

TEST REPORT

Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result

- Smart Watch
- SKG S1621HB
- 51621H
- : N/A : EED32O81521001
- 2AYVT-S1621HB
- : Nov. 17, 2022
- 47 CFR Part 15 Subpart C
- : PASS

Prepared for: SKG Health Technologies Co., Ltd.

23A Floor,Building 3, Zhongke R&D Park, No.009, Gaoxin South 1st Road, High-tech Zone Community, Yuehai street, Nanshan District, Shenzhen City, Guangdong Province, P.R. China

Page 2 of 42

I CONTENT	<u> </u>	<u> </u>	
2 VERSION			
B TEST SUMMARY			
GENERAL INFORMATION			
 4.2 GENERAL DESCRIPTION OF EUT 4.3 PRODUCT SPECIFICATION SUBJECT 4.4 TEST CONFIGURATION 4.5 TEST ENVIRONMENT 4.6 DESCRIPTION OF SUPPORT UNITS 4.7 TEST LOCATION 4.8 MEASUREMENT UNCERTAINTY (95) 	TIVE TO THIS STANDARD	2	2
5 EQUIPMENT LIST		,	
TEST RESULTS AND MEASUREM	ENT DATA		
 6.1 ANTENNA REQUIREMENT 6.2 AC POWER LINE CONDUCTED EM 6.3 MAXIMUM CONDUCTED OUTPUT P 6.4 DTS BANDWIDTH 6.5 MAXIMUM POWER SPECTRAL DEN 6.6 BAND EDGE MEASUREMENTS AND 6.7 RADIATED SPURIOUS EMISSION & 	ISSIONS OWER SITY CONDUCTED SPURIOUS E	MISSION	<u>)</u>
7 APPENDIX A			
PHOTOGRAPHS OF TEST SETUP			

2 Version

	Version No.	Date		Description	/
	00	Nov. 17, 2022		Original	
2	1	5	1	C°27	12
	(0	S*) (2	S~)	(\mathcal{S})	(2)

ost Summary

Page 4 of 42

3 Test Summary			
Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

The report has two different colors for the watchband and case.

4 General Information

4.1 Client Information

Applicant:	SKG Health Technologies Co., Ltd.
Address of Applicant:	23A Floor,Building 3, Zhongke R&D Park, No.009, Gaoxin South 1st Road, High-tech Zone Community, Yuehai street, Nanshan District, Shenzhen City, Guangdong Province, P.R. China
Manufacturer:	SKG Health Technologies Co., Ltd.
Address of Manufacturer:	23A Floor,Building 3, Zhongke R&D Park, No.009, Gaoxin South 1st Road, High-tech Zone Community, Yuehai street, Nanshan District, Shenzhen City, Guangdong Province, P.R. China

4.2 General Description of EUT

Product Name:	Smart Watch
Model No.:	S1621HB
Trade mark:	SKG
EUT Supports Radios application:	Bluetooth dual mode: 2402-2480MHz
Product Type:	Portable
Power Supply:	Lithium battery:DC 3.8V,300mAh,1.140Wh,Charge by DC 5V
Test Voltage:	DC 3.8V
Sample Received Date:	Sep. 30, 2022
Sample tested Date:	Sep. 30, 2022 to Oct. 15, 2022

4.3 Product Specification subjective to this standard

I	J		
Operation Frequency:	2402MHz~2480MHz	~	~
Modulation Type:	GFSK		
Transfer Rate:	⊠ 1Mbps □ 2Mbps	I A A A A A A A A A A A A A A A A A A A	S
Antenna Type:	FPC Antenna		
Antenna Gain:	-0.61dBi		
			S

Ì

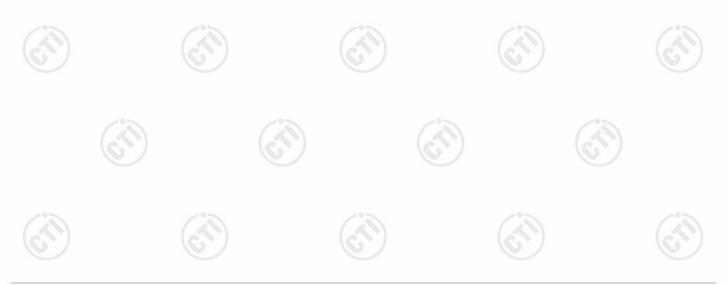
Page 6 of 42

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

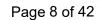
In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Frequency	
2402MHz	
2440MHz	
2480MHz	



4.4 Test Configuration

EUT Test Software	Settings:					
Software:	MainWindo	MainWindow				
EUT Power Grade:	Class2 (Po selected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to transmitting of the EU	set the lowest frequency JT.	y, the middle freque	ency and the highest f	frequency keep		
Test Mode	Modulation	Rate	Channel	Frequency(MHz)		
Mode a	GFSK	1Mbps	СН0	2402		
Mode b	GFSK	1Mbps	CH19	2440		
	GFSK	1Mbps	CH39	2480		


4.5 Test Environment

Operating Environment	t:				
Radiated Spurious Emi	ssions:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar	(\mathcal{C}^{*})		(\mathcal{O})	
Conducted Emissions:	· · · · · · · · · · · · · · · · · · ·				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH		13		13
Atmospheric Pressure:	1010mbar		(\mathcal{A})		(\mathcal{A})
RF Conducted:	·				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH	- 0.1		-05	
Atmospheric Pressure:	1010mbar				
67	67	67		67	

4.6 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ
		0		C

4.7 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
		0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
3 R		3.3dB (9kHz-30MHz)
	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
		4.5dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4		3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

5 Equipment List

RF test system								
Equipment	Manufacturer Mode No.		Serial Number	Cal. Date Cal. Due da (mm-dd-yyyy) (mm-dd-yyy				
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022			
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022			
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022			
DC Power Keysight		E3642A	MY56376072	12-24-2021	12-23-2022			
Power unit R&S		OSP120	101374	12-24-2021	12-23-2022			
RF control unit	RF control unit JS Tonscend		158060006	12-24-2021	12-23-2022			
Communication test set	R&S	CMW500	120765	12-22-2021	12-21-2022			
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022			
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-16-2022	06-15-2023			
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	2.6.77.0518					

		e]		(
Conducted disturbance Test								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Receiver	R&S	ESCI	100435	05-04-2022	05-05-2023			
Temperature/ Humidity Indicator	Defu	TH128	/		6			
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023			
Barometer	changchun	DYM3	1188					

Page 10 of 42

Radiated disturbance Test
Serial No. Cal. Date Due Date
05-22-2022 05-21-2025
100938-003 09-28-2022 09-27-2023
9163-618 05-22-2022 05-21-2023
9120D-1869 04-15-2021 04-14-2024
1519B-076 04-17-2021 04-16-2024
3008A02425 06-20-2022 06-19-2023

Page 11 of 42

		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	odel No. Serial Number		Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166			
Receiver Keysight		N9038A	MY57290136	03-01-2022	02-28-2023	
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023	
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023	
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023	
Preamplifier JS Tonscend		980380	EMC051845SE	12-24-2021	12-23-2022	
Communication test set R&S		CMW500	102898	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023	
Fully Anechoic Chamber	TDK FAC-3		$(\underline{\circ})$	01-09-2021	01-08-2024	
Cable line Times		SFT205-NMSM-2.50M	394812-0001			
Cable line Times		SFT205-NMSM-2.50M	394812-0002		-	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	S.	<u> </u>	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710	- (3		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001			
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	<u> </u>	-(2	
Cable line	Times	HF160-KMKM-3.00M	393493-0001	<u> </u>		

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

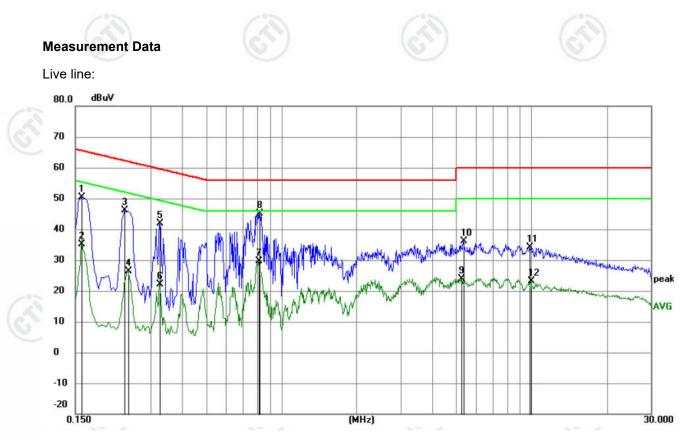
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

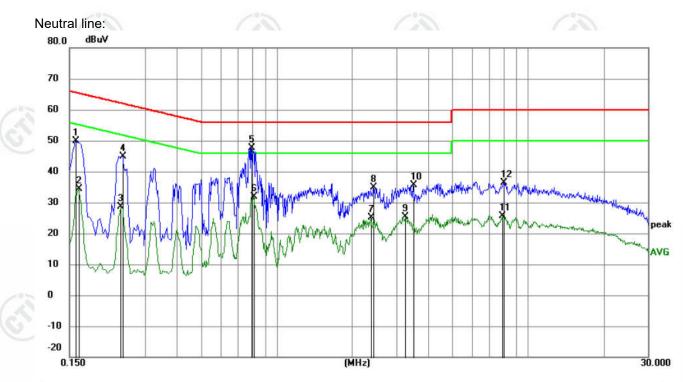
EUT Antenna:	Please see Internal photos
The antenna is EPC antenna	The best case gain of the antenna is -0.61 dBi

Page 13 of 42

6.2 AC Power Line Conducted Emissions


013 Hz BW=30 kHz, Sweep time=auto ange (MHz) Limit (dBuV) Quasi-peak Average 0.5 66 to 56* 56 to 46* -5 56 46 30 60 50 h the logarithm of the frequency.
BW=30 kHz, Sweep time=auto ange (MHz) Uasi-peak Average -0.5 66 to 56* 56 to 46* -5 56 46 30 60 50 h the logarithm of the frequency.
Ange (MHz) Limit (dBuV) Quasi-peak Average -0.5 66 to 56* 56 to 46* -5 56 46 30 60 50 h the logarithm of the frequency.
Ange (MHZ) Quasi-peak Average -0.5 66 to 56* 56 to 46* -5 56 46 30 60 50 h the logarithm of the frequency. Test Receiver
Outasi-peak Average -0.5 66 to 56* 56 to 46* -5 56 46 30 60 50
-5 56 46 30 60 50 h the logarithm of the frequency.
30 60 50 In the logarithm of the frequency.
h the logarithm of the frequency.
Test Receiver
Ground Reference Plane
Is connected to AC power source through a LISN 1 (Line Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω line The power cables of all other units of the EUT were to a second LISN 2, which was bonded to the ground ane in the same way as the LISN 1 for the unit being A multiple socket outlet strip was used to connect multiple is to a single LISN provided the rating of the LISN was not EUT was placed upon a non-metallic table 0.8m above the ence plane. And for floor-standing arrangement, the EUT was e horizontal ground reference plane, is performed with a vertical ground reference plane. The rear shall be 0.4 m from the vertical ground reference plane. The rear shall be 0.4 m from the vertical ground reference plane. The rest and bonded to a ground reference plane for LISNs top of the ground reference plane. This distance was closest points of the LISN 1 and the EUT. All other units of a associated equipment was at least 0.8 m from the LISN 2. nd the maximum emission, the relative positions of nd all of the interface cables must be changed according to
2: 2013 on conducted measurement. ansmitting mode with all kind of modulation and all kind of lowest, middle, high channel. an, find the lowest channel is the worst case.
case is recorded in the report.

Page 14 of 42

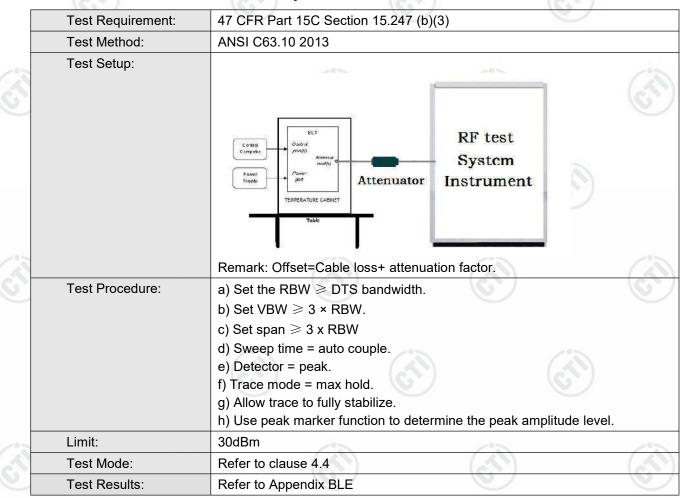


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1590	40.61	9.87	50.48	65.52	-15.04	QP		
2	0.1590	25.14	9.87	35.01	55.52	-20.51	AVG		
3	0.2355	36.24	9.94	46.18	62.25	-16.07	QP		
4	0.2445	16.37	9.96	26.33	51.94	-25.61	AVG		
5	0.3255	31.73	10.04	41.77	59.57	-17.80	QP		
6	0.3255	12.07	10.04	22.11	49.57	-27.46	AVG		
7	0.8114	19.74	9.85	29.59	46.00	-16.41	AVG		
8 *	0.8160	35.40	9.85	45.25	56.00	-10.75	QP		
9	5.2485	14.15	9.78	23.93	50.00	-26.07	AVG		
10	5.3565	26.34	9.78	36.12	60.00	-23.88	QP		
11	9.8340	24.42	9.78	34.20	60.00	-25.80	QP		
12	9.9870	13.42	9.78	23.20	50.00	-26.80	AVG		

Page 15 of 42

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1590	39.98	9.87	49.85	65.52	-15.67	QP	
2	0.1635	24.61	9.87	34.48	55.28	-20.80	AVG	
3	0.2400	18.66	9.95	28.61	52.10	-23.49	AVG	
4	0.2445	34.95	9.96	44.91	61.94	-17.03	QP	
5 *	0.7935	37.90	9.85	47.75	56.00	-8.25	QP	
6	0.8115	21.95	9.85	31.80	46.00	-14.20	AVG	
7	2.3775	15.25	9.79	25.04	46.00	-20.96	AVG	
8	2.4224	25.07	9.79	34.86	56.00	-21.14	QP	
9	3.2550	15.71	9.79	25.50	46.00	-20.50	AVG	
10	3.5070	25.91	9.78	35.69	56.00	-20.31	QP	
11	7.9170	15.77	9.79	25.56	50.00	-24.44	AVG	
12	8.0160	26.53	9.79	36.32	60.00	-23.68	QP	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 42

6.3 Maximum Conducted Output Power

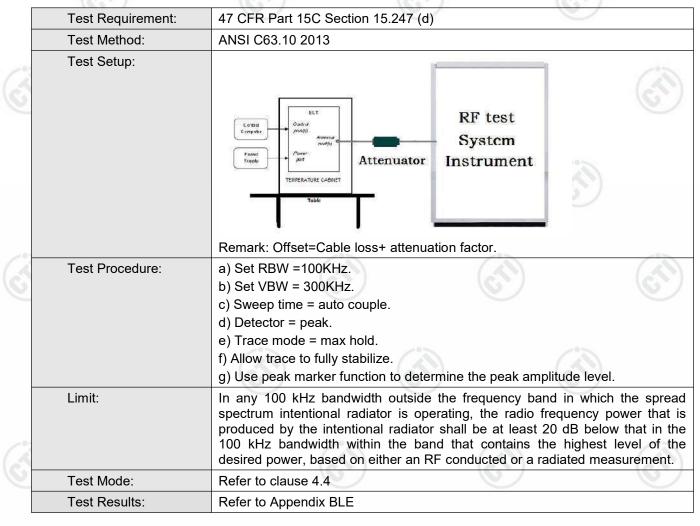
6.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)							
Test Method:	ANSI C63.10 2013							
Test Setup:								
	Construction Co							
	Remark: Offset=Cable loss+ attenuation factor.							
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. 							
Limit:	≥ 500 kHz							
Test Mode:	Refer to clause 4.4							
Test Results:	Refer to Appendix BLE							

Page 18 of 42

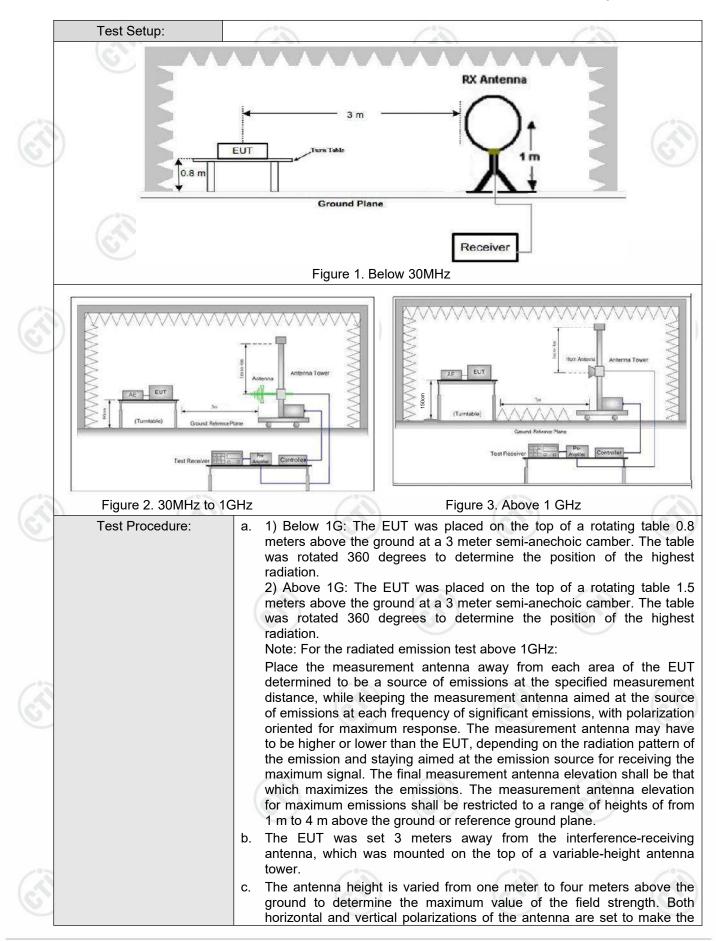
6.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)				
	Test Method:	ANSI C63.10 2013				
3	Test Setup:					
		RF test Suger Suger Teble RF test System Instrument				
		Remark: Offset=Cable loss+ attenuation factor.				
	Test Procedure:	 a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz. d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude I within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no than 3 kHz) and repeat. 				
	Limit:	≤8.00dBm/3kHz				
	Test Mode:	Refer to clause 4.4				
	Test Results:	Refer to Appendix BLE				



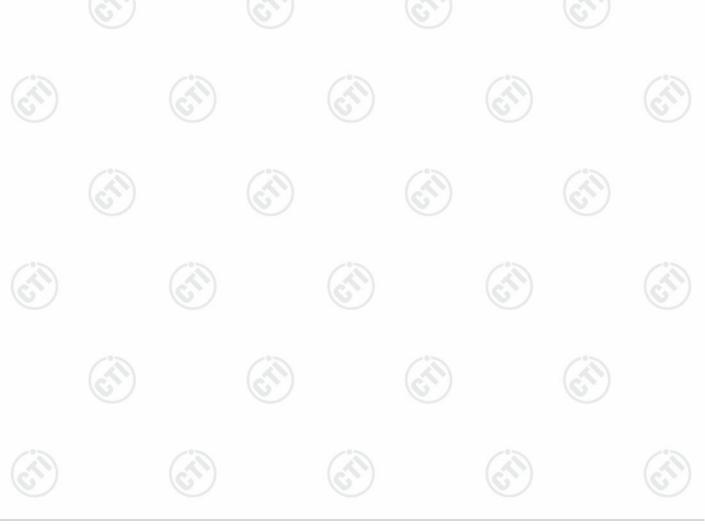
Page 19 of 42

6.6 Band Edge measurements and Conducted Spurious Emission


Page 20 of 42

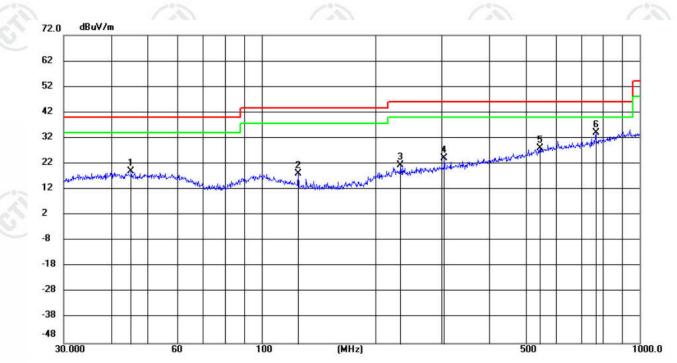
6.7 Radiated Spurious Emission & Restricted bands

	Test Requirement:	47 CFR Part 15C Secti	on 15	5.209 and 15	5.20	5		C		
	Test Method:	ANSI C63.10 2013								
	Test Site:	Measurement Distance	e: 3m	(Semi-Anecl	hoic	Chamb	ber))		
	Receiver Setup:	Frequency	0	Detector		RBW		VBW	Remark	
S.		0.009MHz-0.090MH	lz	Peak		10kHz	/	30kHz	Peak	
		0.009MHz-0.090MH	İz	Average		10kHz		30kHz	Average	
		0.090MHz-0.110MH	İz	Quasi-peak	(10kHz		30kHz	Quasi-peak	
		0.110MHz-0.490MH	iz	Peak		10kHz		30kHz	Peak	
		0.110MHz-0.490MH	İZ	Average		10kHz		30kHz	Average	
		0.490MHz -30MHz	:	Quasi-peak	(10kHz	,	30kHz	Quasi-peak	
		30MHz-1GHz		Quasi-peak	(100 kHz	z	300kHz	Quasi-peak	
23				Peak		1MHz		3MHz	Peak	
S I		Above 1GHz		Peak		1MHz		10kHz	Average	
	Limit:	Frequency		ld strength rovolt/meter)		Limit BuV/m)	F	Remark	Measureme distance (m	
		0.009MHz-0.490MHz	24	00/F(kHz)		-		- / 2	300	
		0.490MHz-1.705MHz	240	000/F(kHz)		-		-	30	
		1.705MHz-30MHz		30		-		<u>e</u>	30	
		30MHz-88MHz		100	4	0.0	Qu	iasi-peak	3	
-0-		88MHz-216MHz		150	4	3.5	Qu	iasi-peak	3	
		216MHz-960MHz	0	200	4	6.0	Qu	iasi-peak	3	
S.		960MHz-1GHz		500	5	64.0	Qu	iasi-peak	3	
		Above 1GHz		500	5	64.0	A	verage	3	
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	s 20dE equipr	B above the ment under t	ma: test.	ximum p	berr	mitted ave	erage emission	



Page 22 of 42

		measurement.
		d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
a		e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
0		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
		 g. Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz)
		h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
		i. Repeat above procedures until all frequencies measured was complete.
6	Test Mode:	Refer to clause 4.4
	Test Results:	Pass


Page 23 of 42

Report No.: EED32O81521001

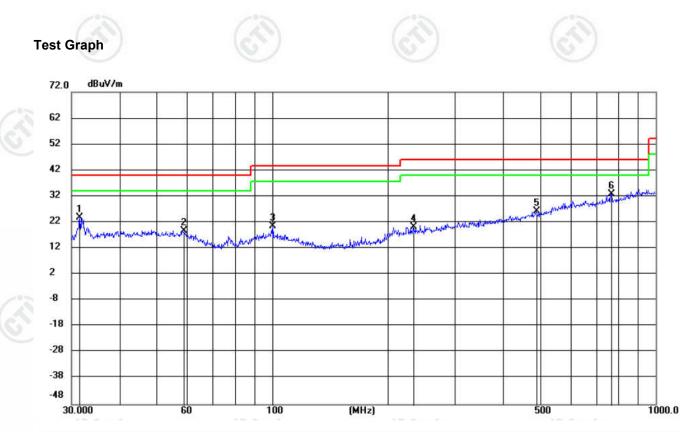
Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK was recorded in the report.

Test Graph

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		45.2166	4.54	14.39	18.93	40.00	-21.07	peak	100	251	
2		125.0065	7.80	10.43	18.23	43.50	-25.27	peak	100	261	
3		233.3486	6.60	14.93	21.53	46.00	-24.47	peak	100	149	
4		304.6099	6.82	17.35	24.17	46.00	-21.83	peak	100	159	
5		545.1825	5.33	22.67	28.00	46.00	-18.00	peak	100	341	
6	*	766.0571	8.28	25.83	34.11	46.00	-11.89	peak	100	149	

Hotline:400-6788-333



Page 24 of 42

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.5095	10.77	13.03	23.80	40.00	-16.20	peak	100	120	
2		59.0251	5.18	13.64	18.82	40.00	-21.18	peak	100	110	
3		100.5806	6.67	13.97	20.64	43.50	-22.86	peak	100	141	
4		233.3487	5.23	14.93	20.16	46.00	-25.84	peak	100	30	
5		487.3151	4.90	21.27	26.17	46.00	-19.83	peak	100	243	
6	٨	768.7481	7.02	25.87	32.89	46.00	-13.11	peak	100	4	

Radiated Spurious Emission above 1GHz:

		Section 1993				and the second sec	D 1				
Μ	ode:	:		BLE GFSK Tra	nsmitting		Channel:		2402 MHz		
	0	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
3	1	1333.0333	1.17	41.95	43.12	74.00	30.88	Pass	н	PK	
	2	1806.2806	3.33	39.88	43.21	74.00	30.79	Pass	Н	PK	
- :	3	4804.1203	-16.23	67.53	51.30	74.00	22.70	Pass	Н	PK	
4	4	6511.2341	-12.7	1 53.03	40.32	74.00	33.68	Pass	Н	PK	
į	5	9143.4096	-8.34	50.83	42.49	74.00	31.51	Pass	Н	PK	
(6	11853.5902	-5.96	52.25	46.29	74.00	27.71	Pass	Н	PK	
	7	1312.8313	1.10	41.17	42.27	74.00	31.73	Pass	V	PK	
8	8	1810.8811	3.36	40.18	43.54	74.00	30.46	Pass	V	PK	
9	9	4803.1202	-16.23	3 65.64	49.41	74.00	24.59	Pass	V	PK	
1	0	5990.1993	-13.02	2 58.95	45.93	74.00	28.07	Pass	V	PK	
1	1	8983.3989	-8.59	54.63	46.04	74.00	27.96	Pass	V	PK	
1	2	13851.7234	-1.81	49.04	47.23	74.00	26.77	Pass	V	PK	

Mode	:	BI	E GFSK Tra	nsmitting		Channel:		2440 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1135.6136	0.83	41.11	41.94	74.00	32.06	Pass	Н	PK
2	1823.2823	3.45	39.58	43.03	74.00	30.97	Pass	Н	PK
3	4879.1253	-16.21	67.25	51.04	74.00	22.96	Pass	Н	PK
4	6829.2553	-12.24	52.63	40.39	74.00	33.61	Pass	Н	PK
5	10297.4865	-6.48	50.49	44.01	74.00	29.99	Pass	Н	PK
6	11961.5974	-5.47	51.48	46.01	74.00	27.99	Pass	Н	PK
7	1186.4186	0.81	40.58	41.39	74.00	32.61	Pass	V	PK
8	1968.2968	4.39	43.70	48.09	74.00	25.91	Pass	V	PK
9	4880.1253	-16.21	65.05	48.84	74.00	25.16	Pass	V	PK
10	5989.1993	-13.03	59.01	45.98	74.00	28.02	Pass	V	PK
11	8990.3994	-8.54	54.96	46.42	74.00	27.58	Pass	V	PK
12	13214.6810	-3.16	49.43	46.27	74.00	27.73	Pass	V	PK

Page 26 of 42

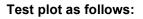
		10-			1000		20 %		1	-0 million	
1	Mode:			BL	E GFSK Trai	nsmitting		Channel:		2480 MHz	Z
	NO	Freq. [MHz]	Fact [dB		Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1333.0333	1.17	7	42.71	43.88	74.00	30.12	Pass	н	PK
2	2	1910.4910	4.08	8	39.44	43.52	74.00	30.48	Pass	н	PK
	3	4959.1306	-15.9	98	65.31	49.33	74.00	24.67	Pass	Н	PK
	4	6720.2480	-12.4	17	52.62	40.15	74.00	33.85	Pass	Н	PK
	5	9257.4172	-7.9	2	50.63	42.71	74.00	31.29	Pass	н	PK
	6	13090.6727	-3.7	0	50.11	46.41	74.00	27.59	Pass	Н	PK
	7	1184.8185	0.8	1	40.82	41.63	74.00	32.37	Pass	V	PK
	8	1974.6975	4.42	2	42.75	47.17	74.00	26.83	Pass	V	PK
	9	4960.1307	-15.9	97	64.72	48.75	74.00	25.25	Pass	V	PK
	10	5989.1993	-13.0)3	58.90	45.87	74.00	28.13	Pass	V	PK
1	11	8994.3996	-8.5	1	54.75	46.24	74.00	27.76	Pass	V	PK
	12	13268.6846	-3.3	5	50.24	46.89	74.00	27.11	Pass	V	PK
1	5									·	

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Factor

- Factor=Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

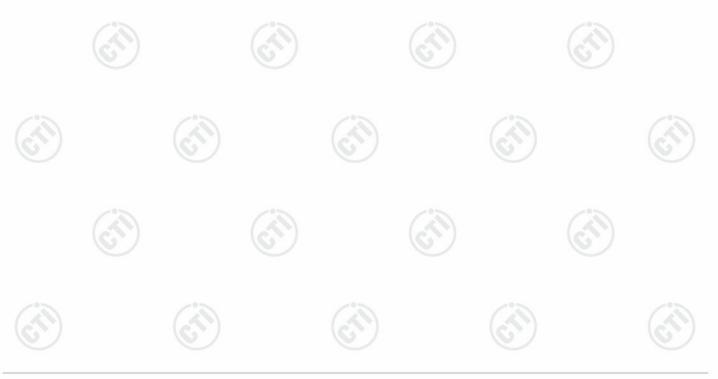


Page 27 of 42

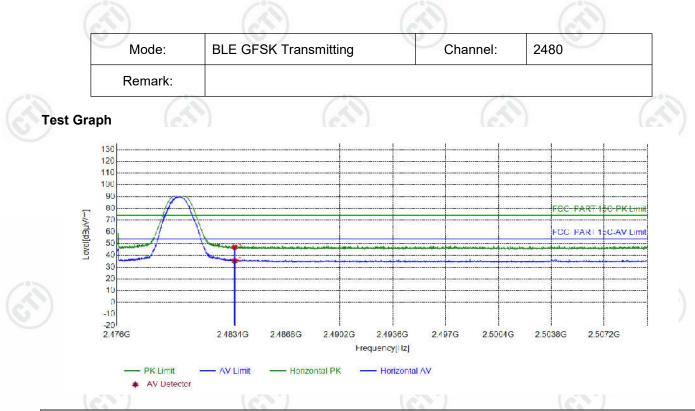
Mode:	BLE GFSK Transmitting	Channel:	2402	(A)
Remark:		V		Y

Test Graph

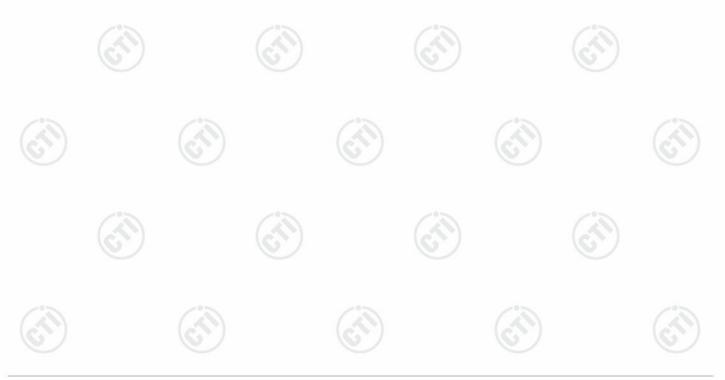
Suspec NO	Freq. Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	5.77	39.59	45.36	74.00	28.64	PASS	Horizontal	PK
2	2390.0000	5.77	28.21	33.98	54.00	20.02	PASS	Horizontal	AV
(5 ⁵)		(\mathcal{O})	·	(\mathcal{O})			(S)	



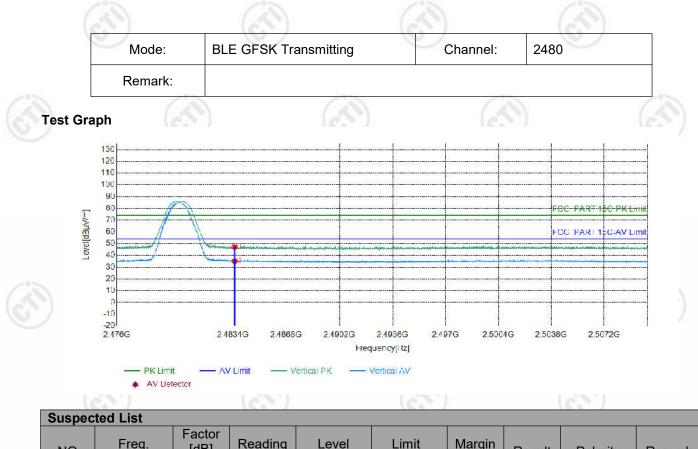
Page 28 of 42



~	NO	Freq. [MHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	39.99	45.76	74.00	28.24	PASS	Vertical	PK
No.	2	2390.0000	5.77	28.10	33.87	54.00	20.13	PASS	Vertical	AV



Page 29 of 42



	Suspec	ted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(\mathcal{A})	1	2483.5000	6.57	40.37	46.94	74.00	27.06	PASS	Horizontal	PK
(U)	2	2483.5000	6.57	28.72	35.29	54.00	18.71	PASS	Horizontal	AV

Page 30 of 42


~~~	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
(3)	1	2483.5000	6.57	40.59	47.16	74.00	26.84	PASS	Vertical	PK
C	2	2483.5000	6.57	28.41	34.98	54.00	19.02	PASS	Vertical	AV









Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Factor

Factor=Antenna Factor + Cable Factor - Preamplifier Factor







Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com