

Report No. : EED32N81004701

Page 1 of 59

1 Contents

			Pa	ige
1 CONTENTS	<u> </u>			2
2 VERSION				3
3 TEST SUMMARY				4
4 GENERAL INFORM	IATION	<u></u>		5
4.1 CLIENT INFORMA 4.2 GENERAL DESCH 4.3 TEST CONFIGUR 4.4 TEST ENVIRONM	TION RIPTION OF EUT ATION ENT SUPPORT UNITS			5 5 7 8
	ID MEASUREMENT DATA			
5.2 AC Power Line 5.3 Maximum Cond 5.4 20DB Emission 5.5 Carrier Frequ 5.6 Number of Hor 5.7 Time of Occup 5.8 Band edge Mer 5.9 Conducted Spu 5.10 Pseudorando 5.11 Radiated Spu	REMENT CONDUCTED EMISSIONS UCTED OUTPUT POWER BANDWIDTH ENCY SEPARATION PPING CHANNEL ANCY SUREMENTS JRIOUS EMISSIONS M FREQUENCY HOPPING SEQUENCE RIOUS EMISSION & RESTRICTED BAND)S	6	13 16 17 18 20 21 22 23 25
	F TEST SETUP			
8 PHOTOGRAPHS O	F EUT CONSTRUCTIONAL DETAI	ILS	C	50

2 Version

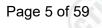
	Version No		Date		Descriptio	on	
(S)	00	D	ec. 02, 2021		Original		
L			(ST)	(Sta)		(LAI)	

Page 4 of 59

3 **Test Summary**

Test Requirement	Result
47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
47 CFR Part 15, Subpart C Section 15.207	PASS
47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
47 CFR Part 15, Subpart C Section 15.247(d)	PASS
47 CFR Part 15, Subpart C Section 15.247(d)	PASS
47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
	47 CFR Part 15, Subpart C Section 15.203/15.247 (c) 47 CFR Part 15, Subpart C Section 15.207 47 CFR Part 15, Subpart C Section 15.247 (b)(1) 47 CFR Part 15, Subpart C Section 15.247 (a)(1) 47 CFR Part 15, Subpart C Section 15.247 (b)(4) 47 CFR Part 15, Subpart C Section 15.247(b)(4) 47 CFR Part 15, Subpart C Section 15.247(d) 47 CFR Part 15, Subpart C Section 15.247(d)

Remark:


Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model/Type reference:LED+14DPAR38M/WWRGBSPK,LED+14DPAR38M/DLRGBSPK

Only the model LED+14DPAR38M/WWRGBSPK was tested, the difference between each model is only for the model name is different, the color temperature is different, the rest circuit principle, the internal structure, the PCB Layout and the safety key parts are the same, does not affect the EMC and RF test.

4 General Information

4.1 Client Information

Applicant:	Savant Technologies LLC dba GE Lighting, a Savant company	
Address of Applicant:	1975 Noble Road Cleveland Ohio United States 44112	
Manufacturer:	Savant Technologies LLC dba GE Lighting, a Savant company	6 m.
Address of Manufacturer:	1975 Noble Road Cleveland Ohio United States 44112	(1)
Factory:	Shenzhen H&T Intelligent Control Co., Ltd.	2
Address of Factory:	H&T Industrial Park,Tian Liao Community,Guangming New District,Shenzhen,Guangdong ,China. P.R.C 518106	

4.2 General Description of EUT

10.0 · /		
Product Name:	RGB Speaker PAR38 Lamp	
Test Model No.:	LED+14DPAR38M/WWRGBSPK	
Trade Mark:	N/A	25
Product Type:	☐ Mobile ☐ Portable ⊠ Fix Location	(2)
Operation Frequency:	2402MHz~2480MHz	U
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	
Number of Channel:	79	
Hopping Channel Type:	Adaptive Frequency Hopping systems	 Image: A start of the start of
Antenna Type:	PCB Antenna	
Antenna Gain:	0dBi	
Power Supply:	120V 60Hz 130mA	
Test Voltage:	120V 60Hz 130mA	U
Sample Received Date:	Oct. 15, 2021	
Sample tested Date:	Oct. 15, 2021 to Nov. 05, 2021	
(67)		6

CTL 生测检测 Report No.: EED 32N8100470	01

Operation F	requency each	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7 🔇	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		e

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

~	Channel	Frequency		
(\mathcal{O})	The Lowest channel	2402MHz	(5)	
\sim	The Middle channel	2441MHz		
	The Highest channel	2480MHz		

4.3 Test Configuration

Software:	ware Settings	BK3266					
EUT Power Gr	ado:	Default					
Use test softwa			y, the middle f	requency and	the highest fi	requencv kee	р
transmitting of	the EUT.					, ,	6
M	ode		Channel		Fr	equency(MH	z)
			CH0			2402	
DH1/D	H3/DH5	12	CH39	(°>>		2441	
(S)		(3)	CH78	$(\mathcal{S}^{(n)})$		2480	
			CH0			2402	
2DH1/20	DH3/2DH5		CH39			2441	
N	$\langle \hat{a} \rangle$		CH78			2480	12
			СНО		(\mathbf{C})	2402	G
2DH1/20	0H3/2DH5		CH39			2441	
			CH78			2480	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

4.4 Test Environment

Operating Environment	:				
Radiated Spurious Emi	ssions:				
Temperature:	22~25.0 °C	\sim		\sim	
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar		(in)		13
Conducted Emissions:	÷				
Temperature:	22~25.0 °C		J		J
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar			100	
RF Conducted:					
Temperature:	22~25.0 °C	S		S	
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
2°2			2°2		

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Notebook	DELL	DELL 3490	CE&FCC	СТІ

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

4.8 Equipment List

		Conducted distu	Irbance Test			
Equipment	Manufacturer	Model No. Serial Number		Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022	
Temperature/ Humidity Indicator	Defu	TH128	/		- 0	
LISN	R&S	ENV216	100098	03-04-2021	03-03-2022	
Barometer	changchun	DYM3	1188			

		RF test s	ystem			
Equipment	pment Manufacturer		Mode No. Serial Number		Cal. Due date (mm-dd-yyyy)	
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-28-2020	12-27-2021	
Signal Generator	Keysight	N5182B	MY53051549	12-28-2020	12-27-2021	
Temperature/ biaozhi Humidity Indicator		HM10	1804186	06-24-2021	06-23-2022	
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002				
High-pass filter	MICRO- TRONICS	SPA-F-63029-4				
DC Power	Keysight	E3642A	MY56376072	12-28-2020	12-27-2021	
Power unit	R&S	OSP120	101374	12-28-2020	12-27-2021	
RF control unit	JS Tonscend	JS0806-2	158060006	12-28-2020	12-27-2021	
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3			(6	

		3M Semi/full-anec	hoic Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	трк	SAC-3		05-24-2019	05-23-2022	
TRILOG Broadband Antenna	Schwarzbeck	hwarzbeck VULB9163		9163-618 05-16-2021		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-15-2021	04-14-2024	
Receiver	R&S	ESCI7	100938-003	10-14-2021	10-13-2022	
Multi device maturo		NCD/070/10711 112		_		
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-24-2021	06-23-2022	
Cable line	Fulai(7M)	SF106	5219/6A			
Cable line	Fulai(6M)	SF106	5220/6A	((⁻	
Cable line	Fulai(3M)	SF106	5216/6A	\		
Cable line	Fulai(3M)	SF106	5217/6A			

	•
CT	
UI	Report No. : EED32N81004701

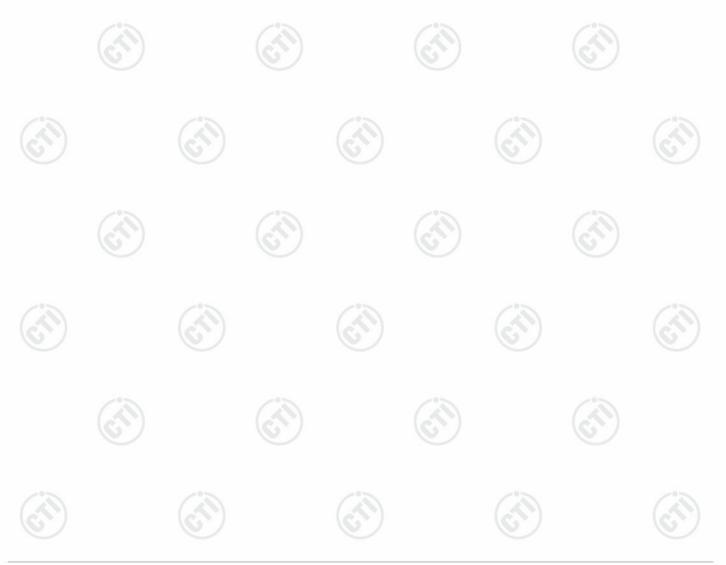
	i	3M full-anechoi	1	•••		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166			
Receiver	Keysight	N9038A	MY57290136	03-04-2021	03-03-2022	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021	03-03-2022	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021	03-03-2022	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS- LINDGREN	3117	00057407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980596	05-20-2021	05-19-2022	
Preamplifier	EMCI	EMC001330	980563	04-21-2021	04-20-2022	
Preamplifier	JS Tonscend	980380	EMC051845 SE	12-31-2020	12-30-2021	
Temperature/ Humidity biaozhi Indicator		GM1360	EE1186631	04-16-2021	04-15-2022	
Fully Anechoic Chamber	ток	FAC-3		01-09-2021	01-08-2024	
Filter bank	JS Tonscend	JS0806-F	188060094	04-09-2021	04-08-2024	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001			
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		<u>a</u>)	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		<u> </u>	
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001			
Cable line	Times	EMC104-NMNM- 1000	SN160710		- (
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	(C)	(
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001			
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001		<u> </u>	
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		ss)	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

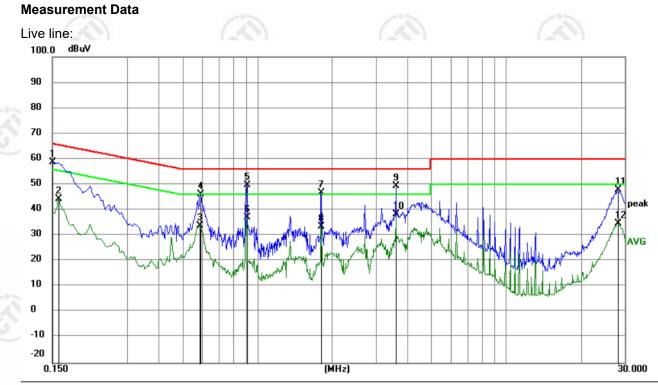
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

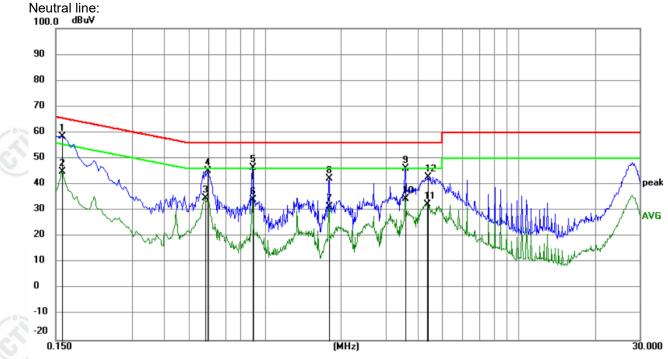
EUT Antenna:	Please see Internal photos
The antenna is PCB antenna	a. The best case gain of the antenna is 0dBi.

CTILL 测 标测 Report No.: EED32N8100470)1
Report No. : EED32N8100470	' '


5.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.2	207							
 Test Method:	ANSI C63.10: 2013	12	1°2						
 Test Frequency Range:		2							
 Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv	weep time=auto	6						
 Limit:	Limit (dBu)/)								
Entite.	Frequency range (MHz)	<u>``</u>	/						
		Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
	* Decreases with the logarithm	n of the frequency.	U.S.						
Test Setup:	Shielding Room Test Receiver LISN1 LISN2 AC Mains								
Test Procedure:	 The mains terminal disturbution room. The EUT was connected to Impedance Stabilization Network impedance. The power cable connected to a second LIS reference plane in the sam measured. A multiple socket power cables to a single LI exceeded. The tabletop EUT was place on the horizontal grade on the hori	AC power source thro etwork) which provides oles of all other units of N 2, which was bonded e way as the LISN 1 fo et outlet strip was used SN provided the rating ced upon a non-metallic nd for floor-standing arr ound reference plane,	ugh a LISN 1 (Line a 50Ω/50µH + 5Ω linea the EUT were d to the ground r the unit being to connect multiple of the LISN was not table 0.8m above the angement, the EUT was						
	 4) The test was performed with of the EUT shall be 0.4 m f vertical ground reference p reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated ect 5) In order to find the maximu equipment and all of the int ANSI C63.10: 2013 on con 	rom the vertical ground lane was bonded to the 1 was placed 0.8 m fro to a ground reference and reference plane. Th of the LISN 1 and the quipment was at least 0 m emission, the relative terface cables must be ducted measurement.	a reference plane. The e horizontal ground om the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. e positions of changed according to						
Exploratory Test Mode:	data type at the lowest, middle	e, high channel.							
Final Test Mode:	Through Pre-scan, find the 3E lowest channel is the worst ca Only the worst case is recorde	se.	3DPSK modulation at th						
 Test Results:	Pass								
root reoduto.									

	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
	1	0.1500	48.80	9.87	58.67	66.00	-7.33	peak		
	2	0.1590	34.41	9.87	44.28	55.52	-11.24	AVG		
2	3	0.5865	23.70	10.05	33.75	46.00	-12.25	AVG		
	4	0.5910	36.15	10.06	46.21	56.00	-9.79	peak		
-	5 *	0.9060	39.96	9.85	49.81	56.00	-6.19	peak		
	6	0.9060	27.19	9.85	37.04	46.00	-8.96	AVG		
	7	1.8060	36.97	9.80	46.77	56.00	-9.23	peak		
	8	1.8060	23.77	9.80	33.57	46.00	-12.43	AVG		
	9	3.6195	39.53	9.78	49.31	56.00	-6.69	peak		
	10	3.6195	28.42	9.78	38.20	46.00	-7.80	AVG		
	11	28.0455	38.04	10.02	48.06	60.00	-11.94	peak		
2	12	28.0455	24.59	10.02	34.61	50.00	-15.39	AVG		
Q.	1					<u> </u>	1			


Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

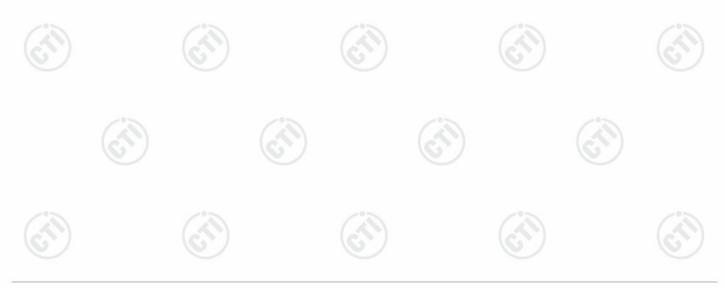
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1590	48.71	9.87	58.58	65.52	-6.94	peak	
2	0.1590	35.06	9.87	44.93	55.52	-10.59	AVG	
3	0.5820	24.66	10.05	34.71	46.00	-11.29	AVG	
4	0.5955	35.30	10.06	45.36	56.00	-10.64	peak	
5	0.8970	36.66	9.85	46.51	56.00	-9.49	peak	
6	0.8970	24.31	9.85	34.16	46.00	-11.84	AVG	
7	1.7880	21.59	9.80	31.39	46.00	-14.61	AVG	
8	1.7925	32.48	9.80	42.28	56.00	-13.72	peak	
9	3.5835	36.25	9.78	46.03	56.00	-9.97	peak	
10	3.5835	24.82	9.78	34.60	46.00	-11.40	AVG	
11	4.3530	22.68	9.78	32.46	46.00	-13.54	AVG	
12	4.3935	33.05	9.78	42.83	56.00	-13.17	peak	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)								
Test Method:	ANSI C63.10:2013								
Test Setup:	Control Computer Computer Power Supply Table RF test System Instrument								
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel PRW > the 20 dB bandwidth of the amiasian being								
	RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.								
Limit:	21dBm								
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type								
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFS modulation type, 2-DH5 of data type is the worst case of π /4DQPS modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.								
Test Results:	Refer to Appendix C								



5.4 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)							
	Test Method:	ANSI C63.10:2013							
	Test Setup:	RF test Control Computer Computer Power Supply Table RF test System Instrument							
		Remark: Offset=Cable loss+ attenuation factor.							
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 							
	Limit:	NA							
3	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type							
2	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.							
	Test Results:	Refer to Appendix A							
	G								

5.5 Carrier Frequency Separation

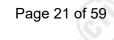
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
0	Test Setup:	Control Computer Comp
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
-	Test Results:	Refer to Appendix D

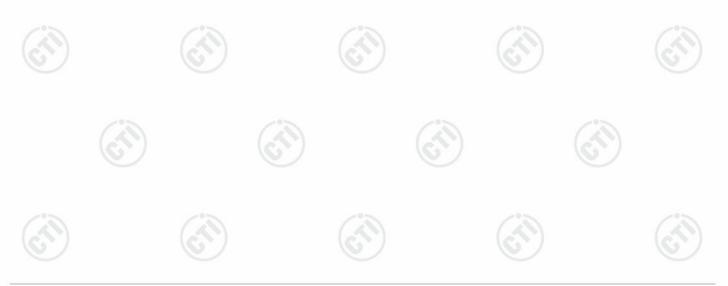
5.6 Number of Hopping Channel

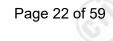
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)						
	Test Method:	ANSI C63.10:2013						
	Test Setup:	Control Computer Computer Power Suppy TelmPERATURE CABRET Table						
		Remark: Offset=Cable loss+ attenuation factor.						
Ś	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. 						
		 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 						
		5. The number of hopping frequency used is defined as the number total channel.						
C2		6. Record the measurement data in report.						
C	Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.						
	Test Mode:	Hopping transmitting with all kind of modulation						
	Test Results:	Refer to Appendix F						
	(A)							

5.7 Time of Occupancy

Test Red	quirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Me	thod:	ANSI C63.10:2013					
Test Set	up:	Control Control Control Powar Supph TeliPERATURE CABBLET Table RF test System Instrument					
		Remark: Offset=Cable loss+ attenuation factor.					
Test Pro	cedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected 					
		 dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace max hold. 5. Measure and record the results in the test report. 					
Limit:		The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.					
Test Mo	de:	Hopping transmitting with all kind of modulation and all kind of data type.					
Test Res	sults:	Refer to Appendix E					

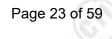






5.8 Band edge Measurements

-								
	Test Requirement:	47 CFR Part 15C Section 15.247 (d)						
	Test Method:	ANSI C63.10:2013						
(CN)	Test Setup:	Control Computer Computer Power Suppl Tele Table RF test System Instrument						
		Remark: Offset=Cable loss+ attenuation factor.						
3	Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report. 						
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
હ	Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type						
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.						
	Test Results:	Refer to Appendix G						


5.9 Conducted Spurious Emissions

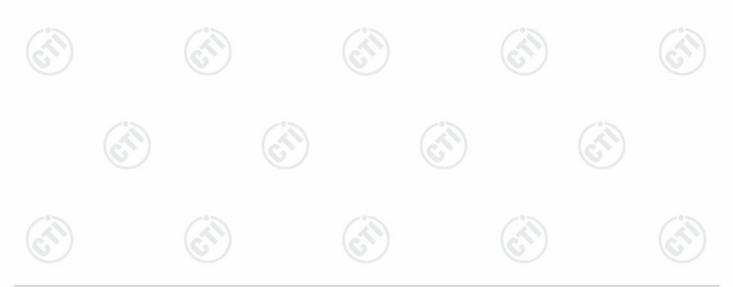
TEMPERATURE CABINET Table Table The RF output of El le and attenuator. Th asurement. Set to the maximut tinuously. Set RBW = 100 kHz,	UT was conr he path loss v um power s , VBW = 300	nected to the spe was compensated setting and enab	ectrum analyzer by F to the results for each ole the EUT transmough 10th harmonic. /
Control Computer Power Supply Temperature cabinet Table Table The RF output of EU le and attenuator. The asurement. Set to the maximut tinuously. Set RBW = 100 kHz, monics / spurs must	oss+ attenua UT was conr he path loss v um power s , VBW = 300	System Instrument	I to the results for eac
The RF output of El le and attenuator. Th asurement. Set to the maximu tinuously. Set RBW = 100 kHz, monics / spurs must	UT was conr he path loss v um power s , VBW = 300	nected to the spe was compensated setting and enab	I to the results for eac
le and attenuator. Th asurement. Set to the maximu tinuously. Set RBW = 100 kHz, monics / spurs must	he path loss v um power s , VBW = 300	was compensated setting and enab	I to the results for eac
operating frequency	ed band as m the results in frequency sh / band.	20 dB down from neasured with a 10 the test report. nould be excluded	against the limit line
ctrum intentional rac duced by the intention kHz bandwidth wit ired power, based	diator is oper onal radiator thin the band	rating, the radio fr shall be at least 2 d that contains th	requency power that 20 dB below that in the ne highest level of th
n-hopping transmittin	ng with all kind	d of modulation ar	nd all kind of data typ
dulation type, 2-DH dulation type, 3-DH5	15 of data t	type is the wors	t case of π/4DQPS
er to Appendix H			
	operating frequency any 100 kHz bandw ctrum intentional ra duced by the intenti kHz bandwidth wi ired power, base asurement. h-hopping transmittir ough Pre-scan, find dulation type, 2-DH	operating frequency band. any 100 kHz bandwidth outside to ctrum intentional radiator is oper duced by the intentional radiator 0 kHz bandwidth within the band ired power, based on eithe asurement. n-hopping transmitting with all kin ough Pre-scan, find the DH5 of dulation type, 2-DH5 of data type e.	operating frequency band. any 100 kHz bandwidth outside the frequency ban ctrum intentional radiator is operating, the radio f duced by the intentional radiator shall be at least 2 kHz bandwidth within the band that contains the ired power, based on either an RF cond asurement. n-hopping transmitting with all kind of modulation and ough Pre-scan, find the DH5 of data type is the dulation type, 2-DH5 of data type is the worst dulation type, 3-DH5 of data type is the worst case e.

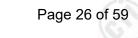
5 auoney Honning Seguen

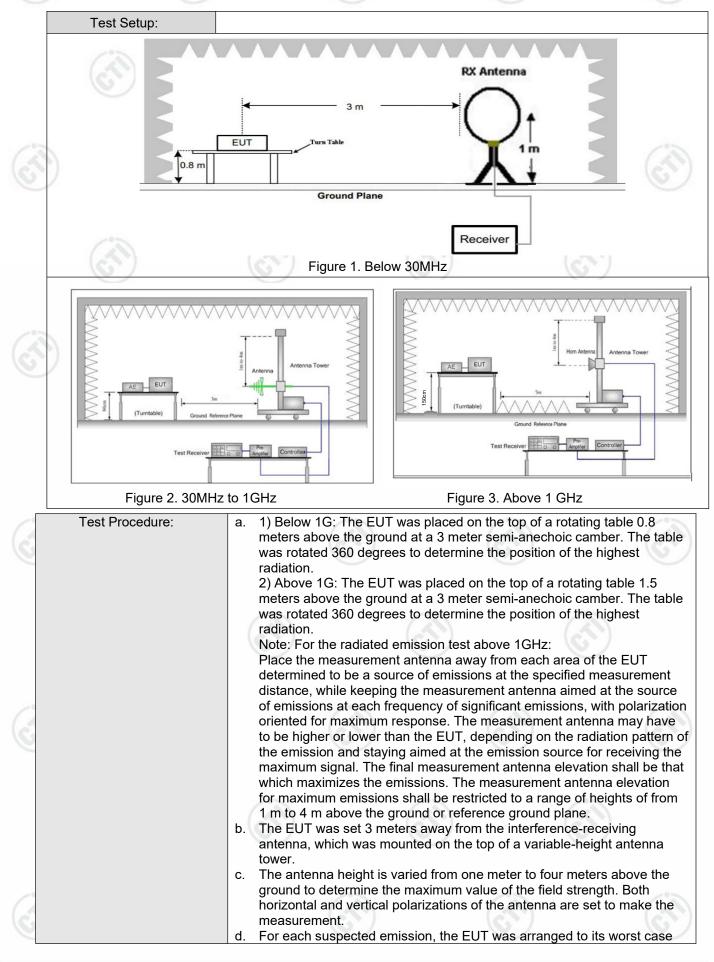
.10	Pseudorandom Frequ	lency Hopping Sequence	
	Test Requirement:	47 CFR Part 15C Section 15.247 (a	ı)(1), (h) requirement:
	The system shall hop to character from a Pseudorandom on the average by each transmission on the second sec	annel frequencies that are selected at t ordered list of hopping frequencies. Ea nsmitter. The system receivers shall ha is of their corresponding transmitters a	he system hopping ach frequency must be used equally ave input bandwidths that match the
	channels during each trans receiver, must be designed transmitter be presented wi employing short transmission	spectrum systems are not required to mission. However, the system, consist to comply with all of the regulations in ith a continuous data (or information) s on bursts must comply with the definition smissions over the minimum number o	ing of both the transmitter and the this section should the tream. In addition, a system on of a frequency hopping system
	the system to recognize oth independently chooses and The coordination of frequen	ence within a frequency hopping sprea her users within the spectrum band so d adapts its hopsets to avoid hopping o hey hopping systems in any other man occupancy of individual hopping freque	that it individually and n occupied channels is permitted. her for the express purpose of
	Compliance for section 15	5.247(a)(1)	
	stage shift register whose 5 outputs are added in a mod	ulo-two addition stage. And the result is s with the first ONE of 9 consecutive C ages: 9 sequence: 2 ⁹ -1 = 511 bits	s fed back to the input of the first
		Shift Register for Generation of the	
		om Frequency Hopping Sequence as 1 7 64 8 73	· · · · · · · · · · · · · · · · · · ·
			(5)
	According to Bluetooth Co bandwidths that match the	ly on the average by each transmitter. re Specification, Bluetooth receivers e hopping channel bandwidths of ar ion with the transmitted signals.	
	Compliance for section 15	5.247(g)	
	pseudorandom hopping fre	ore Specification, the Bluetooth syst quency with a continuous data and th ransmitted under the frequency hopp	e short burst transmission from the
)	(A)	(ct)	

Compliance for section 15.247(h)

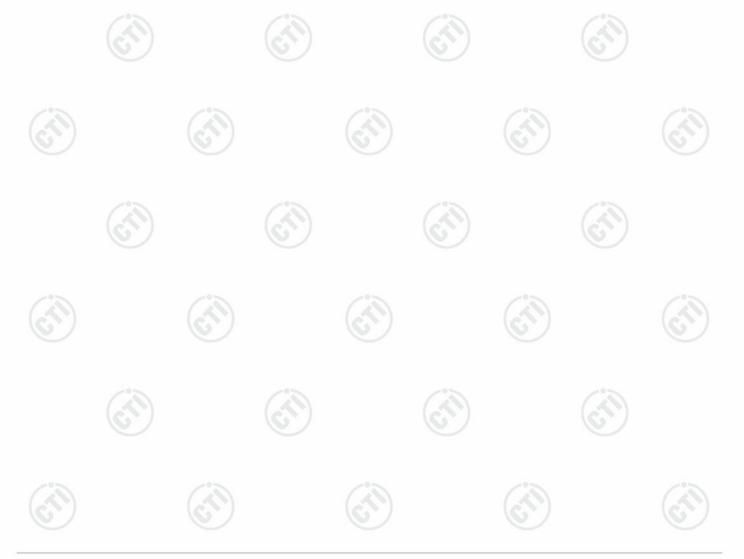
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

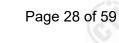

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.



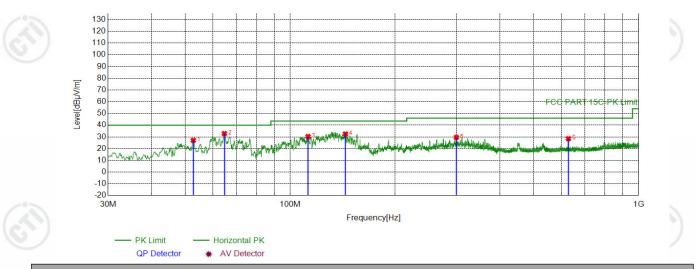

5.11 Radiated Spurious Emission & Restricted bands

				- / /		(2)	<u>.</u>				
	st Requirement:	47 CFR Part 15C Section	on 15	.209 and 15	.205	(3))				
Tes	st Method:	ANSI C63.10: 2013	C								
Tes	st Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Rec	ceiver Setup:	Frequency		Detector	RBW	VBW	Remark				
		0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak				
		0.009MHz-0.090MHz		Average	10kHz	2 30kHz	Average				
		0.090MHz-0.110MH	z	Quasi-peak 10k		z 30kHz	Quasi-peak				
		0.110MHz-0.490MH	z	Peak 10kHz		30kHz	Peak				
		0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average				
		0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak				
		30MHz-1GHz		Peak	100 kH	z 300kHz	Peak				
				Peak	1MHz	3MHz	Peak				
		Above 1GHz	Peak		1MHz	10kHz	Average				
Lim	iit:	Frequency	Frequency Field st (microvo		Limit (dBuV/m)	Remark	Measuremer distance (m)				
		0.009MHz-0.490MHz	0.490MHz 2400/F(kHz)		-	-	300				
		0.490MHz-1.705MHz 24000/F(kHz) -		-	-/*2	30					
		1.705MHz-30MHz			-	(a)	30				
		30MHz-88MHz		100	40.0	Quasi-peak	3				
		88MHz-216MHz		150	43.5	Quasi-peak	3				
		216MHz-960MHz 200		46.0	Quasi-peak	3					
		960MHz-1GHz	9	500	54.0	Quasi-peak	3				
		Above 1GHz)	500	54.0	Average 3					
		Note: 15.35(b), Unless emissions is 20dE applicable to the e peak emission lev	3 abov equipi	ve the maxir ment under t	num permi test. This p	tted average	emission limit				





CTLL生测标测	701 Page 27 of 59
	 and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case. Pretest the EUT at Transmitting mode, For below 1GHz part, through pre- scan, the worst case is the lowest channel. Only the worst case is recorded in the report.
Test Results:	Pass



Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

Test Graph

	Suspecte	d List	_			_		_		
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	rolanty	Remark
	1	52.7003	-17.53	44.61	27.08	40.00	12.92	PASS	Horizontal	PK
	2	64.7295	-19.58	52.42	32.84	40.00	7.16	PASS	Horizontal	PK
	3	112.555	-18.81	49.09	30.28	43.50	13.22	PASS	Horizontal	PK
	4	144.083	-21.87	54.40	32.53	43.50	10.97	PASS	Horizontal	PK
	5	299.881	-15.44	45.04	29.60	46.00	16.40	PASS	Horizontal	PK
	6	628.743	-8.43	36.92	28.49	46.00	17.51	PASS	Horizontal	PK

