RF Exposure Evaluation ### Limits The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b) Limits for Maximum Permissible Exposure (MPE) | Frequency range (MHz) | Electric field
strength
(V/m) | Magnetic field strength (A/m) | Power density (mW/cm²) | Averaging time (minutes) | | | | | |---|-------------------------------------|-------------------------------|------------------------|--------------------------|--|--|--|--| | (A) Limits for Occupational/Controlled Exposures | | | | | | | | | | 0.3–3.0 | 614 | 1.63 | *(100) | 6 | | | | | | 3.0–30 | 1842/f | 4.89/f | *(900/f²) | 6 | | | | | | 30–300 | 61.4 | 0.163 | 1.0 | 6 | | | | | | 300–1500 | | 120. | f/300 | 6 | | | | | | 1500–100,000 | | | 5 | 6 | | | | | | (B) Limits for General Population/Uncontrolled Exposure | | | | | | | | | | 0.3–1.34 | 614 | 1.63 | *(100) | 30 | | | | | | 1.34–30 | 824/f | 2.19/f | *(180/f²) | 30 | | | | | | 30–300 | 27.5 | 0.073 | 0.2 | 30 | | | | | | 300–1500 | | | f/1500 | 30 | | | | | | 1500–100,000 | | | 1.0 | 30 | | | | | f = frequency in MHz Friis transmission formula: $Pd = (Pout*G)/(4*pi*r^2)$ ### Where **Pd** = power density in mW/cm², **Pout** = output power to antenna in mW; **G** = gain of antenna in linear scale, **Pi** = 3.1416; **R** = distance between observation point and center of the radiator in cm Pd id the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached. #### **Test Procedure** Software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel individually. Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tand # **Test Result of RF Exposure Evaluation** | Modulation | Output power
to antenna
(dBm) | Output power to antenna (mW) | Power Density at
R=20cm
(mW/cm²) | Limit
(mW/cm²) | Result | |------------|-------------------------------------|------------------------------|--|-------------------|--------| | 802.11b | 18.94 | 78.3430 | 0.020452 | 1.0 | PASS | | | 19.23 | 83.7529 | 0.021864 | 1.0 | PASS | | | 19.22 | 83.5603 | 0.021814 | 1.0 | PASS | | 802.11g | 17.81 | 60.3949 | 0.015766 | 1.0 | PASS | | | 17.89 | 61.5177 | 0.016059 | 1.0 | PASS | | | 17.93 | 62.0869 | 0.016208 | 1.0 | PASS | | 802.11n20 | 17.72 | 59.1562 | 0.015443 | 1.0 | PASS | | | 17.76 | 59.7035 | 0.015586 | 1.0 | PASS | | | 17.78 | 59.9791 | 0.015658 | 1.0 | PASS | | 802.11ah | 18.53 | 71.2853 | 0.018609 | 1.0 | PASS | | | 18.72 | 74.4732 | 0.019442 | 1.0 | PASS | | | 18.15 | 65.3131 | 0.017050 | 1.0 | PASS | In the case of simultaneous launches for wifi 2.4g and Wifi HaLow: Calc. Thresholds: 0.021864+ 0.019442 = 0.041306 < 1(Limit) So a SAR test is not required Remark: Wifi 2.4g antenna gain= 1.18dBi Wifi HaLow antenna gain= 0.61dBi