

RF TEST REPORT

For

ShenZhen RiShengHua Technology Co., Ltd.

Product Name: Human presence detector

Test Model(s): RSH-RD24G01

Report Reference No. : DACE250111024RL001

FCC ID : 2A9K2-RSH-RD24G01

Applicant's Name : ShenZhen RiShengHua Technology Co., Ltd.

Address : Floor 2, building E1, qiangrong East Industrial Zone, No. 723, Zhoushi

Road, Jiuwei community, Hangcheng street, Bao'an District, Shenzhen

Testing Laboratory : Shenzhen DACE Testing Technology Co., Ltd.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park,

Address : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen,

Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : January 11, 2025

Date of Test : January 11, 2025 to February 6, 2025

Data of Issue : February 6, 2025

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 114

Apply for company information

Applicant's Name	:	ShenZhen RiShengHua Technology Co., Ltd.		
Address	:	Floor 2, building E1, qiangrong East Industrial Zone, No. 723, Zhoushi Road, Jiuwei community, Hangcheng street, Bao'an District, Shenzhen		
Product Name	:	Human presence detector		
Test Model(s)	i	RSH-RD24G01		
Series Model(s)		N/A		
Test Specification Standard(s)	7	47 CFR Part 15.247		

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:

Keren Huang

Keren Huang / Test Engineer

February 6, 2025

Supervised by:

Approved by:

Machael Mo / Manager

February 6, 2025

February 6, 2025

February 6, 2025

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 114

DAG

Report No.: DACE250111024RL001

Revision History Of Report

Version Description		on Description REPORT No.	
V1.0	Original	DACE250111024RL001	February 6, 2025
		2	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 3 of 114

DAG

V1.0

CONTENTS

1 TEST SUMMARY	6	
1.1 TEST STANDARDS		
1.2 SUMMARY OF TEST RESULT		
2 GENERAL INFORMATION		
2.1 CLIENT INFORMATION		
2.2 DESCRIPTION OF DEVICE (EUT)		
2.3 DESCRIPTION OF TEST MODES		
2.4 DESCRIPTION OF SUPPORT UNITS		
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY		
2.7 IDENTIFICATION OF TESTING LABORATORY		
2.8 ANNOUNCEMENT	11	
3 EVALUATION RESULTS (EVALUATION)	12	
3.1 ANTENNA REQUIREMENT	12	
3.1.1 Conclusion:	12	
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	13	
4.1 CONDUCTED EMISSION AT AC POWER LINE		
4.1.1 E.U.T. Operation:		
4.1.2 Test Setup Diagram:	13	
4.1.3 Test Data:	14	
4.2 6DB BANDWIDTH		
4.2.1 E.U.T. Operation:	16	
4.2.3 Test Data:	16	
4.3 MAXIMUM CONDUCTED OUTPUT POWER	17	
4.3.1 E.U.T. Operation:		
4.3.2 Test Setup Diagram:		
4.3.3 Test Data:		
4.4 Power Spectral Density		
4.4.1 E.U.T. Operation:	19	
4.4.2 Test Setup Diagram:	19	
4.4.3 Test Data:	19	
4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	20	
4.5.1 E.U.T. Operation:		
4.5.2 Test Setup Diagram:		
4.5.3 Test Data:		
4.6 BAND EDGE EMISSIONS (RADIATED)		
4.6.1 E.U.T. Operation:		
4.6.2 Test Setup Diagram:		
4.6.3 Test Data:		
4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)		
4.7.1 E.U.T. Operation:		
4.7.2 Test Data:		
4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)		
4.8.1 E.U.T. Operation:		
4.8.2 Test Data:	42	

DAG

5 TEST SETUP PHOTOS	48
6 PHOTOS OF THE EUT	50
APPENDIX	57
16dB Bandwidth	
16DB BANDWIDTH	58
2. 99% OCCUPIED BANDWIDTH	65
3. DUTY CYCLE	
4. MAX. OUTPUT POWER	
5. Power Spectral Density	
6. Bandedge	93
7. Spurious Emission	102

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 114

DAG

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
6dB Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 114

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name: ShenZhen RiShengHua Technology Co., Ltd.

Address : Floor 2, building E1, qiangrong East Industrial Zone, No. 723, Zhoushi Road,

Jiuwei community, Hangcheng street, Bao'an District, Shenzhen

Manufacturer : ShenZhen RiShengHua Technology Co., Ltd.

Address : Floor 2, building E1, qiangrong East Industrial Zone, No. 723, Zhoushi Road,

Jiuwei community, Hangcheng street, Bao'an District, Shenzhen

2.2 Description of Device (EUT)

Product Name:	Human presence detector
Model/Type reference:	RSH-RD24G01
Series Model:	N/A
Trade Mark:	RSH
Power Supply:	DC 5V/1A from adapter
Operation Frequency:	802.11b/g/n(HT20): 2412MHz to 2462MHz; 802.11n(HT40): 2422MHz to 2452MHz
Number of Channels:	802.11b/g/n(HT20): 11 Channels; 802.11n(HT40): 7 Channels
Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK); 802.11g: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n(HT20 and HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM)
Antenna Type:	PCB
Antenna Gain:	1.08dBi
Hardware Version:	V1.0
Software Version:	V1.0

Remark:The Antenna Gain is supplied by the customer.POCE is not responsible for this data and the related calculations associated with it

Operation	Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz		
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz		
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
	802.11b/802.11g/802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 114

Test channel	802.11n(HT40)
Lowest channel	2422MHz
Middle channel	2437MHz
Highest channel	2452MHz

2.3 Description of Test Modes

No	Title	Description	
TM1	802.11b mode	Keep the EUT in 802.11b transmitting mode.	
TM2	802.11g mode	Keep the EUT in 802.11g transmitting mode.	2
TM3	802.11n(HT20) mode	Keep the EUT in 802.11n(HT20) transmitting mode.	
TM4	802.11n(HT40) mode	Keep the EUT in 802.11n(HT40) transmitting mode.	

Remark: During the test, the duty cycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

2.4 Description of Support Units

Title	Manufacturer Model No.		Serial No.
AC-DC adapter	HUAWEI TECHNOLOGY	HW100400C01	C

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 114

2.5 Equipments Used During The Test

Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2024-03-25	2025-03-24	
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	1	
Cable	SCHWARZ BECK	101	1	2024-03-20	2025-03-19	
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2024-12-06	2025-12-05	
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/	
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11	
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2025-12-11	
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13	
Pulse Limiter	CYBERTEK	EM5010A	1	2024-09-27	2025-09-26	
EMI test software	EZ -EMC	EZ	V1.1.42	1	1	

Report No.: DACE250111024RL001

6dB Bandwidth

Maximum Conducted Output Power

Power Spectral Density

Emissions in non-restricted frequency bands

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0	/	
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	1
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05
Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05
Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 114

Band edge emissions (Radiated)
Emissions in frequency bands (below 1GHz)
Emissions in frequency bands (above 1GHz)

Emissions in frequenc	y bands (above it				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	1	/
Positioning Controller	MF	MF-7802	61	1	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	1	1	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	1	1	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 114

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
	<u> </u>

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.					
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China					
Phone Number:	+86-13267178997					
Fax Number:	86-755-29113252					
Designation Number:	CN1342					
Test Firm Registration Number:	778666					
A2LA Certificate Number:	6270.01					

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 114

Evaluation Results (Evaluation)

3.1 Antenna requirement

Test Requirement:

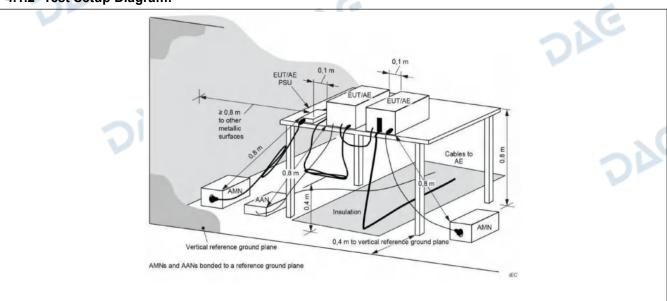
Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 114

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto th AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)						
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
\	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						

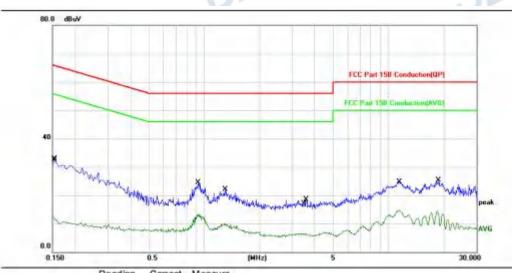
4.1.1 E.U.T. Operation:

P	Operating Environment:								
	Temperature:	22.8 °C		Humidity:	49 %	Atmospheric Pressure:	101 kPa		
	Pretest mode: TM			TM2, TM3, 7	TM4				
	Final test mode:								

4.1.2 Test Setup Diagram:

Web: http://www.dace-lab.com

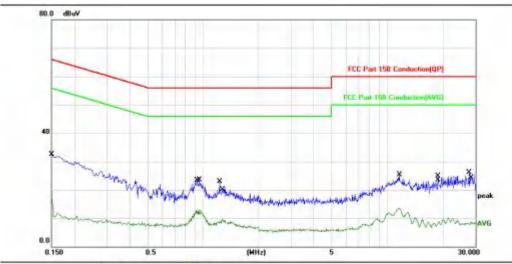
Tel: +86-755-23010613


E-mail: service@dace-lab.com

Page 13 of 114

4.1.3 Test Data:

TM1 / Line: Line / Band: 2400-2483.5 MHz / BW: 20 / CH: L


Report No.: DACE250111024RL001

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dΒ	Dete ctor	Comment	_
1		0.1500	-20.39	33.20	12.81	55.99	-43.18	AVG		_
2		0.1539	-0.39	33.20	32.81	65.78	-32.97	QP		_
3		0.9260	-8.97	33.50	24.53	56.00	-31.47	QP		_
4		0.9340	-20.07	33.50	13.43	46.00	-32.57	AVG		_
5		1.2980	-11.42	33.53	22.11	56.00	-33.89	QP		_
6		1.2980	-23.42	33.53	10.11	46.00	-35.89	AVG		_
7		3.4180	-26.97	33.53	6.56	46.00	-39.44	AVG		_
8		3.5660	-15.04	33.52	18.48	56.00	-37.52	QP		
9		11.4420	-9.08	33.69	24.61	60.00	-35.39	QP		_
10		11.4420	-18.90	33.69	14.79	50.00	-35.21	AVG		
11		18.4140	-19.69	34.10	14.41	50.00	-35.59	AVG		
12		18.6299	-8.74	34.12	25.38	60.00	-34.62	QP		_

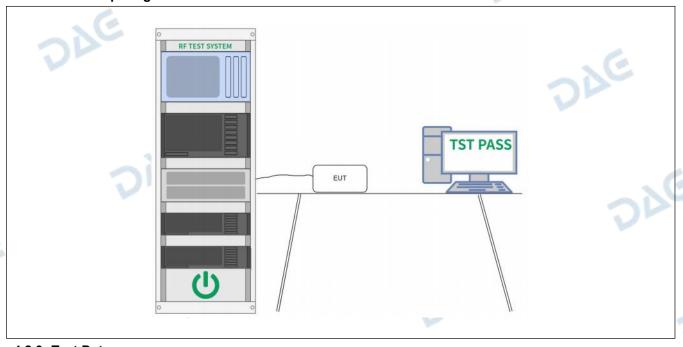
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 114

TM1 / Line: Neutral / Band: 2400-2483.5 MHz / BW: 20 / CH: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1500	-0.63	33.20	32.57	65.99	-33.42	QP		
2		0.1500	-13.75	33.20	19.45	55.99	-36.54	AVG		
3		0.9340	-20.49	33.50	13.01	46.00	-32.99	AVG		
4	•	0.9540	-9.90	33.50	23.60	56.00	-32.40	QP		
5		1.2260	-10.55	33.52	22.97	56.00	-33.03	QP		
6		1.2740	-23.76	33.53	9.77	46.00	-36.23	AVG		
7		11.5780	-8.40	33.69	25.29	60.00	-34.71	QP		
8		11.5780	-20.12	33.69	13.57	50.00	-36.43	AVG		
9	_	18.7979	-9.33	34.13	24.80	60.00	-35.20	QP		
10		19.0300	-25.34	34.14	8.80	50.00	-41.20	AVG		
11		27.5620	-7.87	33.90	26.03	60.00	-33.97	QP		
12		28.6860	-25.16	33.85	8.69	50.00	-41.31	AVG		
_										

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 15 of 114

4.2 6dB Bandwidth


V1.0

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.2.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.8 °C		Humidity:	49 %	At	mospheric Pressure:	101 kPa	
Pretest mode: TM			TM2, TM3,	ГМ4			Co	
Final test mode: TM1			TM2, TM3,	ГМ4				

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 16 of 114

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

4.3 Maximum Conducted Output Power

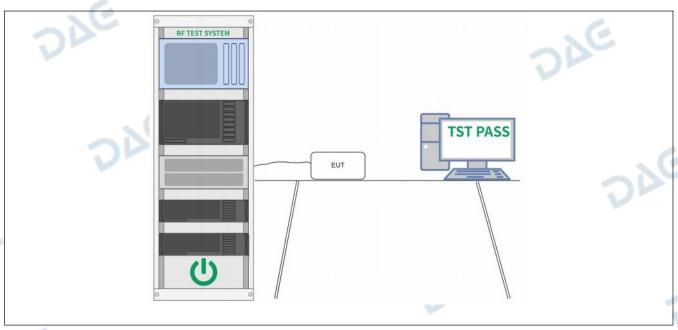
	addica Gatpat i Gwoi
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas)
	(#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

Report No.: DACE250111024RL001

4.3.1 E.U.T. Operation:

Operating Environment:										
Temperature:	emperature: 22.8 °C			49 %	-	Atmospheric Pressure:	101 kPa	- 2/		
Pretest mode:		TM1,	TM2, TM3,	TM4				U		
Final test mode:		TM1,	TM2, TM3,	TM4						

4.3.2 Test Setup Diagram:


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 17 of 114

DIE

DAG

DAG

DAG

4.3.3 Test Data:

DAG

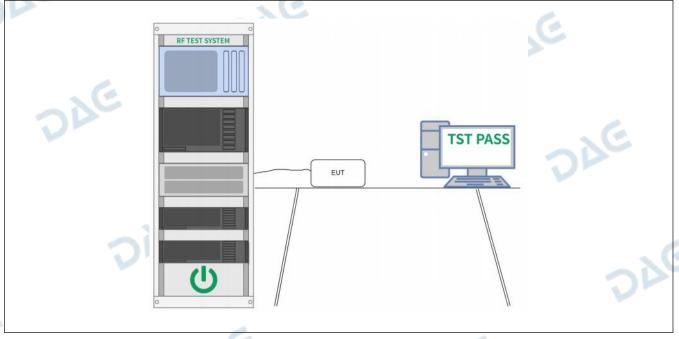
DAG

Please Refer to Appendix for Details.

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 114

4.4 Power Spectral Density


Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

Report No.: DACE250111024RL001

4.4.1 E.U.T. Operation:

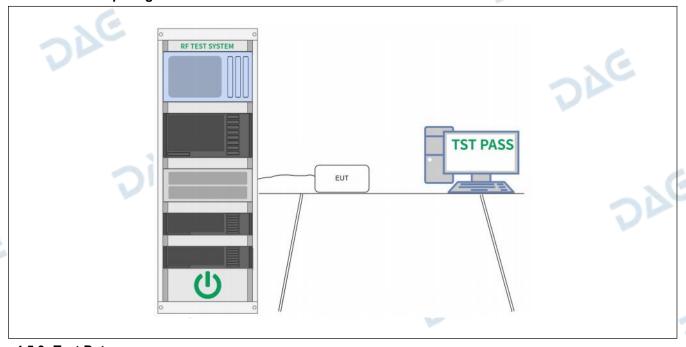
Operating Environment:									
Temperature:	22.8 °C		Humidity:	Atmospheric Pressure:	101 kPa				
Pretest mode:		TM1,	TM2, TM3,	ГМ4		•			
Final test mode:		TM1,	TM2, TM3,	ГМ4					

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 19 of 114


4.5 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

Operating Environment:										
Temperature:	erature: 22.8 °C			Humidity: 49 %		Atmospheric Pressure:	101 kPa			
Pretest mode:		TM1,	TM2, TM3, 7	ГМ4			C			
Final test mode:		TM1,	TM2, TM3, 7	ГМ4						

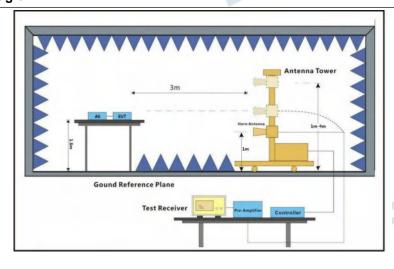
4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 114

4.6 Band edge emissions (Radiated)


Test Requirement:	restricted bands, as defi	(d), In addition, radiated emission ned in § 15.205(a), must also co in § 15.209(a)(see § 15.205(c)	omply with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
4	216-960	200 **	3
	Above 960	500	3
Ve	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands it and 15.241. In the emission table about the emission limits shown and 10–490 kHz and above	paragraph (g), fundamental emer this section shall not be located 174-216 MHz or 470-806 MHz is permitted under other section ove, the tighter limit applies at the tighter limit applies at the section of the section	ed in the frequency bands. However, operation within s of this part, e.g., §§ 15.231 he band edges. I on measurements frequency bands 9–90 kHz, limits in these three bands
Test Method:	ANSI C63.10-2013 secti	. , , ,	
rest Metriou.		7 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 secti	on 6.10.5.2	· (e

Report No.: DACE250111024RL001

4.6.1 E.U.T. Operation:

Operating Environment:										
Temperature:	22.8 °C	-	Humidity:	49 %	Atmospheric	Pressure:	101 kPa			
Pretest mode:		TM1,	TM2, TM3, 7	ГМ4	. 6					
Final test mode:		TM1,	TM2, TM3, 7	ГМ4						

4.6.2 Test Setup Diagram:

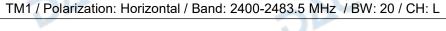
Web: http://www.dace-lab.com

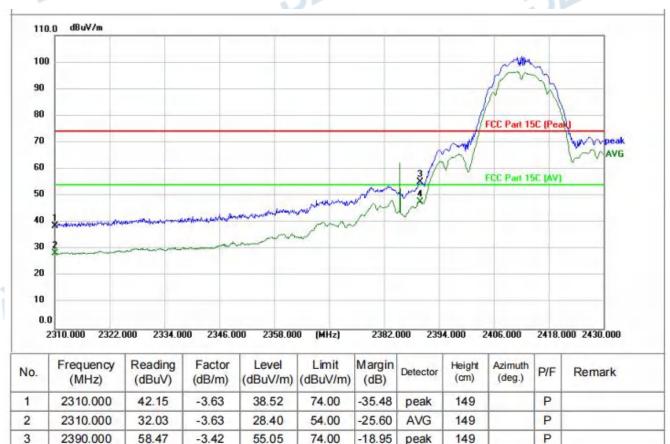
Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 21 of 114

51.07


-3.42



4 *

2390.000

4.6.3 Test Data:

Report No.: DACE250111024RL001

P

47.65

54.00

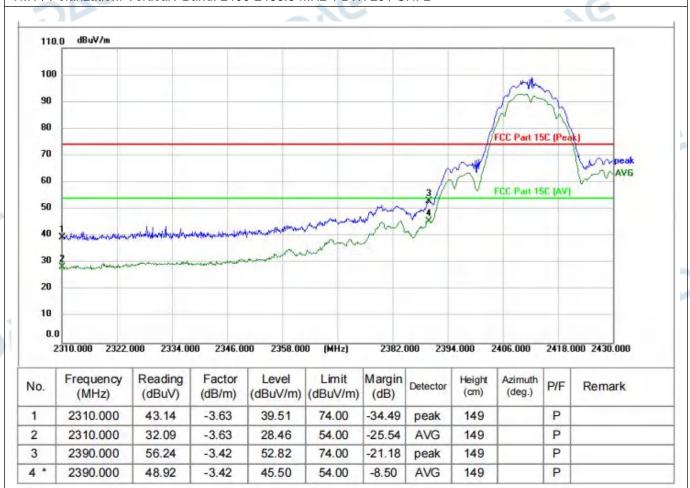
-6.35

AVG

149

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 22 of 114

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 20 / CH: L

2500.000

4

DAG

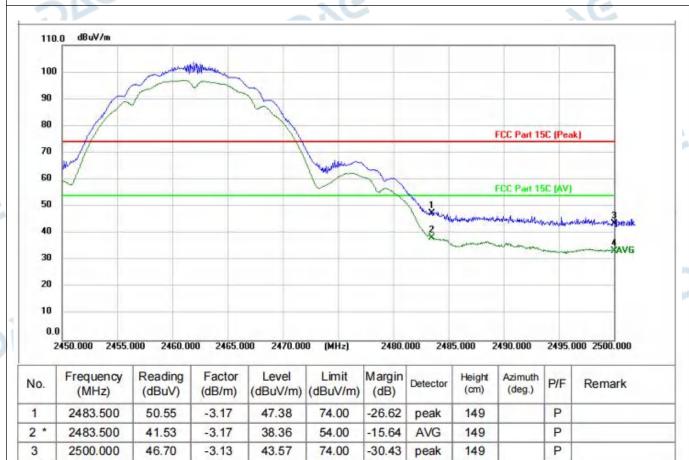
36.65

-3.13

33.52

54.00

-20.48


AVG

149

Report No.: DACE250111024RL001

P

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 20 / CH: H

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

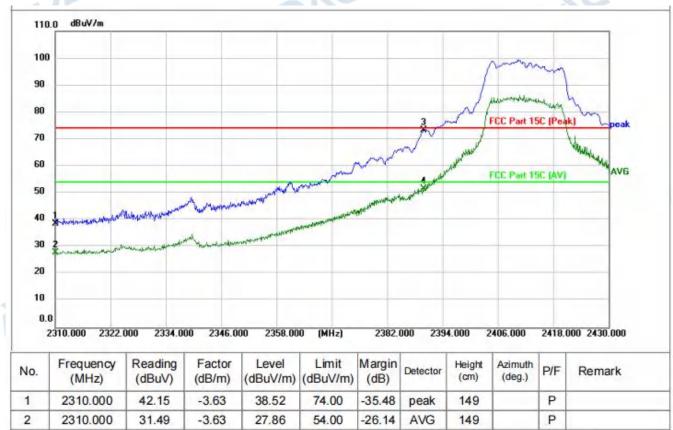
Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 24 of 114

DAG


Report No.: DACE250111024RL001

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 20 / CH: H

TM2 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 20 / CH: L

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 26 of 114

52.49

-3.42

49.07

2390.000

4 *

Report No.: DACE250111024RL001

TM2 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 20 / CH: L

54.00

AVG

-4.93

P

DAG

Report No.: DACE250111024RL001

TM2 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 20 / CH: H

4

DAG

2500.000

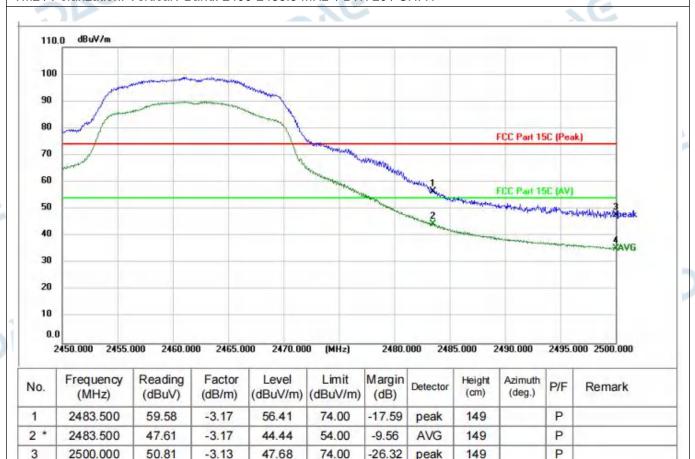
38.53

-3.13

35.40

54.00

-18.60


AVG

149

P

Report No.: DACE250111024RL001

TM2 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 20 / CH: H

2390.000

4

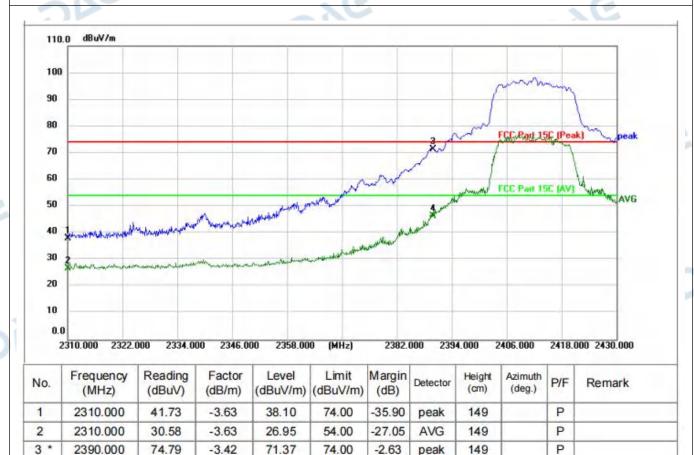
49.84

-3.42

46.42

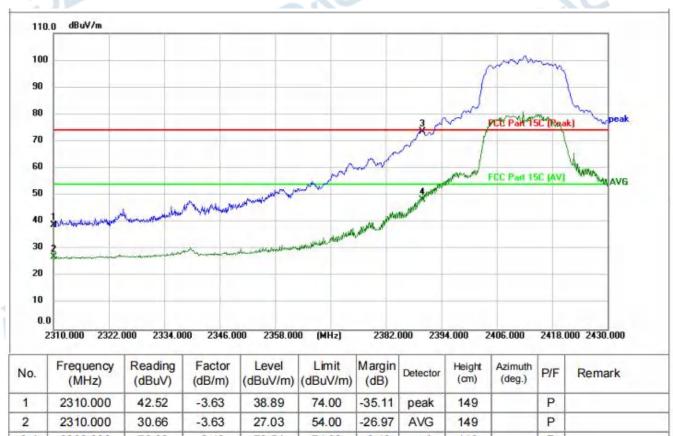
54.00

-7.58


AVG

149

P


Report No.: DACE250111024RL001

TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 20 / CH: L

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 20 / CH: L

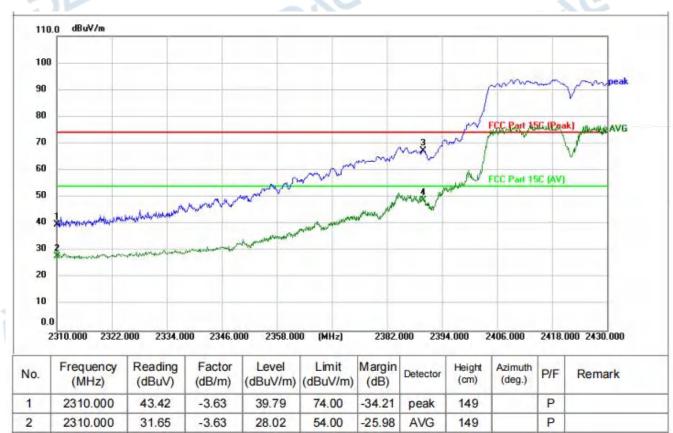
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2310.000	42.52	-3.63	38.89	74.00	-35.11	peak	149		P	
2	2310.000	30.66	-3.63	27.03	54.00	-26.97	AVG	149		Р	
3 *	2390.000	76.93	-3.42	73.51	74.00	-0.49	peak	149		Р	
4	2390.000	51.56	-3.42	48.14	54.00	-5.86	AVG	149		Р	

TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 20 / CH: H

DAG

Report No.: DACE250111024RL001

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 20 / CH: H



DAG

Report No.: DACE250111024RL001

TM4 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 40 / CH: L

DAG

TM4 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 40 / CH: L

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 35 of 114

TM4 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 40 / CH: H

-3.13

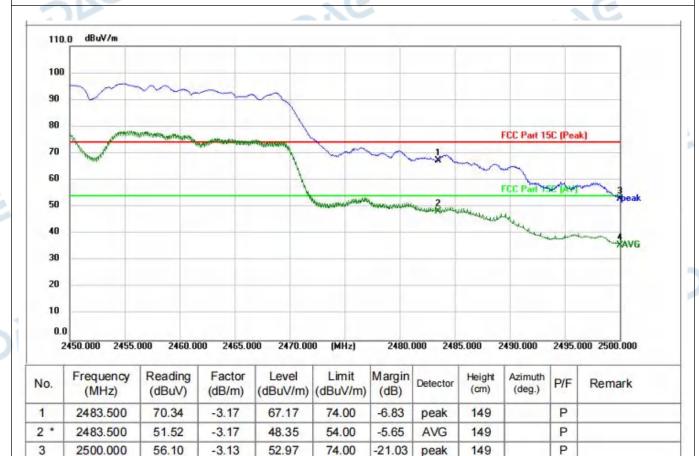
35.62

54.00

-18.38

AVG

149


P

38.75

2500.000

4

DAG

2500.000

4

DAG

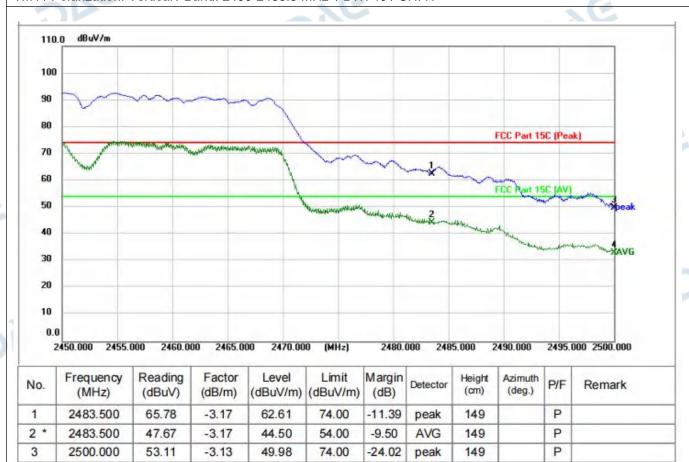
36.40

-3.13

33.27

54.00

-20.73


AVG

149

Report No.: DACE250111024RL001

P

TM4 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 40 / CH: H

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 37 of 114

4.7 Emissions in frequency bands (below 1GHz)

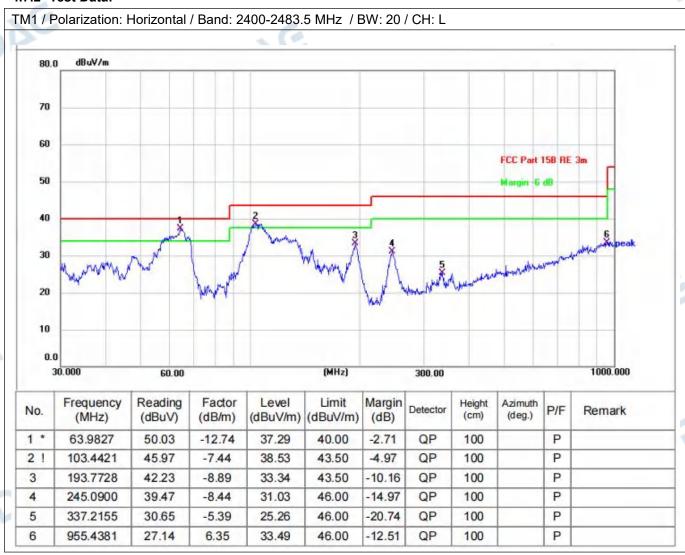
Test Requirement:	restricted bands, as defined	In addition, radiated emissions w in § 15.205(a), must also comply § 15.209(a)(see § 15.205(c)).`	hich fall in the with the radiated						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	The emission limits shown in employing a CISPR quasi-p 110–490 kHz and above 100	the tighter limit applies at the bar in the above table are based on m eak detector except for the freque 00 MHz. Radiated emission limits is employing an average detector.	easurements ency bands 9–90 kHz, in these three bands						
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02								
Procedure:	above the ground at a 3 or 3 360 degrees to determine the b. For above 1GHz, the EUT above the ground at a 3 medegrees to determine the poc. The EUT was set 3 or 10 which was mounted on the td. The antenna height is var determine the maximum val polarizations of the antenna e. For each suspected emist the antenna was tuned to he below 30MHz, the antenna was the suspected emist the antenna was tuned to he below 30MHz, the antenna was tuned to he suspected emist the antenna was tuned to he below 30MHz, the antenna was tuned to he suspected emist the antenna was tuned to he below 30MHz, the antenna was tuned to he suspected emist the	was placed on the top of a rotating meter semi-anechoic chamber, the position of the highest radiation was placed on the top of a rotative fully-anechoic chamber. The table is the fully-anechoic chamber. The table is the fully-anechoic chamber is away from the interference op of a variable-height antenna to ited from one meter to four meters use of the field strength. Both horizing are set to make the measurement is ion, the EUT was arranged to its eights from 1 meter to 4 meters (for was tuned to heights 1 meter) and to 360 degrees to find the maximum.	The table was rotated in the table was rotated in the table 1.5 meters able was rotated 360 erreceiving antenna, ower. It is above the ground to contal and vertical int. It is worst case and then for the test frequency of the rotatable table						
	f. The test-receiver system of Bandwidth with Maximum H g. If the emission level of the specified, then testing could reported. Otherwise the emitested one by one using peareported in a data sheet. h. Test the EUT in the lowes i. The radiation measurement Transmitting mode, and four j. Repeat above procedures Remark:	vas set to Peak Detect Function a	wer than the limit of the EUT would be argin would be related and then as specified and then be Highest channel. The worst case complete.						

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 38 of 114

channel. Only the worst case is recorded in the report.

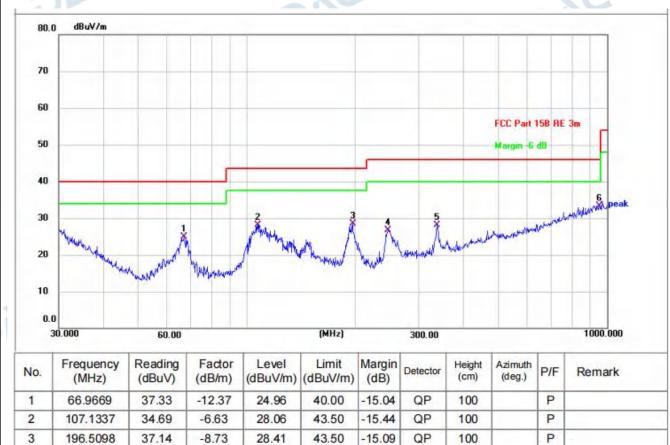
2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor


Report No.: DACE250111024RL001

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.7.1 E.U.T. Operation:

Operating Enviro	onment:							
Temperature:	22.8 °C	- >	Humidity:	49 %		Atmospheric Pressure:	101 kPa	
Pretest mode:		TM1,	TM1, TM2, TM3, TM4					
Final test mode:	1	TM1				270		


4.7.2 Test Data:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 39 of 114

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 20 / CH: L

DAG

DAG

4.8 Emissions in frequency bands (above 1GHz)

Test Requirement:									
	15.205(a), must also comply 15.209(a)(see § 15.205(c)).`	Field strength (microvolts/meter) Weasurement distance (meters) 490	specified in §						
Test Limit:	Frequency (MHz)		distance						
	0.009-0.490	2400/F(kHz)	300						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500	3						
	The emission limits shown ir employing a CISPR quasi-pe 110–490 kHz and above 100	n the above table are based on meak detector except for the frequence MHz. Radiated emission limits	neasurements ency bands 9–90 kHz, in these three bands						
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02								
Procedure:	above the ground at a 3 or 1 360 degrees to determine th b. For above 1GHz, the EUT above the ground at a 3 met degrees to determine the poc. The EUT was set 3 or 10 which was mounted on the td. The antenna height is varidetermine the maximum valupolarizations of the antenna e. For each suspected emiss	O meter semi-anechoic chamber e position of the highest radiation was placed on the top of a rotater fully-anechoic chamber. The tastion of the highest radiation. The meters away from the interference op of a variable-height antenna to led from one meter to four meters are of the field strength. Both horizare set to make the measurements ion, the EUT was arranged to its	The table was rotated in. ing table 1.5 meters able was rotated 360 re-receiving antenna, ower. In above the ground to ground and vertical int.						
	was turned from 0 degrees to f. The test-receiver system we Bandwidth with Maximum Hold g. If the emission level of the specified, then testing could reported. Otherwise the emistested one by one using pear reported in a data sheet. h. Test the EUT in the lowes i. The radiation measurement Transmitting mode, and four j. Repeat above procedures Remark:	o 360 degrees to find the maximulas set to Peak Detect Function a cold Mode. EEUT in peak mode was 10dB louble be stopped and the peak values assions that did not have 10dB mak, quasi-peak or average method	um reading. and Specified wer than the limit of the EUT would be argin would be re- d as specified and then e Highest channel. positioning for is the worst case. as complete.						

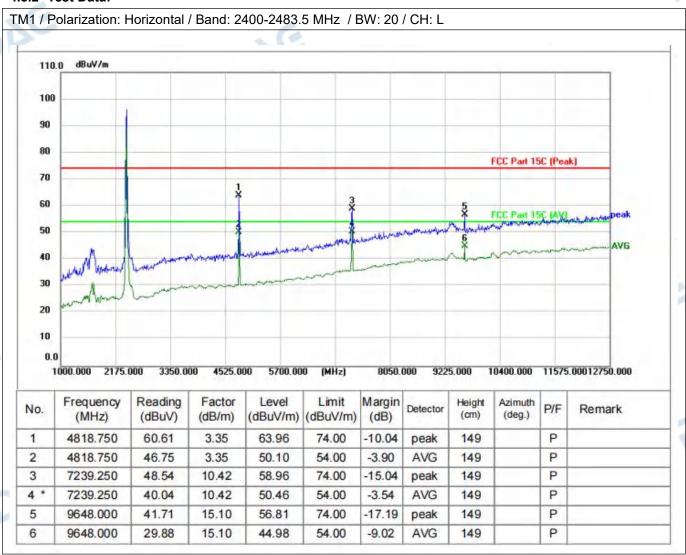
Report No.: DACE250111024RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 41 of 114

channel. Only the worst case is recorded in the report.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor


Report No.: DACE250111024RL001

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.8.1 E.U.T. Operation:

Operating Environment	onment:						
Temperature:	22.8 °C	_ >	Humidity:	49 %	Atmospheric Pressure:	101 kPa	
Pretest mode:		TM1,	TM1, TM2, TM3, TM4				
Final test mode:		TM1			270		

4.8.2 Test Data:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 42 of 114

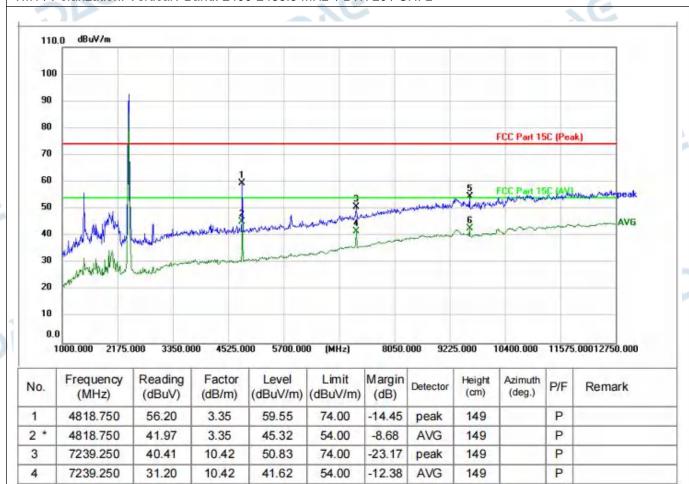
5

6

9648.000

9648,000

39.37


27.69

15.10

15.10

Report No.: DACE250111024RL001

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 20 / CH: L

54.47

42.79

74.00

54.00

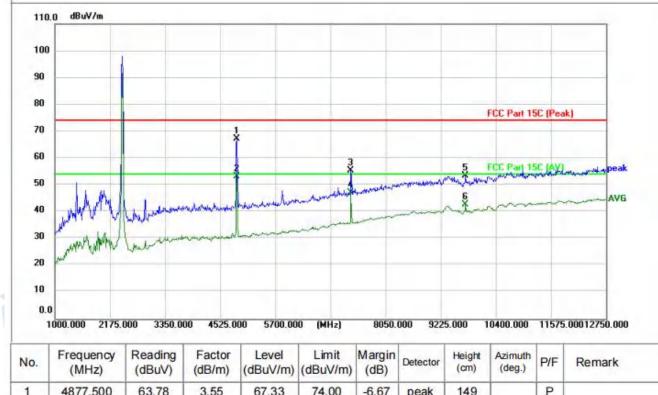
-19.53

-11.21

peak

AVG

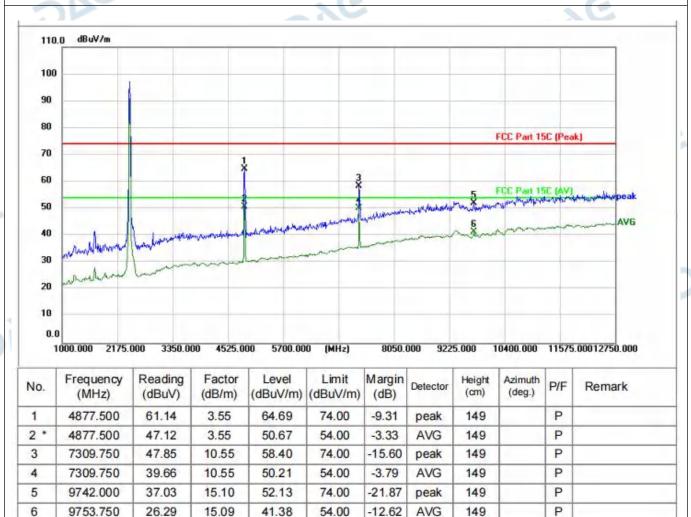
149


149

P

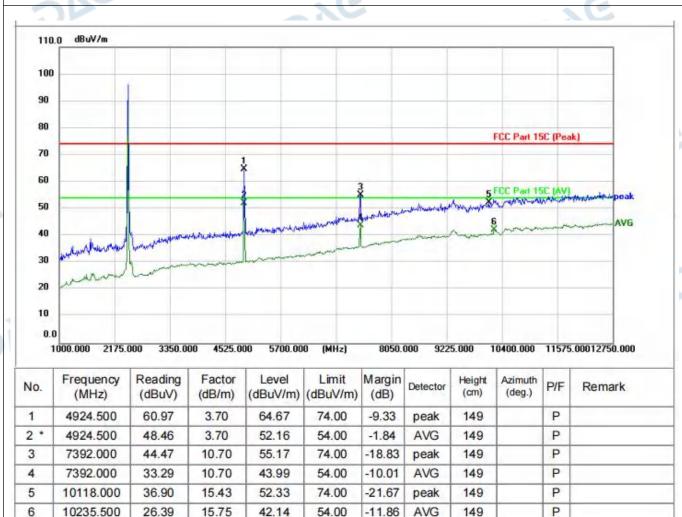
P

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 20 / CH: M

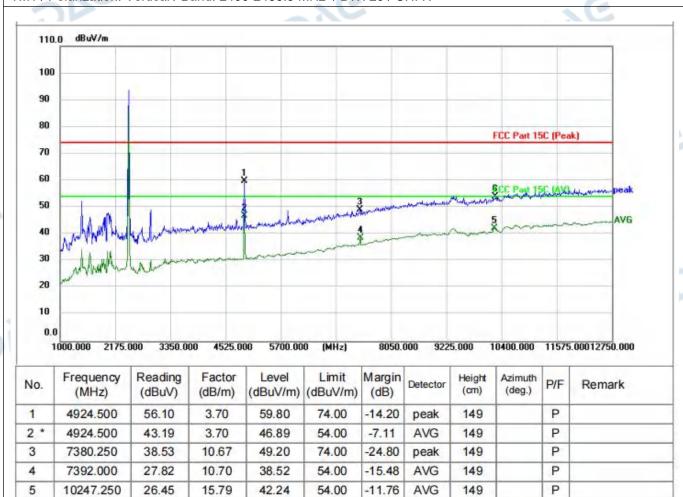


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4877.500	63.78	3.55	67.33	74.00	-6.67	peak	149		Р	
2 *	4877.500	49.63	3.55	53.18	54.00	-0.82	AVG	149		Р	
3	7309.750	44.73	10.55	55.28	74.00	-18.72	peak	149		Р	
4	7309.750	36.67	10.55	47.22	54.00	-6.78	AVG	149		Р	
5	9753.750	38.49	15.09	53.58	74.00	-20.42	peak	149		P	
6	9753.750	27.79	15.09	42.88	54.00	-11.12	AVG	149		Р	

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 44 of 114



TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 20 / CH: M



TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 20 / CH: H

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 20 / CH: H

53.95

74.00

-20.05

peak

15.86

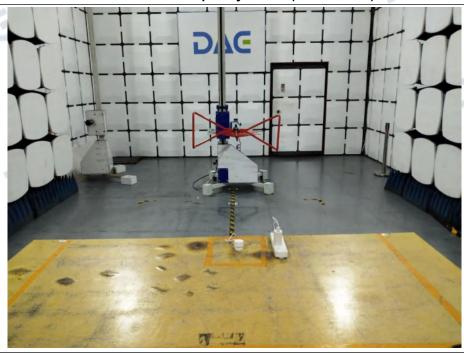
38.09

10270.750

6

149

P



TEST SETUP PHOTOS

Conducted Emission at AC power line

Emissions in frequency bands (below 1GHz)

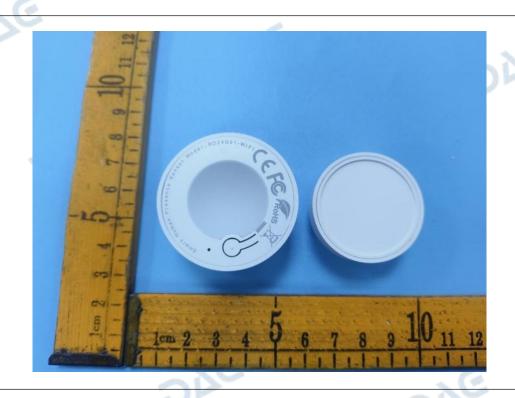
Page 48 of 114 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

DAG

DAG



6 PHOTOS OF THE EUT

V1.0

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 50 of 114

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 51 of 114

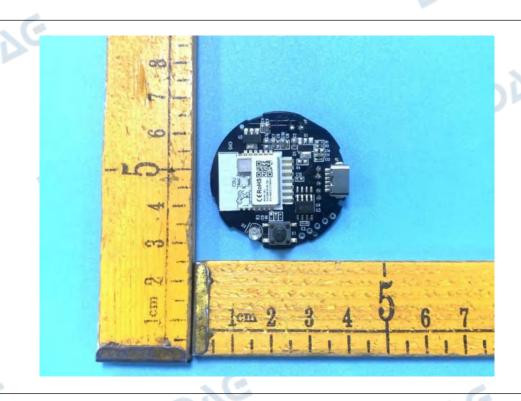
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

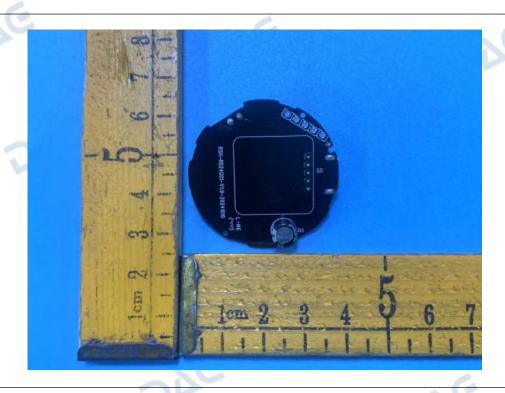
Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

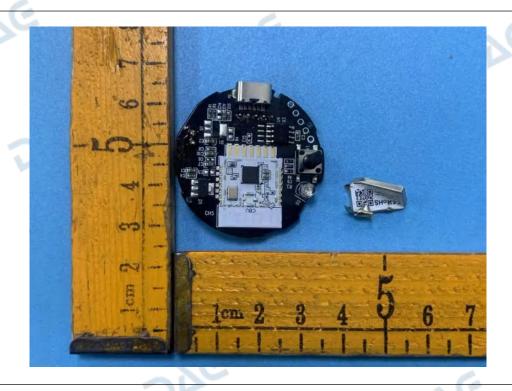
Page 52 of 114

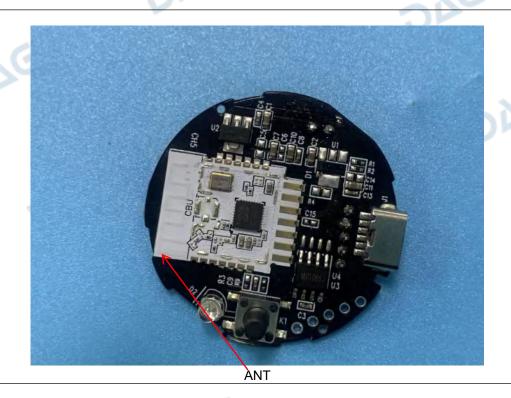




Internal

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 55 of 114

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 56 of 114 Web: http://www.dace-lab.com E-mail: service@dace-lab.com