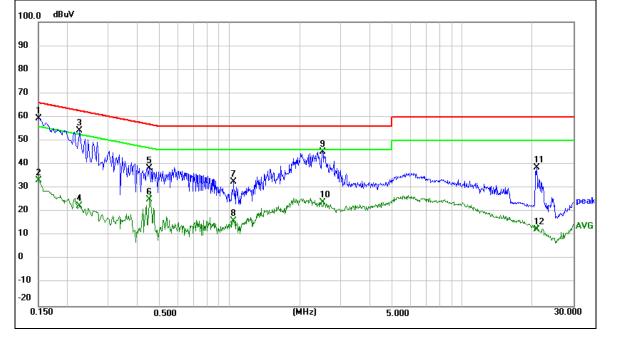
The Measuring equipment is listed in the section 6.3 of this test report.

7.1.4 **Test Configuration**

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.


Test Results 7.1.6

EUT:	Robot vacuum cleaner	Model Name :	RC330B
Temperature:	24.5 ℃	Relative Humidity:	48%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 19V from Charging base AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1500	49.50	9.89	59.39	66.00	-6.61	peak
0.1500	23.48	9.89	33.37	56.00	-22.63	AVG
0.2260	44.19	10.06	54.25	62.60	-8.35	peak
0.2260	12.35	10.06	22.41	52.60	-30.19	AVG
0.4500	27.74	10.51	38.25	56.88	-18.63	peak
0.4500	14.76	10.51	25.27	46.88	-21.61	AVG
1.0420	20.94	11.73	32.67	56.00	-23.33	peak
1.0420	4.44	11.73	16.17	46.00	-29.83	AVG
2.5100	35.63	9.68	45.31	56.00	-10.69	peak
2.5100	14.15	9.68	23.83	46.00	-22.17	AVG
20.8740	28.67	9.92	38.59	60.00	-21.41	peak
20.8740	2.65	9.92	12.57	50.00	-37.43	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

Temperature: Pressure: Test Voltage:		cuum cleaner		Model Name : RC330B		
	24.5 ℃			Relative Humidity: 48%		
	1010hPa			Phase :	Ν	
iest vollage :	DC 19V f 120V/60F	rom Charging I Iz	base AC	Test Mode:	Mode 1	
	T	Γ	Γ	1		Γ
Frequency	Reading Level	Correct Factor	Measure-ment	Limits I	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1500	46.94	10.01	56.95	66.00	-9.05	peak
0.1500	21.12	10.01	31.13	56.00	-24.87	AVG
0.4540	25.29	10.61	35.90	56.80	-20.90	peak
0.4540	13.36	10.61	23.97	46.80	-22.83	AVG
0.6900	26.22	11.10	37.32	56.00	-18.68	peak
0.6900	4.64	11.10	15.74	46.00	-30.26	AVG
1.2579	28.69	12.26	40.95		-15.05	peak
1.2579	6.74	12.26	19.00		-27.00	AVG
1.8380	30.09	13.42	43.51		-12.49	peak
1.8380	11.22	13.42	24.64		-21.36	AVG
16.5100	30.29	9.91	40.20		-19.80	peak
16.5100	10.95	9.91	20.86		-29.14	AVG
Remark: . All readings . Factor = Inse	are Quasi-Peak ertion Loss + Ca		alues.			
Remark: . All readings 2. Factor = Ins 00.0 dBuV			alues.			
Remark: . All readings <u>2. Factor = Ins</u> 00.0 dBuV			alues.			
Remark: . All readings <u>2. Factor = Ins</u> 00.0 dBuV 0 0			alues.			
Remark: . All readings 2. Factor = Inse 00.0 dBuV 0 0			alues.			
Remark: . All readings 2. Factor = Ins 00.0 dBuV 00.0 dBuV			alues.			
Remark: . All readings 2. Factor = Ins 00.0 dBuV 00.0 dBuV						
Remark: I. All readings 2. Factor = Ins 00.0 dBuV 10 10 10 10 10 10 10 10 10 10						
Remark: . All readings 2. Factor = Ins 00.0 dBuV 0 0 0 0 0 0 2						
Remark: . All readings 2. Factor = Inse 0.0 dBuV 0 0 0 0 0 0 0 0 0 0 0 0 0					11	
Remark: . All readings . Factor = Insi 00.0 dBuV 0 0 0 0 0 0 0 0 0 0 0 0 0					man for frethy	pe
Remark: . All readings 2. Factor = Inse 00.0 dBuV 0 0 0 0 0 0 0 0 0 0 0 0 0					man for frethy	pe.
Remark: . All readings 2. Factor = Insector 0.0 dBuV 0 0 0 0 0 0 0 0 0 0 0 0 0					man for frethy	pe AV
Remark: . All readings 2. Factor = Insi 00.0 dBuV 00 00 00 00 00 00 00 00 00 0					man for frethy	pe AV
Remark: I. All readings					man for frethy	pe-

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

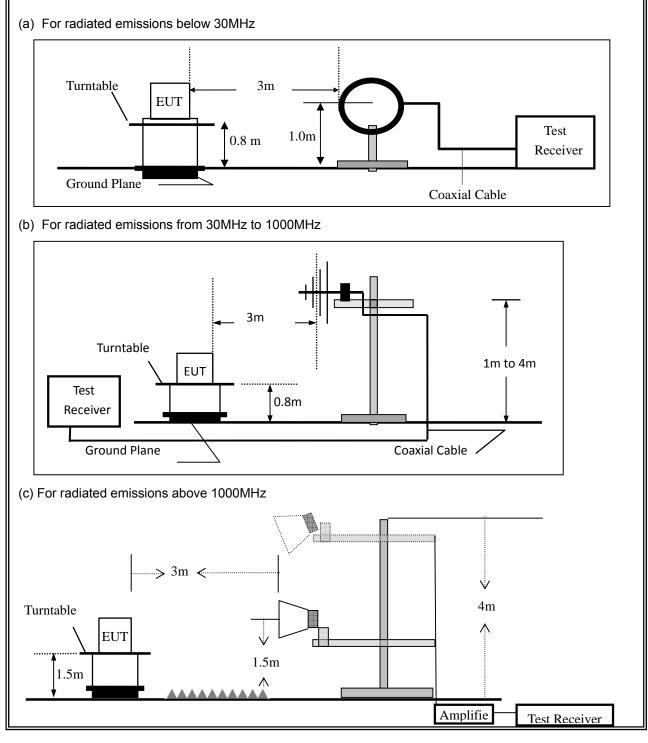
Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(iviriz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test

distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor. For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB);



Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.

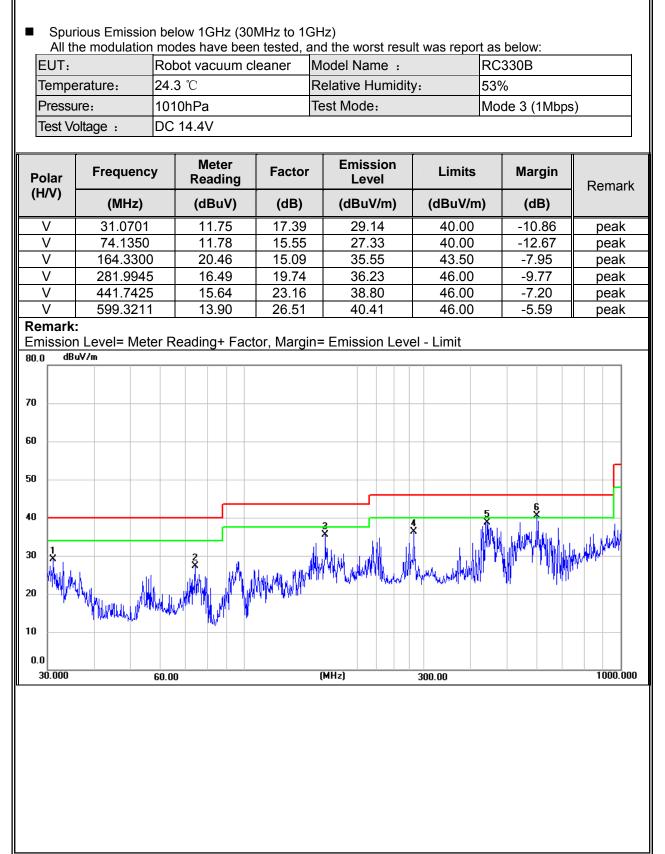
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:							
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth				
30 to 1000	QP	120 kHz	300 kHz				
Above 1000	Peak	1 MHz	1 MHz				
Above 1000	Average	1 MHz	1 MHz				

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] = 10^{10} [g(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.


7.2.6 **Test Results**

Spurious Emission below 30MHz (9KHz to 30MHz)							
EUT:	Robot vacuum cleaner	Model No.:	RC330B				
Temperature:	20 ℃	Relative Humidity:	48%				
Lest Mode	Mode1/Mode2/Mode3/ Mode4	Test By:	Joe Yan				

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Pola		Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/\	V) [(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Remain
Н		59.6492	3.46	19.02	22.48	40.00	-17.52	peak
Н		110.9570	16.79	17.84	34.63	43.50	-8.87	peak
Н		185.7880	17.18	16.51	33.69	43.50	-9.81	peak
Н		284.9766	11.02	19.68	30.70	46.00	-15.30	peak
Н		468.8761	13.74	23.51	37.25	46.00	-8.75	peak
Н		580.7024	10.54	26.71	37.25	46.00	-8.75	peak
	nark:				01.20		0.1.0	pean
		Level= Meter R	eading+ Fact	or. Margin=	Emission Lev	el - Limit		
80.0	dBuV			, g				
Г								
70 -								
60								
00								
50 -								
40							8	
				Ż	3	, X	×	J.
				Â.	з Х	4		
30 -						1 . INVY	what have been a second	And And And I have
		1			i i shikin i sh	ANN AND AND AND AND AND AND AND AND AND	WW MULLING	
20		which the the Mary marker with the	/M /	huhan ta		M M MAR MANY	T'	
10	whiching	not wheel the army bearing the army bearing the second second second second second second second second second	weber Windowerstry by 140	Mertinhologung	A MARKAN A MARKANIA	1 1).		
10				10 PH				
0.0								
30.	.000	60.0)	(MHz)	300.00		1000.000
		00.0				000.00		

UT:		Robot vacu	uum clean	er	Model No.:		RC330B			
emperature):	20 ℃			Relative Hun	nidity:	48%			
est Mode: Mode2/Mode3/Mode4				4	Test By:		Joe Yan			
					,					
Frequency	Read Level		Antenna Factor	Pream Facto	•	Limits	Margin	Remark	Comment	
(MHz)	(dBµV	/) (dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
			Low (Channel	(2402 MHz)(GF	SK)Above	1G			
4802.98	68.01	1 5.21	35.59	44.30	0 64.51	74.00	-9.49	Pk	Vertical	
4802.98	46.53	3 5.21	35.59	44.30	0 43.03	54.00	-10.97	AV	Vertical	
7206.97	65.90	0 6.48	36.27	44.60	0 64.05	74.00	-9.95	Pk	Vertical	
7206.97	46.25	5 6.48	36.27	44.60	0 44.40	54.00	-9.60	AV	Vertical	
4805.52	66.69	9 5.21	35.55	44.30	0 63.15	74.00	-10.85	Pk	Horizontal	
4805.52	45.57	7 5.21	35.55	44.30	0 42.03	54.00	-11.97	AV	Horizontal	
7206.79	66.69	9 6.48	36.27	44.52	2 64.92	74.00	-9.08	Pk	Horizontal	
7206.79	45.91	1 6.48	36.27	44.52	2 44.14	54.00	-9.86	AV	Horizontal	
Mid Channel (2440 MHz)(GFSK)Above 1G										
4880.87	63.07	7 5.21	35.66	44.20	0 59.74	74.00	-14.26	Pk	Vertical	
4880.87	46.66	6 5.21	35.66	44.20	0 43.33	54.00	-10.67	AV	Vertical	
7320.91	67.17	7 7.10	36.50	44.43	3 66.34	74.00	-7.66	Pk	Vertical	
7320.91	46.05	5 7.10	36.50	44.43	3 45.22	54.00	-8.78	AV	Vertical	
4880.56	67.31	1 5.21	35.66	44.20	0 63.98	74.00	-10.02	Pk	Horizontal	
4880.56	45.63	3 5.21	35.66	44.20	0 42.30	54.00	-11.70	AV	Horizontal	
7320.93	65.50	0 7.10	36.50	44.43	3 64.67	74.00	-9.33	Pk	Horizontal	
7320.93	45.13	3 7.10	36.50	44.43	3 44.30	54.00	-9.70	AV	Horizontal	
			High (Channel	(2480 MHz)(GF	SK) Above	e 1G			
4960.81	67.14	4 5.21	35.52	44.2	1 63.66	74.00	-10.34	Pk	Vertical	
4960.81	47.25	5 5.21	35.52	44.2	1 43.77	54.00	-10.23	AV	Vertical	
7440.61	65.69	9 7.10	36.53	44.60	0 64.72	74.00	-9.28	Pk	Vertical	
7440.61	48.16	6 7.10	36.53	44.60	0 47.19	54.00	-6.81	AV	Vertical	
4960.79	68.10	0 5.21	35.52	44.2	1 64.62	74.00	-9.38	Pk	Horizontal	
4960.79	45.44	4 5.21	35.52	44.2	1 41.96	54.00	-12.04	AV	Horizontal	
7441.28	66.60	0 7.10	36.53	44.60	0 65.63	74.00	-8.37	Pk	Horizontal	
7441.28	46.69	9 7.10	36.53	44.60	0 45.72	54.00	-8.28	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

UT:	Robot va	acuum cl	eaner	Mode	I No.:		RC	30B		
emperature:	20 ℃			Relati	Relative Humidity:			48%		
Fest Mode:	Mode2/	Mode2/ Mode4			Test By:		Joe	Yan		
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limi	ts	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	//m)	(dB)	Туре	
				1Mbps(G	FSK) CH00					
2310.00	64.85	2.97	27.80	43.80	51.82	74	Ļ	-22.18	Pk	Horizontal
2310.00	42.69	2.97	27.80	43.80	29.66	54	Ļ	-24.34	AV	Horizontal
2310.00	62.94	2.97	27.80	43.80	49.91	74	Ļ	-24.09	Pk	Vertical
2310.00	45.45	2.97	27.80	43.80	32.42	54	Ļ	-21.58	AV	Vertical
2390.00	69.00	3.14	27.21	43.80	55.55	74	Ļ	-18.45	Pk	Vertical
2390.00	47.15	3.14	27.21	43.80	33.70	54	Ļ	-20.30	AV	Vertical
2390.00	66.11	3.14	27.21	43.80	52.66	74	Ļ	-21.34	Pk	Horizontal
2390.00	46.01	3.14	27.21	43.80	32.56	54	Ļ	-21.44	AV	Horizontal
				1Mbps(G	FSK) CH39					
2483.50	62.96	3.58	27.70	44.00	50.24	74	Ļ	-23.76	Pk	Vertical
2483.50	47.89	3.58	27.70	44.00	35.17	54	Ļ	-18.83	AV	Vertical
2483.50	67.02	3.58	27.70	44.00	54.30	74	Ļ	-19.70	Pk	Horizontal
2483.50	46.29	3.58	27.70	44.00	33.57	54	Ļ	-20.43	AV	Horizontal
2500.00	52.84	5.90	27.70	45.10	41.34	74	Ļ	-32.66	Pk	Vertical
2500.00	41.89	5.90	27.70	45.10	30.39	54	Ļ	-23.61	AV	Vertical
2500.00	54.31	5.90	27.70	45.10	42.81	74	Ļ	-31.19	Pk	Horizontal
2500.00	42.93	5.90	27.70	45.10	31.43	54	ļ	-22.57	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

Spurious	s Em	ission	in Restrict	ed Band 3	<u>26</u> 0MHz-1	18000MHz					
EUT:		Robot	t vacuum o	cleaner	Model	No.:		RC33	0B		
Temperature: 20 °C				Relativ	Relative Humidity:						
Test Mode:	Fest Mode: Mode2/ Mode4			Test By	/:		Joe Y	an			
Frequency		ading evel	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lii	mits	Margin	Detector	Comment
(MHz)	(dE	3μV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBj	uV/m)	(dB)	Туре	
3260	67	7.62	4.04	29.57	44.70	56.53		74	-17.47	Pk	Vertical
3260	47	7.24	4.04	29.57	44.70	36.15	ę	54	-17.85	AV	Vertical
3260	68	3.96	4.04	29.57	44.70	57.87		74	-16.13	Pk	Horizontal
3260	46	6.77	4.04	29.57	44.70	35.68	Ę	54	-18.32	AV	Horizontal
3332	65	5.90	4.26	29.87	44.40	55.63	-	74	-18.37	Pk	Vertical
3332	47	7.16	4.26	29.87	44.40	36.89	ţ	54	-17.11	AV	Vertical
3332	63	3.92	4.26	29.87	44.40	53.65	-	74	-20.35	Pk	Horizontal
3332	47	7.67	4.26	29.87	44.40	37.40	Ę	54	-16.60	AV	Horizontal
17797	49	9.47	10.99	43.95	43.50	60.91		74	-13.09	Pk	Vertical
17797	36	6.91	10.99	43.95	43.50	48.35	ţ	54	-5.65	AV	Vertical
17788	47	7.73	11.81	43.69	44.60	58.63		74	-15.37	Pk	Horizontal
17788	37	7.17	11.81	43.69	44.60	48.07	ę	54	-5.93	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.
(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Robot vacuum cleaner	Model No.:	RC330B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe Yan

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 **Conformance Limit**

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 **Test Procedure**

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if T \leq 6.25 microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Robot vacuum cleaner	Model No.:	RC330B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe Yan

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 **Conformance Limit**

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Robot vacuum cleaner	Model No.:	RC330B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe Yan

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- \hat{g}) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Robot vacuum cleaner	Model No.:	RC330B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Joe Yan

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 **Conformance Limit**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 **Test Procedure**

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Robot vacuum cleaner	Model No.:	RC330B
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Joe Yan

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 **Conformance Limit**

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 **Test Procedure**

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

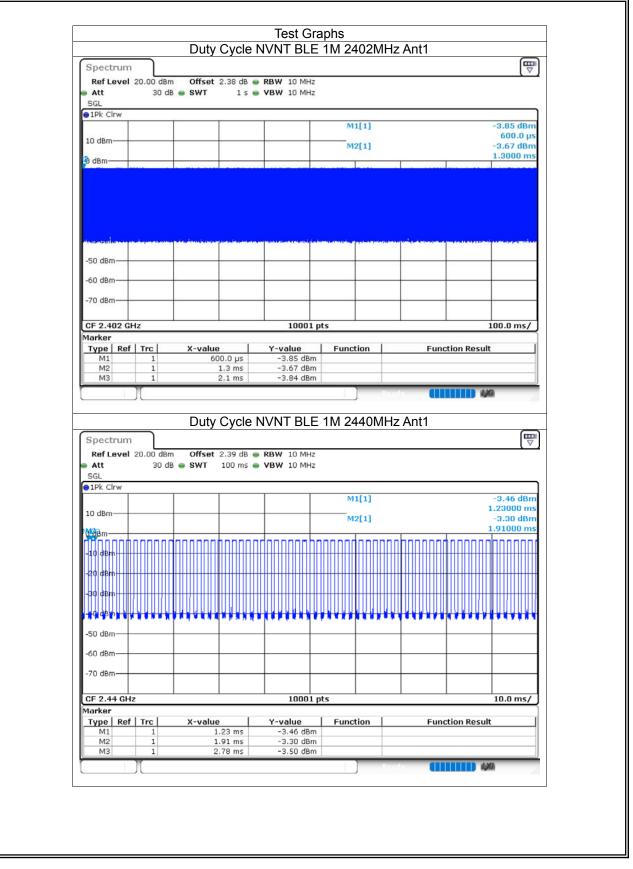
7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 **Result**

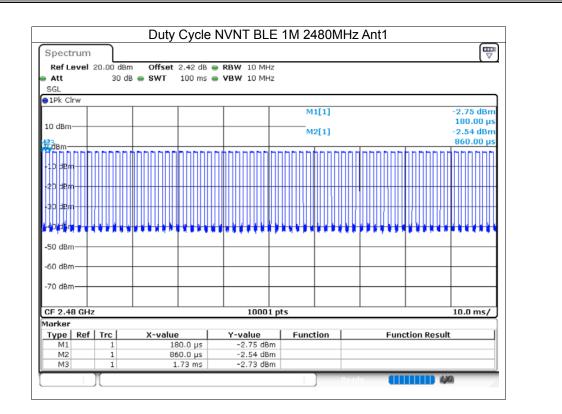
The EUT antenna is permanent attached Ceramics Antenna (Gain: 4.3 dBi). It comply with the standard requirement.

8 TEST RESULTS


8.1 **1M**

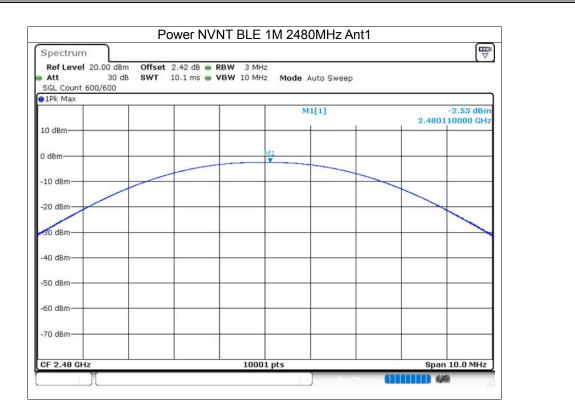
8.1.1 Duty Cycle

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	63.32	1.98	1.25
NVNT	BLE 1M	2440	Ant1	56.76	2.46	1.15
NVNT	BLE 1M	2480	Ant1	56.5	2.48	1.15

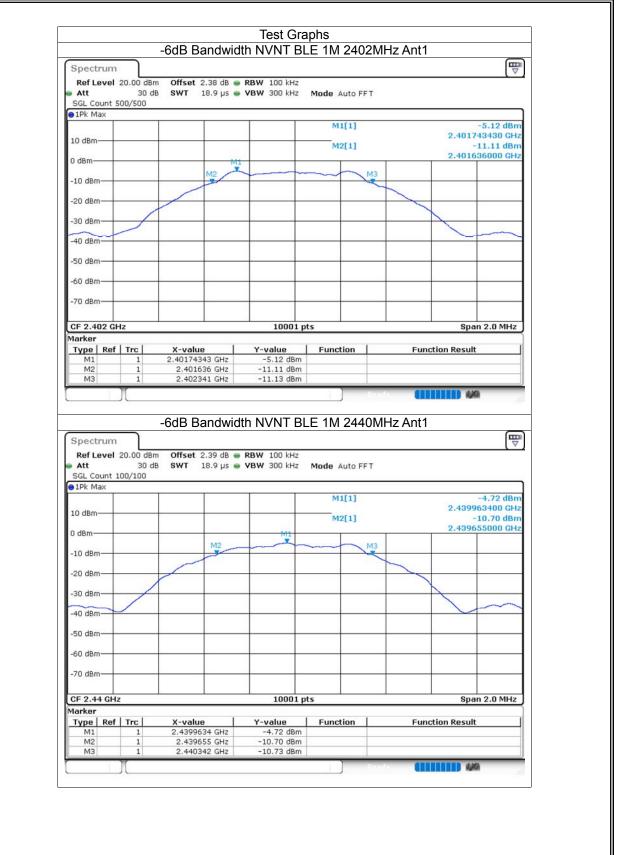


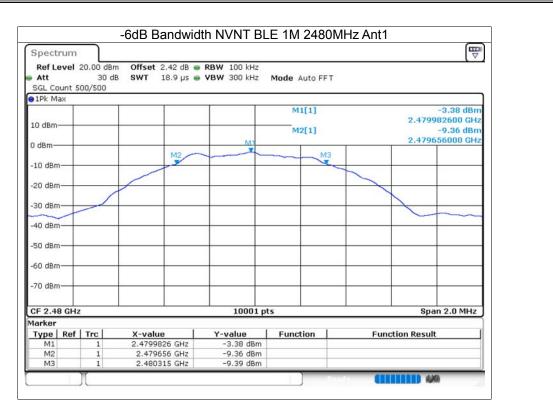
Report No.: S25031407002001

Report No.: S25031407002001

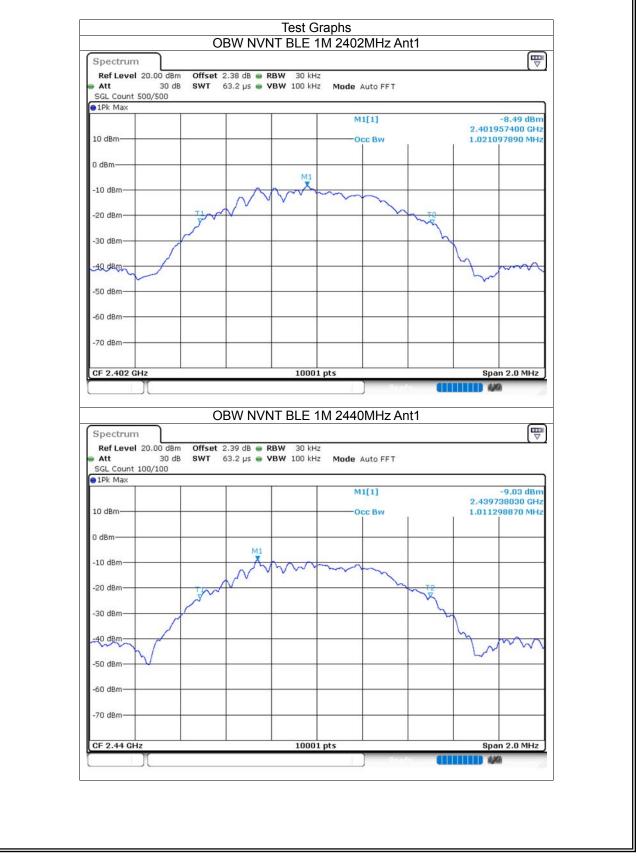

8.1.2 Maximum Conducted Output Power

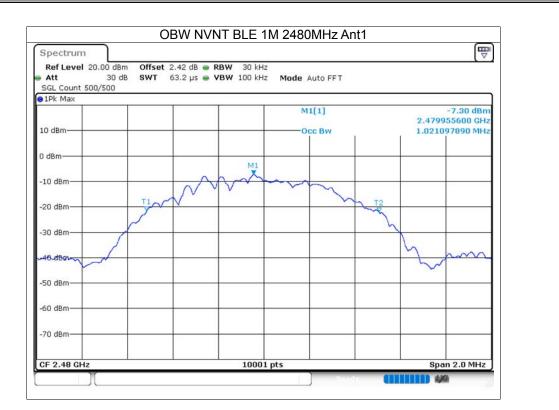
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-3.79	30	Pass
NVNT	BLE 1M	2440	Ant1	-3.26	30	Pass
NVNT	BLE 1M	2480	Ant1	-2.53	30	Pass




8.1.3 -6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.705	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.687	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.659	0.5	Pass



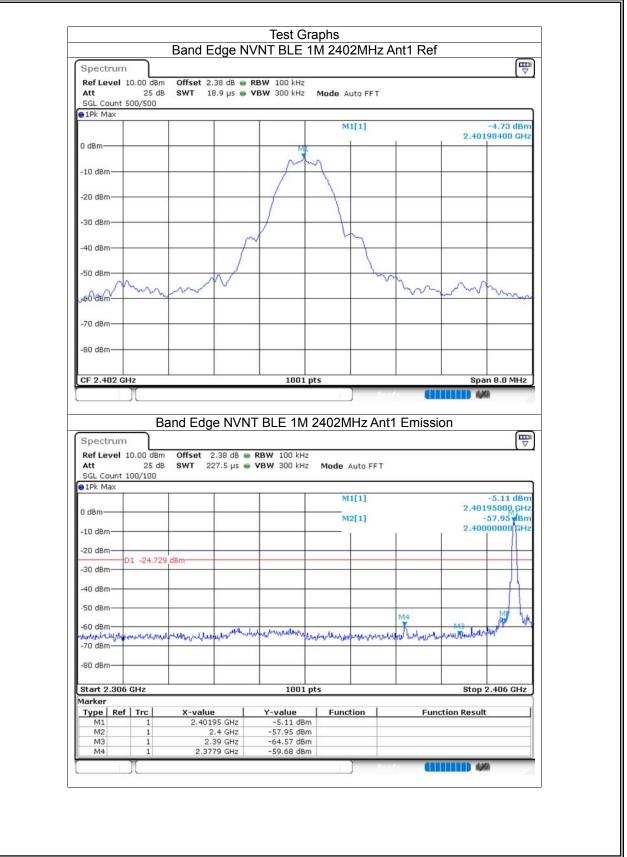

8.1.4 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.021
NVNT	BLE 1M	2440	Ant1	1.011
NVNT	BLE 1M	2480	Ant1	1.021

8.1.5 Maximum Power Spectral Density Level

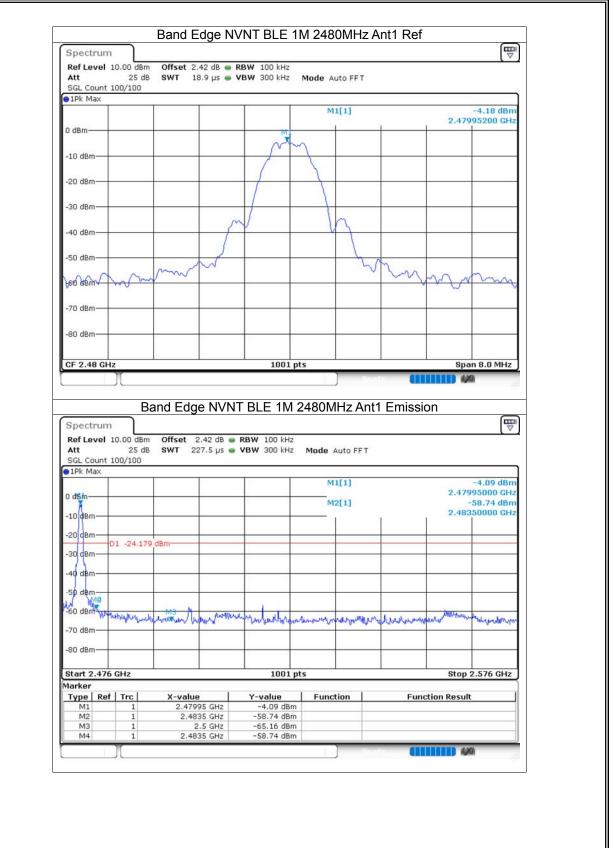
Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-20.48	8	Pass
NVNT	BLE 1M	2440	Ant1	-19.94	8	Pass
NVNT	BLE 1M	2480	Ant1	-19.25	8	Pass

Ref Level 20.0 Att SGL Count 1000	30 dB SWT	et 2.38 dB 👄 631.9 µs 👄			uto FFT			
●1Pk Max				M1	[1]		-	-20.48 dBm
10 dBm						т		85945 GHz
10 dBm-								
0 dBm		-						
10 40-								
-10 dBm	5			-				
-20 dBm		M1	an oranhor	And and a start of the second	1 A			
-20 dBm	Mon mar	al Math, made	botton and at 1	a anderen offel	un many	Mark walk	MANA ANA	
mensuring							Jake	hannal pyle.
-40 dBm		_						- W
-50 dBm								
-60 dBm								
-70 dBm								
								0575 101-
CF 2.402 GHz Spectrum Ref Level 20.	D0 dBm Offse	PSD NVN et 2.39 dB • 632.1 µs •	RBW 3 kHz	M 2440N		1	Span 1.	0575 MHz
Spectrum	DO dBm Offse 30 dB SWT		IT BLE 1 RBW 3 kHz	M 2440N		1		a
Spectrum Ref Level 20,1 Att SGL Count 1000	DO dBm Offse 30 dB SWT	et 2.39 dB 👄	IT BLE 1 RBW 3 kHz	M 2440N	ito FFT	1		₩ 19.94 dBm
Spectrum Ref Level 20,1 Att SGL Count 1000	DO dBm Offse 30 dB SWT	et 2.39 dB 👄	IT BLE 1 RBW 3 kHz	M 2440N 2 2 2 2 3 3 3 3 3 3 4 4 4 3 4 4 4 4 4 4	ito FFT	1		¶ [₩
Spectrum Ref Level 20. Att SGL Count 1000 • 1Pk Max 10 dBm	DO dBm Offse 30 dB SWT	et 2.39 dB 👄	IT BLE 1 RBW 3 kHz	M 2440N 2 2 2 2 3 3 3 3 3 3 4 4 4 3 4 4 4 4 4 4	ito FFT	1		₩ 19.94 dBm
Spectrum Ref Level 20. Att SGL Count 1000 • 1Pk Max	DO dBm Offse 30 dB SWT	et 2.39 dB 👄	IT BLE 1 RBW 3 kHz	M 2440N 2 2 2 2 3 3 3 3 3 3 4 4 4 3 4 4 4 4 4 4	ito FFT	1		₩ 19.94 dBm
Spectrum Ref Level 20. Att SGL Count 1000 • 1Pk Max 10 dBm	DO dBm Offse 30 dB SWT	et 2.39 dB 👄	IT BLE 1 RBW 3 kHz	M 2440N 2 2 2 2 3 3 3 3 3 3 4 4 4 3 4 4 4 4 4 4	ito FFT			₩ 19.94 dBm
Spectrum Ref Level 20.1 • Att SGL Count 1000 • 1Pk Max 10 dBm 0 dBm -10 dBm	00 dBm Offse 30 dB SWT //1000	et 2.39 dB • 632.1 µs •	RBW 3 kHz VBW 10 kHz	M 2440N 2 Mode Au M1	1to FFT		2.439	(₩ 19.94 dBm 985895 GHz
Spectrum Ref Level 20.1 • Att SGL Count 1000 • 1Pk Max 10 dBm 0 dBm -10 dBm	00 dBm Offse 30 dB SWT //1000	et 2.39 dB • 632.1 µs •	RBW 3 kHz VBW 10 kHz	M 2440N 2 Mode Au M1	1to FFT		2.439	(₩ 19.94 dBm 985895 GHz
Spectrum Ref Level 20.1 • Att SGL Count 1000 • 1Pk Max 10 dBm 0 dBm -10 dBm	00 dBm Offse 30 dB SWT //1000	et 2.39 dB • 632.1 µs •	RBW 3 kHz VBW 10 kHz	M 2440N 2 Mode Au M1	1to FFT		2.439	(₩ 19.94 dBm 985895 GHz
Spectrum Ref Level 20.1 Att SGL Count 1000 1Pk Max 10 dBm 0 dBm -10 dBm	00 dBm Offse 30 dB SWT //1000	et 2.39 dB • 632.1 µs •	RBW 3 kHz VBW 10 kHz	M 2440N 2 Mode Au M1	1to FFT		2.439	(₩ 19.94 dBm 985895 GHz
Spectrum Ref Level 20,1 Att SGL Count 1000 9 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	00 dBm Offse 30 dB SWT //1000	et 2.39 dB • 632.1 µs •	RBW 3 kHz VBW 10 kHz	M 2440N 2 Mode Au M1	1to FFT		2.439	(₩ 19.94 dBm 985895 GHz
Spectrum Ref Level 20,1 Att SGL Count 1000 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 30 dB SWT //1000	et 2.39 dB • 632.1 µs •	RBW 3 kHz VBW 10 kHz	M 2440N 2 Mode Au M1	1to FFT		2.439	(₩ 19.94 dBm 985895 GHz
Spectrum Ref Level 20,1 Att SGL Count 1000 9 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	00 dBm Offse 30 dB SWT //1000	et 2.39 dB • 632.1 µs •	RBW 3 kHz VBW 10 kHz	M 2440N 2 Mode Au M1	1to FFT		2.439	(₩ 19.94 dBm 985895 GHz
Spectrum Ref Level 20,1 Att SGL Count 1000 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm	00 dBm Offse 30 dB SWT //1000	et 2.39 dB • 632.1 µs •	RBW 3 kHz VBW 10 kHz	M 2440N 2 Mode Au M1	1to FFT		2.439	(₩ 19.94 dBm 985895 GHz
Spectrum Ref Level 20.1 SGL Count 1000 9 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	00 dBm Offse 30 dB SWT //1000	et 2.39 dB • 632.1 µs •	RBW 3 kHz VBW 10 kHz	M 2440N 2 Mode Au M1	1to FFT		2.439	(₩ 19.94 dBm 985895 GHz
Spectrum Ref Level 20.1 Att SGL Count 1000 • 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm	00 dBm Offse 30 dB SWT //1000	et 2.39 dB • 632.1 µs •	RBW 3 kHz VBW 10 kHz	M 2440N	1to FFT		2.439	(₩ 19.94 dBm 985895 GHz
Spectrum Ref Level 20.1 Att SGL Count 1000 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	00 dBm Offse 30 dB SWT //1000	et 2.39 dB • 632.1 µs •	TBLE 1	M 2440N	1to FFT		2.439	19.94 dBm 85895 GHz


Spectrum		
Ref Level 20.00 dBm Offset 2.42 dB ■ RBW Att 30 dB SWT 631.9 μs ■ VBW SGL Count 1000/1000	3 kHz 0 kHz Mode Auto FFT	
1Pk Max		
	M1[1]	-19.25 dBm 79858790 GHz
10 dBm-	2.4	79828790 GHZ
0 dBm		
-10 dBm		
M1		
	Am 1240	
a alway and a second and and and and and and and and and a	a an a mention a constraint on manual manual manual and a second and the second a	100
-30 dago Mr	a no a nation to build and realistic when when the MANN	Manyman -
-30-dBroch MAMMAN MANA MANA MANA MANA MANA MANA M	and anthenant Markan Constant of Marke	normoren
-30-dBroz-11/2000	a na anatana ang ana ang ang ang ang ang ang ang	Andrewsky
-40 dBm	a na a na	Jacom March
and marked	a na anatana ang ang ang ang ang ang ang ang ang	Water million by
-40 dBm	and animan and allow and reasons where the second s	JADA wanta D
-40 dBm		JADA WINIAND
-40 dBm		Jack working
-40 dBm		<u>՝ հետույուլ։ իստույուլ։ իստույու իստույուլ։ իստույու իստույուլ։ իստույու իստույուն։ իստույուն։ իստույուն։ իստույուն։ իստու</u>

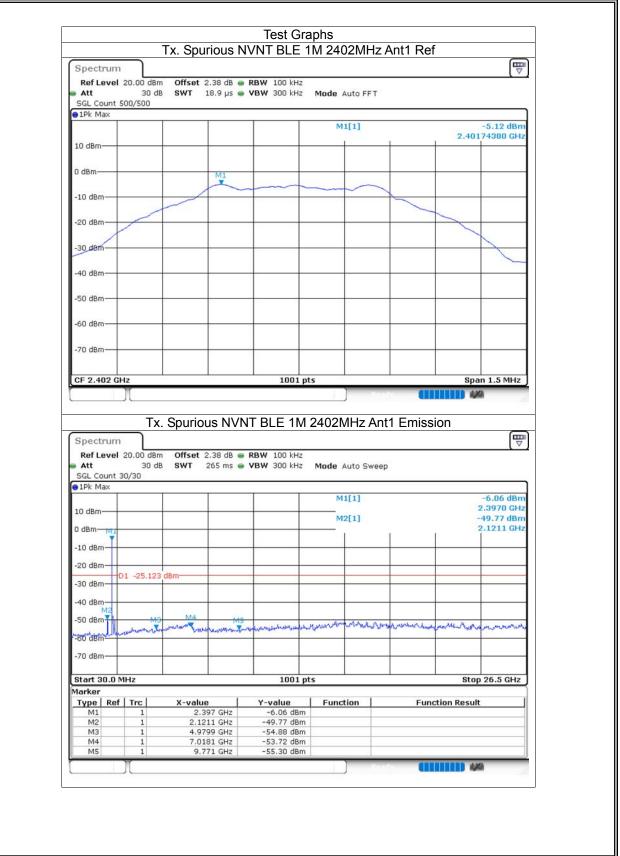
8.1.6 Band Edge

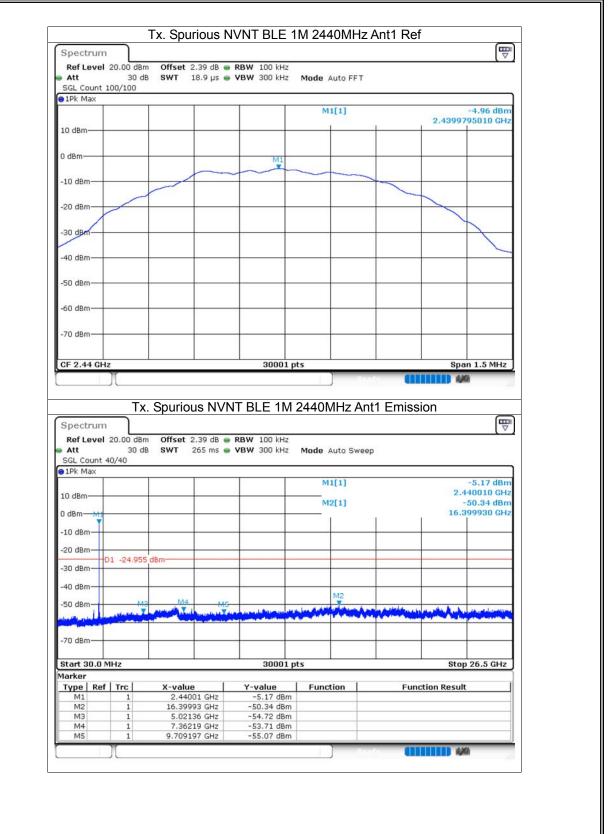
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-54.95	-20	Pass
NVNT	BLE 1M	2480	Ant1	-54.56	-20	Pass



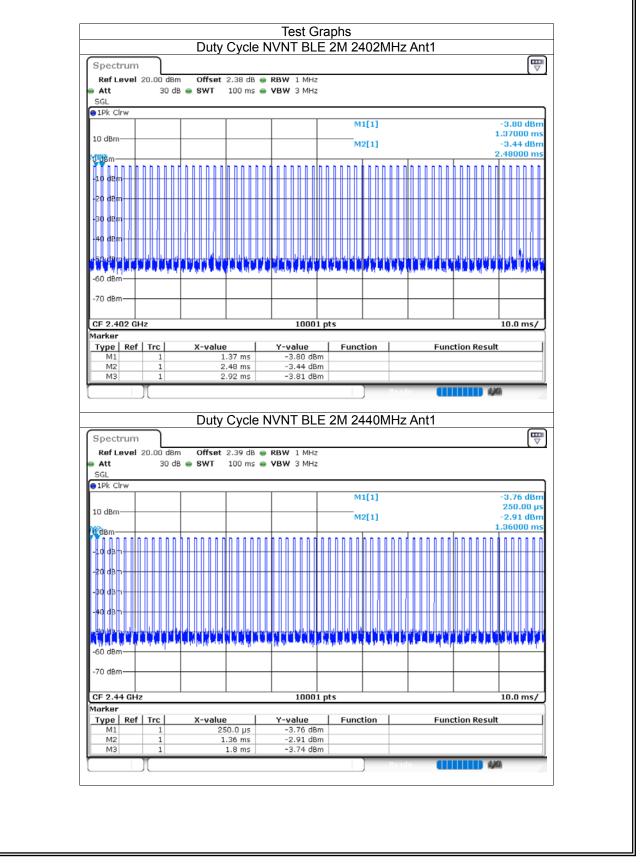
Version.1.3

Page 50 of 77

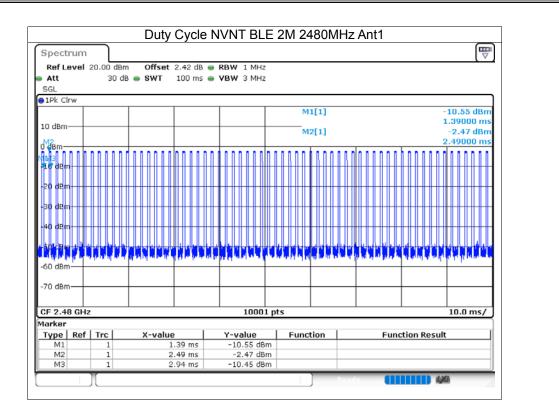



8.1.7 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-44.64	-20	Pass
NVNT	BLE 1M	2440	Ant1	-45.38	-20	Pass
NVNT	BLE 1M	2480	Ant1	-40.97	-20	Pass

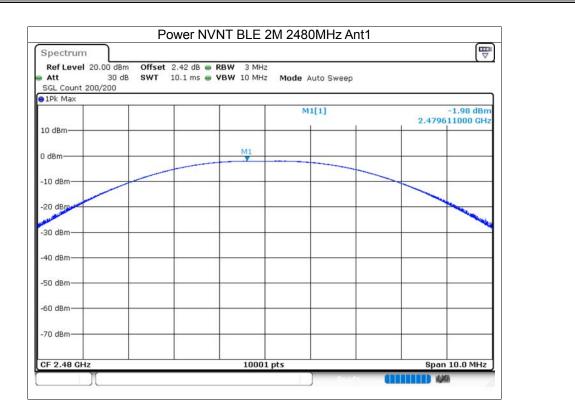


8.2 **2M**

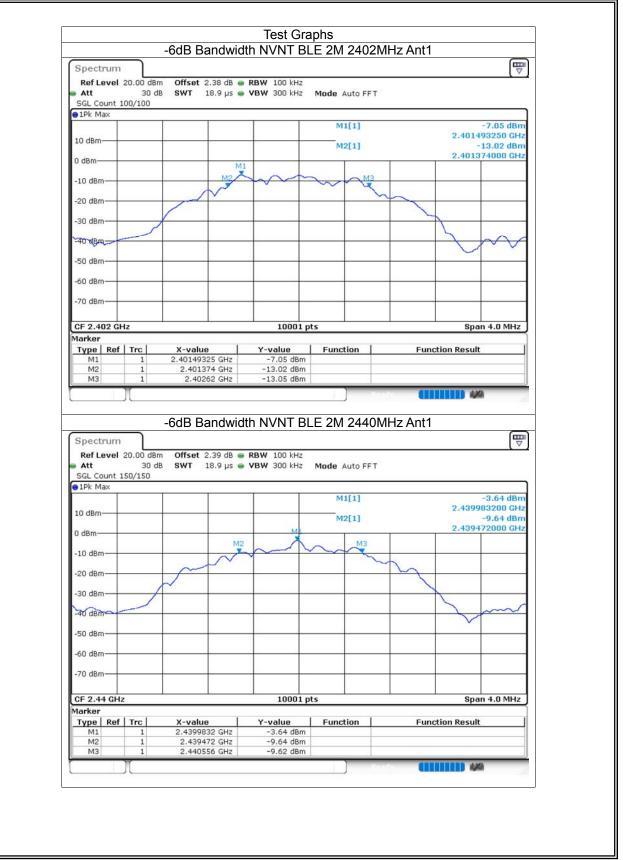

8.2.1 Duty Cycle

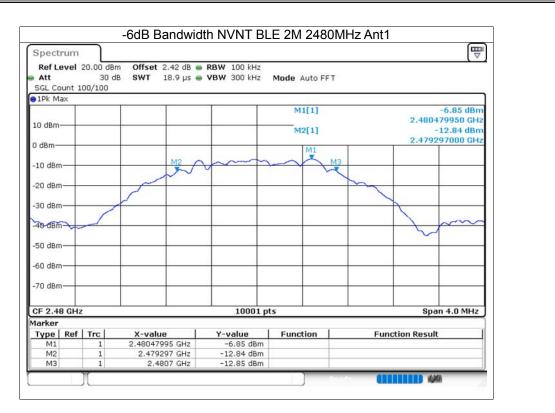
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 2M	2402	Ant1	28.8	5.41	2.27
NVNT	BLE 2M	2440	Ant1	29.06	5.37	2.27
NVNT	BLE 2M	2480	Ant1	29.44	5.31	2.22




8.2.2 Maximum Conducted Output Power

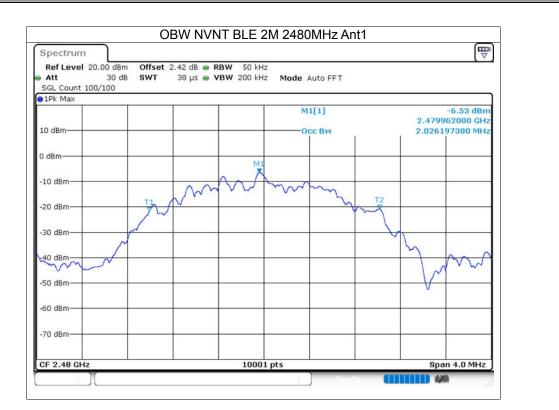
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-3	30	Pass
NVNT	BLE 2M	2440	Ant1	-2.5	30	Pass
NVNT	BLE 2M	2480	Ant1	-1.98	30	Pass



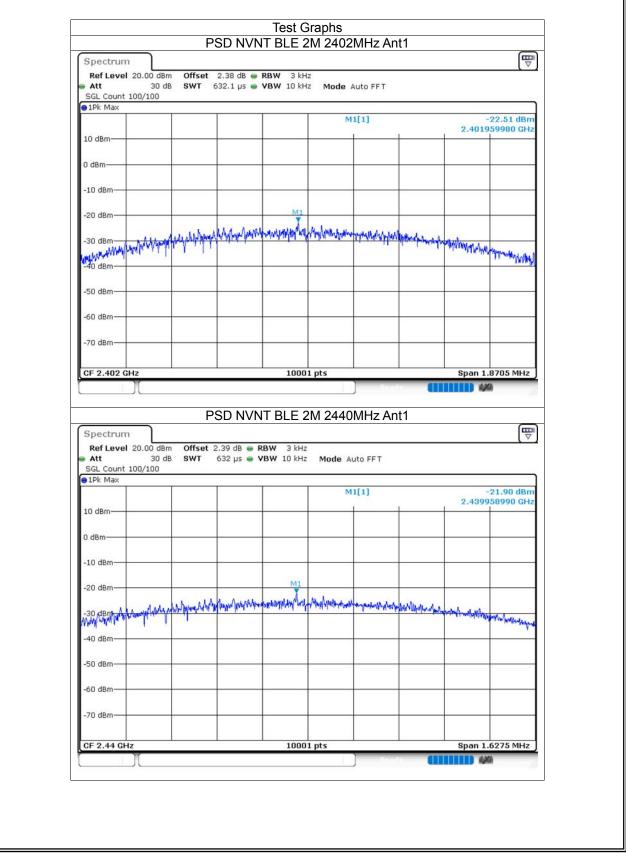

8.2.3 -6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	1.247	0.5	Pass
NVNT	BLE 2M	2440	Ant1	1.085	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.403	0.5	Pass

8.2.4 Occupied Channel Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 2M	2402	Ant1	2.032
NVNT	BLE 2M	2440	Ant1	2.023
NVNT	BLE 2M	2480	Ant1	2.026

Page 66 of 77



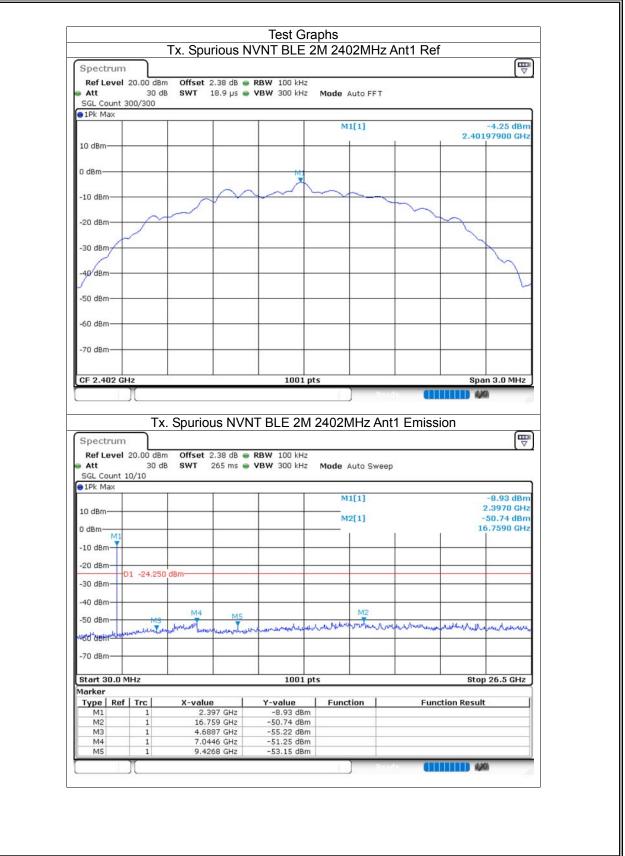
8.2.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-22.51	8	Pass
NVNT	BLE 2M	2440	Ant1	-21.9	8	Pass
NVNT	BLE 2M	2480	Ant1	-21.47	8	Pass


Spectrum				
Ref Level 20.00 dBm Offset	2.42 dB 👄 RBW 3 kHz			
Att 30 dB SWT	632 µs 🖷 VBW 10 kHz	Mode Auto FFT		
SGL Count 100/100 1Pk Max				
IPK Mdx		M1[1]		-21.47 dBm
		(urtr)	2.479	958550 GHz
10 dBm-				+
				1 I
0 dBm				
-10 dBm				
	M1			1 I
-20 dBm				
-30 dBm	paratria al ann barranan an an an	the view to the prevent of the previous	March & al	1 I
-30 dBm		-	and a second second second	1.0.0
				wind have to be
HO UBIN				
-50 dBm				
-60 dBm				
-70 dBm				
				1 I
CF 2.48 GHz	10001	nte	Span f	2.1045 MHz
01 2.10 0112	10001	pra	apun /	

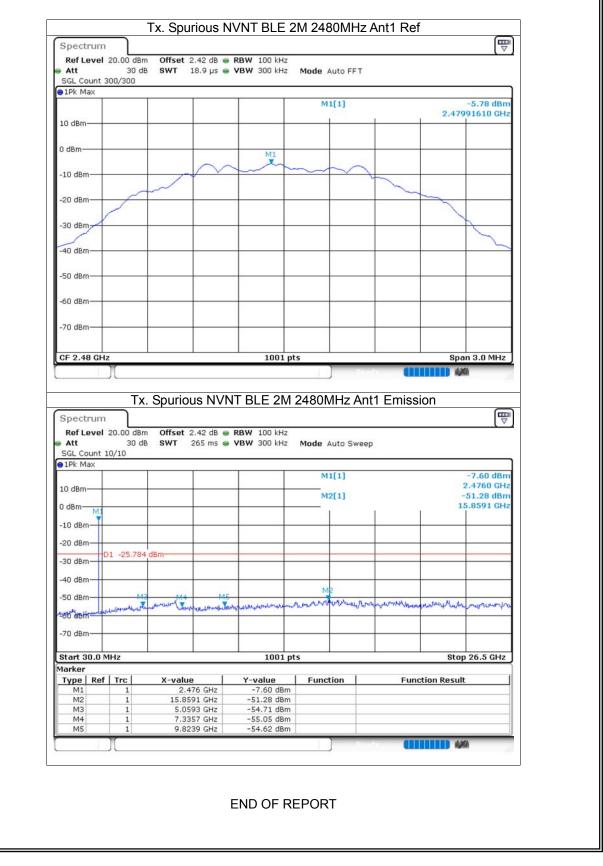
8.2.6 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-55.89	-20	Pass
NVNT	BLE 2M	2480	Ant1	-48.11	-20	Pass



8.2.7 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-46.49	-20	Pass
NVNT	BLE 2M	2440	Ant1	-46.12	-20	Pass
NVNT	BLE 2M	2480	Ant1	-45.5	-20	Pass



Att	el 20.00 dBr 30 d nt 300/300		• VBW 300 kHz	Mode Auto FF	т		
 1Pk Max 							
				M1[1]			-4.44 dBm 98500 GHz
10 dBm—						2.107	JUGUU GITE
0 40 m							
0 dBm			M				
-10 dBm—				\sim	-		
	~	\sim			~	~	
-20 dBm—						2	
-30 dBm-	4					-	
1							~
-40 dBm-							7
-50 dBm—	_	ļ			_		
-60 dBm-							
-70 dBm—		ļ					
CF 2.44	GHz		1001 pt	ts		Spa	n 3.0 MHz
Spectru	im 🔰	. Spurious NV		2440MHz /	Ant1 Emissi	ion	
Ref Lev Att SGL Cour	rel 20.00 dBr 30 d nt 10/10	m Offset 2.39 dB	RBW 100 kHz			on	
Ref Lev Att	rel 20.00 dBr 30 d nt 10/10	m Offset 2.39 dB	RBW 100 kHz	Mode Auto Sw			
Ref Lev Att SGL Cour	rel 20.00 dBr 30 d nt 10/10	m Offset 2.39 dB	RBW 100 kHz	Mode Auto Sw			-7.28 dBm 2.4500 GHz
Ref Lev Att SGL Cour 1Pk Max	rel 20.00 dBr 30 d nt 10/10	m Offset 2.39 dB	RBW 100 kHz	Mode Auto Sw		3	-7.28 dBm
Ref Lev Att SGL Cour PIPK Max 10 dBm- 0 dBm-	rel 20.00 dBr 30 d nt 10/10	m Offset 2.39 dB	RBW 100 kHz	Mode Auto Sw		3	-7.28 dBm 2.4500 GHz 50.56 dBm
Ref Lev Att SGL Cour PIPK Max 10 dBm- 0 dBm- -10 dBm-	rel 20.00 dBr 30 d nt 10/10	m Offset 2.39 dB	RBW 100 kHz	Mode Auto Sw		3	-7.28 dBm 2.4500 GHz 50.56 dBm
Ref Lev Att SGL Cour 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm-	rel 20.00 dBr 30 d nt 10/10	m Offset 2.39 dB (B SWT 265 ms (RBW 100 kHz	Mode Auto Sw		3	-7.28 dBm 2.4500 GHz 50.56 dBm
Ref Lev Att SGL Cour 1Pk Max 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm-	117 30 dBin 30 d ht 10/10	m Offset 2.39 dB (B SWT 265 ms (RBW 100 kHz	Mode Auto Sw		3	-7.28 dBm 2.4500 GHz 50.56 dBm
Ref Lev Att SGL Cour 10 dBm	rel 20.00 dBi 30 d nt 10/10	m Offset 2.39 dB B SWT 265 ms C	RBW 100 kHz	Mode Auto Sw		3	-7.28 dBm 2.4500 GHz 50.56 dBm
Ref Lev Att SGL Cour 10 dBm	rel 20.00 dBi 30 d nt 10/10	m Offset 2.39 dB B SWT 265 ms C	RBW 100 kHz	Mode Auto Sw M1[1] M2[1]	/eep		-7.28 dBm 2.4500 GHz 50.56 dBm 5.8328 GHz
Ref Lev Att SGL Cour 10 dBm	rel 20.00 dBi 30 d nt 10/10	m Offset 2.39 dB 6 B SWT 265 ms 6	RBW 100 kHz VBW 300 kHz	Mode Auto Sw M1[1] M2[1]	/eep		-7.28 dBm 2.4500 GHz 50.56 dBm 5.8328 GHz
Ref Lev Att SGL Cour 10 dBm	rel 20.00 dBi 30 d nt 10/10	m Offset 2.39 dB B SWT 265 ms C	RBW 100 kHz VBW 300 kHz	Mode Auto Sw M1[1] M2[1]	/eep		-7.28 dBm 2.4500 GHz 50.56 dBm 5.8328 GHz
Ref Leve Att SGL Cour 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Im rel 20.00 dBi 30 d nt 10/10	m Offset 2.39 dB B SWT 265 ms C	RBW 100 kHz VBW 300 kHz	Mode Auto Sw 	/eep	s - - - - 	-7.28 dBm 2.4500 GHz 50.56 dBm 5.8328 GHz
Ref Lev Att SGL Cour 9 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm 30 dBm	IIII rel 20.00 dBi 30 d nt 10/10 10 10 10 -24.44/ 01 -24.44/ 01 -24.44/ 01 -24.44/ 01 -24.44/	m Offset 2.39 dB B B SWT 265 ms a	RBW 100 kHz VBW 300 kHz	Mode Auto Sw M1[1] M2[1] 		,out to be	-7.28 dBm 2.4500 GHz 50.56 dBm 5.8328 GHz
Ref Lev Att SGL Cour 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30. Marker Type	Im rel 20.00 dBi 30 d nt 10/10 1	m Offset 2.39 dB & B SWT 265 ms (RBW 100 kHz VBW 300 kHz	Mode Auto Sw 		s - - - - 	-7.28 dBm 2.4500 GHz 50.56 dBm 5.8328 GHz
Ref Lev Att SGL Cour 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm Marker Type F M1 M2	Im rel 20.00 dBi 30 d nt 10/10 13 14 10 10 10 10 10 10 10 10 10 10	m Offset 2.39 dB 6 B SWT 265 ms 6 2 dBm 2 dBm 3 M2 3 M2 3 M2 4 M2 4 M2 4 M2 4 M2 4 M2 4 M2 4 M2 4	RBW 100 kHz VBW 300 kHz	Mode Auto Sw M1[1] M2[1] 		,out to be	-7.28 dBm 2.4500 GHz 50.56 dBm 5.8328 GHz
Ref Lev Att SGL Cour 9 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm Start 30. Marker M1 M2 M4	Im rel 20.00 dBi 30 d nt 10/10 10	M Offset 2.39 dB B SWT 265 ms C C C C C C C C C C C C C C C C C C	RBW 100 kHz VBW 300 kHz	Mode Auto Sw M1[1] M2[1] 			-7.28 dBm 2.4500 GHz 50.56 dBm 5.8328 GHz
Ref Lev Att SGL Cour IPk Max IPk Max 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30. Marker Type M1 M2	IIII rel 20.00 dBi 30 d nt 10/10 10/10 10 10 10 10 10 10 10 10 10	m Offset 2.39 dB B SWT 265 ms SWT 265 ms 2 dBm 2 dBm 4 4.9534 GHz	RBW 100 kHz VBW 300 kHz	Mode Auto Sw M1[1] M2[1] 			-7.28 dBm 2.4500 GHz 50.56 dBm 5.8328 GHz

Page 76 of 77

