

On the plots below the measured Channel Power value in the "Total Channel Power" column must be -19 dBm and lower.

Frequency:	728 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	2×NR 3 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

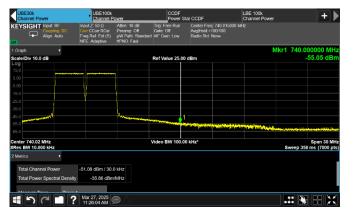


Figure 8.4-129: Conducted emission at the upper frequency block edge of low channel

Frequency:	740 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	2×NR 3 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

Figure 8.4-128: Conducted emission 100 kHz away from the lower band edge

Frequency:	727.9 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	2×NR 3 MHz
Limit:	–19 dBm/100 kHz	Notes:	Contiauous

Figure 8.4-130: Conducted emission 100 kHz away from the upper frequency block edge of low channel

Frequency:	740.1 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	2×NR 3 MHz
Limit:	–19 dBm/100 kHz	Notes:	Contiguous

CCDF Power Stat CCDF +))

Test data, continued

LBE:100k CODE Channel Power Code From Brower Stat CCDF From Brower

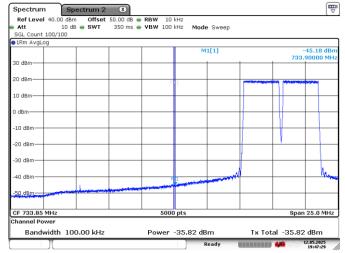
On the plots below the measured Channel Power value in the "Total Channel Power" column must be -19 dBm and lower.

Figure 8.4-131: Conducted emission at the upper band edge


Frequency:	746 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	2×NR 3 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

Ref Level 40.00 d		50.00 dB 👄						
	dB 👄 SWT	350 ms 👄	VBW 100	kHz Mode	sweep			
5GL Count 100/100								
1Rm AvgLog					1[1]			-45.59 dBn
				M.	1(1)			-43.39 UBN
0 dBm							704	100000 Mill
0 dBm			T	(1		and in this wanted and	the parameters	
0 dBm								
dBm								++-
						ſ		
10 dBm								
20 dBm								
30 dBm								
					, A			h.
40 dBm			M	1	and the second			
50.dBm	-	-						
F 733.985 MHz			5000) pts			Spar	n 25.0 MHz
hannel Power								
Bandwidth 3	0.00 kHz		Power	-40.90 dB	m	Tx Tot	al -40.90) dBm

Date: 12.MAY.2025 19:36:54


Figure 8.4-133: Conducted emission at the lower frequency block edge of top channel

Frequency:	734 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	2×NR 3 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

Figure 8.4-132: Conducted emission 100 kHz away from the band edge

Meas. BW: 100 kHz Tech.:	2-carrier operation 2×NR 3 MHz Contiguous
--------------------------	---

Date: 12.MAY.2025 19:47:30

iput RF

Figure 8.4-134: Conducted emission 100 kHz away from the lower frequency block edge of top channel

Frequency:	733.9 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	2×NR 3 MHz
Limit:	–19 dBm/100 kHz	Notes:	Contiguous

On the plots below the measured Channel Power value in the "Total Channel Power" column must be -19 dBm and lower.

Frequency:	728 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	2×NR 5 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

Figure 8.4-137: Conducted emission at the upper frequency block edge of low channel

Figure 8.4-136: Conducted emission 100 kHz away from the lower band edge

Frequency:	727.9 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	2×NR 5 MHz
Limit:	–19 dBm/100 kHz	Notes:	Contiguous

Figure 8.4-138: Conducted emission 100 kHz away from the upper frequency block edge of low channel

Frequency:	740.1 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	2×NR 5 MHz
Limit:	–19 dBm/100 kHz	Notes:	Contiguous

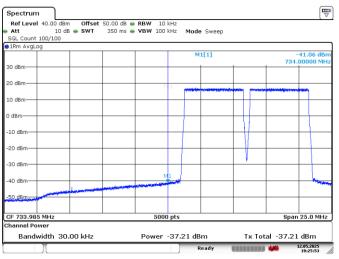


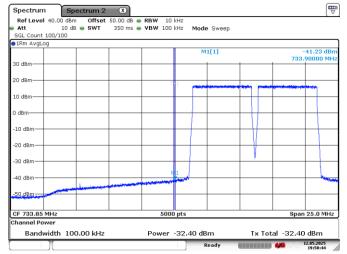
Image: State Floor Age UBE 1004. CODEF CODEF Channel Power Opder Floor 246 8500 Mir Power State CCDEF March Allon Conter Floor 246 8500 Mir Power State CCDEF March Allon Prover State Conter Floor 246 8500 Mir Power State Conter Floor 246 8500 Mir March Allon Prover State Conter Floor 246 8500 Mir Power State Conter Floor 246 8500 Mir I Owner March Allon 250 dBm Mirch 746 000000 MHz Scate-Ever Vol.o dB Perf Value 25.00 dBm Allon 1746 000000 MHz Scate-Ever Vol.o dB Perf Value 25.00 dBm 48.65 dBm Log Video BW 100.00 kHz* Speep 358 ms (6000 pts) 200 Floor 48.02 MHz State BW 100.00 kHz* Speep 358 ms (6000 pts) 21 Mircls Video BW 100.00 kHz* Speep 358 ms (6000 pts) 21 Mircls 22 Mircls 22 Mircls 22 Mircls 22 Mircls -</t

On the plots below the measured Channel Power value in the "Total Channel Power" column must be -19 dBm and lower.

Figure 8.4-139: Conducted emission at the upper band edge

Frequency:	746 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	2×NR 5 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

Date: 12.MAY.2025 19:25:54


Figure 8.4-141: Conducted emission at the lower frequency block edge of top channel

Frequency:	734 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	2×NR 5 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

Figure 8.4-140: Conducted emission 100 kHz away from the band edge

Frequency: Meas. BW: Limit:	746.1 MHz 100 kHz –19 dBm/100 kHz	Tech.:	2-carrier operation 2×NR 5 MHz Contiguous	
-----------------------------------	---	--------	---	--

Date: 12.MAY.2025 19:50:44

Figure 8.4-142: Conducted emission 100 kHz away from the lower frequency block edge of top channel

Frequency:	733.9 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	2×NR 5 MHz
Limit:	–19 dBm/100 kHz	Notes:	Contiguous

On the plots below the measured Channel Power value in the "Total Channel Power" column must be -19 dBm and lower.

Figure 8.4-143: Conducted emission at the lower band edge

Frequency:	728 MHz	Mode:	5-carrier operation
Meas. BW:	30 kHz	Tech.:	5×NR 3 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

Figure 8.4-144: Conducted emission 100 kHz away from the lower band edge

Frequency:	727.9 MHz	Mode:	5-carrier operation
Meas. BW:	100 kHz	Tech.:	5×NR 3 MHz
Limit:	–19 dBm/100 kHz	Notes:	Contiguous

Figure 8.4-146: Conducted emission 100 kHz away from the upper frequency block edge of low channel

Frequency:	746.1 MHz	Mode:	5-carrier operation
Meas. BW:	100 kHz	Tech.:	5×NR 3 MHz
Limit:	–19 dBm/100 kHz	Notes:	Contiguous

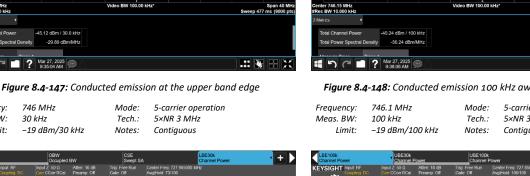
LBE100k Channel Po		UBE30k Channel P	ower	UBE100 Channel			CDF ower Stat CCDF	+)
KEYSIGHT	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Ext (S) NFE: Adaptivo	Atten: 10 dB Preamp: Off µW Path: Standard #PNO. Fast	Trig: Free Run Gate: Off #IF Gain: Low	Center Free Avg[Hold: 9 Radio Std: I			
1 Graph	•						Mkr1	746.000000 MH
Scale/Div 10.0	dB			Ref Value 25.00	dBm			-51.58 dBn
5.00				٦				
		Y Y						
35.0								
45.0				Marman 1				
.55.0					and the second se	فيعينون والمسابية ومق		al distance of the local sector of the secto
Center 746.02 Res BW 10.0				video BW 100.0	0 kHz*			Span 40 MH Sweep 477 ms (9000 pts
2 Metrics	vo ki iL							Sheep 411 his (5000 pt
Total Chann		-46.28 dBm / 30.						
Total Power	r Spectral Density	/ -31.06 dBm	/MHz					
1 h	C 7 7 7	Mar 27, 2025 8:45:20 AM	ÐA					.:: 💘 🕂 💥

Figure 8.4-145: Conducted emission at the upper frequency block edge of low channel

Frequency:	746 MHz	Mode:	5-carrier operation
Meas. BW:	30 kHz	Tech.:	5×NR 3 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

CCDF Power Stat CCDF

+))


Span 40 ep 477 ms (900

X

Test data, continued

Frequency:	746 MHz	Mode:	5-carrier operati
Meas. BW:	30 kHz	Tech.:	5×NR 3 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

10.0 dF

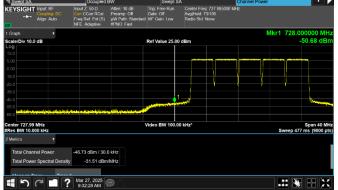


Figure 8.4-149: Conducted emission at the lower frequency block edge of top channel

Frequency:	728 MHz	Mode:	5-carrier operation
Meas. BW:	30 kHz	Tech.:	5×NR 3 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

Figure 8.4-148: Conducted emission 100 kHz away from the band edge

Ref Value 25.00 dBn

5-carrier operation 5×NR 3 MHz Contiguous

Figure 8.4-150: Conducted emission 100 kHz away from the lower frequency block edge of top channel

Frequency:	727.9 MHz	Mode:	5-carrier operation
Meas. BW:	100 kHz	Tech.:	5×NR 3 MHz
Limit:	–19 dBm/100 kHz	Notes:	Contiguous

On the plots below the measured Channel Power value in the "Total Channel Power" column must be -19 dBm and lower.

On the plots below the measured Channel Power value in the "Total Channel Power" column must be -19 dBm and lower.

Figure 8.4-151: Conducted emission at the lower band edge

Frequency:	728 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	NR 3 MHz + LTE 5 MHz (with IB)
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

Figure 8.4-152: Conducted emission 100 kHz away from the lower band edge

Frequency:	727.9 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	NR 3 MHz + LTE 5 MHz (with IB)
Limit:	–19 dBm/100 kHz	Notes:	Contiguous

Figure 8.4-153: Conducted emission at the upper band edge

Frequency:	746 MHz
Meas. BW:	30 kHz
Limit:	–19 dBm/30 kHz

Mode:2-carrier operationTech.:NR 3 MHz + LTE 5 MHz (with IB)Notes:Contiguous

Figure 8.4-154: Conducted emission 100 kHz away from the band edge

Frequency:	746.1 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	NR 3 MHz + LTE 5 MHz (with IB)
Limit:	–19 dBm/100 kHz	Notes:	Contiguous

On the plots below the measured Channel Power value in the "Total Channel Power" column must be -19 dBm and lower.

Figure 8.4-155: Conducted emission at the lower band edge

Frequency:	728 MHz	Mode:	5-carrier operation
Meas. BW:	30 kHz	Tech.:	2xNR 3 MHz + IoT SA + 2xLTE 5 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

Figure 8.4-156: Conducted emission 100 kHz away from the lower band edge

		<u>j</u> -	
Frequency:	727.9 MHz	Mode:	5-carrier operation
Meas. BW:	100 kHz	Tech.:	2xNR 3 MHz + IoT SA + 2xLTE 5 MHz
Limit:	–19 dBm/100 kHz	Notes:	Contiguous



Figure 8.4-157: Conducted emission at the upper band edge

Frequency:	746 MHz	Mode:	5-carrier operation
Meas. BW:	30 kHz	Tech.:	2xNR 3 MHz + IoT SA + 2xLTE 5 MHz
Limit:	–19 dBm/30 kHz	Notes:	Contiguous

-31.24 dBm/MHz

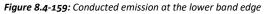
ral De

i Video BW 100.00 kHz*

Figure 8.4-158: Conducted emission 100 kHz away from the upper band edge


Frequency:	746.1 MHz	Mode:	5-carrier operation
Meas. BW:	100 kHz	Tech.:	2xNR 3 MHz + IoT SA + 2xLTE 5 MHz
Limit:	–19 dBm/100 kHz	Notes:	Contiguous

+)


-51.67 dB

Span 40 MH Sweep 477 ms (9000 pts

On the plots below the measured Channel Power value in the "Total Channel Power" column must be -19 dBm and lower.

Frequency:	728 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	NR 3 MHz + LTE 5 MHz
Limit:	–19 dBm/30 kHz	Notes:	Non-contiguous

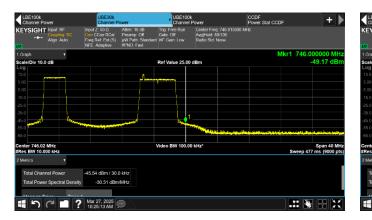


Figure 8.4-161: Conducted emission at the upper band edge

Frequency:	746 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	NR 3 MHz + LTE 5 MHz
Limit:	–19 dBm/30 kHz	Notes:	Non-contiguous

Figure 8.4-160: Conducted emission 100 kHz away from the lower band edge

Frequency:	727.9 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	NR 3 MHz + LTE 5 MHz
Limit:	–19 dBm/100 kHz	Notes:	Non-contiauous

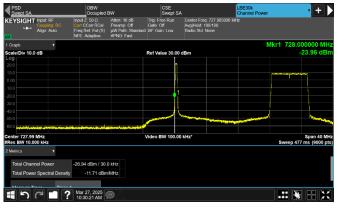

Limit: -19 dBm/100 kHz Notes: Non-contiguous

Figure 8.4-162: Conducted emission 100 kHz away from the upper band edge

Frequency:	746.1 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	NR 3 MHz + LTE 5 MHz
Limit:	–19 dBm/100 kHz	Notes:	Non-contiguous

Report ID: REP090083

On the plots below the measured Channel Power value in the "Total Channel Power" column must be -16 dBm and lower.

Frequency:	728 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	IoT SA + LTE 5 MHz
Limit:	–16 dBm/30 kHz	Notes:	Non-contiguous

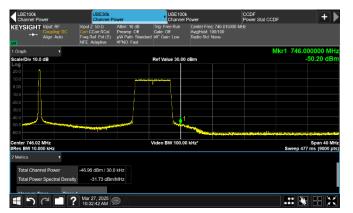


Figure 8.4-165: Conducted emission at the upper band edge

Frequency:	746 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	IoT SA + LTE 5 MHz
Limit:	–16 dBm/30 kHz	Notes:	Non-contiguous

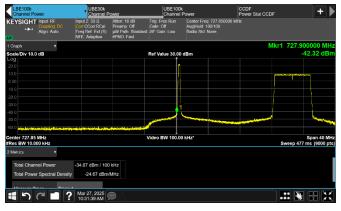


Figure 8.4-164: Conducted emission 100 kHz away from the lower band edge

Frequency:	727.9 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	IoT SA + LTE 5 MHz
Limit:	–16 dBm/100 kHz	Notes:	Non-contiguous

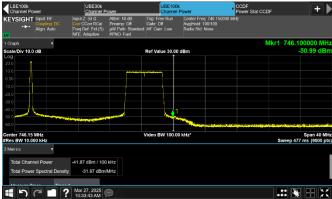
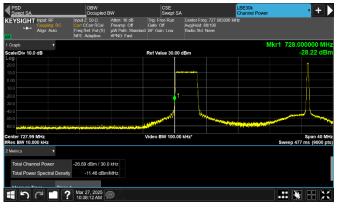



Figure 8.4-166: Conducted emission 100 kHz away from the upper band edge

Frequency:	746.1 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	IoT SA + LTE 5 MHz
Limit:	–16 dBm/100 kHz	Notes:	Non-contiguous

On the plots below the measured Channel Power value in the "Total Channel Power" column must be -16 dBm and lower.

Figure 8.4-167: Conducted emission at the lower band edge

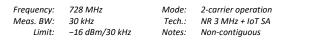


Figure 8.4-169: Conducted emission at the upper band edge

Frequency:	746 MHz	Mode:	2-carrier operation
Meas. BW:	30 kHz	Tech.:	NR 3 MHz + IoT SA
Limit:	–16 dBm/30 kHz	Notes:	Non-contiguous

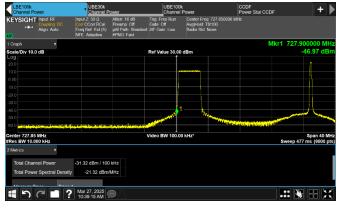


Figure 8.4-168: Conducted emission 100 kHz away from the lower band edge

Frequency:	727.9 MHz	Mode:	2-carrier operation
Meas. BW:	100 kHz	Tech.:	NR 3 MHz + IoT SA
Limit:	–16 dBm/100 kHz	Notes:	Non-contiguous

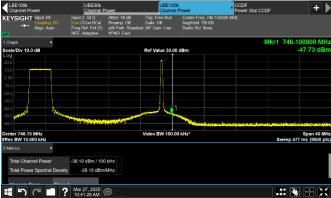
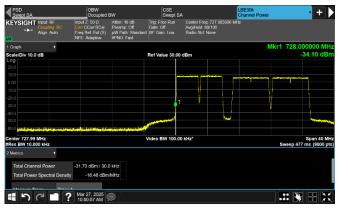



Figure 8.4-170: Conducted emission 100 kHz away from the upper band edge

Frequency:	746.1 MHz	Mode:	2-carrier operation	
Meas. BW:	100 kHz	Tech.:	NR 3 MHz + IoT SA	
Limit:	–16 dBm/100 kHz	Notes:	Non-contiguous	

On the plots below the measured Channel Power value in the "Total Channel Power" column must be -19 dBm and lower.

Figure 8.4-171: Conducted emission at the lower band edge

Frequency:	728 MHz	Mode:	4-carrier operation
Meas. BW:	30 kHz	Tech.:	2xNR 3 MHz + 2xLTE 5 MHz
Limit:	–19 dBm/30 kHz	Notes:	Non-contiguous

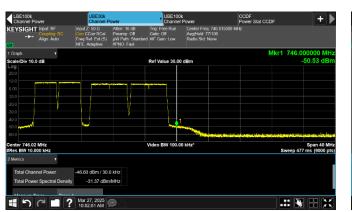


Figure 8.4-173: Conducted emission at the upper band edge

Frequency:	746 MHz	Mode:	4-carrier operation
Meas. BW:	30 kHz	Tech.:	2xNR 3 MHz + 2xLTE 5 MHz
Limit:	–19 dBm/30 kHz	Notes:	Non-contiguous

Figure 8.4-172: Conducted emission 100 kHz away from the lower band edge

Frequency:	727.9 MHz	Mode:	4-carrier operat
Meas. BW:	100 kHz	Tech.:	2xNR 3 MHz + 2
Limit:	–19 dBm/100 kHz	Notes:	Non-contiguous

ation 2xLTE 5 MHz ıs ıg

Figure 8.4-174: Conducted emission 100 kHz away from the upper band edge

Frequency:	746.1 MHz	Mode:	4-carrier operation
Meas. BW:	100 kHz	Tech.:	2xNR 3 MHz + 2xLTE 5 MHz
Limit:	–19 dBm/100 kHz	Notes:	Non-contiguous

Report ID: REP090083

8.5 Radiated spurious emissions

8.5.1 Definitions and limits

FCC §27.53: Emission limits

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

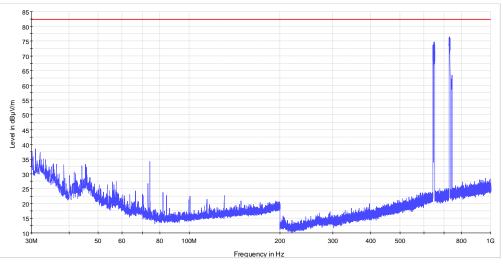
RSS-130, Section 4.7.1: Transmitter Unwanted Emissions

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.

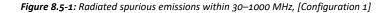
8.5.2	8.5.2 Test summary		
Territore	_	March 25, 2025 March 25, 2025 to March 27, 2025	
Test date		March 25, 2025 March 25, 2025 to March 27, 2025	
Test engine	eer	Dhara Patel	

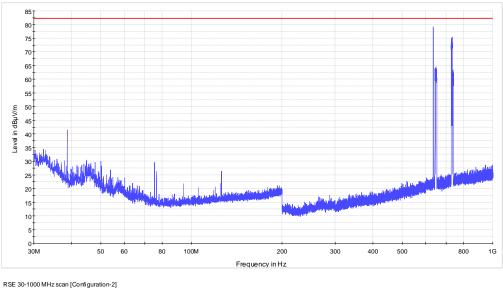
8.5.3 Observations, settings and special notes

The spectrum was analyzed at a distance of 3 meters, ranging from 30 MHz to at least the 10th harmonic, in accordance with ANSI C63.26 Paragraph 5.5.3.2. The resolution bandwidth (RBW) was set to 100 kHz for frequencies between 30–1000 MHz and 1 MHz for frequencies above 1 GHz, with the video bandwidth (VBW) set wider than the RBW.


Testing was conducted with RF ports terminated with a 50 Ohm load. The limit line of -13 dBm/100 kHz was recalculated for field strength measurement at a distance of 3 meters, resulting in a value of 82.23 dBµV/m.

Transmission testing was performed on the channels that yielded the maximum power results in previous sections. No emissions, other than those displayed in the plots, were detected during the spectrum scans.


Four radiated spurious emission (RSE) configurations were selected (RSE 1, RSE 2, RSE 3, RSE 4). See Section 3.3 or page 12 for full details.



8.5.4 Test data

RSE 30-1000 MHz scan [Configuration-1] PK+_MAXH -13 dBm in 82.23 dBuV_m

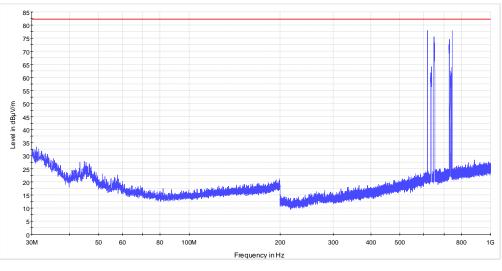
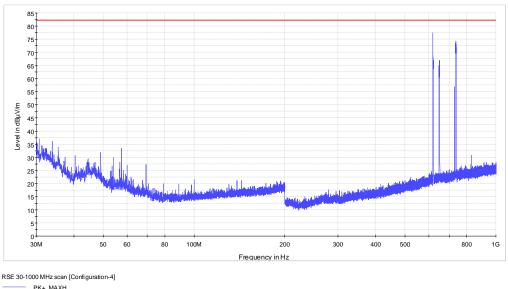
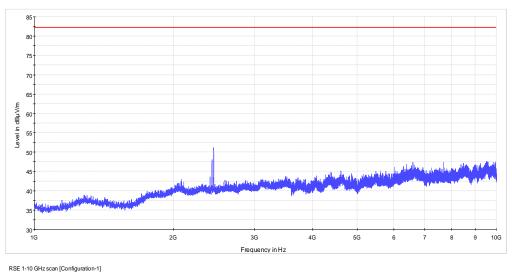


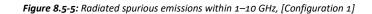
Figure 8.5-2: Radiated spurious emissions within 30–1000 MHz, [Configuration 2]

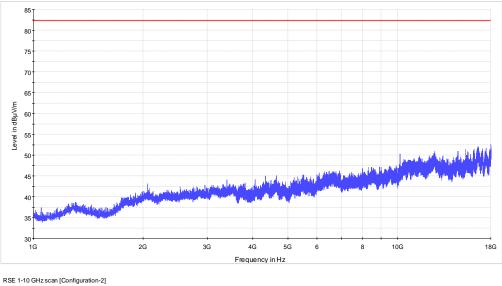

Section 8	Testing data	
Test name	Radiated spurious emissions	
Specification	FCC Part 27 and RSS-130 Issue 2	

RSE 30-1000 MHz scan [Configuration-3]
PK+_MAXH
-13 dBm in 82.23 dBuV_m

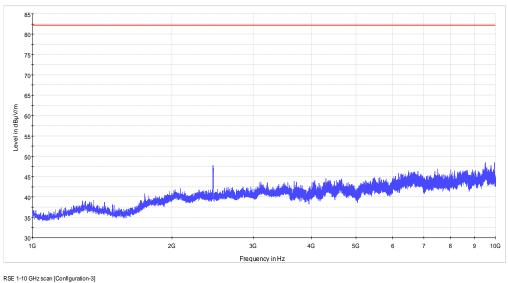


PK+_MAXH -13 dBm in 82.23 dBuV_m

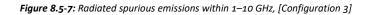

Figure 8.5-4: Radiated spurious emissions within 30–1000 MHz, [Configuration 4]

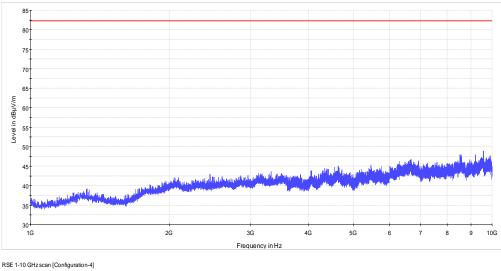



PK+_MAXH -13 dBm in 82.23 dbuV_m(1)



RSE 1-10 GHz scan [Configuration-2] PK+_MAXH -13 dBm in 82.23 dBuV_m


Figure 8.5-6: Radiated spurious emissions within 1–10 GHz, [Configuration 2]



PK+_MAXH -13 dBm in 82.23 dBuV_m _____

PK+_MAXH -13 dBm in 82.23 dBuV_m

Figure 8.5-8: Radiated spurious emissions within 1–10 GHz, [Configuration 4]

8.6 Frequency stability

8.6.1 Definitions and limits

FCC 27.54:

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

RSS-130, Section 4.5:

For equipment that is capable of transmitting numerous channels simultaneously for different applications (e.g. LTE and narrowband – Internet of Things (IoT)), the occupied bandwidth shall be the bandwidth representing the sum of the occupied bandwidths of these channels.

The frequency stability shall be sufficient to ensure that the occupied bandwidth remains within each frequency block range when tested at the temperature and supply voltage variations specified in RSS-Gen.

8.6.2 Test summary

Test date	April 15, 2025
Test engineer	Dhara Patel

8.6.3 Observations, settings and special notes

Testing was performed per ANSI C63.26 Paragraphs 5.6.3, 5.6.4 and 5.6.5 methods. 26 dBc points including frequency tolerance were assessed to remain within assigned band.

8.6.4 Test data

Table 8.6-1: Frequency error results (B71)

Temperature, °C	Voltage, V _{DC}	Frequency error, Hz
-40	48.00	-0.239
-30	48.00	-0.323
-20	48.00	0.485
-10	48.00	-0.328
0	48.00	0.165
10	48.00	-0.321
20	48.00	-0.279
20	40.80	0.272
20	55.20	0.336
30	48.00	0.192
40	48.00	-0.318
50	48.00	-0.298
55	48.00	-0.287

Max negative drift: -0.239 Hz, Max positive drift: +0.485 Hz. Given their minimal magnitude, these drifts do not cause any significant shift in occupied bandwidth beyond the allocated frequency block.

Table 8.6-2: Frequency error results (B85A)

Temperature, °C	Voltage, V _{DC}	Frequency error, Hz
-40	48.00	0.463
-30	48.00	0.574
-20	48.00	0.342
-10	48.00	-0.384
0	48.00	0.281
10	48.00	-0.301
20	48.00	-0.403
20	40.80	-0.408
20	55.20	-0.293
30	48.00	-0.323
40	48.00	0.453
50	48.00	0.269
55	48.00	0.399

Max negative drift: -0.293 Hz, Max positive drift: +0.574 Hz. Given their minimal magnitude, these drifts do not cause any significant shift in occupied bandwidth beyond the allocated frequency block.

8.7 Occupied bandwidth (B71)

8.7.1 Definitions and limits

FCC §2.1049:

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

RSS-Gen, 6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

8.7.2 Test summary

Test date	March 25, 2025 to March 27, 2025
Test engineer	Dhara Patel

8.7.3 Observations, settings and special notes

Testing was performed per ANSI C63.26 Paragraphs 5.4.3 and 5.4.4 methods.

Spectrum analyzer settings:

1 1 0	
Detector mode	Peak
Resolution bandwidth	≥1 % of EBW
Video bandwidth	RBW × 3
Trace mode	Max Hold

8.7.4 Test data

Table 8.7-1: Occupied bandwidth for IoT SA

Frequency, MHz	26 dB BW, kHz	99% OBW, kHz
617.2	364.3	275.11
634.5	320.0	216.09
651.8	321.0	214.33

Table 8.7-2: Occupied bandwidth results for LTE

Channel size, notes	Frequency, MHz	26 dB BW, MHz	99% OBW, MHz
5 MHz, SC with IB	619.5	4.72	4.468
5 MHz, SC with IB	634.5	4.70	4.466
5 MHz, SC with IB	649.5	4.71	4.471
10 MHz, SC with GB	622.0	9.67	9.360
10 MHz, SC with GB	634.5	9.65	9.361
10 MHz, SC with GB	647.0	9.64	9.362
15 MHz, SC with GB	624.5	14.38	13.929
15 MHz, SC with GB	634.5	14.42	13.937
15 MHz, SC with GB	644.5	14.40	13.932
20 MHz, SC with GB	627.0	18.99	18.329
20 MHz, SC with GB	634.5	18.90	18.342
20 MHz, SC with GB	642.0	18.97	18.335

Table 8.7-3: Occupied bandwidth results for NR

Channel size	Frequency, MHz	26 dB BW, MHz	99% OBW, MHz
5 MHz	619.5	4.80	4.472
5 MHz	634.5	4.80	4.474
5 MHz	649.5	4.78	4.459
10 MHz	622.0	9.67	9.274
10 MHz	634.5	9.65	9.279
10 MHz	647.0	9.63	9.261
15 MHz	624.5	14.63	14.083
15 MHz	634.5	14.63	14.090
15 MHz	644.5	14.62	14.084
20 MHz	627.0	19.56	18.912
20 MHz	634.5	19.52	18.902
20 MHz	642.0	19.57	18.901
25 MHz	629.5	24.36	23.683
25 MHz	634.5	24.38	23.697
25 MHz	639.5	24.32	23.693
30 MHz	632.0	29.31	28.522
30 MHz	634.5	29.35	28.519
30 MHz	637.0	29.31	28.519
35 MHz	634.5	34.15	33.493

Section 8 Test name Specification

15.0 dB

ter 647.000 MHz s BW 51.000 kH

Mar 25, 2025 の 11:16:41 AM

Testing data Occupied bandwidth (Band 71) FCC Part 2, RSS-Gen, Issue 5

Test data, continued

Figure 8.7-1: Sample plot for IoT SA

Ref Value 70.00 dBm

Video BW 510.00 kHz*

-823 Hz 9.638 MHz

LBE30k

99.00 % -26.00 dB

Figure 8.7-2: Sample plot for LTE 5 MHz + IB channel

% of (x dB

Figure 8.7-5: Sample plot for LTE 20 MHz + GB channel

Figure 8.7-4: Sample plot for LTE 15 MHz channel + GB channel

Figure 8.7-6: Sample plot for NR 5 MHz channel

Section 8 Test name Specification

/ 10.0 dB

er 627.00 MHz BW 51.000 kH

/idth 18.912 MH;

また、2025 PM (12:44:45 PM)
の

-11.537 kHz 19.56 MHz

Testing data Occupied bandwidth (Band 71) FCC Part 2, RSS-Gen, Issue 5

Test data, continued



Figure 8.7-7: Sample plot for NR 10 MHz channel

Ref Value 50.00 dBm

Video BW 510.00 kHz*

% of OBW P x dB

Figure 8.7-8: Sample plot for NR 15 MHz channel

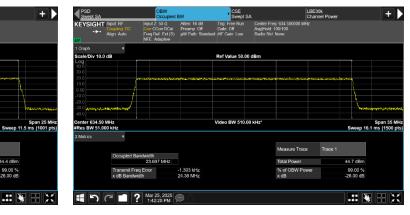


Figure 8.7-9: Sample plot for NR 20 MHz channel

99.00 % -26.00 dB

Span 25 MH Sweep 11.5 ms (1001 pts

Figure 8.7-11: Sample plot for NR 30 MHz channel

Figure 8.7-10: Sample plot for NR 25 MHz channel

Figure 8.7-12: Sample plot for NR 35 MHz channel

8.8 Occupied bandwidth (B85A)

8.8.1 Definitions and limits

FCC §2.1049:

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

RSS-Gen, 6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

8.8.2 Test summary

Test date	March 25, 2025 to March 27, 2025
Test engineer	Dhara Patel

8.8.3 Observations, settings and special notes

Testing was performed per ANSI C63.26 Paragraphs 5.4.3 and 5.4.4 methods.

Spectrum analyzer settings:

Detector mode	Peak
Resolution bandwidth	≥1% of EBW
Video bandwidth	RBW × 3
Trace mode	Max Hold

Testing data Occupied bandwidth (Band 85A) FCC Part 2, RSS-Gen, Issue 5

8.8.4 Test data

Table 8.8-1: Occupied bandwidth for IoT SA

Frequency, MHz	26 dB BW, kHz	99% OBW, kHz
728.2	322.2	214.03
736.5	309.2	214.39
744.8	312.8	216.36

Table 8.8-2: Occupied bandwidth results for LTE

Channel size, notes	Frequency, MHz	26 dB BW, MHz	99% OBW, MHz
5 MHz, SC with IB	730.5	4.69	4.472
5 MHz, SC with IB	736.5	4.72	4.465
5 MHz, SC with IB	742.5	4.70	4.470
10 MHz, SC with GB	733.0	9.66	9.354
10 MHz, SC with GB	736.5	9.63	9.357
10 MHz, SC with GB	740.0	9.65	9.365
15 MHz, SC with GB	735.5	14.43	13.941
15 MHz, SC with GB	736.5	14.40	13.934
15 MHz, SC with GB	737.5	14.38	13.931

Table 8.8-3: Occupied bandwidth results for NR

Channel size	Frequency, MHz	26 dB BW, MHz	99% OBW, MHz
3 MHz	729.5	2.90	2.688
3 MHz	736.5	2.89	2.701
3 MHz	743.5	2.89	2.688
5 MHz	730.5	4.81	4.468
5 MHz	736.5	4.79	4.472
5 MHz	742.5	4.79	4.463
10 MHz	733.0	9.64	9.253
10 MHz	736.5	9.61	9.268
10 MHz	740.0	9.64	9.262
15 MHz	735.5	14.64	14.081
15 MHz	736.5	14.68	14.078
15 MHz	737.5	14.65	14.077

Section 8

Testing data Occupied bandwidth (Band 85A) FCC Part 2, RSS-Gen, Issue 5

Test data, continued

Figure 8.8-1: Sample plot for IoT SA

LBE30k

+ •

Figure 8.8-2: Sample plot for LTE 5 MHz + IB channel

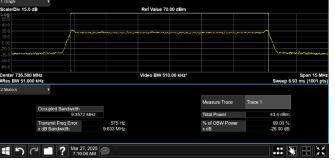


Figure 8.8-3: Sample plot for LTE 10 MHz channel + GB channel

Figure 8.8-5: Sample plot for NR 3 MHz channel

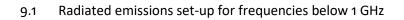
Figure 8.8-4: Sample plot for LTE 15 MHz channel + GB channel

Figure 8.8-6: Sample plot for NR 5 MHz channel

Section 8

Testing data Occupied bandwidth (Band 85A) FCC Part 2, RSS-Gen, Issue 5

Test data, continued



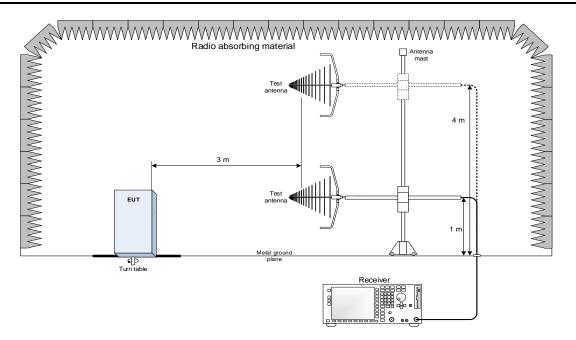
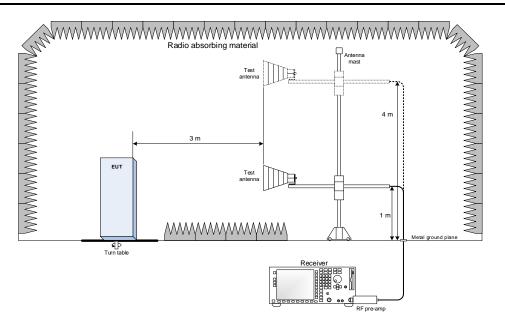
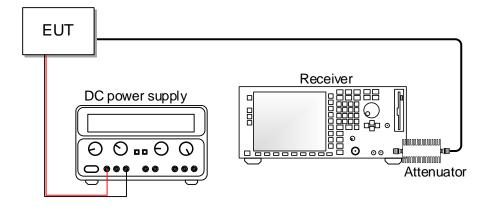

Figure 8.8-7: Sample plot for NR 10 MHz channel

Figure 8.8-8: Sample plot for NR 15 MHz channel



Section 9. Block diagrams of test setups



9.2 Radiated emissions set-up for frequencies above 1 GHz

9.3 Conducted emissions set-up

