

RADIO TEST REPORT

S T S

Report No: STS1711314W08

Issued for

Trackimo LLC.

350NE 24th Street, Unit 104, Miami, Florida, United States

Product Name:	GPS Tracker
Brand Name:	trackimo
Model Name:	TRKM015
Series Model:	N/A
FCC ID:	2AAI6-TRKM015
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced with permission from STS, All Test Data Presented in this report is only applicable to presented Test Sample VAL

Page 2 of 44

Report No.: STS1711314W08

TEST RESULT CERTIFICATION

Applicant's name:	Trackimo LLC.
Address:	350NE 24th Street, Unit 104, Miami, Florida, United States
Manufacture's Name:	HUIZHOU QIAOWEI INTELLIGENT OVERSEAS CO.,LTD
Address	B2 building, ELing phase 2, wuyi village, chenjiang steet, gaoxin district, Huizhou city, Guangdong Province, China
Product description	
Product Name:	GPS Tracker
Brand Name:	trackimo
Model Name:	TRKM015
Series Model:	N/A
Test Standards:	FCC Part15.247
Test procedure	. ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test	
Date (s) of performance of tests:	30 Nov. 2017~13 Dec. 2017
Date of Issue:	14 Dec. 2017
Test Result:	Pass

Testing Engineer

Sean She

(Sean she)

Technical Manager

. hou

Authorized Signatory :

(Vita Li)

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1711314W08

Table of Contents

Page 3 of 44

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	12
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	13
3. EMC EMISSION TEST	15
3.1 CONDUCTED EMISSION MEASUREMENT	15
3.2 TEST PROCEDURE	16
3.3 TEST SETUP	16
3.4 EUT OPERATING CONDITIONS	16
3.5 TEST RESULTS	17
4. RADIATED EMISSION MEASUREMENT	19
4.1 RADIATED EMISSION LIMITS	19
4.2 TEST PROCEDURE	20
4.3 TEST SETUP	21
4.4 EUT OPERATING CONDITIONS	21
4.5 FIELD STRENGTH CALCULATION	22
4.6 TEST RESULTS	23
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	30
5.1 REQUIREMENT	30
5.2 TEST PROCEDURE	30
5.3 TEST SETUP	30
5.4 EUT OPERATION CONDITIONS	30
5.5 TEST RESULTS	31
6. POWER SPECTRAL DENSITY TEST	34
6.1 APPLIED PROCEDURES / LIMIT	34
6.2 TEST PROCEDURE	34
6.3 TEST SETUP	34
6.4 EUT OPERATION CONDITIONS	34

=#

Report No.: STS1711314W08

Table of Contents

Page 4 of 44

6.5 TEST RESULTS	35
7. BANDWIDTH TEST	37
7.1 APPLIED PROCEDURES / LIMIT	37
7.2 TEST PROCEDURE	37
7.3 TEST SETUP	37
7.4 EUT OPERATION CONDITIONS	37
7.5 TEST RESULTS	38
8. PEAK OUTPUT POWER TEST	40
8.1 APPLIED PROCEDURES / LIMIT	40
8.2 TEST PROCEDURE	40
8.3 TEST SETUP	40
8.4 EUT OPERATION CONDITIONS	40
8.5 TEST RESULTS	41
9. ANTENNA REQUIREMENT	42
9.1 STANDARD REQUIREMENT	42
9.2 EUT ANTENNA	42
10. EUT TEST PHOTO	43

Page 5 of 44

Report No.: STS1711314W08

Revision History

Rev.	v. Issue Date Report NO.		Effect Page	Contents
00	14 Dec. 2017	14 Dec. 2017 STS1711314W08		Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 DTS Meas Guidance v04

FCC Part 15.247,Subpart C							
Standard Section	Judgment	Remark					
15.207	Conducted Emission	PASS					
15.247 (a)(2)	6dB Bandwidth	PASS					
15.247 (b)(3)	Output Power	PASS					
15.247 (c)	Radiated Spurious Emission	PASS					
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS					
15.247 (e)	Power Spectral Density	PASS					
15.205	Restricted Band Edge Emission	PASS					
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS					
15.203							

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China CNAS Registration No.: L7649; FCC Registration No.: 625569 IC Registration No.: 12108A; A2LA Certificate No.: 4338.01;

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\ k=2$, providing a level of confidence of approximately 95 % $^{\circ}$

Page 7 of 44

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88dB
2	Conducted Emission (150KHz-30MHz)	±2.67dB
3	RF power, conducted	±0.71dB
4	Spurious emissions, conducted	±0.63dB
5	All emissions, radiated (9KHz-30MHz)	±3.02dB
6	All emissions,radiated (30MHz-200MHz)	±3.80dB
7	All emissions,radiated (200MHz-1000MHz)	±3.97dB
8	All emissions,radiated(>1G)	±3.03dB

Report No.: STS1711314W08

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name	GPS Tracker		
Trade Name	trackimo		
Model Name	TRKM015		
Series Model	N/A		
Model Difference	N/A		
	The EUT is a GPS T	racker	
	Operation Frequency:	2402~2480 MHz	
	Modulation Type:	GFSK	
Product Description	Radio Technology	BLE	
	Number Of Channel	40	
	Antenna Designation:	Please see Note 3.	
	Antenna Gain (dBi)	1.34 dbi	
Channel List	Please refer to the N	lote 2.	
Battery	Battery(rating): Rated Voltage: 3.8V Charge Limit: 4.3V Capacity: 800mAh CC01_V2.0 2.0		
Hardware version number			
Software version number			
Connecting I/O Port(s)	Please refer to the U	Jser's Manual	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

0	
/	

Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	trackimo	TRKM015	PIFA Antenna	N/A	1.34	BLE ANT

Shenzhen STS Test Services Co., Ltd.

Page 10 of 44

Report No.: STS1711314W08

2.2 DESCRIPTION OF TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

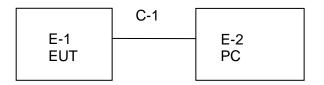
Worst Mode	Description	Data/Modulation
Mode 1	TX CH1(2402MHz)	1 MHz/GFSK
Mode 2	TX CH20(2440MHz)	1 MHz/GFSK
Mode 3	TX CH40(2480MHz)	1 MHz/GFSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V,50/60Hz is shown in the report

- (3) The EUT was programmed to be in continuously transmitting with a modulated carrier at maximum power on bottom/middle/top channels as required using the supported data rates/modulation types and the transmit duty cycle is not less than 98%.
- (4) Controlled using a bespoke application on the laptop PC supplied by the customer. The application was used to enable a continuous transmission mode and to select the test channels, data rates and modulation schemes as required.


For AC Conducted Emission

	Test Case
AC Conducted	Mode 4 : Keeping BT TX
Emission	Node 4. Reeping BTTX

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiation Test Set

conduction Test Set

Page 12 of 44

Report No.: STS1711314W08

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	PC	HP	500-320cx	N/A	N/A
E-3	Adapter	HP	N/A	N/A	N/A

Item	Shielded Type	Ferrite Core	Length	Note
C-1	USB Cable (FTP)	NO	90cm	N/A
C-2	AC Adapter Cable (FTP)	NO	100cm	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Page 13 of 44

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
R&S	ESW	101535	2017.06.01	2018.05.31
TESEQ	CBL6111D	34678	2017.03.24	2018.03.23
Schwarzbeck	BBHA 9120D	9120D-1343	2017.03.06	2018.03.05
BBHA 9170	SCHWARZBECK	BBHA9170367	2017.05.02	2018.05.01
HH660	Mieo	N/A	2017.10.15	2018.10.14
HH660	Mieo	N/A	2017.10.15	2018.10.14
EM	EM330	60538	2017.03.12	2018.03.11
Agilent	8449B	60538	2017.10.15	2018.10.14
MINI-CIRCUITS	AP-040G	1382501	2017.05.15	2018.05.14
ETS	6512	00165355	2017.03.06	2018.03.05
EM	R01	N/A	2017.03.12	2018.03.11
EM	R06	N/A	2017.03.12	2018.03.11
SCHWARZBECK	R04	N/A	2017.03.12	2018.03.11
SCHWARZBECK	R02	N/A	2017.03/12	2018.03.11
Changling	966	N/A	2017.10.15	2018.10.14
EM	SC100_1	60531	N/A	N/A
EM	SC100	N/A	N/A	N/A
MF	MFA-440H	N/A	N/A	N/A
	R&S TESEQ Schwarzbeck BBHA 9170 HH660 HH660 EM Agilent MINI-CIRCUITS ETS ETS EM SCHWARZBECK SCHWARZBECK SCHWARZBECK Changling EM	R&S ESW TESEQ CBL6111D Schwarzbeck BBHA 9120D BBHA 9170 SCHWARZBECK HH660 Mieo HH660 Mieo HH660 Mieo Agilent 8449B MINI-CIRCUITS AP-040G ETS 6512 EM R01 EM R06 SCHWARZBECK R04 SCHWARZBECK R02 Changling 966 EM SC100_1 EM SC100	R&S ESW 101535 TESEQ CBL6111D 34678 Schwarzbeck BBHA 9120D 9120D-1343 BBHA 9170 SCHWARZBECK BBHA9170367 HH660 Mieo N/A HH660 Mieo N/A EM EM330 60538 Agilent 8449B 60538 MINI-CIRCUITS AP-040G 1382501 ETS 6512 00165355 EM R01 N/A EM R06 N/A SCHWARZBECK R04 N/A SCHWARZBECK R02 N/A Changling 966 N/A EM SC100_1 60531	R&S ESW 101535 2017.06.01 TESEQ CBL6111D 34678 2017.03.24 Schwarzbeck BBHA 9120D 9120D-1343 2017.03.06 BBHA 9170 SCHWARZBECK BBHA9170367 2017.03.02 HH660 Mieo N/A 2017.10.15 HH660 Mieo N/A 2017.10.15 HH660 Mieo N/A 2017.03.12 Agilent 8449B 60538 2017.03.12 Agilent 8449B 60538 2017.03.12 ETS 6512 00165355 2017.03.06 EM R01 N/A 2017.03.12 SCHWARZBECK R04 N/A 2017.03.12 SCHWARZBECK R04 N/A 2017.03.12 SCHWARZBECK R02 N/A 2017.03.12 SCHWARZBECK R04 N/A 2017.03.12 SCHWARZBECK R02 N/A 2017.03.12 SCHWARZBECK R02 N/A 2017.03.12 EM <td< td=""></td<>

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2017.10.15	2018.10.14
LISN	R&S	ENV216	101242	2017.10.15	2018.10.14
conduction Cable	EM	C01	N/A	2017.03.12	2018.03.11
Temperature & Humitidy	Mieo	HH660	N/A	2017.10.15	2018.10.14

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2017.10.15	2018.10.14
Power Meter	R&S	NRP	100510	2017.10.15	2018.10.14
Spectrum Analyzer	Agilent	E4407B	MY50140340	2017.03.11	2018.03.10
Signal Analyzer	Agilent	N9020A	MY49100060	2017.03.11	2018.03.10

Shenzhen STS Test Services Co., Ltd.

Page 15 of 44

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

	Conducted Emission limit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

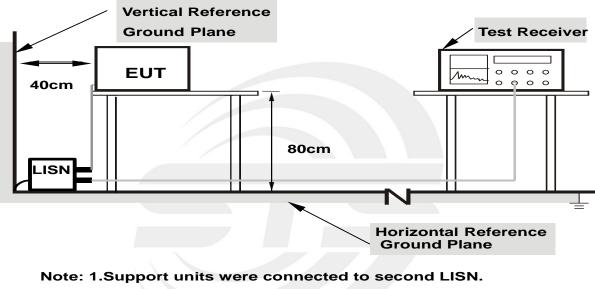
Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 kHz		

Report No.: STS1711314W08



3.2 TEST PROCEDURE

a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Page 16 of 44

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

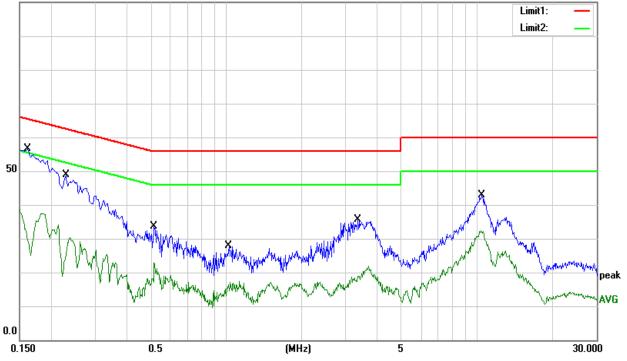
Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.5 TEST RESULTS

Temperature:	23.5 ℃	Relative Humidity:	59%
Pressure:	1010hPa	Phase:	L
Test Voltage:	AC 120V/60Hz	Test Mode:	Mode 4


Frequency	Reading	Correct	Result	Limit	Margin	Demeril
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1620	46.74	9.79	56.53	65.36	-8.83	QP
0.1620	19.38	9.79	29.17	55.36	-26.19	AVG
0.2300	39.02	9.91	48.93	62.45	-13.52	QP
0.2300	16.75	9.91	26.66	52.45	-25.79	AVG
0.5180	23.49	10.01	33.50	56.00	-22.50	QP
0.5180	12.64	10.01	22.65	46.00	-23.35	AVG
1.0300	18.02	9.80	27.82	56.00	-28.18	QP
1.0300	6.12	9.80	15.92	46.00	-30.08	AVG
3.3500	25.91	9.82	35.73	56.00	-20.27	QP
3.3500	9.12	9.82	18.94	46.00	-27.06	AVG
10.4580	32.60	10.21	42.81	60.00	-17.19	QP
10.4580	22.01	10.21	32.22	50.00	-17.78	AVG

Remark:

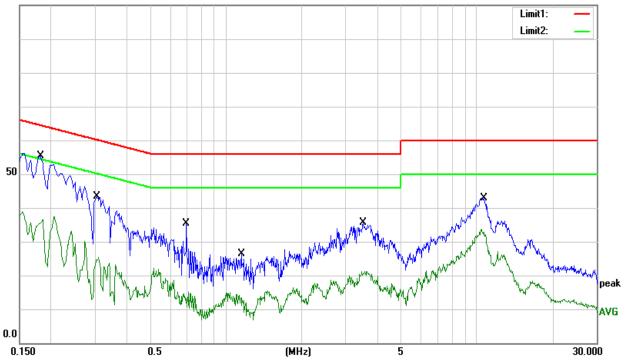
1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit

100.0 dBuV

Shenzhen STS Test Services Co., Ltd.

Temperature:	23.5 °C	Relative Humidity:	59%
Pressure:	1010hPa	Phase:	Ν
Test Voltage:	AC 120V/60Hz	Test Mode:	Mode 4


Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	Remark
0.1820	45.55	9.83	55.38	64.39	-9.01	QP
0.1820	25.86	9.83	35.69	54.39	-18.70	AVG
0.3060	33.08	10.26	43.34	60.08	-16.74	QP
0.3060	14.37	10.26	24.63	50.08	-25.45	AVG
0.6940	25.52	9.86	35.38	56.00	-20.62	QP
0.6940	3.26	9.86	13.12	46.00	-32.88	AVG
1.1500	16.53	9.81	26.34	56.00	-29.66	QP
1.1500	2.70	9.81	12.51	46.00	-33.49	AVG
3.5140	25.64	9.93	35.57	56.00	-20.43	QP
3.5140	11.23	9.93	21.16	46.00	-24.84	AVG
10.6500	32.98	9.94	42.92	60.00	-17.08	QP
10.6500	22.17	9.94	32.11	50.00	-17.89	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Margin = Result (Result = Reading + Factor)-Limit

100.0 dBu¥

Shenzhen STS Test Services Co., Ltd.

Page 19 of 44

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	(dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	4 MUL / 2 MUL	
band)	1 MHz / 3 MHz	

For Band edge

Spectrum Parameter	Setting		
Detector	Peak		
Stort/Stop Frequency	Lower Band Edge: 2300 to 2403 MHz		
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz		
RB / VB (emission in restricted band)	1 MHz / 3 MHz		

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

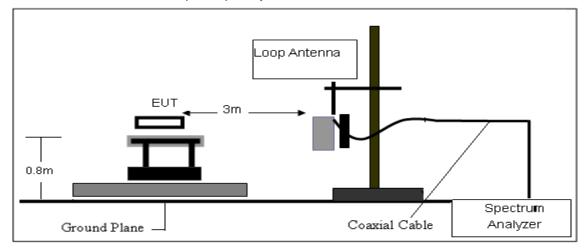
 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 20 of 44

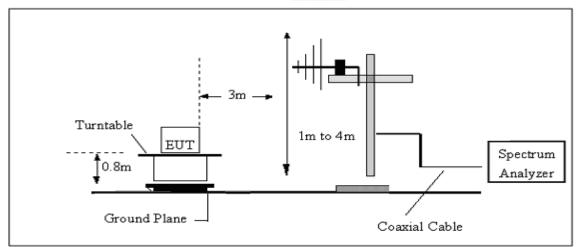
Report No.: STS1711314W08

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

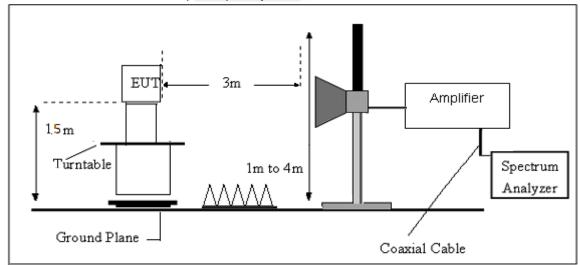
4.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

Page 22 of 44

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

Temperature:	24.6 ℃	Relative Humidtity:	58%
Pressure:	1010 hPa	Test Voltage:	DC 3.8V from Battery
Test Mode:	TX Mode	Polarization:	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

(30MHz -1000MHz)

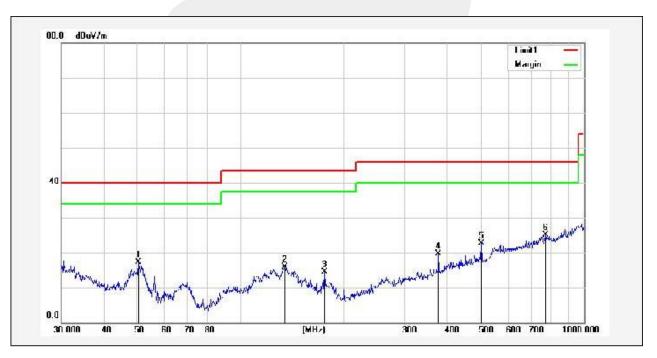
Temperature:	24.6 °C	Relative Humidtity:	58%
Pressure:	1010hPa	Phase:	Horizontal
Test Voltage:	DC 3.8V from Battery		Mode1/2/3 (Mode 1-1M worst mode)

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
51.3004	36.63	-21.85	14.78	40.00	-25.22	QP
135.5062	31.55	-17.52	14.03	43.50	-29.47	QP
150.0107	33.15	-17.97	15.18	43.50	-28.32	QP
225.3080	31.28	-18.77	12.51	46.00	-33.49	QP
501.1790	29.86	-8.90	20.96	46.00	-25.04	QP
689.5643	29.37	-5.57	23.80	46.00	-22.20	QP

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

Page 25 of 44 Rep


Report No.: STS1711314W08

Temperature:	24.6 °C	Relative Humidtity:	58%
Pressure:	1010hPa	Phase:	Vertical
Test Voltage:	DC 3.8V from Battery		Mode1/2/3 (Mode 1-1M worst mode)

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
50.2324	38.93	-21.55	17.38	40.00	-22.62	QP
134.0882	33.49	-17.54	15.95	43.50	-27.55	QP
175.0367	33.83	-19.38	14.45	43.50	-29.05	QP
375.9384	32.36	-12.73	19.63	46.00	-26.37	QP
501.1790	31.65	-8.90	22.75	46.00	-23.25	QP
771.4486	28.34	-3.32	25.02	46.00	-20.98	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

Page 26 of 44

Report No.: STS1711314W08

(1GHz-25GHz)Restricted band and Spurious emission Requirements

GFSK Low Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Low	Channel (2402 I	MHz)				
3264.61	48.11	44.70	6.70	28.20	-9.80	38.31	74.00	-35.69	PK	Vertical
3264.61	39.79	44.70	6.70	28.20	-9.80	29.99	54.00	-24.01	AV	Vertical
3264.81	48.35	44.70	6.70	28.20	-9.80	38.55	74.00	-35.45	PK	Horizontal
3264.81	38.81	44.70	6.70	28.20	-9.80	29.01	54.00	-24.99	AV	Horizontal
4804.35	58.22	44.20	9.04	31.60	-3.56	54.66	74.00	-19.34	PK	Vertical
4804.35	39.02	44.20	9.04	31.60	-3.56	35.46	54.00	-18.54	AV	Vertical
4804.40	59.16	44.20	9.04	31.60	-3.56	55.60	74.00	-18.40	PK	Horizontal
4804.40	38.95	44.20	9.04	31.60	-3.56	35.39	54.00	-18.61	AV	Horizontal
5359.77	45.85	44.20	9.86	32.00	-2.34	43.51	74.00	-30.49	PK	Vertical
5359.77	37.46	44.20	9.86	32.00	-2.34	35.12	54.00	-18.88	AV	Vertical
5359.65	45.24	44.20	9.86	32.00	-2.34	42.90	74.00	-31.10	PK	Horizontal
5359.65	38.31	44.20	9.86	32.00	-2.34	35.97	54.00	-18.03	AV	Horizontal
7205.71	50.73	43.50	11.40	35.50	3.40	54.13	74.00	-19.87	PK	Vertical
7205.71	33.67	43.50	11.40	35.50	3.40	37.07	54.00	-16.93	AV	Vertical
7205.79	51.96	43.50	11.40	35.50	3.40	55.36	74.00	-18.64	PK	Horizontal
7205.79	33.49	43.50	11.40	35.50	3.40	36.89	54.00	-17.11	AV	Horizontal

Page 27 of 44

Report No.: STS1711314W08

GFSK Mid Channel

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				Mid	Channel (2440 M	MHz)				
3264.60	48.96	44.70	6.70	28.20	-9.80	39.16	74.00	-34.84	PK	Vertical
3264.60	39.74	44.70	6.70	28.20	-9.80	29.94	54.00	-24.06	AV	Vertical
3264.70	48.28	44.70	6.70	28.20	-9.80	38.48	74.00	-35.52	PK	Horizontal
3264.70	38.08	44.70	6.70	28.20	-9.80	28.28	54.00	-25.72	AV	Horizontal
4880.54	58.52	44.20	9.04	31.60	-3.56	54.96	74.00	-19.04	PK	Vertical
4880.54	39.31	44.20	9.04	31.60	-3.56	35.75	54.00	-18.25	AV	Vertical
4880.34	58.61	44.20	9.04	31.60	-3.56	55.05	74.00	-18.95	PK	Horizontal
4880.34	38.18	44.20	9.04	31.60	-3.56	34.62	54.00	-19.38	AV	Horizontal
5359.72	45.26	44.20	9.86	32.00	-2.34	42.92	74.00	-31.08	PK	Vertical
5359.72	37.46	44.20	9.86	32.00	-2.34	35.12	54.00	-18.88	AV	Vertical
5359.81	45.42	44.20	9.86	32.00	-2.34	43.08	74.00	-30.92	PK	Horizontal
5359.81	38.24	44.20	9.86	32.00	-2.34	35.90	54.00	-18.10	AV	Horizontal
7310.93	50.87	43.50	11.40	35.50	3.40	54.27	74.00	-19.73	PK	Vertical
7310.93	33.57	43.50	11.40	35.50	3.40	36.97	54.00	-17.03	AV	Vertical
7310.86	51.17	43.50	11.40	35.50	3.40	54.57	74.00	-19.43	PK	Horizontal
7310.86	33.57	43.50	11.40	35.50	3.40	36.97	54.00	-17.03	AV	Horizontal

Shenzhen STS Test Services Co., Ltd.

Page 28 of 44

Report No.: STS1711314W08

GFSK High Channel

					<u> </u>					
				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
				High	Channel (2480	MHz)				
3264.79	47.92	44.70	6.70	28.20	-9.80	38.12	74.00	-35.88	PK	Vertical
3264.79	37.85	44.70	6.70	28.20	-9.80	28.05	54.00	-25.95	AV	Vertical
3264.76	48.63	44.70	6.70	28.20	-9.80	38.83	74.00	-35.17	PK	Horizontal
3264.76	39.11	44.70	6.70	28.20	-9.80	29.31	54.00	-24.69	AV	Horizontal
4960.32	58.54	44.20	9.04	31.60	-3.56	54.98	74.00	-19.02	PK	Vertical
4960.32	38.52	44.20	9.04	31.60	-3.56	34.96	54.00	-19.04	AV	Vertical
4960.34	58.80	44.20	9.04	31.60	-3.56	55.24	74.00	-18.76	PK	Horizontal
4960.34	39.48	44.20	9.04	31.60	-3.56	35.92	54.00	-18.08	AV	Horizontal
5359.77	45.63	44.20	9.86	32.00	-2.34	43.29	74.00	-30.71	PK	Vertical
5359.77	36.96	44.20	9.86	32.00	-2.34	34.62	54.00	-19.38	AV	Vertical
5359.81	45.69	44.20	9.86	32.00	-2.34	43.35	74.00	-30.65	PK	Horizontal
5359.81	37.59	44.20	9.86	32.00	-2.34	35.25	54.00	-18.75	AV	Horizontal
7439.76	51.79	43.50	11.40	35.50	3.40	55.19	74.00	-18.81	PK	Vertical
7439.76	33.56	43.50	11.40	35.50	3.40	36.96	54.00	-17.04	AV	Vertical
7439.87	51.52	43.50	11.40	35.50	3.40	54.92	74.00	-19.08	PK	Horizontal
7439.87	33.57	43.50	11.40	35.50	3.40	36.97	54.00	-17.03	AV	Horizontal
Noto:										

Note:

1) Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Emission Level = Reading + Factor

2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

4.6 TEST RESULTS (Restricted Bands Requirements)

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
					GFSK					
2390.00	67.45	43.80	4.91	25.90	-12.99	54.46	74.00	-19.54	PK	Vertical
2390.00	54.12	43.80	4.91	25.90	-12.99	41.13	54.00	-12.87	AV	Vertical
2390.00	69.14	43.80	4.91	25.90	-12.99	56.15	74.00	-17.85	PK	Horizontal
2390.00	53.35	43.80	4.91	25.90	-12.99	40.36	54.00	-13.64	AV	Horizontal
2483.50	70.00	43.80	5.12	25.90	-12.78	57.22	74.00	-16.78	PK	Vertical
2483.50	53.03	43.80	5.12	25.90	-12.78	40.25	54.00	-13.75	AV	Vertical
2483.50	69.74	43.80	5.12	25.90	-12.78	56.96	74.00	-17.04	PK	Horizontal
2483.50	53.11	43.80	5.12	25.90	-12.78	40.33	54.00	-13.67	AV	Horizontal

Low measurement frequencies is range from 2300 to 2403 MHz, high measurement frequencies is range from 2479 to 2500 MHz.

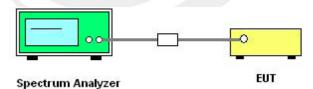
Only show the worst point data of the emissions in the frequency 2300-2403 MHz and 2479-2500 MHz.

Shenzhen STS Test Services Co., Ltd.

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


5.2 TEST PROCEDURE

Spectrum Parameter	Setting					
Detector	Peak					
Start/Stop Frequency	30 MHz to 10th carrier harmonic					
RB / VB (emission in restricted band)	100 KHz/300 KHz					
Trace-Mode:	Max hold					

For Band edge

Spectrum Parameter	Setting					
Detector	Peak					
Stort/Stop Eroguopou	Lower Band Edge: 2300 – 2403 MHz					
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz					
RB / VB (emission in restricted band)	100 KHz/300 KHz					
Trace-Mode:	Max hold					

5.3 TEST SETUP

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Pressure:	1012 hPa	Test Voltage:	DC 3.8V
Test Mode:	TX Mode /CH01, CH20, CH40		

01 CH

		RF	50 Ω	AC	SI	ENSE:INT		ALIGN AUTO				AM Dec 15, 2
enter	Fre	∋q 1	2.51500	10000 GHz P IF1	NO: Fast 😱 Gain:Low	Trig: Free #Atten: 30		Аvg Тур	e: Log-Pwr		1	ACE 1 2 3 4 IYPE M WAAWA DET P P P P
I0 dB/div			Offset 0.5 d -1.44 dB							Mkr		02 2 GH 443 dB
-og -11.4)1									
21.4												-31,44
81.4 41.4												51.44
51.4			2	<mark>3</mark>								
	والأساد							and and and the state of the st	www.with			
71.4	See per se											
91.4												
tart 30 Res B			Hz		#VBV	V 300 kHz	:		;	Sweep 2		25.00 G 40001 p
IKR MODE	TRC	SCL		X	Y		CTION F	UNCTION WIDTH		FUNCTION	N VALUE	
1 N 2 N	1 1 1	f f f		2.402 2 GHz 3.183 1 GHz 5.974 1 GHz 21.629 7 GHz	-11.443 c -60.576 c -61.089 c -53.921 c	lBm IBm						
3 N 4 N												
4 N 5 6 7												
4 N 5												

Shenzhen STS Test Services Co., Ltd.

20 CH

Agilent Spectr									
Center F		50 Ω AC 15000000 GHz		SENSE:INT	AL	IGNAUTO Avg Type:	Log-Pwr		1 AM Dec 15, 2017 RACE 1 2 3 4 5 6
Center P			PNO: Fast 🕞	Trig: Free #Atten: 30	Run dB				DET P P P P F
	Ref Offse	t 0.5 dB						Mkr1 2.4	
10 dB/div Log	Ref -0.1	9 dBm					1	-10.	192 dBm
-10.2	1								
-20.2									
-30.2									-30.19 dBm
-40.2									
-50.2	-	23							
-60.2			A State of the second second	and and the state	and the second			and the second	Sector Sector
-70.2				Contraction of the State of the					
-80.2									
-90.2									
	<u></u>							04	05 00 011-
Start 30 M #Res BW			#VB	W 300 kHz			Swe	ep 2.39 s	25.00 GHz (40001 pts)
MKR MODE T	RC SCL	x	Y	FUN	CTION FUNCT	ION WIDTH	FL	INCTION VALUE	
1 N 1 2 N 1		2.440 2 GHz 3.172 5 GHz							
3 N 1	f	5.606 4 GHz	-60.966	dBm					
2 N 1 3 N 1 4 N 1 5 6 7 8 9	f	21.611 6 GHz	-53.857	dBm					
6									
8									
9 10									
11 12									
MSG						STATUS			

40 CH

		ctrur		lyzer - Swe								
Star		eq	RF 30.	50 Ω 000000	F	PNO: Fast Gain:Low	SENSE:INT Trig: Free F #Atten: 30 o		ALIGN AUTO Avg Ty	/pe:Log-Pwr		14:55 AM Dec 15, 201 TRACE 1 2 3 4 5 TYPE M WWWW DET P P P P P
0 dE	3/div			Offset 0.5 0.21 dB								.480 2 GH: 9.791 dBn
.og 9.79)1								
9.8												-29.79 dB
9.8 9.8												
9.8				2								
9.8 9.8		0.0.0				\frown				Ny langun		
9.8 9.8	1.41											
9.8												
	t 30 s B\		1z 00 k	Hz		#VB	W 300 kHz					op 25.00 GH s (40001 pt
	N N	TRC 1	SCI f		× 2.480 2 GHz	-9.791	FUNC	TION	FUNCTION WIDTH		FUNCTION VALU	E
2 3	N N N	1 1 1	f f f		2.480 2 GHz 3.308 6 GHz 9.589 1 GHz 24.624 2 GHz	-62.858 -64.710 -55.966	dBm dBm					
7 3 9 0 1 2												
G									STATUS			

Page 33 of 44

)ec 15, 20

DET P P P P

¦⊘² $\langle \rangle^{\beta}$

FUNCTION VALUE

For Band edge

10 dB/div Log 19.9 29.9 39.9 49.9

-59.9 -69.9 79.9 -89.9

MKR MODE TRC SCL

N N N 1 f 1 f 1 f

nt Spectrum Analyzer - Swept SA Start Freq 2.300000000 GHz Avg Type: Log-Pwr Trig: Free Run #Atten: 30 dB PNO: Fast IFGain:Low Mkr1 2.402 279 GHz -9.934 dBm Ref Offset 0.5 dB Ref 0.07 dBm Start 2.30000 GHz #Res BW 100 kHz Stop 2.40300 GHz Sweep 9.87 ms (1001 pts)

FUNCTION FUNCTION WIDTH

STATUS

#VBW 300 kHz

-9.934 dBm -63.925 dBm -63.701 dBm

2.402 279 GHz 2.393 730 GHz 2.399 704 GHz

01 CH

6. POWER SPECTRAL DENSITY TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part 15.247,Subpart C				
Section			Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

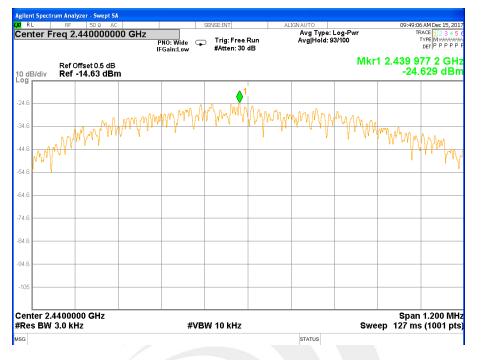
6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1015 hPa	Test Voltage:	DC 3.8V
Test Mode:	TX Mode /CH01, CH20, CH40		

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3KHz)	Result
2402 MHz	-24.578	≤8	PASS
2440 MHz	-24.629	≦8	PASS
2480 MHz	-24.053	≤8	PASS



П

TX CH20

TX CH40

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

7. BANDWIDTH TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part 15.247,Subpart C				
Section Test Item Limit			Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

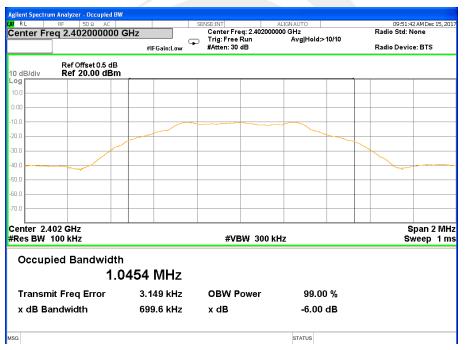
The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

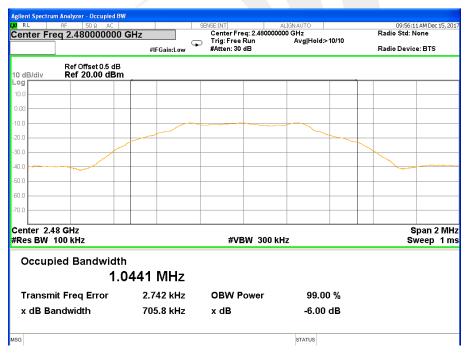

Report No.: STS1711314W08

7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage:	DC 3.8V
Test Mode:	TX Mode /CH01, CH20, CH40		

Frequency	6dB Bandwidth (MHz)	Channel Separation (MHz)	Result
2402 MHz	0.670	>=500KHz	PASS
2440 MHz	0.707	>=500KHz	PASS
2480 MHz	2480 MHz 0.706		PASS

TX CH 01



TX CH 20

TX CH 40

8. PEAK OUTPUT POWER TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part 15.247,Subpart C				
Section Test Item Limit Frequency Range (MHz) Result				Result
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Meter

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1711314W08

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage:	DC 3.8V
Test Mode:	TX Mode /CH01, CH20, CH40		

TX Mode				
Test Channel	Frequency	Conducted Output Power		LIMIT
(MHz) Peak (dBm) AVG (dBm)		dBm		
CH01	2402	-7.98	-9.98	30
CH20	2440	-8.32	-10.33	30
CH40	2480	-8.19	-10.20	30

Shenzhen STS Test Services Co., Ltd.

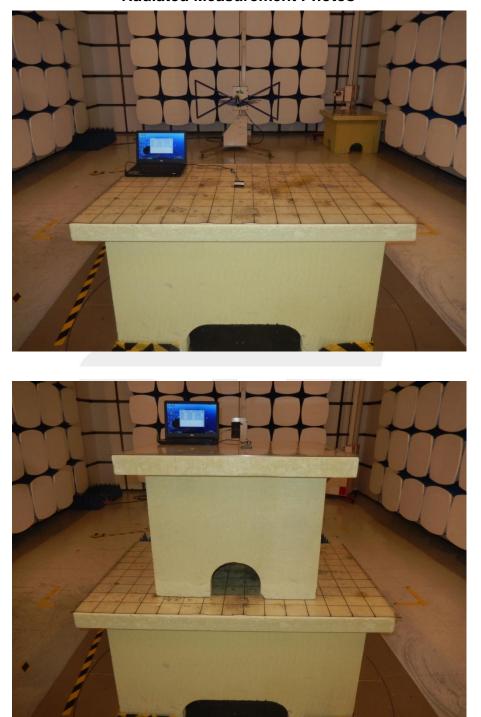
9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PIFA Antenna. It comply with the standard requirement.


Shenzhen STS Test Services Co., Ltd.

Report No.: STS1711314W08

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 44 of 44

Conducted Measurement Photos

** ** ** ** END OF THE REPORT ** ** ** **

Shenzhen STS Test Services Co., Ltd.