

Project No.: ZHT-240914026E Page 1 of 42

Report Number	: ZHT-240914026E
Date of Test	: Sept. 14, 2024 to Sept. 26, 2024
Date of issue	: Sept. 26, 2024
Test Result	:: PASS
Testing Laboratory	: Guangdong Zhonghan Testing Technology Co., Ltd.
Address	: Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Communit Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Applicant's name	: JiangXi Kingtron Technology Co.,Ltd
Address	: Luoxin Tech. Industrial Park, 2nd District, Quannan Industrial Parl Ganzhou, Jiangxi, China, 341800
Manufacturer's name	: JiangXi Kingtron Technology Co.,Ltd
Address	: Luoxin Tech. Industrial Park, 2nd District, Quannan Industrial Parl Ganzhou, Jiangxi, China, 341800
Test specification:	
Standard	: FCC CFR Title 47 Part 15 Subpart C Section 15.247
Test procedure	: KDB558074 D01 15.247 Meas Guidance v05r02
	ANSI C63.10:2013
Non-standard test method .	: N/A
test (EUT) is in compliance identified in the report. This report shall not be repr	e has been tested by ZHT, and the test results show that the equipment under with the FCC requirements. And it is applicable only to the tested sample oduced except in full, without the written approval of ZHT, this document may T, personal only, and shall be noted in the revision of the document.
Product name	: Item Finders
	: Lymor
Trademark Model/Type reference	

Table of Contents

Page

1.VERSION	
2. SUMMARY OF TEST RESULTS	
2.1 TEST FACILITY	
2.2 MEASUREMENT UNCERTAINTY	
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	ç
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	
4.1 CONDUCTED EMISSION MEASUREMENT	
4.1.1 POWER LINE CONDUCTED EMISSION Limits	
4.1.2 TEST PROCEDURE	13
4.1.3 DEVIATION FROM TEST STANDARD	
4.1.4 TEST SETUP	
4.1.5 EUT OPERATING CONDITIONS	
4.1.6 TEST RESULTS	
4.2 RADIATED EMISSION MEASUREMENT	
4.2.1 RADIATED EMISSION LIMITS	
4.2.2 TEST PROCEDURE	
4.2.3 DEVIATION FROM TEST STANDARD	
4.2.5 EUT OPERATING CONDITIONS	
1GHZ~25GHZ	
5.RADIATED BAND EMISSION MEASUREMENT	
5.RADIATED BAND EMISSION MEASUREMENT	
5.2 TEST REQUIREMENT:	
5.3 DEVIATION FROM TEST STANDARD	
5.4 TEST SETUP	
5.5 EUT OPERATING CONDITIONS	
5.6 TEST RESULT	
6.POWER SPECTRAL DENSITY TEST	
6.1 APPLIED PROCEDURES / LIMIT	
6.2 TEST PROCEDURE	
6.3 DEVIATION FROM STANDARD	
6.4 TEST SETUP	

	Table of Contents		Page
6.5 EUT OPERATIO	ON CONDITIONS		25
	S		
	Η		
7.1 APPLIED PRO	CEDURES / LIMIT		
7.2 TEST PROCED	URE		
7.3 DEVIATION FR	OM STANDARD		
7.4 TEST SETUP			
7.5 EUT OPERATIO	ON CONDITIONS		
7.6 TEST RESULT	S		30
8.PEAK OUTPUT POWER	TEST	<u> </u>	
8.1 APPLIED PRO	CEDURES / LIMIT		32
8.2 TEST PROCED	URE		
8.3 DEVIATION FR	OM STANDARD		
8.4 TEST SETUP			
8.5 EUT OPERATIO	ON CONDITIONS		
8.6 TEST RESULT	S		
9. CONDUCTED BAND EI	DGE AND SPURIOUS EMISSION		35
9.1 APPLICABLE	STANDARD		
9.2 TEST PROCED	URE		35
9.3 DEVIATION FR	OM STANDARD		
9.4 TEST SETUP	~~~		
9.5 EUT OPERATIO	ON CONDITIONS		
BAND EDGE			
CONDUCTED RF SPURIC	US EMISSION	<u>(5)</u>	
10.ANTENNA REQUIREM	ENT		41
11. TEST SETUP PHOTOS	5		42
12. EUT CONSTRUCTION	AL DETAILS		42

Project No.: ZHT-240914026E Page 5 of 42

5	Report	No.	Version	15	Description		Approved
	ZHT-2409	14026E	Rev.01	C	Initial issue of r	eport	Sept. 26, 2024
	B		B		B		B

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🌑 🏐 http://www.zht-lab.cn

Γ

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C								
Standard Section	Test Item							
FCC part 15.203/15.247 (b)(4)	Antenna requirement	PASS	C					
FCC part 15.207	AC Power Line Conducted Emission	N/A						
FCC part 15.247 (b)(3)	PASS							
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS						
FCC part 15.247 (e)	Power Spectral Density	PASS						
FCC part 15.247(d)	Band Edge	PASS						
FCC part 15.205/15.209	Spurious Emission	PASS	P					

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report Remark:The duty cycle is greater than 98%

2.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd. Add. : Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF conducted power	±0.16dB
3	Conducted spurious emissions	±0.21dB
4	All radiated emissions (9k-30MHz)	±4.68dB
5	All radiated emissions (<1G)	±4.68dB
6	All radiated emissions (>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±4.96dB

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🌑 🌐 http://www.zht-lab.cn

Project No.: ZHT-240914026E Page 8 of 42

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Item Finders		
Model No.:	LYMOR-LVX01		
Hardware Version:	36-UCN3735-TLCAC-1.0.2		D
Software Version:	1.1.0		
Sample(s) Status:	Engineer sample		
Operation Frequency:	2402MHz~2480MHz	A	
Channel Numbers:	40		
Channel Separation:	2MHz		
Modulation Type:	GFSK		15
Antenna Type:	PCB antenna		C
Antenna gain:	1.77dBi		
Power supply:	Input: DC 3V via button battery	44	
		\mathbf{D}	

2 0755-27782934

🖂 admin@zht-lab.cn 🚺 🌐 http://www.zht-lab.cn

Project No.: ZHT-240914026E Page 9 of 42

Ð

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz		
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz		
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz		
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz		
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz		
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz		
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz		
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz		
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz		
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz
With Declary	

3.2 DESCRIPTION OF TEST MODES

Tra	ansmitting mode	Keep the EUT	in continuously t	ransmitting mo	de	15	
no	emark: EUT use new to ominal rated supply vo pondition. So the report	Itage, and found	that the worst ca				
	CK DIGRAM SHOWIN	G THE CONFIGI	JRATION OF SY	STEM TESTE	D B		
2	EUT						

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	5				

Item	Shielded Type	Ferrite Core	Length	Note
		1		
	B	6		

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^rLength ^a column.

Project No.: ZHT-240914026E Page 11 of 42

Radiation	Test	equipment
-----------	------	-----------

	220		/ ID) /			
ltem	Equipment	Manufacturer	Model	Last Cal.	Next Cal.	
1	Receiver	R&S	ESCI	May 10, 2024	May 09, 2025	
2	Loop antenna	EMCI	LAP600	May 10, 2024	May 09, 2025	
3	Amplifier	Schwarzbeck	BBV 9743 B	May 10, 2024	May 09, 2025	
4	Amplifier	Schwarzbeck	BBV 9718 B	May 10, 2024	May 09, 2025	
5	Bilog Antenna	Schwarzbeck	VULB9162	May 28, 2024	May 27, 2025	
6	Horn Antenna	Schwarzbeck	BBHA9120D	May 16, 2024	May 15, 2025	
7	Horn Antenna	A.H.SYSTEMS	SAS574	May 10, 2024	May 09, 2025	
8	Amplifier	AEROFLEX	100KHz-40GHz	May 10, 2024	May 09, 2025	
9	Spectrum Analyzer	R&S	FSV40	May 16, 2024	May 15, 2028	
10	966 Anechoic Chamber	EMToni	9m6m6m	Nov. 25, 2021	Nov. 24, 2024	
11	Spectrum Analyzer	KEYSIGHT	N9020A	May 10, 2024	May 09, 2025	
12	WIDBAND RADIO COMMUNICATI ON TESTER	R&S	CMW500	May 10, 2024	May 09, 2025	
13	Single Generator	Agilent	N5182A	May 10, 2024	May 09, 2028	
14	Power Sensor	MWRFtest	MW100-RFCB	May 10, 2024	May 09, 2025	
15	Audio analyzer	R&S	UPL	May 10, 2024	May 09, 2025	
16	Single Generator	R&S	SMB100A	May 10, 2024	May 09, 2025	
17	Power Amplifier Shielding Room	EMToni	2m3m3m	Nov. 25, 2021	Nov. 24, 2024	

Ð

15

(

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🕜 🏐 http://www.zht-lab.cn

Project No.: ZHT-240914026E Page 12 of 42

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Receiver	R&S	ESCI	May 10, 2024	May 09, 2025
LISN	R&S	ENV216	May 10, 2024	May 09, 2025
ISN CAT 6	Schwarzbeck	NTFM 8158	May 10, 2024	May 09, 2025
ISN CAT 5	Schwarzbeck	CAT5 8158	May 10, 2024	May 09, 2025
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	May 10, 2024	May 09, 2025
Current Transformer Clamp	Schwarzbeck	SW 9605	May 10, 2024	May 09, 2025
CE Shielding Room	EMToni	9m4m3m	Nov. 25, 2021	Nov. 24, 2024

4.1 CONDUCTED EMISSION MEASUREMENT

(1)		(1)	
Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto		

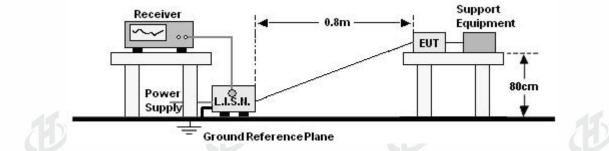
4.1.1 POWER LINE CONDUCTED EMISSION Limits

	Limit (Standard		
FREQUENCY (MHz)	QP	AVG	Standard	6
0.15 -0.5	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	56.00	46.00	FCC	
5.0 -30.0	60.00	50.00	FCC	

Note:

(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD No deviation

Project No.: ZHT-240914026E Page 14 of 42

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 TEST RESULTS

The Product is powered by the DC only, the test item is not applicable.

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013					
Test Frequency Range:	9kHz to 25GHz	9kHz to 25GHz					
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak		
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak		
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
		Peak	1MHz	10Hz	Average		

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

FREQUENCY (MHz)	Limit (dBuV/	′m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

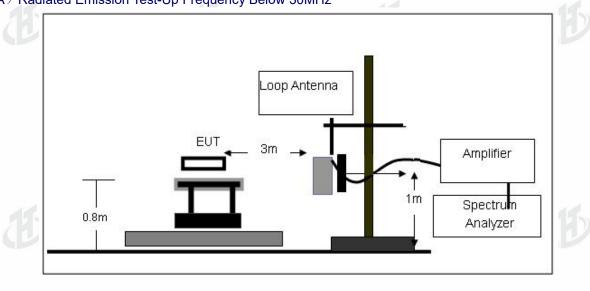
(2) The tighter limit applies at the band edges.

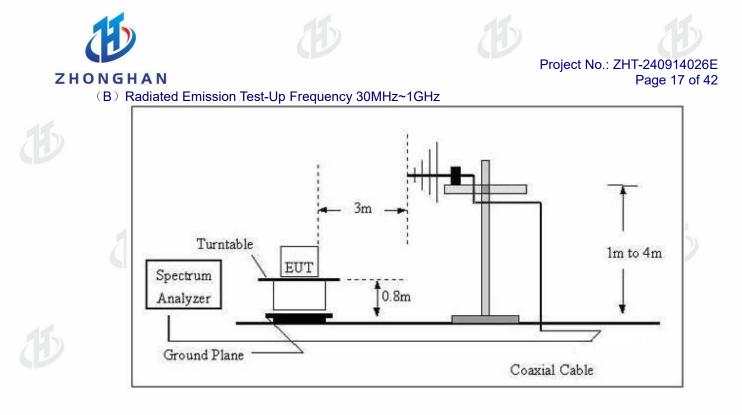
(3) Emission level (dBuV/m)=20log Emission level (uV/m).

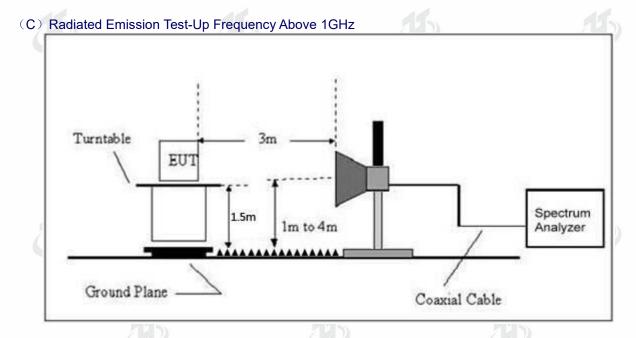
Project No.: ZHT-240914026E Page 16 of 42

4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.
- g. For the radiated emission test above 1GHz:
- Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.


The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported


4.2.3 DEVIATION FROM TEST STANDARD No deviation

4.2.4 TEST SETUP

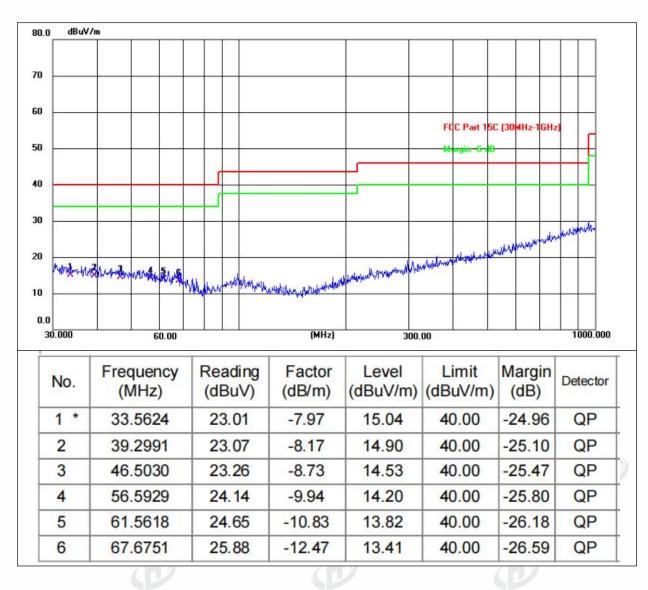
(A) Radiated Emission Test-Up Frequency Below 30MHz

4.2.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.2.6 TEST RESULTS (Between 9KHz - 30 MHz)

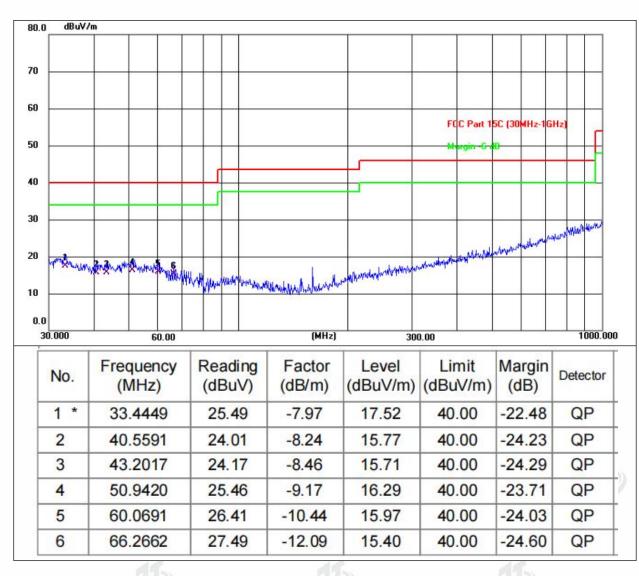
The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.



Project No.: ZHT-240914026E Page 18 of 42

Temperature:	25.1℃	Relative Humidity:	50%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 3V		

15



Project No.: ZHT-240914026E Page 19 of 42

Temperature:	25.1 ℃	Relative Humidity:	50%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 3V		

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3.The test data shows only the worst case GFSK 1M mode (Low Channel:2402MHz)

Project No.: ZHT-240914026E Page 20 of 42

1GHz~25GHz

					con white		1000		
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	•		•	Low Cha	nnel:2402N	/Hz			
V	4804.00	57.52	30.55	5.77	24.66	57.4	74	-16.6	Pk
V	4804.00	44.38	30.55	5.77	24.66	44.26	54	-9.74	AV
V	7206.00	55.84	30.33	6.32	24.55	56.38	74	-17.62	Pk
V	7206.00	41.27	30.33	6.32	24.55	41.81	54	-12.19	AV
V	9608.00	56.12	30.55	5.77	24.66	56	74	-18	Pk
V	9608.00	41.39	30.55	5.77	24.66	41.27	54	-12.73	AV
V	12010.00	57.61	30.33	6.32	24.55	58.15	74	-15.85	Pk
V	12010.00	42.54	30.33	6.32	24.55	43.08	54	-10.92	AV
Н	4804.00	56.32	30.55	5.77	24.66	56.2	74	-17.8	Pk
Н	4804.00	41.49	30.55	5.77	24.66	41.37	54	-12.63	AV
Н	7206.00	56.11	30.33	6.32	24.55	56.65	74	-17.35	Pk
Н	7206.00	41.01	30.33	6.32	24.55	41.55	54	-12.45	AV
Н	9608.00	57.6	30.55	5.77	24.66	57.48	74	-16.52	Pk
Н	9608.00	41.3	30.55	5.77	24.66	41.18	54	-12.82	AV
Н	12010.00	55.84	30.33	6.32	24.55	56.38	74	-17.62	Pk
Н	12010.00	41.61	30.33	6.32	24.55	42.15	54	-11.85	AV
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре

(⊓/∨)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	туре
			ľ	Middle Ch	annel:244	0MHz			
V	4880.00	56.65	30.55	5.77	24.66	56.53	74	-17.47	Pk
V	4880.00	41.6	30.55	5.77	24.66	41.48	54	-12.52	AV
V	7320.00	57.48	30.33	6.32	24.55	58.02	74	-15.98	Pk
V	7320.00	42.56	30.33	6.32	24.55	43.1	54	-10.9	AV
V	9760.00	57.25	30.55	5.77	24.66	57.13	74	-16.87	Pk
V	9760.00	43.21	30.55	5.77	24.66	43.09	54	-10.91	AV
V	12200.00	59.56	30.33	6.32	24.55	60.1	74	-13.9	Pk
V	12200.00	42.78	30.33	6.32	24.55	43.32	54	-10.68	AV
Н	4880.00	58.53	30.55	5.77	24.66	58.41	74	-15.59	Pk
Н	4880.00	44.76	30.55	5.77	24.66	44.64	54	-9.36	AV
Н	7320.00	58.76	30.33	6.32	24.55	59.3	74 🖉 🖞	-14.7	Pk
Н	7320.00	43.3	30.33	6.32	24.55	43.84	54	-10.16	AV
Н	9760.00	57.16	30.55	5.77	24.66	57.04	74	-16.96	Pk
Н	976000	41.45	30.55	5.77	24.66	41.33	54	-12.67	AV
Н	12200.00	59.53	30.33	6.32	24.55	60.07	74	-13.93	Pk
Н	12200.00	43.53	30.33	6.32	24.55	44.07	54	-9.93	AV

Project No.: ZHT-240914026E Page 21 of 42

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	•		ŀ	ligh Cha	nnel:2480N	1Hz			
V	4960.00	58.63	30.55	5.77	24.66	58.51	74	-15.49	Pk
V	4960.00	41.39	30.55	5.77	24.66	41.27	54	-12.73	AV
V	7440.00	55.17	30.33	6.32	24.55	55.71	74	-18.29	Pk
V	7440.00	41.1	30.33	6.32	24.55	41.64	54	-12.36	AV
V	9920.00	57.26	30.55	5.77	24.66	57.14	74	-16.86	Pk
V	9920.00	41.05	30.55	5.77	24.66	40.93	54	-13.07	AV
V	12400.00	55.46	30.33	6.32	24.55	56	74	-18	Pk
V	12400.00	41.27	30.33	6.32	24.55	41.81	54	-12.19	AV
Н	4960.00	55.49	30.55	5.77	24.66	55.37	74	-18.63	Pk
) н	4960.00	41.46	30.55	5.77	24.66	41.34	54	-12.66	AV
Н	7440.00	55.73	30.33	6.32	24.55	56.27	74	-17.73	Pk
Н	7440.00	41.43	30.33	6.32	24.55	41.97	54	-12.03	AV
Н	9920.00	56.4	30.55	5.77	24.66	56.28	74	-17.72	Pk
Н	9920.00	42.54	30.55	5.77	24.66	42.42	54	-11.58	AV
Н	12400.00	59.65	30.33	6.32	24.55	60.19	74	-13.81	Pk
Н	12400.00	42.33	30.33	6.32	24.55	42.87	54	-11.13	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

4. GFSK 1M and GFSK 2M have been tested and the worst mode recorded is GFSK 1M

5.RADIATED BAND EMISSION MEASUREMENT

Project No.: ZHT-240914026E Page 22 of 42

1 TEST REQUIREMENT

5.1 TEST REQUIREIVIENT.		- 7 X D		11					
Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:	ANSI C63.10: 2013							
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.							
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	Above	Peak	1MHz	3MHz	Peak				
	1GHz	Average	1MHz	3MHz	Average				

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/	′m) (at 3M)	5
FREQUENCY (MHz)	PEAK	AVERAGE	P
Above 1000	74	54	

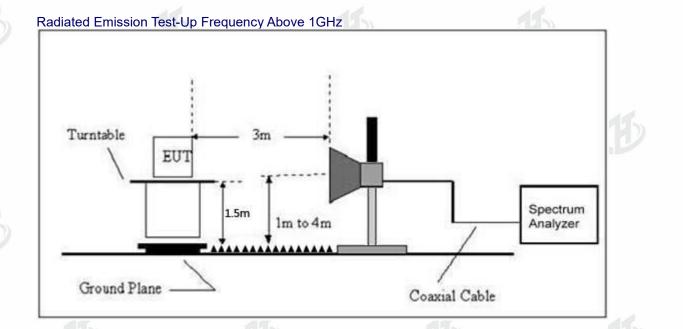
Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel


Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD No deviation

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Project No.: ZHT-240914026E Page 24 of 42

			\mathcal{D})		\overline{D}			
	Polar	Frequenc	Meter	Pre-	Cable	Antenna	Emission	Limit	Margi	Detec	
	(H/V)	У	Reading	amplifier	Loss	Factor	level	(dBuV	n	tor	Result
		(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	/m)	(dB)	Туре	
	Low Channel: 2402MHz										
	Н	2390.00	59.51	30.22	4.85	23.98	58.12	74.00	-15.88	PK	PASS
	7 H)	2390.00	48.11	30.22	4.85	23.98	46.72	54.00	-7.28	AV	PASS
	H	2400.00	60.78	30.22	4.85	23.98	59.39	74.00	-14.61	PK	PASS
	Н	2400.00	46.06	30.22	4.85	23.98	44.67	54.00	-9.33	AV	PASS
	V	2390.00	60.19	30.22	4.85	23.98	58.80	74.00	-15.20	PK	PASS
	V	2390.00	46.39	30.22	4.85	23.98	45.00	54.00	-9.00	AV	PASS
	V	2400.00	61.13	30.22	4.85	23.98	59.74	74.00	-14.26	PK	PASS
GFSK	V	2400.00	47.68	30.22	4.85	23.98	46.29	54.00	-7.71	AV	PASS
GFSK	High Channel: 2480MHz										
	Н	2483.50	62.64	30.22	4.85	23.98	61.25	74.00	-12.75	PK	PASS
	Н	2483.50	46.88	30.22	4.85	23.98	45.49	54.00	-8.51	AV	PASS
	Н	2500.00	61.96	30.22	4.85	23.98	60.57	74.00	-13.43	PK	PASS
	Н	2500.00	46.56	30.22	4.85	23.98	45.17	54.00	-8.83	AV	PASS
	V	2483.50	59.35	30.22	4.85	23.98	57.96	74.00	-16.04	PK	PASS
	V	2483.50	46.80	30.22	4.85	23.98	45.41	54.00	-8.59	AV	PASS
	V	2500.00	59.11	30.22	4.85	23.98	57.72	74.00	-16.28	PK	PASS
	V	2500.00	46.71	30.22	4.85	23.98	45.32	54.00	-8.68	AV	PASS

Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Lin
 GFSK 1M and GFSK 2M have been tested and the worst mode recorded is GFSK 1M

2 0755-27782934

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

6.1 APPLIED PROCEDURES / LIMIT

		1.	- 7.0				
FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS			

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 DEVIATION FROM STANDARD

No deviation. 6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

		5.	
Temperature :	25.8°C	Relative Humidity :	52%
Test Mode :	GFSK	Test Voltage :	DC 3V

Ę	Modulation	Frequency	Power S Dens (dBm/3		Limit (dBm/3kHz)	Result	Ð	
		2402 MHz	-23.	57	8	PASS		
	GFSK-1M	2440 MHz	-22.	.6	8	PASS		
		2480 MHz	-23.3	38	8	PASS		

Project No.: ZHT-240914026E Page 27 of 42

Project No.: ZHT-240914026E Page 28 of 42

2.110		into Country Andrews Count CA	PSD NVNT	BLE 1M 2480	MHz Ant1		
	LXI RL	er Freq 2.48000000	D GHz PNO: Wide IFGain:Low	SENSE:INT Trig: Free Run #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100 Mkr	09:19:22 AMSep 26, 202 TRACE [] 23 4 5 TYPE MWWW DET P NNNN 1 2.480 003 6 GH -23.383 dBr	
	-10.0 - -10.0 - -20.0 - -30.0 - -40.0 - -50.0 -			1	and the Way have a way of the second		
	-60 0 -70.0 Centu #Res Msg	er 2.4800000 GHz BW 3.0 kHz	#VB	W 10 KHz	Swee	Span 1.803 MH p 190.1 ms (1001 pts	

🖀 0755-27782934 🛛 🖂 admin@zht-lab.cn 🍼 🏐 http://www.zht-lab.cn

7. CHANNEL BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)	
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02	

7.1 APPLIED PROCEDURES / LIMIT

				1 2 1					
	FCC Part15 (15.247) , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS					

7.2 TEST PROCEDURE

1. Set RBW = 100 kHz.

- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

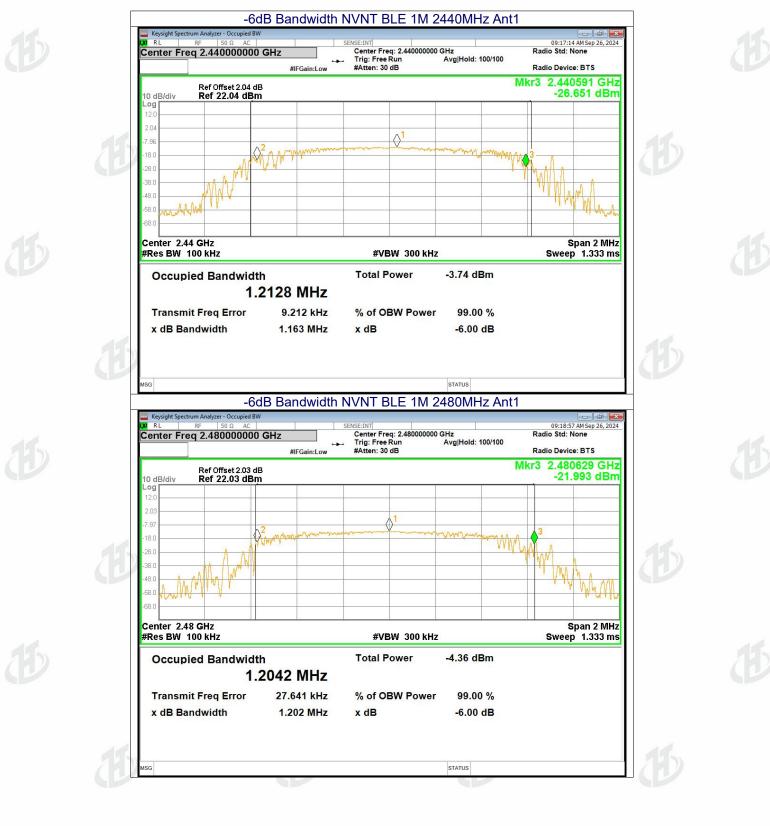
7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

		50	
Temperature :	25.8℃	Relative Humidity :	52%
Test Mode :	GFSK	Test Voltage :	DC 3V

Modulation	Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
	Lowest	1.143		
GFSK-1M	Middle	1.163	>=500	Pass
	Highest	1.202		



Project No.: ZHT-240914026E Page 31 of 42

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

1 2 1	(1) () () () () () () () () ()	1.0				
	FCC Part15 (15.247) , Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS		

8.2 TEST PROCEDURE

a. The EUT was directly connected to the SPECTRUMANALYZER

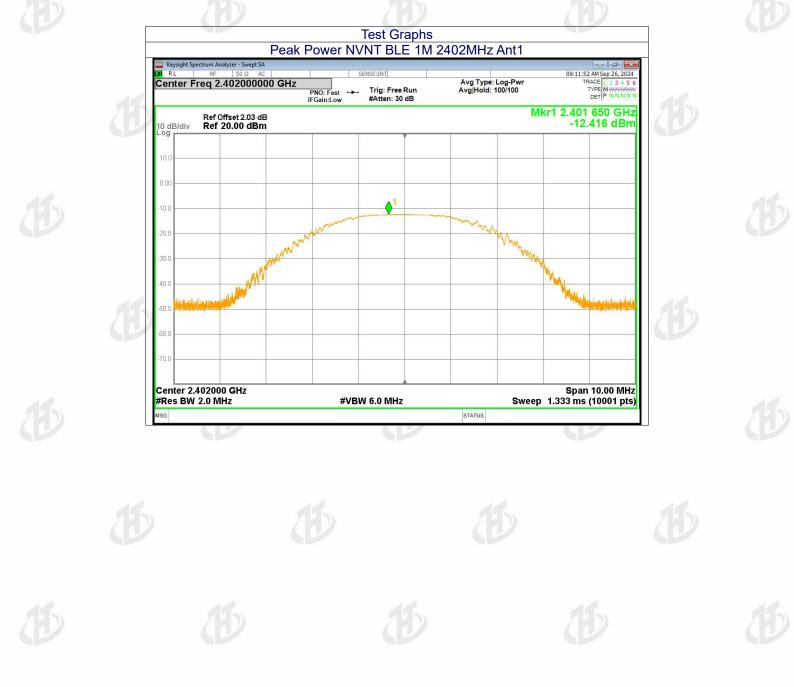
8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

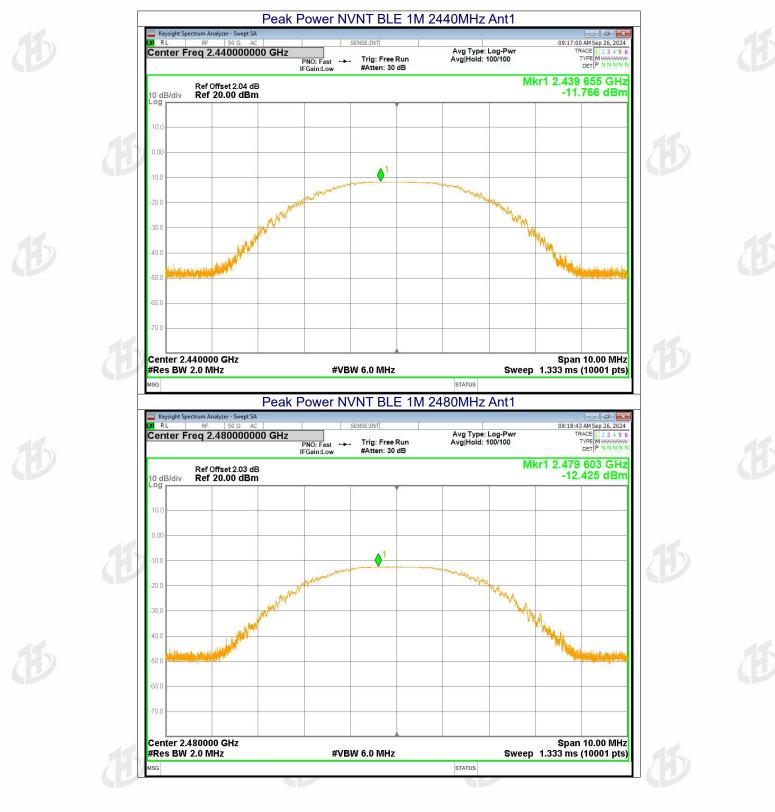
EUT	SPECTRUM
	ANALYZER

8.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULT	S		
Temperature :	25.8℃	Relative Humidity :	52%
Test Mode :	GFSK	Test Voltage :	DC 3V

Modulation	Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
	Lowest	-12.42		
GFSK-1M	Middle	-11.77	30.00	Pass
	Highest	-12.43		



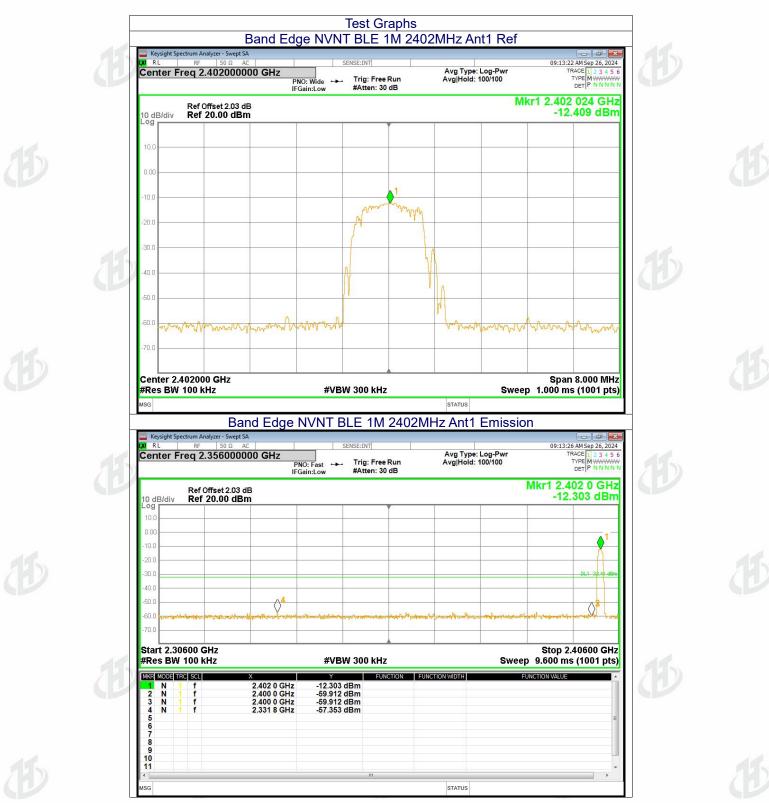
Project No.: ZHT-240914026E Page 34 of 42

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

C	Test Requirement:	FCC Part15 C Section 15.247 (d)	
	Test Method:	KDB558074 D0115.247 Meas Guidance v05r02	

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


Using the following spectru A) Set the RBW = 100KHz B) Set the VBW = 300KHz C) Sweep time = auto cou	<u>z</u> .				
 D) Detector function = pea E) Trace mode = max hold F) Allow trace to fully stability 	ple. Ik. J.				
9.3 DEVIATION FROM ST No deviation.	TANDARD				
EUT 9.5 EUT OPERATION CO	ONDITIONS	<i>(</i> 15)			
The EUT tested system condition is specified in the	was configured as t e follows during the t	he statements o testing.	of 2.4 Unless othe	erwise a specia	al operating

9.6 TEST RESULTS

Danu Euge				
Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
BLE 1M	2402	-44.94	-20	Pass
BLE 1M	2480	-44.92	-20	Pass

Project No.: ZHT-240914026E Page 37 of 42

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref ✓ Keysight Spectrum Analyzer - Swept SA ✓ Ø:19:27 AM Sep 26, 2024 ØR RL RF 50.0 AC SENSE:INT 09:19:27 AM Sep 26, 2024 Center Freq 2.480000000 GHz Frig: Free Run KAtten: 30 dB Avg Type: Log-Pwr Avg Hold: 100/100 Trig: Free Run PND: Wide Avg Type: Log-Pwr Avg Hold: 100/100 Trig: Free Run PMD: Wide	
Ref Offset 2.03 dB Mkr1 2.480 024 GHz 10 dB/div Ref 20.00 dBm	
0.00	
-10.0	
-40.0	
-50.0	
-60.0 and man and man and and and and and and and and and a	
-70.0	
Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz #VBW 300 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) Msg status	
Band Edge NVNT BLE 1M 2480MHz Ant1 Emission	
IX RL RF 50.Ω AC SENSE:INT 09:19:31 AM Sep 26, 2024 Center Freq 2.526000000 GHz Trig: Free Run IFGain:Low Avg Type: Log-Pwr Avg[Hold: 100/100 Trace [] 2 3 4 5 6 V Trig: Free Run IFGain:Low Trig: Free Run #Atten: 30 dB Avg Type: Log-Pwr Avg Type: Log-Pwr Trace [] 2 3 4 5 6	
Ref Offset 2.03 dB 10 dB/div Log Ref 20.00 dBm -12.276 dBm	
-30.0 - 0.1 32.44 dbs	
$\frac{300}{1600} + \frac{2}{160} + \frac$	
Start 2.47600 GHz Stop 2.57600 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 9.600 ms (1001 pts)	
MKR MODE[TRC] Sci X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 N 1 f 2.480 0 GHz -12.276 dBm 2 N 1 f 2.483 5 GHz -59.732 dBm	
2 N 1 f 2.483 5 GHz -59.732 dBm 3 N 1 f 2.500 0 GHz -60.446 dBm 4 N 1 f 2.495 8 GHz -57.339 dBm 5 - - - - - 6 - - - - -	
6 7 8 9 10	
11 * MSG STATUS	

Conducted RF Spurious Emission

	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict	
(\mathbf{A})	BLE 1M	2402	-37.54	-20	Pass	
	BLE 1M	2440	-39.54	-20	Pass	
	BLE 1M	2480	-36.11	-20	Pass	

Project No.: ZHT-240914026E Page 39 of 42

Project No.: ZHT-240914026E Page 40 of 42

10.ANTENNA REQUIREMENT

ZHONGHAN						Project No.: ZHT-240914026E Page 42 of 42		
	I. TEST SETUR	P PHOTOS						
Reference to the app		to the appendix						
1:	2. EUT CONST	RUCTIONAL D	TIONAL DETAILS					
	Reference	to the appendix	II for details.					
			**** EN		r ** * * * *			
			_ 11.		1	N 1 (1 / 1)	v abt lab a	