

FCC PART 90

TEST REPORT

For

Hytera Communications Co., Ltd.

HYT Tower, Hi-Tech Industrial Park North, Nanshan District, Shenzhen, China

FCC ID: YAMPD41XU1

Report Type:		Product Typ	e:	
Original Report		Digital Mobi	le Radio	
		(Candy . (Li
Test Engineer:	Candy Li		V	
Report Number:	RSZ141231010-0	0A		
Report Date:	2015-02-09			
Reviewed By:	Jimmy Xiao RF Engineer		Jimmy	xiao
Prepared By:	Bay Area Complia 6/F, the 3rd Phase ShiHua Road, Fu' Shenzhen, Guang Tel: +86-755-333 Fax: +86-755-333 www.baclcorp.co	of WanLi Indus Fian Free Trade dong, China 20018 20008	strial Building	

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S) TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	6
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
MEASUREMENT UNCERTAINTY	8
FCC §1.1307(b) & §2.1093 - RF EXPOSURE	9
APPLICABLE STANDARD	
FCC §2.1046 & §90.205 - RF OUTPUT POWER	10
APPLICABLE STANDARD	10
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
FCC §2.1047 §90.207 - MODULATION CHARACTERISTIC	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE TEST DATA	
FCC §2.1049 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK	17
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	
TEST PROCEDURE	
TEST DATA	
FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	23
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS.	
Test Procedure	
Test Data	27
FCC §2.1055 & §90.213- FREQUENCY STABILITY	29
APPLICABLE STANDARD	29
TEST EQUIPMENT LIST AND DETAILS	29

Report No.: RSZ150120005-00A

TEST PROCEDURE	
Test Data	29
FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR	31
APPLICABLE STANDARD	31
TEST EQUIPMENT LIST AND DETAILS	31
TEST PROCEDURE	
Test Data	32
PRODUCT SIMILARITY DECLARATION LETTER	34

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Hytera Communications Co., Ltd.*'s product, model number: *PD410 U(1)(FCC ID: YAMPD41XU1)* or the "EUT" in this report was a *Digital Mobile Radio*, the handset unit was measured approximately: 12.0 cm (L) x 5.8 cm (W) x 3.0 cm (H), rated with input voltage: DC 7.4V battery; charger unit was measured approximately: 7.7 cm (L) x 7.6 cm (W) x 7.2 cm (H), rated with input voltage: DC 12.0V from adapter.

Report No.: RSZ150120005-00A

Adapter Information: Model: HKA01212010-2F Input: 100~240V, 50~60Hz, 0.5A

Output: 12.0V, 1.0A

Note: This series products model: PD410 U(1), PD412 U(1), PD415 U(1), PD416 U(1) and PD418 U(1) are identical schematics, the difference among them is just the model number due to marketing purpose, and model PD410 U(1) was selected for fully testing, the detailed information can be referred to the attached declaration letter that stated and guaranteed by the applicant.

* All measurement and test data in this report was gathered from production sample serial number: 1501265 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2015-01-20.

Objective

This test report is prepared on behalf of *Hytera Communications Co.*, *Ltd.* in accordance with Part 2 and Part 90 of the Federal Communication Commissions rules.

Related Submittal(s)/Grant(s)

No related submittal(s)

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2, Sub-part J as well as the following individual parts:

Part 90 - Private Land Mobile Radio Service

Applicable Standards: TIA 603-D and ANSI 63.4-2009.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.91 dB for 30MHz-1GHz.and 4.92 dB for above 1GHz, 1.95dB for conducted measurement.

FCC PART 90 Page 4 of 34

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Report No.: RSZ150120005-00A

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on December 06, 2010. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2009.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

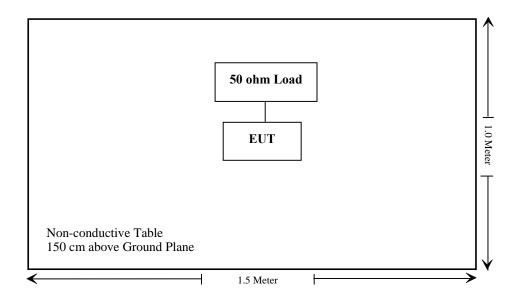
FCC PART 90 Page 5 of 34

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a test mode which has been done in the factory.

Equipment Modifications


No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
N/A	50 ohm Load	N/A	N/A

Report No.: RSZ150120005-00A

Block Diagram of Test Setup

FCC PART 90 Page 6 of 34

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§1.1307 (b)(1), §2.1093	RF Exposure	Compliance
§2.1046; §90.205	RF Output Power	Compliance
§2.1047; §90.207	Modulation Characteristic	Compliance
§2.1049; §90.209; §90.210	Occupied Bandwidth & Emission Mask	Compliance
§2.1051; §90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053; §90.210	Spurious Radiated Emissions	Compliance
§2.1055; §90.213	Frequency Stability	Compliance
§90.214	Transient Frequency Behavior	Compliance

Report No.: RSZ150120005-00A

FCC PART 90 Page 7 of 34

MEASUREMENT UNCERTAINTY

Test Items	Measurement uncertainty
RF Output Power	±1.95dB
Modulation Limiting	±0.2kHz
Audio Frequency Response	±1.95dB
Audio Frequency Low Pass Filter Response	±1.95dB
Occupied Bandwidth	±0.2kHz
Spurious Emission at Antenna Terminal	±1.95dB
Spurious Radiated Emissions	±4.92dB
Frequency Stability	±0.1ppm
Emission Mask	±1.95dB
Transient Frequency Behavior	±0.2kHz

Report No.: RSZ150120005-00A

FCC PART 90 Page 8 of 34

FCC §1.1307(b) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §1.1307(b) and §2.1093, protable device operates Part 90 should be subjected to rountine environmental evaluation for RF exposure prior or equipment authorization or use.

Report No.: RSZ150120005-00A

Result: Compliance.

Please refer to SAR Report Number: RSZ150120005-20A.

FCC PART 90 Page 9 of 34

FCC §2.1046 & §90.205 - RF OUTPUT POWER

Applicable Standard

FCC §2.1046 and §90.205

Test Procedure

Conducted RF Output Power:

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Report No.: RSZ150120005-00A

Spectrum Analyzer Setting:

R B/W Video B/W 100 kHz 300 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22
HP Agilent	RF Communication test set	8920A	3325U00859	2014-06-03	2015-06-03

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	19 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Candy Li on 2015-01-29.

Test Mode: Transmitting

Test Result: Compliance. Please refer to following table.

FCC PART 90 Page 10 of 34

Report No.: RSZ150120005-00A

FCC PART 90 Page 11 of 34

FCC §2.1047 §90.207 - MODULATION CHARACTERISTIC

Applicable Standard

FCC §2.1047 and §90.207:

(a) Equipment which utilizes voice modulated communication shall show the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz. for equipment which is required to have a low pass filter, the frequency response of the filter, or all of the circuitry installed between the modulation limited and the modulated stage shall be supplied.

Report No.: RSZ150120005-00A

(b) Equipment which employs modulation limiting, a curve showing the percentage of modulation versus the modulation input voltage shall be supplied.

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
HP	RF Communication Test Set	8920A	3438A05201	2014-06-14	2015-06-13
LEADER	MILLIVOLTMETER	LMV-181A	6041126	2014-06-09	2015-06-09

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

Test Method: TIA/EIA-603 2.2.3

Test Data

Environmental Conditions

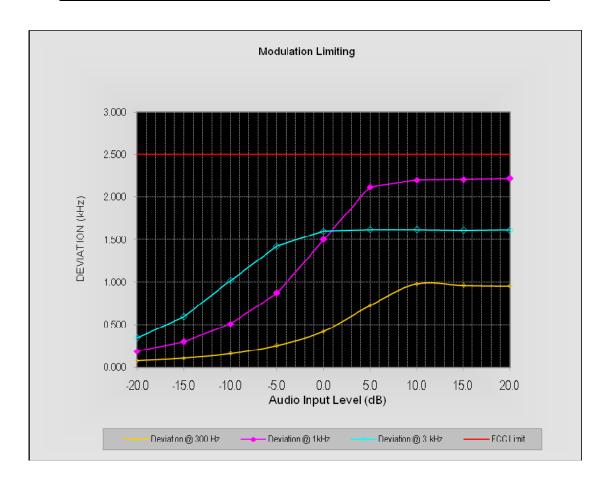
Temperature:	21 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Candy Li on 2015-01-17

Test Mode: Transmitting

Result: Compliance.

FCC PART 90 Page 12 of 34


Analog Modulation:

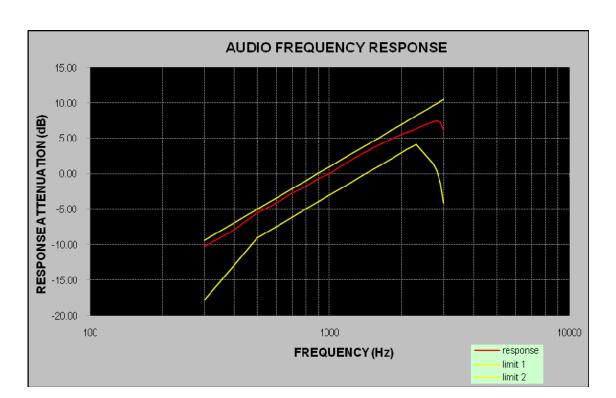
MODULATION LIMITING

Report No.: RSZ150120005-00A

Carrier Frequency: 450.0125 MHz, Channel Separation=12.5 kHz

Audio Input	Frequency Deviation (kHz)			Limit
Level [dB]	@ 300 Hz	@ 1kHz	@ 3 kHz	[kHz]
20.0	0.953	2.219	1.615	2.5
15.0	0.959	2.209	1.612	2.5
10.0	0.976	2.202	1.617	2.5
5.0	0.725	2.122	1.620	2.5
0.0	0.420	1.500	1.602	2.5
-5.0	0.255	0.871	1.423	2.5
-10.0	0.159	0.509	1.018	2.5
-15.0	0.104	0.298	0.592	2.5
-20.0	0.077	0.186	0.343	2.5

FCC PART 90 Page 13 of 34


Audio Frequency Response

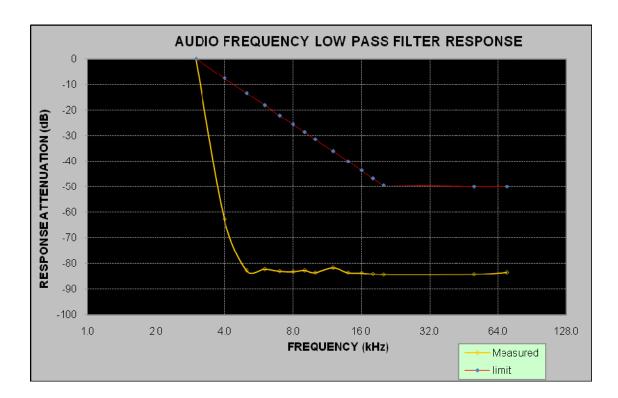
Report No.: RSZ150120005-00A

Carrier Frequency: 450.0125 MHz, Channel Separation=12.5 kHz

Audio Frequency (Hz)	Response Attenuation (dB)
300	-10.23
400	-7.87
500	-5.55
600	-4.07
700	-2.73
800	-1.72
900	-0.65
1000	0.00
1200	1.73
1400	3.00
1600	4.05
1800	4.90
2000	5.56
2100	5.85
2200	6.14
2300	6.38
2400	6.62
2500	6.87
2600	7.18
2700	7.35
2800	7.50
2900	7.24
3000	6.18

FCC PART 90 Page 14 of 34

Report No.: RSZ150120005-00A


FCC PART 90 Page 15 of 34

AUDIO FREQUENCY LOW PASS FILTER RESPONSE

Report No.: RSZ150120005-00A

Carrier Frequency: 450.0125 MHz

Audio Frequency (kHz)	Response Attenuation (dB)	IC Limit (dB)
3.0	0	0
4.0	-62.6	-7.5
5.0	-82.6	-13.3
6.0	-82.1	-18.1
7.0	-82.9	-22.1
8.0	-83.1	-25.6
9.0	-82.6	-28.6
10.0	-83.5	-31.4
12.0	-81.6	-36.1
14.0	-83.5	-40.1
16.0	-83.7	-43.6
18.0	-84.1	-46.7
20.0	-84.3	-49.4
50.0	-84.2	-50
70.0	-83.4	-50

FCC PART 90 Page 16 of 34

FCC §2.1049 & §90.209 & §90.210 – OCCUPIED BANDWIDTH & EMISSION MASK

Applicable Standard

FCC §2.1049, §90.209 and §90.210

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

Report No.: RSZ150120005-00A

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least $50 + 10 \log (P) dB$ or 70 dB, whichever is the lesser attenuation.

Test Equipment List and Details

Manufacturer	Description	Model No.	Model No. Serial No.		Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K0 3-101746-zn	2014-06-13	2015-06-13
НР	RF Communication Test Set	8920A	3438A05201	2014-06-14	2015-06-13

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at 100 Hz and the spectrum was recorded in the frequency band $\pm 50 \text{ kHz}$ from the carrier frequency.

FCC PART 90 Page 17 of 34

Test Data

Environmental Conditions

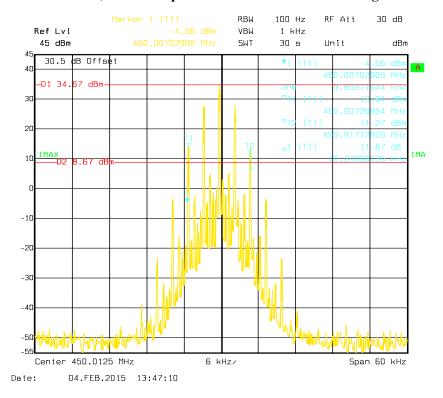
Temperature:	21 ℃
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Candy Li on 2015-02-02 and 2015-02-04.

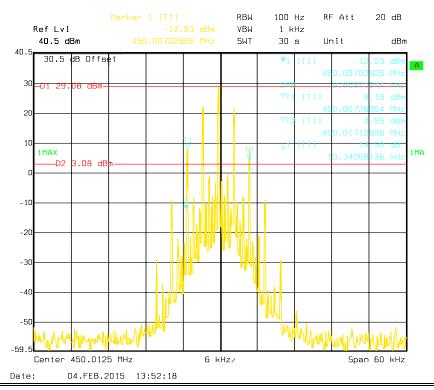
Test Mode: Transmitting

Modulation	Channel Spacing (kHz)	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Emissions Bandwidth (kHz)	Power Lever
Analaa	12.5	450.0125	9.86	10.34	High power
Analog			430.0123	12.5 +30.0125	9.86
Digital	10.5	450.0125	7.09	8.90	High power
Digital	rigital 12.5	430.0123	7.21	9.26	Low power

Report No.: RSZ150120005-00A

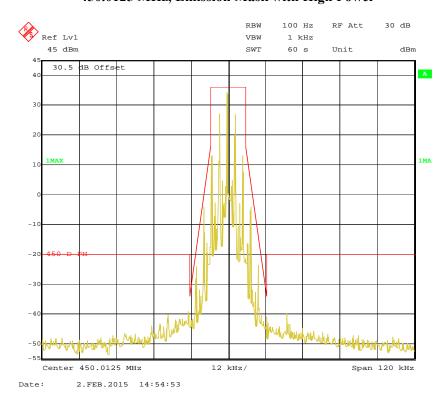

Please refer to the emission mask hereinafter plots.

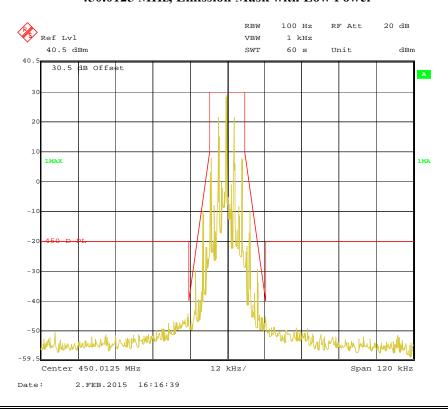
FCC PART 90 Page 18 of 34


Analog Modulation (Channel Spacing 12.5 kHz):

450.0125 MHz, 99% Occupied & 26 dB Bandwidth with High Power

Report No.: RSZ150120005-00A

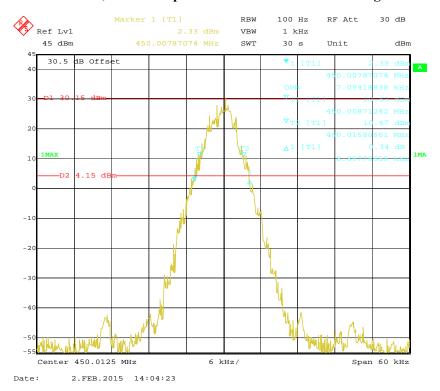

450.0125 MHz, 99% Occupied & 26 dB Bandwidth with Low Power


FCC PART 90 Page 19 of 34

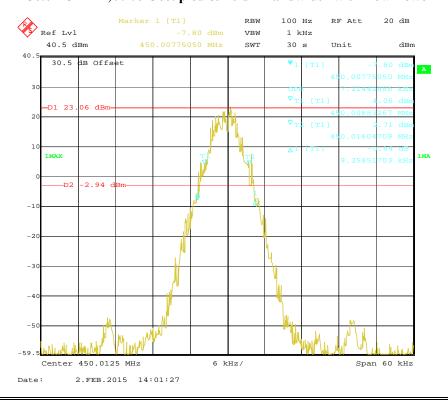
450.0125 MHz, Emission Mask with High Power

Report No.: RSZ150120005-00A

450.0125 MHz, Emission Mask with Low Power

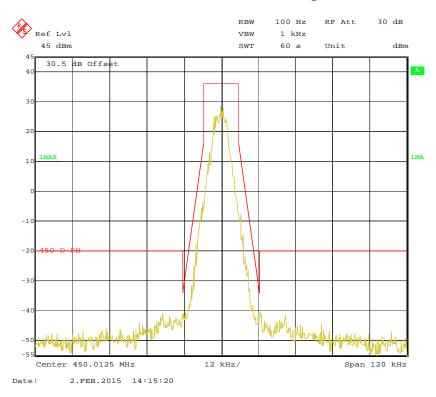


FCC PART 90 Page 20 of 34

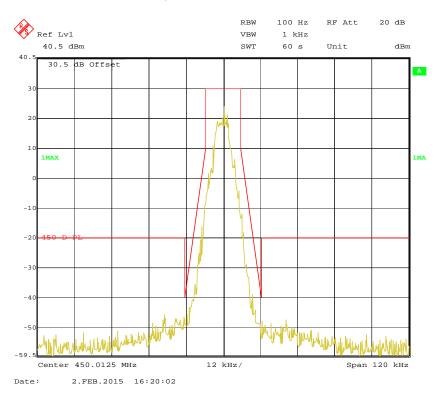

Digital Modulation:

450.0125 MHz, 99% Occupied & 26 dB Bandwidth with High Power

Report No.: RSZ150120005-00A



450.0125 MHz, 99% Occupied & 26 dB Bandwidth with Low Power



FCC PART 90 Page 21 of 34

450.0125 MHz, Emission Mask with High Power

450.0125 MHz, Emission Mask with Low Power

FCC PART 90 Page 22 of 34

FCC §2.1051 & §90.210 - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Emission Mask D—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

Report No.: RSZ150120005-00A

- 1) For any frequency removed from the center of the authorized bandwidth f_0 to 5.625 kHz removed from f_0 , 0 dB.
- 2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.626 kHz but no more than 12.5 kHz, at least 7.27 (f_d –2.88 kHz) dB.
- 3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.

Test Equipment List and Details

Manufacturer	cturer Description Model No.		Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22
ANRITSU CORP.MADE IN JAPAN	HP Filter(UHF band)	MP526 D	995245	2013-11-24	2014-11-23

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

The RF output of the EUT was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz for below 1GHz, and 1MHz for above 1GHz. sufficient scans were taken to show any out of band emissions up to 10th harmonic.

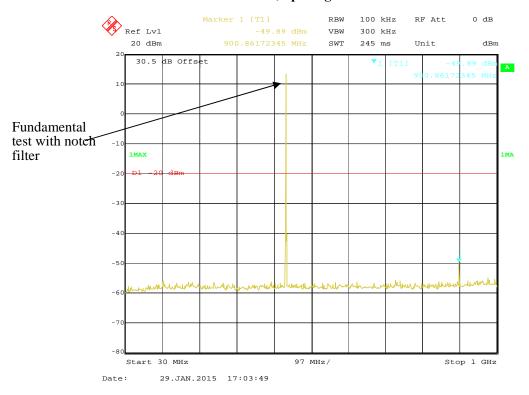
Test Data

Environmental Conditions

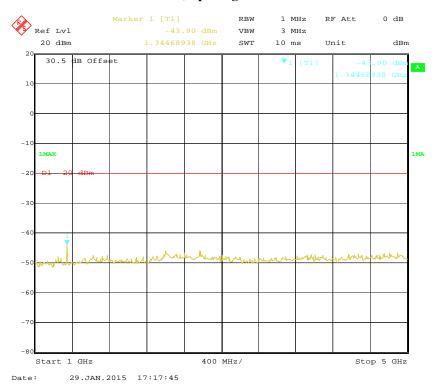
Temperature:	19 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Candy Li on 2015-01-29.

Test Mode: Transmitting


Please refer to the following plots.

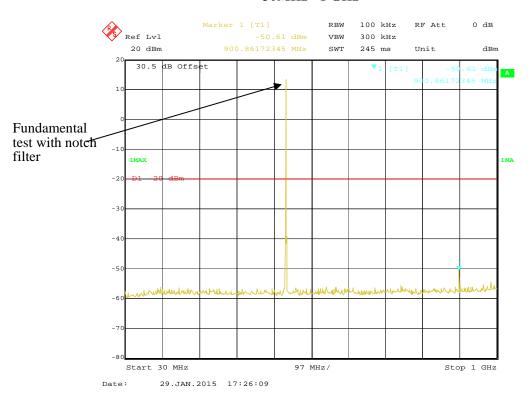
FCC PART 90 Page 23 of 34


Analog Modulation (450.0125 MHz):

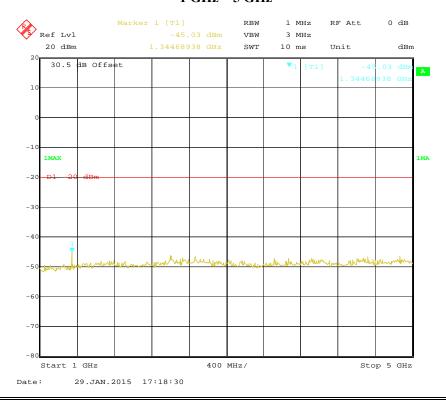
30MHz - 1 GHz, Spacing Channel 12.5 kHz

Report No.: RSZ150120005-00A

1 GHz – 5 GHz, Spacing Channel 12.5 kHz



FCC PART 90 Page 24 of 34


Digital Modulation (450.0125 MHz):

30MHz - 1 GHz

Report No.: RSZ150120005-00A

1 GHz - 5 GHz

FCC PART 90 Page 25 of 34

FCC §2.1053 & §90.210 - RADIATED SPURIOUS EMISSIONS

Applicable Standard

FCC §2.1053 and §90.210

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2014-11-03	2015-11-03
HP	Amplifier	8447E	1937A01046	2014-05-06	2015-05-06
Sunol Sciences	Broadband Antenna	JB3	A111513	2014-06-18	2017-06-17
Rohde & Schwarz	Signal Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22
Sunol Sciences	Horn Antenna	DRH-118	A052304	2014-12-01	2015-11-30
HP	Synthesized Sweeper	8341B	2624A00116	2014-06-03	2015-06-03
Mini-Circuits	Amplifier	ZVA-183-S+	5969001149	2014-04-23	2015-04-23
A.H. System	Horn Antenna	SAS-200/571	135	2012-02-11	2015-02-10
COM POWER	Dipole Antenna	AD-100	041000	NCR	NCR

Report No.: RSZ150120005-00A

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB = $50+10 \text{ Log}_{10}$ (power out in Watts) for EUT with a 12.5 kHz channel bandwidth.

FCC PART 90 Page 26 of 34

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	19 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Candy Li on 2015-01-29.

Test Mode: Transmitting

	Receiver	Turn	Rx An	tenna		Substitut	ed	Absolute	FC	C 90
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
Analog Modulation, Frequency: 406.1125 MHz, Channel spacing:12.5 kHz										
379.20	38.34	220	1.6	Н	-58.7	0.42	0	-59.12	-20	39.12
379.20	45.23	71	1.1	V	-51.8	0.42	0	-52.22	-20	32.22
812.23	41.08	25	2.4	Н	-55.9	0.67	0	-56.57	-20	36.57
812.23	42.59	40	1.6	V	-54.4	0.67	0	-55.07	-20	35.07
2436.68	52.22	232	2.1	Н	-44.1	1.40	8.50	-37.00	-20	17.00
2436.68	47.58	260	1.9	V	-48.2	1.40	8.50	-41.10	-20	21.10
2842.79	44.40	34	1.8	Н	-50.5	1.60	9.40	-42.70	-20	22.70
2842.79	39.76	99	2.4	V	-55.4	1.60	9.40	-47.60	-20	27.60
3248.90	39.18	342	1.0	Н	-50.5	1.70	9.70	-42.50	-20	22.50
3248.90	39.65	179	1.4	V	-51.3	1.70	9.70	-43.30	-20	23.30
	Ana	log Modula	tion, Frequ	uency: 46	9.9875 M	Hz, Char	nel spacing	:12.5 kHz		
379.20	38.75	253	1.2	Н	-58.2	0.42	0	-58.62	-20	38.62
379.20	44.93	0	1.6	V	-52.1	0.42	0	-52.52	-20	32.52
939.98	38.76	125	2.0	Н	-58.2	0.70	0	-58.90	-20	38.90
939.98	37.94	76	1.7	V	-59.1	0.70	0	-59.80	-20	39.80
2349.94	45.08	142	1.9	Н	-52.7	1.30	8.30	-45.70	-20	25.70
2349.94	45.18	78	1.3	V	-51.4	1.30	8.30	-44.40	-20	24.40
2819.93	51.27	109	2.0	Н	-43.6	1.60	9.40	-35.80	-20	15.80
2819.93	43.52	342	1.3	V	-51.6	1.60	9.40	-43.80	-20	23.80
3289.91	40.83	134	2.3	Н	-48.9	1.90	9.80	-41.00	-20	21.00
3289.91	35.58	103	2.0	V	-55.7	1.90	9.80	-47.80	-20	27.80

Report No.: RSZ150120005-00A

FCC PART 90 Page 27 of 34

	Receiver	Turn	Rx An	tenna		Substitut	ed	Absolute	FC	C 90
Frequency (MHz)	Reading (dBµV)	Table Angle Degree	Height (m)	Polar (H/V)	SG Level (dBm)	Cable Loss (dB)	Antenna Gain (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
Digital Modulation, Frequency: 406.1125 MHz										
379.20	38.31	318	1.6	Н	-58.7	0.42	0	-59.12	-20	39.12
379.20	45.94	291	1.5	V	-51.1	0.42	0	-51.52	-20	31.52
812.23	42.13	79	2.4	Н	-54.9	0.67	0	-55.57	-20	35.57
812.23	43.32	140	1.5	V	-53.7	0.67	0	-54.37	-20	34.37
2436.68	50.51	71	2.3	Н	-45.8	1.40	8.50	-38.70	-20	18.70
2436.68	45.57	14	1.6	V	-50.2	1.40	8.50	-43.10	-20	23.10
2842.79	44.93	330	1.7	Н	-49.9	1.60	9.40	-42.10	-20	22.10
2842.79	42.26	77	1.5	V	-52.9	1.60	9.40	-45.10	-20	25.10
3248.90	41.38	230	2.2	Н	-48.3	1.70	9.70	-40.30	-20	20.30
3248.90	39.85	242	2.0	V	-51.1	1.70	9.70	-43.10	-20	23.10
		D	igital Mod	dulation,	Frequency	: 469.987	75 MHz			
379.20	39.25	310	2.1	Н	-57.7	0.42	0	-58.12	-20	38.12
379.20	45.37	290	1.5	V	-51.6	0.42	0	-52.02	-20	32.02
939.98	37.75	0	1.7	Н	-59.2	0.70	0	-59.90	-20	39.90
939.98	38.15	275	2.0	V	-58.8	0.70	0	-59.50	-20	39.50
2349.94	43.56	34	1.2	Н	-54.2	1.30	8.30	-47.20	-20	27.20
2349.94	40.63	285	1.1	V	-56.0	1.30	8.30	-49.00	-20	29.00
2819.93	52.33	61	1.5	Н	-42.5	1.60	9.40	-34.70	-20	14.70
2819.93	42.49	186	2.1	V	-52.6	1.60	9.40	-44.80	-20	24.80
3289.91	40.62	151	1.1	Н	-49.2	1.90	9.80	-41.30	-20	21.30
3289.91	37.15	12	1.2	V	-54.1	1.90	9.80	-46.20	-20	26.20

Report No.: RSZ150120005-00A

Note:

Absolute Level = SG Level - Cable loss + Antenna Gain

Margin = Limit- Absolute Level

FCC PART 90 Page 28 of 34

FCC §2.1055 & §90.213- FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 and §90.213

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Hewlett-Packard	Frequency Counter	5343A	2232A00827	2013-05-09	2016-05-08
ESPEC	Temperature & Humidity Chamber	EL-10KA	09107726	2014-11-01	2015-11-01
Long Wei	DC Power Supply	TPR-6420D	398363	NCR	NCR

Report No.: RSZ150120005-00A

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Test Data

Environmental Conditions

Temperature:	19 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Candy Li on 2015-01-29.

Test Mode: Transmitting

FCC PART 90 Page 29 of 34

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

For 12.5 kHz:

Reference Frequency: 450.0125 MHz, Channel Spacing: 12.5 kHz, Limit: 2.5 ppm						
Test Environment		Frequency Measure with Time Elapsed				
Temperature (°C)	Power Supplied (V _{DC})	Measured Frequency error (Hz)	Frequency Error (ppm)			
	Frequency Stability versus Input Temperature					
50	7.4	450.012416	-0.187			
40	7.4	450.012421	-0.176			
30	7.4	450.012424	-0.169			
20	7.4	450.012420	-0.178			
10	7.4	450.012419	-0.180			
0	7.4	450.012413	-0.193			
-10	7.4	450.012417	-0.184			
-20	7.4	450.012418	-0.182			
-30	7.4	450.012411	-0.198			
Frequency Stability versus Input Voltage						
20	6.4	450.012414	-0.191			

Report No.: RSZ150120005-00A

FCC PART 90 Page 30 of 34

FCC §90.214 - TRANSIENT FREQUENCY BEHAVIOR

Applicable Standard

Regulations: FCC §90.214

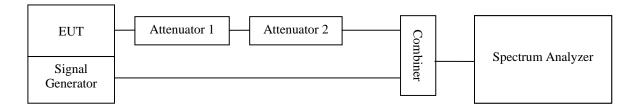
Test method: ANSI/TIA-603-D 2010, section 2.2.19.3

Test Equipment List and Details

Manufacturer	Description	Model No.	Serial No.	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSIQ26	837405/023	2014-08-22	2015-08-22
НР	RF Communication Test Set	8920A	3438A05201	2014-06-14	2015-06-13

Report No.: RSZ150120005-00A

Test Procedure


- a) Connect the EUT and test equipment as shown on the following block diagram.
- b) Set the Spectrum Analyzer to measure FM deviation, and tune the RF frequency to the transmitter assigned frequency.
- c) Set the signal generator to the assigned transmitter frequency and modulate it with a 1 kHz tone at ±12.5 kHz deviation and set its output level to -100dBm.
- d) Turn on the transmitter.
- e) Supply sufficient attenuation via the RF attenuator to provide an input level to the Spectrum Analyzer that is 40 dB below the maximum allowed input power when the transmitter is operating at its rated power level. Note this power level on the Spectrum Analyzer as P₀.
- f) Turn off the transmitter.
- g) Adjust the RF level of the signal generator to provide RF power equal to P₀. This signal generator RF level shall be maintained throughout the rest of the measurement.
- h) Remove the attenuation 1, so the input power to the Spectrum Analyzer is increased by 30 dB when the transmitter is turned on.
- i) Adjust the vertical amplitude control of the spectrum analyzer to display the 1000 Hz at ±4 divisions vertically centered on the display. Set trigger mode of the Spectrum Analyzer to "Video", and tune the "trigger level" on suitable level. Then set the "tiger offset" to -10ms for turn on and -15ms for turn off.
- j) Turn on the transmitter and the transient wave will be captured on the screen of Spectrum Analyzer. Observe the stored display. The instant when the 1 kHz test signal is completely suppressed is considered to be t_{on} . The trace should be maintained within the allowed divisions during the period t_1 and t_2 .

FCC PART 90 Page 31 of 34

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

k) Then turn off the transmitter, and another transient wave will be captured on the screen of Spectrum Analyzer. The trace should be maintained within the allowed divisions during the period t₃.

Report No.: RSZ150120005-00A

Test Data

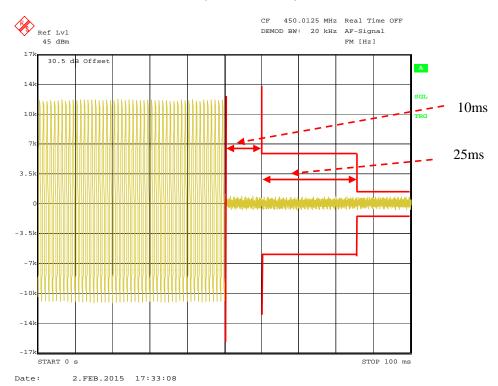
Environmental Conditions

Temperature:	24 ℃	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Candy Li on 2015-01-20.

Test Mode: Transmitting

Channel Separation (kHz)	Transient Period (ms)	Transient Frequency	Result
	10 (t1)	<+/-12.5 kHz	
12.5	25 (t2)	<+/-6.25 kHz	Pass
	10 (t3)	<+/-12.5 kHz	


Please refer to the following plots.

FCC PART 90 Page 32 of 34

Channel Spacing 12.5 kHz

Turn on (450.0125 MHz)

Report No.: RSZ150120005-00A

Turn off (450.0125 MHz)

FCC PART 90 Page 33 of 34

PRODUCT SIMILARITY DECLARATION LETTER

Hytera Communications Corporation Ltd.

Add: HYT Tower, Hi-Tech Industrial Park North, Nanshan District, Shenzhen China.
518057

Tel: +86-0755-26972999

Fax: +86-0755-86137130

Report No.: RSZ150120005-00A

2015-01-29

Product Similarity Declaration

To Whom It May Concern,

We, Hytera Communications Corporation Ltd., hereby declare that we have a product named as Digital Mobile Radio (Model number: PD410 U(1) was tested by BACL, meanwhile, for our marketing purpose, we would like to list a series models (PD412 U(1), PD415 U(1), PD416 U(1), PD418 U(1)) on reports and certificate, all the models are identical schematics.

No other changes are made to them.

We confirm that all information above is true, and we'll be responsible for all the consequences. Please contact me if you have any question.

Signature: Lei Liony

Lei Xiong

General Director

***** END OF REPORT *****

FCC PART 90 Page 34 of 34