

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202207421F01

TEST Report

Applicant: Dongguan Xinjia Laser Technology Co., Ltd.

Address of Applicant: Room 602, No.419, Jinxing Road, Liaobu Town,

Dongguan City, Guangdong Province

Manufacturer: Dongguan Xinjia Laser Technology Co., Ltd.

Address of Room 602, No.419, Jinxing Road, Liaobu Town,

Manufacturer: Dongguan City, Guangdong Province

Equipment Under Test (EUT)

Product Name: laser engraving machine

Model No.: L6

Series model: L6-pro, L6-pro+, L6-plus, L6-max,

JL7, JL7-pro, JL7-pro+, JL7-plus, JL7-max

Trade Mark: N/A

FCC ID: 2A79Y-L6

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jul.28,2022

Date of Test: Jul.28,2022~Aug.03,2022

Date of report issued: Aug.03,2022

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Aug.03,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Aug.03,2022
	Project Engineer	_	
Check By:	Bruce 2hu	Date:	Aug.03,2022
	Reviewer		
Approved By :	Kevin Yang	Date:	Aug.03,2022
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	5
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS. 4.6. TEST FACILITY. 4.7. TEST LOCATION. 4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST	
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1. Conducted Emission Method 6.5.2. Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1. Conducted Emission Method 6.6.2. Radiated Emission Method 6.6.2. Radiated Emission Method	
7. TEST SETUP PHOTO	30
8. EUT CONSTRUCTIONAL DETAILS	30

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.45 dB	(1)
Radiated Emission	1~6GHz	3.54 dB	(1)
Radiated Emission	6~40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)
Note (1): The measurement unc	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

4. General Information

4.1. General Description of EUT

Product Name:	laser engraving machine			
Model No.:	L6			
Series model:	L6-pro, L6-pro+, L6-plus, L6-max, JL7, JL7-pro, JL7-pro+, JL7-plus, JL7-max			
Test sample(s) ID:	HTT202207421-1(Engineer sample) HTT202207421-2(Normal sample)			
Operation frequency	2402~2480 MHz			
Number of Channels	40			
Modulation Type	GFSK			
Channel separation	2MHz			
Antenna Type:	PCB Antenna			
Antenna Gain:	2 dBi			
Power Supply:	DC 12V			
Adapter Information:	Input: AC100-240V, 50/60Hz, 1.5A Output: DC 12.0V, 5.0A			

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

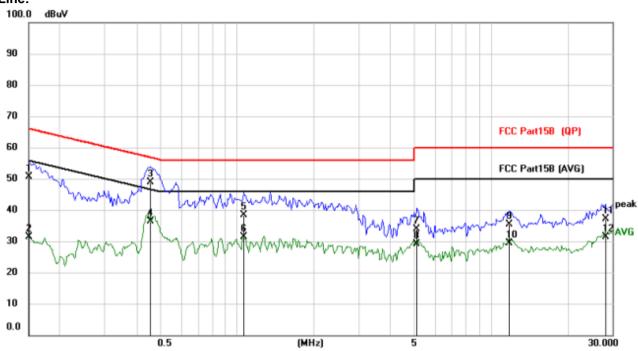
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

<u>J.</u>	rest mstrume			ı		1
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 22 2023
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 22 2023
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 22 2023
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 22 2023
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023
	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2022	May 22 2023
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

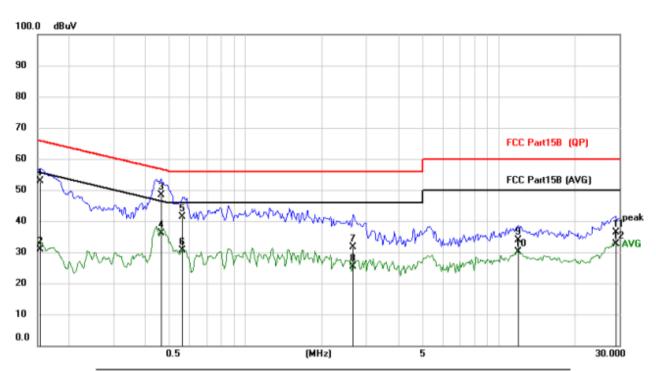
6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207	•			
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B	Class B			
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Frequency range (MHz)	Limit	(dBuV)		
	. , , ,	Quasi-peak	Averag		
	0.15-0.5	66 to 56*	56 to 4	6*	
	0.5-5	56	46		
	5-30 * Decreases with the logarithn	60	50		
Test setup:	Reference Plane	•			
Test procedure:	LISN AUX Equipment Test table/Insulation plane Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.				
Test Instruments:	Refer to section 6.0 for details	3			
Test mode:	Refer to section 5.2 for details	3			
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.: 1	1012mbar	
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				
				_	

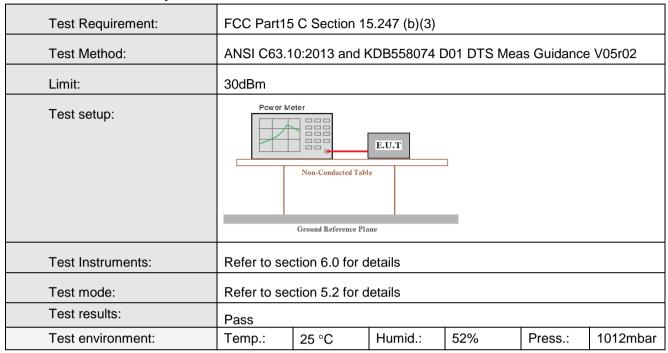
Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	40.17	10.37	50.54	66.00	-15.46	QP
2	0.1500	21.12	10.37	31.49	56.00	-24.51	AVG
3 *	0.4542	38.36	10.44	48.80	56.80	-8.00	QP
4	0.4542	26.02	10.44	36.46	46.80	-10.34	AVG
5	1.0587	27.51	10.89	38.40	56.00	-17.60	QP
6	1.0587	20.44	10.89	31.33	46.00	-14.67	AVG
7	5.1020	22.88	11.07	33.95	60.00	-26.05	QP
8	5.1020	18.02	11.07	29.09	50.00	-20.91	AVG
9	11.7906	23.60	11.71	35.31	60.00	-24.69	QP
10	11.7906	17.76	11.71	29.47	50.00	-20.53	AVG
11	28.1550	24.31	12.73	37.04	60.00	-22.96	QP
12	28.1550	18.63	12.73	31.36	50.00	-18.64	AVG

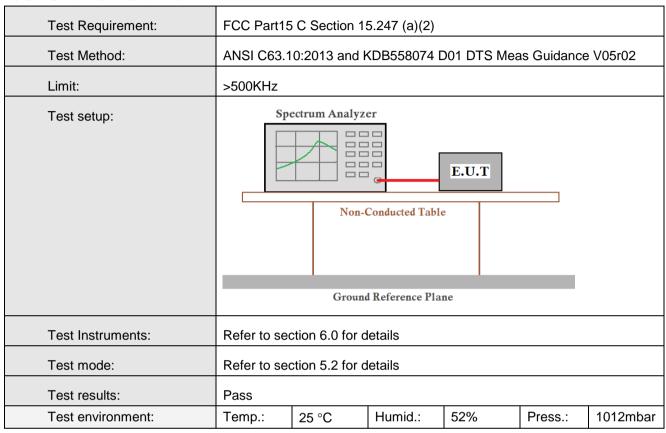
Neutral:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1539	42.69	10.26	52.95	65.79	-12.84	QP
2		0.1539	20.56	10.26	30.82	55.79	-24.97	AVG
3	*	0.4620	37.96	10.33	48.29	56.66	-8.37	QP
4		0.4620	25.91	10.33	36.24	46.66	-10.42	AVG
5		0.5633	30.92	10.44	41.36	56.00	-14.64	QP
6		0.5633	20.30	10.44	30.74	46.00	-15.26	AVG
7		2.6576	20.74	10.84	31.58	56.00	-24.42	QP
8		2.6576	14.54	10.84	25.38	46.00	-20.62	AVG
9		11.9349	22.11	11.77	33.88	60.00	-26.12	QP
10		11.9349	18.38	11.77	30.15	50.00	-19.85	AVG
11		29.1495	23.61	12.69	36.30	60.00	-23.70	QP
12		29.1495	19.91	12.69	32.60	50.00	-17.40	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

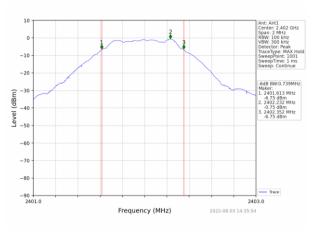
6.2. Conducted Output Power



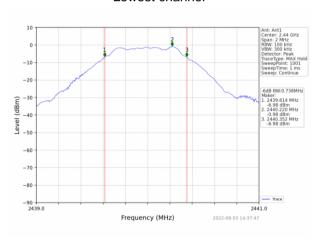
Measurement Data

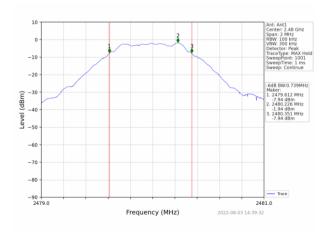
Test channel	Test channel Peak Output Power (dBm)		Result
Lowest	0.52		
Middle	0.22	30.00	Pass
Highest	-0.60		

6.3. Channel Bandwidth

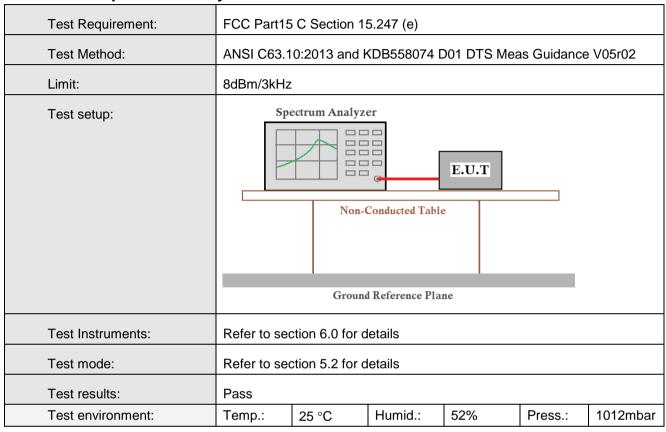


Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result	
Lowest	0.739			
Middle	0.738	>500	Pass	
Highest	0.739			

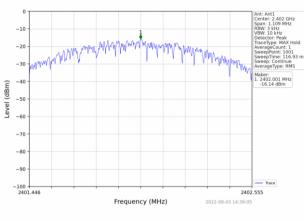

Test plot as follows:

Lowest channel

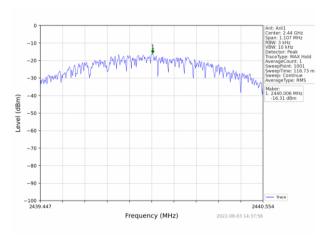

Middle channel

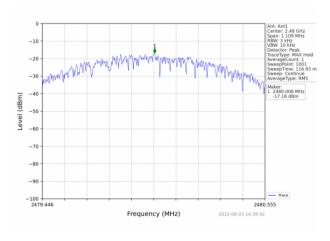
Highest channel

6.4. Power Spectral Density



Measurement Data

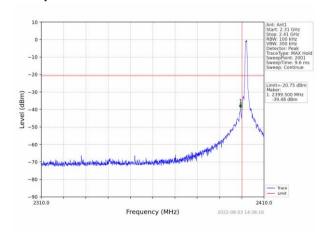

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-16.14		
Middle	-16.31	8.00	Pass
Highest	-17.16		

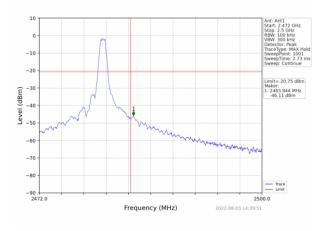

Test plot as follows:

Lowest channel

Middle channel

Highest channel




6.5. Band edges

6.5.1 Conducted Emission Method

0.5.1 Conducted Limission method							
Test Requirement:	FCC Part15	5 C Section 1	5.247 (d)				
Test Method:	ANSI C63.1	10:2013 and h	KDB558074 [D01 DTS Mea	as Guidance	e V05r02	
Limit:	spectrum ir is produced the 100 kH: the desired	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to se	ction 6.0 for c	letails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

Test plot as follows:

Lowest channel

Highest channel

¹F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6.5.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.10):2013							
Test Frequency Range:	All of the res 2500MHz) da			d, only t	he wor	st band's (2	2310MHz to		
Test site:	Measuremen								
Receiver setup:	Frequency	/ Detec	ctor F	RBW	VBW	<i>'</i>	/alue		
•	Above 1GH	Pea	ık 1	MHz	3MHz	z F	Peak		
	Above 1GH	RMS 1MHz				z Av	verage		
Limit:	Fred	Frequency Limit (dBuV/m @3m) Val							
	Abov	e 1GHz		54.00			erage		
Test setup:	71001	e ronz		74.00)	F	Peak		
	Turn Table	<150cm >							
Test Procedure:	1 The FUT	was nlaced	1000000			le 1.5 mete	rs ahove		
	determine 2. The EUT vantenna, vantenna, vantenna, vanten ground to horizontal measurem 4. For each sand then tand the rothe maxim 5. The test-rospecified 6. If the emislimit speciting the EUT vanten for	1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna							
Test Instruments:	Refer to sect								
Test mode:	Refer to sect	ion 5.2 for d	etails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%		Press.:	1012mbar		

Measurement Data

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	58.97	26.20	5.72	33.30	57.59	74	-16.41	peak
2390	46.59	26.20	5.72	33.30	45.21	54	-8.79	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	60.11	26.20	5.72	33.30	58.73	74	-15.27	peak
2390	46.26	26.20	5.72	33.30	44.88	54	-9.12	AVG

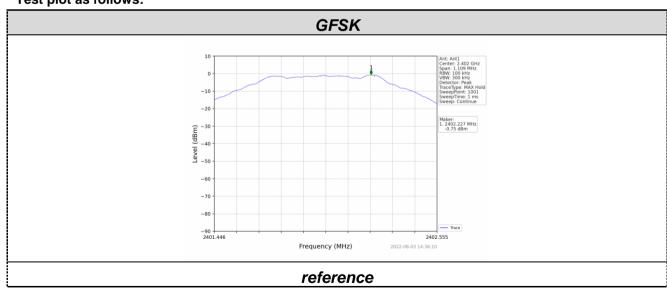
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

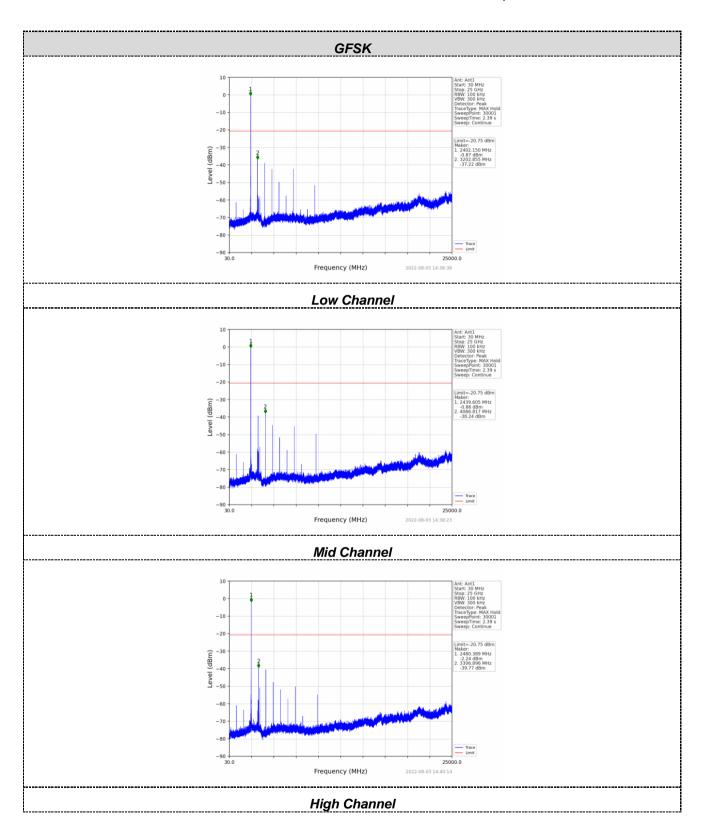
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	55.28	28.60	6.97	32.70	58.15	74	-15.85	peak
2483.5	42.57	28.60	6.97	32.70	45.44	54	-8.56	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	59.17	28.60	6.97	32.70	62.04	74	-11.96	peak
2483.5	43.67	28.60	6.97	32.70	46.54	54	-7.46	AVG

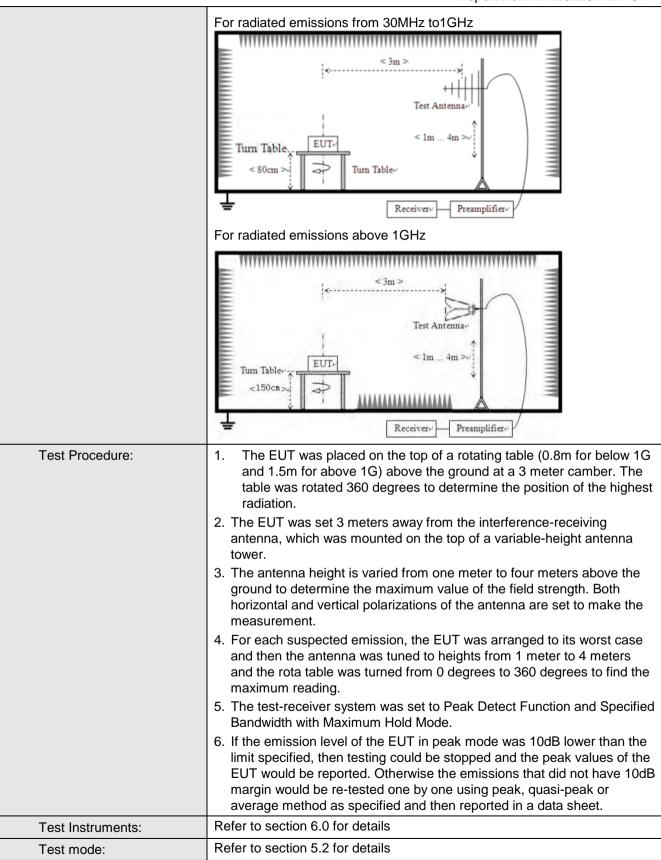


6.6. Spurious Emission


6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.:25 °CHumid.:52%Press.:1012mbar						

Test plot as follows:



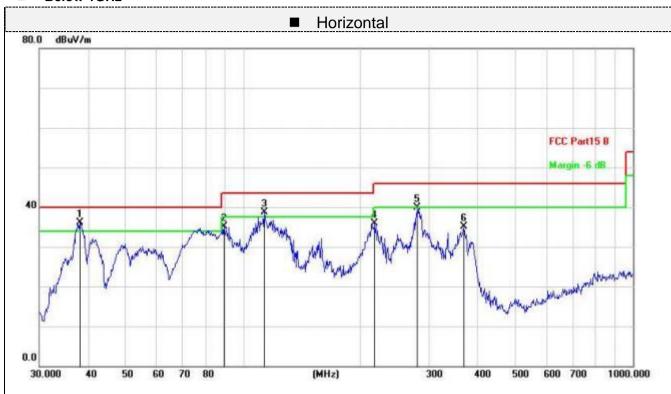
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209				
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	9kHz to 25GHz						
Test site:	Measurement Distar	ice: 3	3m				
Receiver setup:	Frequency		Detector	RB\	W	VBW	Value
	9KHz-150KHz C		ıasi-peak	200	Hz	600Hz	z Quasi-peak
	150KHz-30MHz	Qı	ıasi-peak	9Kł	Ηz	30KH:	z Quasi-peak
	30MHz-1GHz	Qi	ıasi-peak	120k	Ήz	300KH	Iz Quasi-peak
	Above 1GHz		Peak	1MI	Ηz	3MHz	z Peak
	Above 10112		Peak	1MI	Ηz	10Hz	Average
Limit:	Frequency		Limit (u\	//m)	>	'alue	Measurement Distance
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP	30m
	1.705MHz-30MH	Z	30		QP		30m
	30MHz-88MHz		100			QP	
	88MHz-216MHz		150			QP	
	216MHz-960MH	Z	200			QP	3m
	960MHz-1GHz			500		QP	
	Above 1GHz		500		Average		
_			5000		F	Peak	
Test setup:	For radiated emissio	ns fr	om 9kHz to	30MH	Z		
	Turn Table E		< 3m > Tes	st Antenna 1m			

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

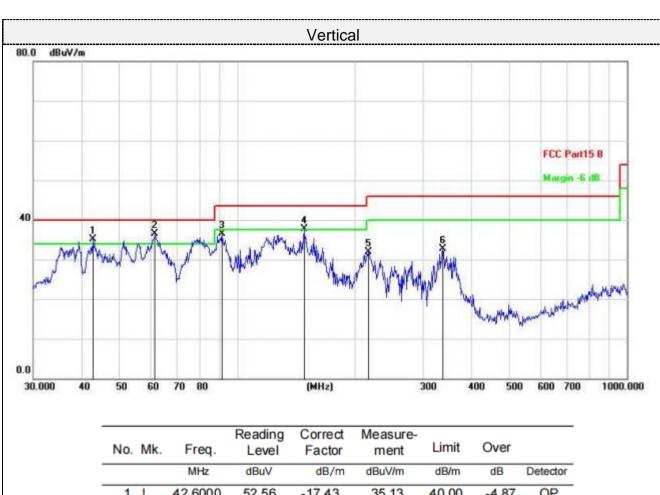
Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



■ Below 1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1	*	38.0782	53.75	-17.68	36.07	40.00	-3.93	QP
2		89.2762	57.12	-21.92	35.20	43.50	-8.30	QP
3	!	113.3161	58.81	-20.18	38.63	43.50	-4.87	QP
4		217.5440	55.81	-19.97	35.84	46.00	-10.16	QP
5		280.0237	56.88	-17.04	39.84	46.00	-6.16	QP
6		368.1116	52.47	-17.42	35.05	46.00	-10.95	QP

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
_			MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
_	1	!	42.6000	52.56	-17.43	35.13	40.00	-4.87	QP
_	2	*	61.5617	54.86	-18.42	36.44	40.00	-3.56	QP
_	3		91.4949	58.32	-21.76	36.56	43.50	-6.94	QP
_	4	!	148.4410	55.56	-17.88	37.68	43.50	-5.82	QP
_	5		216.7828	51.92	-20.01	31.91	46.00	-14.09	QP
_	6		337.2155	49.82	-17.13	32.69	46.00	-13.31	QP

Final Level =Receiver Read level + Correct Factor

Above 1-25GHz

CH Low (2402MHz)

Horizontal:

	Antenna		Preamp				
Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
51.28	31.40	8.18	32.10	58.76	74.00	-15.24	peak
36.29	31.40	8.18	32.10	43.77	54.00	-10.23	AVG
44.27	35.80	10.83	31.40	59.50	74.00	-14.50	peak
28.47	35.80	10.83	31.40	43.70	54.00	-10.30	AVG
	(dBµV) 51.28 36.29 44.27 28.47	Meter Reading Factor (dBμV) (dB/m) 51.28 31.40 36.29 31.40 44.27 35.80 28.47 35.80	Meter Reading Factor Cable Loss (dBμV) (dB/m) (dB) 51.28 31.40 8.18 36.29 31.40 8.18 44.27 35.80 10.83 28.47 35.80 10.83	Meter Reading Factor Cable Loss Factor (dBμV) (dB/m) (dB) (dB) 51.28 31.40 8.18 32.10 36.29 31.40 8.18 32.10 44.27 35.80 10.83 31.40 28.47 35.80 10.83 31.40	Meter Reading Factor Cable Loss Factor Emission Level (dBμV) (dB/m) (dB) (dB) (dBμV/m) 51.28 31.40 8.18 32.10 58.76 36.29 31.40 8.18 32.10 43.77 44.27 35.80 10.83 31.40 59.50 28.47 35.80 10.83 31.40 43.70	Meter Reading Factor Cable Loss Factor Emission Level Limits (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) 51.28 31.40 8.18 32.10 58.76 74.00 36.29 31.40 8.18 32.10 43.77 54.00 44.27 35.80 10.83 31.40 59.50 74.00 28.47 35.80 10.83 31.40 43.70 54.00	Meter Reading Factor Cable Loss Factor Emission Level Limits Margin (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) (dB) 51.28 31.40 8.18 32.10 58.76 74.00 -15.24 36.29 31.40 8.18 32.10 43.77 54.00 -10.23 44.27 35.80 10.83 31.40 59.50 74.00 -14.50 28.47 35.80 10.83 31.40 43.70 54.00 -10.30

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4804	52.39	31.40	8.18	32.10	59.87	74.00	-14.13	peak
4004		04.40	0.40		40.00	-4.00	4004	41/0
4804	36.48	31.40	8.18	32.10	43.96	54.00	-10.04	AVG
7206	44.59	35.80	10.83	31.40	59.82	74.00	-14.18	peak
7206	29.37	35.80	10.83	31.40	44.60	54.00	-9.40	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

CH Middle (2440MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4880	51.28	31.40	9.17	32.10	59.75	74.00	-14.25	peak
4880	36.18	31.40	9.17	32.10	44.65	54.00	-9.35	AVG
7320	44.59	35.80	10.83	31.40	59.82	74.00	-14.18	peak
7320	29.67	35.80	10.83	31.40	44.90	54.00	-9.10	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

1	Antenna		Preamp	1			
Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
							Detector
(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
52.34	31.40	9.17	32.10	60.81	74.00	-13.19	peak
		-					
36.15	31.40	9.17	32.10	44.62	54.00	-9.38	AVG
44.89	35.80	10.83	31.40	60.12	74.00	-13.88	peak
28.57	35.80	10.83	31.40	43.80	54.00	-10.20	AVG
	(dBµV) 52.34 36.15 44.89 28.57	Meter Reading Factor (dBμV) (dB/m) 52.34 31.40 36.15 31.40 44.89 35.80 28.57 35.80	Meter Reading Factor Cable Loss (dBμV) (dB/m) (dB) 52.34 31.40 9.17 36.15 31.40 9.17 44.89 35.80 10.83 28.57 35.80 10.83	Meter Reading Factor Cable Loss Factor (dBμV) (dB/m) (dB) (dB) 52.34 31.40 9.17 32.10 36.15 31.40 9.17 32.10 44.89 35.80 10.83 31.40 28.57 35.80 10.83 31.40	Meter Reading Factor Cable Loss Factor Emission Level (dBμV) (dB/m) (dB) (dB) (dBμV/m) 52.34 31.40 9.17 32.10 60.81 36.15 31.40 9.17 32.10 44.62 44.89 35.80 10.83 31.40 60.12 28.57 35.80 10.83 31.40 43.80	Meter Reading Factor Cable Loss Factor Emission Level Limits (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) 52.34 31.40 9.17 32.10 60.81 74.00 36.15 31.40 9.17 32.10 44.62 54.00 44.89 35.80 10.83 31.40 60.12 74.00 28.57 35.80 10.83 31.40 43.80 54.00	Meter Reading Factor Cable Loss Factor Emission Level Limits Margin (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) (dBμV/m) (dB) 52.34 31.40 9.17 32.10 60.81 74.00 -13.19 36.15 31.40 9.17 32.10 44.62 54.00 -9.38 44.89 35.80 10.83 31.40 60.12 74.00 -13.88 28.57 35.80 10.83 31.40 43.80 54.00 -10.20

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

CH High (2480MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
	(Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	49.68	31.40	9.17	32.10	58.15	74.00	-15.85	peak
4960	37.25	31.40	9.17	32.10	45.72	54.00	-8.28	AVG
7440	44.39	35.80	10.83	31.40	59.62	74.00	-14.38	peak
7440	28.67	35.80	10.83	31.40	43.90	54.00	-10.10	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	52.36	31.40	9.17	32.10	60.83	74.00	-13.17	peak
4960	36.17	31.40	9.17	32.10	44.64	54.00	-9.36	AVG
7440	43.55	35.80	10.83	31.40	58.78	74.00	-15.22	peak
7440	28.76	35.80	10.83	31.40	43.99	54.00	-10.01	AVG
7 1 10	20.70	00.00	10.00	01.10	10.00	0 1.00	10.01	7,,,,

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----