

TEST Report

Applicant:	Shenzhen Qishun Innovation Technology Development Co., LTD
Address of Applicant:	1906, Block A, RongchuangZhihui Building, Minzhi Street, Longhua District, Shenzhen
Manufacturer :	Shenzhen Qishun Innovation Technology Development Co., LTD
Address of Manufacturer :	1906, Block A, RongchuangZhihui Building, Minzhi Street, Longhua District, Shenzhen
Equipment Under Test (El	(TL
Product Name:	MY LITTLE PONY SERIES DUAL-MODE WIRELESS MOUSE
Model No.:	QS-MS08
Series model:	N/A
Trade Mark:	N/A
FCC ID:	2BAQF-QS-MS08
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247
Date of sample receipt:	Mar. 28, 2025
Date of Test:	Mar. 28, 2025 ~ Apr. 03, 2025
Date of report issued:	Apr. 03, 2025
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Apr. 03, 2025	Original

Tested/ Prepared By

Heber He Date:

Apr. 03, 2025

Project Engineer

Bruce Zhu Date:

Apr. 03, 2025

Reviewer

Kein Och Date: Authorized Signature

Apr. 03, 2025

Approved By :

Check By:

2. Contents

Page

1.	VERSION	2
2.	CONTENTS	3
3.	TEST SUMMARY	4
4.	GENERAL INFORMATION	5
	 4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS 	7 7 7 7 7 7 7
5.	TEST INSTRUMENTS LIST	8
6.	TEST RESULTS AND MEASUREMENT DATA	9
6.	TEST RESULTS AND MEASUREMENT DATA 6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 11 6.3. CHANNEL BANDWIDTH 11 6.4. POWER SPECTRAL DENSITY 11 6.5. BAND EDGES 11 6.5. 1 Conducted Emission Method 11 6.5. 2 Radiated Emission Method 22 6.6. SPURIOUS EMISSION 22 6.6. 1 Conducted Emission Method 22 6.6. 2 Radiated Emission Method 22 6.7. ANTENNA REQUIREMENT 33	9 2 3 6 9 <i>9</i> 1 3 3 5
	6.1. CONDUCTED EMISSIONS 1 6.2. CONDUCTED OUTPUT POWER 11 6.3. CHANNEL BANDWIDTH 11 6.4. POWER SPECTRAL DENSITY 10 6.5. BAND EDGES 11 6.5.1 Conducted Emission Method 11 6.5.2 Radiated Emission Method 22 6.6. SPURIOUS EMISSION 22 6.6.1 Conducted Emission Method 22 6.6.2 Radiated Emission Method 22 6.6.2 Radiated Emission Method 22	92369913352

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range Measurement Uncertainty		Notes			
Radiated Emission	9KHz~30MHz 3.12 dB		(1)			
Radiated Emission	30~1000MHz	4.37 dB	(1)			
Radiated Emission	mission 1~18GHz 5.40 dB		(1)			
Radiated Emission	Radiated Emission18-40GHz5.45 dB		(1)			
Conducted Disturbance	0.15~30MHz	2.68 dB	(1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

4. General Information

4.1. General Description of EUT

Product Name:	MY LITTLE PONY SERIES DUAL-MODE WIRELESS MOUSE
Model No.:	QS-MS08
Series model:	N/A
Test sample(s) ID:	HTT2025031361-1(Engineer sample)
	HTT2025031361-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	PCB antenna
Antenna Gain:	-4.62 dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information	Mode: GS-0500200
(Auxiliary test provided by the	Input: AC100-240V, 50/60Hz, 0.3A max
lab):	Output: DC 5V, 2A

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-23595200

Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

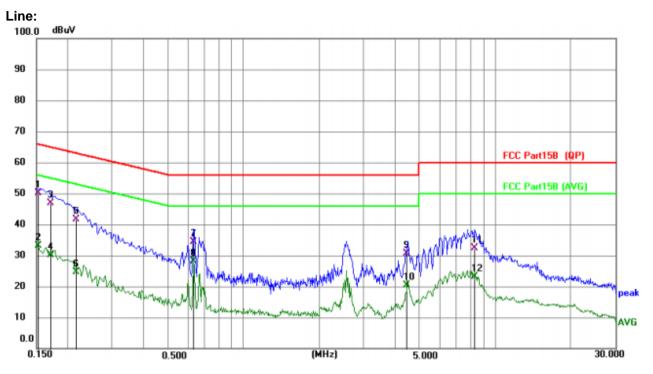
J.	1651 IIISII UIIIE					
ltem	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2024	Aug. 09 2027
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2024	Aug. 09 2027
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2024	Aug. 09 2027
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

Tel: 0755-23595200 Fax: 0755-23595201

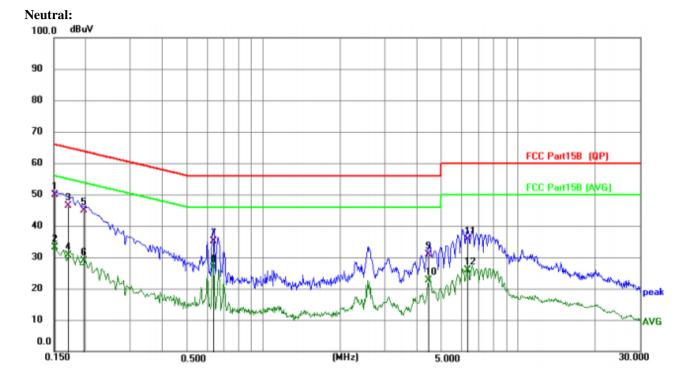
1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6. Test results and Measurement Data

6.1. Conducted Emissions


	-							
Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	150KHz to 30MHz							
Class / Severity:	Class B	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto						
Limit:		Lim	it (dBuV)					
	Frequency range (MHz)	Quasi-peak		erage				
	0.15-0.5	66 to 56*		o 46*				
	0.5-5	56		46				
	5-30	60		50				
Test setup:								
Test procedure:	 * Decreases with the logarithm of the frequency. * Decreases with the logarithm of the frequency. Reference Plane IIIN IIIIN IIIIN IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII							
	positions of equipment and according to ANSI C63.10:	2013 on conducted		•				
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details	;		1				
Test environment:	Temp.: 25 °C Hun	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						
Test voltage:	AC 120V, 60Hz							
Test results:	PASS	-						

Remark: Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and withthe worst case as below:



Report No.: HTT2025031361F02

Measurement data:

Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
MHz		dB	dBuV	dBuV	dB	Detector
0.1524	40.14	10.08	50.22	65.87	-15.65	QP
0.1524	23.07	10.08	33.15	55.87	-22.72	AVG
0.1715	36.76	10.08	46.84	64.89	-18.05	QP
0.1715	20.17	10.08	30.25	54.89	-24.64	AVG
0.2157	31.48	10.20	41.68	62.98	-21.30	QP
0.2157	14.40	10.20	24.60	52.98	-28.38	AVG
0.6329	24.25	10.22	34.47	56.00	-21.53	QP
0.6329	17.88	10.22	28.10	46.00	-17.90	AVG
4.4603	20.45	10.15	30.60	56.00	-25.40	QP
4.4603	10.21	10.15	20.36	46.00	-25.64	AVG
8.3005	22.18	10.10	32.28	60.00	-27.72	QP
8.3005	12.93	10.10	23.03	50.00	-26.97	AVG
	MHz 0.1524 0.1524 0.1715 0.1715 0.2157 0.2157 0.6329 0.6329 4.4603 4.4603 8.3005	Freq.LevelMHz0.152440.140.152423.070.152423.070.171536.760.171520.170.215731.480.215714.400.632924.250.632917.884.460320.454.460310.218.300522.18	Freq.LevelFactorMHzdB0.152440.1410.080.152423.0710.080.171536.7610.080.171520.1710.080.215731.4810.200.632924.2510.220.632917.8810.224.460320.4510.154.460310.2110.158.300522.1810.10	Freq.LevelFactormentMHzdBdBuV0.152440.1410.0850.220.152423.0710.0833.150.152423.0710.0846.840.171536.7610.0846.840.171520.1710.0830.250.215731.4810.2041.680.215714.4010.2024.600.632924.2510.2234.470.632917.8810.2228.104.460320.4510.1530.604.460310.2110.1520.368.300522.1810.1032.28	Freq.LevelFactormentLimitMHzdBdBuVdBuV0.152440.1410.0850.2265.870.152423.0710.0833.1555.870.171536.7610.0846.8464.890.171520.1710.0830.2554.890.215731.4810.2041.6862.980.215714.4010.2024.6052.980.632924.2510.2234.4756.004.460320.4510.1530.6056.004.460310.2110.1520.3646.008.300522.1810.1032.2860.00	Freq.LevelFactormentLimitOverMHzdBdBuVdBuVdBuVdB0.152440.1410.0850.2265.87-15.650.152423.0710.0833.1555.87-22.720.171536.7610.0846.8464.89-18.050.171520.1710.0830.2554.89-24.640.215731.4810.2041.6862.98-21.300.215714.4010.2024.6052.98-28.380.632924.2510.2234.4756.00-21.530.632917.8810.2228.1046.00-17.904.460310.2110.1530.6056.00-25.648.300522.1810.1032.2860.00-27.72

MHz 0.1515 0.1515 0.1713 0.1713 0.1770 0.1970	22.98 36.18 20.52 34.68	dB 10.16 10.22 10.22 10.20	dBuV 49.81 33.14 46.40 30.74 44.88	dBuV 65.92 55.92 64.90 54.90 63.74	dB -16.11 -22.78 -18.50 -24.16 -18.86	Detector QP AVG QP AVG QP
0.1515 0.1713 0.1713 0.1713 0.1970	22.98 36.18 20.52 34.68	10.16 10.22 10.22	33.14 46.40 30.74	55.92 64.90 54.90	-22.78 -18.50 -24.16	AVG QP AVG
0.1713 0.1713 0.1970	36.18 20.52 34.68	10.22 10.22	46.40 30.74	64.90 54.90	-18.50 -24.16	QP AVG
0.1713	20.52 34.68	10.22	30.74	54.90	-24.16	AVG
0.1970	34.68					
		10.20	44.88	63.74	-18.86	QP
0 40 70	40.07					
0.1970	18.67	10.20	28.87	53.74	-24.87	AVG
0.6371	25.02	10.19	35.21	56.00	-20.79	QP
0.6371	16.51	10.19	26.70	46.00	-19.30	AVG
4.4588	20.73	10.16	30.89	56.00	-25.11	QP
4.4588	12.39	10.16	22.55	46.00	-23.45	AVG
6.3297	25.60	10.14	35.74	60.00	-24.26	QP
	15.67	10.14	25.81	50.00	-24.19	AVG
	4.4588 6.3297	4.458812.396.329725.60	4.4588 12.39 10.16	4.458812.3910.1622.556.329725.6010.1435.74	4.458812.3910.1622.5546.006.329725.6010.1435.7460.00	4.458812.3910.1622.5546.00-23.456.329725.6010.1435.7460.00-24.26

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)								
Test Method:	ANSI C63.1	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	30dBm								
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to see	ction 6.0 for d	etails						
Test mode:	Refer to see	ction 5.2 for d	etails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

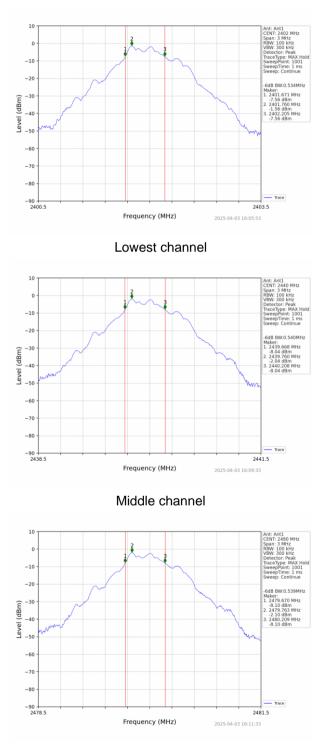
6.2. Conducted Output Power

Measurement Data

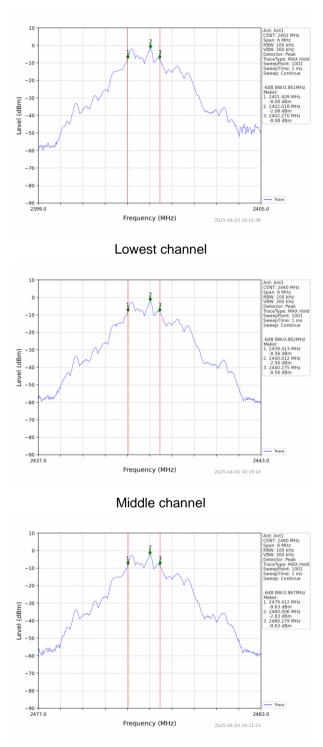
Mode	TX	Frequency	Maximum Peak Conduc	ted Output Power (dBm)	Verdict
wode	Туре	(MHz)	ANT1	Limit	verdict
		2402	-1.31	<=30	Pass
1M	SISO	2440	-1.77	<=30	Pass
		2480	-1.79	<=30	Pass
		2402	-1.31	<=30	Pass
2M	SISO	2440	-1.80	<=30	Pass
		2480	-1.86	<=30	Pass

6.3. Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)								
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02								
Limit:	>500KHz								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to section 6.0 for details								
Test mode:	Refer to section 5.2 for details								
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								


Measurement Data

Mode	TX	Frequency	Maximum Peak Conduc	ted Output Power (dBm)	Verdict
Mode	Туре	(MHz)	ANT1	Limit	verdict
		2402	-1.31	<=30	Pass
1M	SISO	2440	-1.77	<=30	Pass
		2480	-1.79	<=30	Pass
		2402	-1.31	<=30	Pass
2M	SISO	2440	-1.80	<=30	Pass
		2480	-1.86	<=30	Pass


Test plot as follows:

1M:

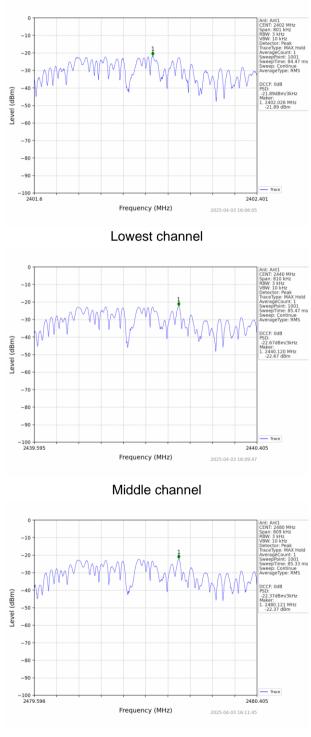
Highest channel

Highest channel

2M:

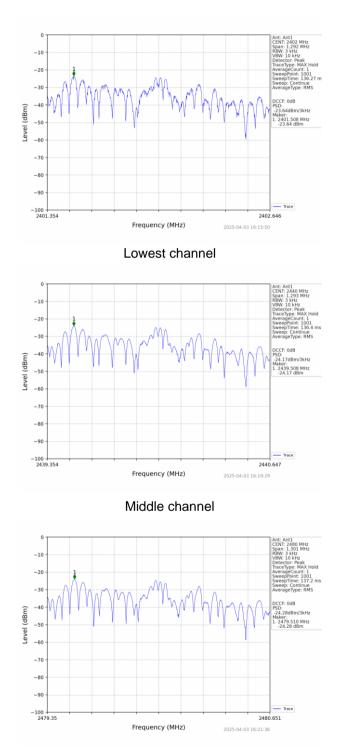
Test Requirement:	FCC Part15 C Section 15.247 (e)									
Test Method:	ANSI C63.	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02								
Limit:	8dBm/3kHz	<u>.</u>								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane									
Test Instruments:	Refer to se	ction 6.0 for d	letails							
Test mode:	Refer to se	ction 5.2 for d	letails							
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				

6.4. Power Spectral Density


Measurement Data

Mode	TX	Frequency	Maximum PS	D (dBm/3kHz)	Verdict
wode	Туре	(MHz)	ANT1	Limit	verdict
		2402	-21.89	<=8	Pass
1M	SISO	2440	-22.67	<=8	Pass
		2480	-22.37	<=8	Pass
		2402	-23.64	<=8	Pass
2M	SISO	2440	-24.17	<=8	Pass
		2480	-24.28	<=8	Pass

Test plot as follows:


1M:

Highest channel

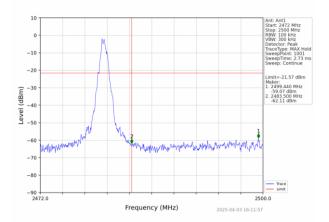
2M:

Highest channel

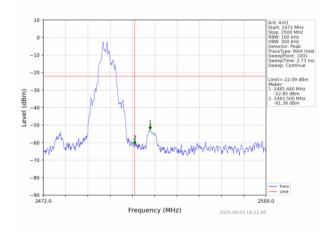
6.5. Band edges

6.5.1 Conducted Emission Method

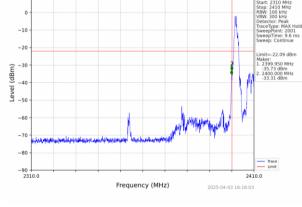
Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	radiated measurement. Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to section 6.0 for details							
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:25 °CHumid.:52%Press.:1012mbar							



Test plot as follows:



Lowest channel



Highest channel

Highest channel

10

Lowest channel

Test Requirement:	FCC Part15	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.								
Test site:		nt Distance:							
Receiver setup:	Frequenc	y Dete	ctor	RB	W	VBW	/ \	/alue	
		Pea	ak	1MF	Ηz	3MHz	z l	Peak	
	Above 1GH	¹² RM	S	1MF	Ηz	3MHz	z Av	verage	
Limit:	Fre	quency	L	_imit (d	lBuV/n	n @3m	I) \	/alue	
	Abo	ve 1GHz			54.00			verage	
	74.00 Peak								
Test setup:	<pre>< 3m > Test Antenna+ { { { { { { { { { { { { {</pre>								
Test Procedure:	 Receiver Premplifier The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test 								
Test Instruments:		tion 6.0 for c							
Test mode:	Refer to sec	tion 5.2 for c	letails						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humi	d.:	52%		Press.:	1012mbar	

6.5.2 Radiated Emission Method

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Measurement Data

Remark: GFSK(1M), GFSK(2M) all have been tested, only worse case GFSK(1M) is reported.

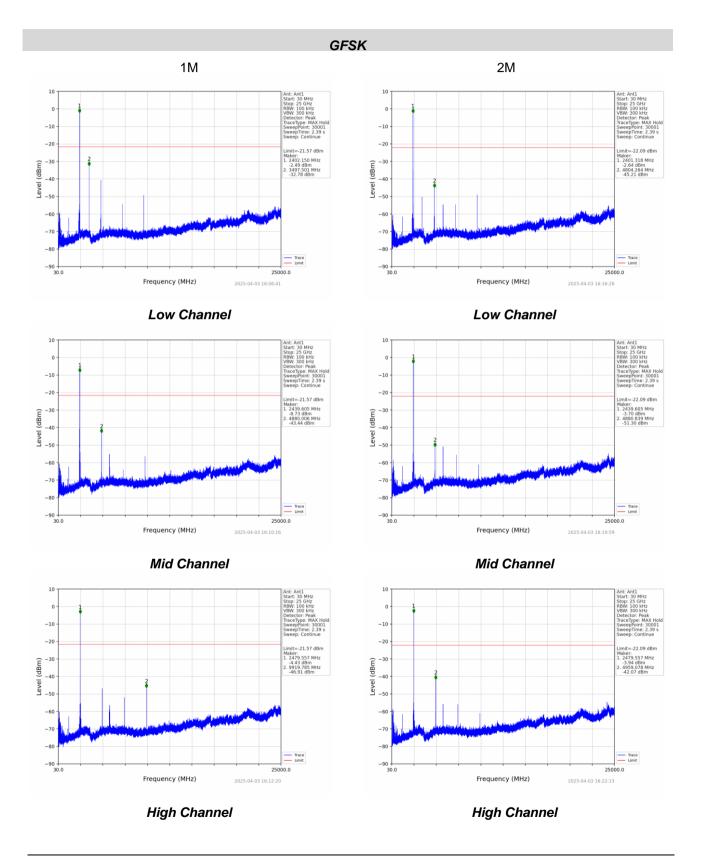
Operation Mode: GFSK (1M)

Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	ORIZONTA	NL
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.86	PK	74	14.14	61.25	27.2	4.31	32.9	-1.39
2390.00	45.80	AV	54 8.20		47.19 27.2		4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Polarity:		VERTICA		
Frequency (MHz)	Emis Le [.] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.46	PK	74	15.54	59.85	27.2	4.31	32.9	-1.39
2390.00	46.58	AV	54	7.42	47.97	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	80	P olarity:		н	ORIZONTA	NL
Frequency (MHz)	Emis Le [.] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	57.02	PK	74	16.98	57.95	27.4	4.47	32.8	-0.93
2483.50	44.43	AV	54	9.57	45.36	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.20	PK	74	18.80	56.13	27.4	4.47	32.8	-0.93
2483.50	44.52	AV	54	9.48	45.45	27.4	4.47	32.8	-0.93

6.6. Spurious Emission

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.1	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02								
Limit:	spread spe power that below that i highest leve	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane									
Test Instruments:	Refer to see	ction 6.0 for c	letails							
Test mode:	Refer to see	ction 5.2 for c	letails							
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				

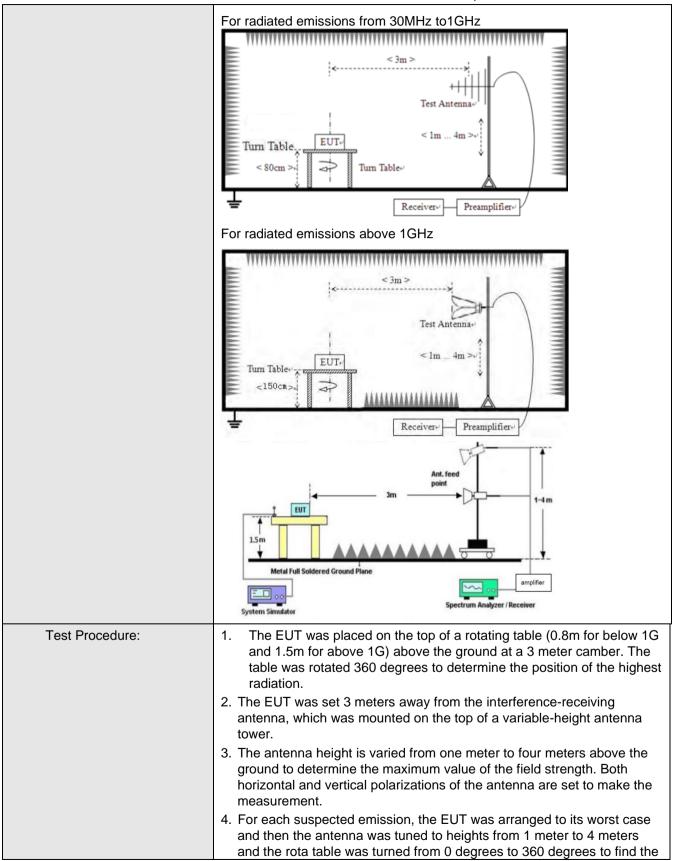

Test plot as follows:

reference

Shenzhen HTT Technology Co.,Ltd.Tel: 0755-23595200Fax: 0755-235952011F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
Shenzhen, Guangdong, China

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China



6.6.2 Radiated Emission Metho	Da							
Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	٦	Detector	RB\	Ν	VBW	Value	
	9KHz-150KHz	Qı	iasi-peak	200ł	Ηz	600Hz	z Quasi-peak	
	150KHz-30MHz	Qı	iasi-peak	9K⊦	łz	30KH:	z Quasi-peak	
	30MHz-1GHz	lz Quasi-peak						
	Above 1GHz		Peak	1MF	Ηz	3MHz	Peak	
	7,5076 16112		Peak	1MF	Ιz	10Hz	Average	
Limit:	Frequency Limit (uV/m) Value Measurement Distance							
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m	
	0.490MHz-1.705MHz 24000/F(KHz) QP						30m	
	1.705MHz-30MHz		30		QP		30m	
	30MHz-88MHz		100		QP			
	88MHz-216MHz	<u>-</u>	150			QP		
	216MHz-960MH	Z	200			QP	3m	
	960MHz-1GHz		500			QP	om	
	Above 1GHz		500		Av	erage		
			5000		F	Peak		
Test setup:	Above 1GHz 000 Peak For radiated emissions from 9kHz to 30MHz Image: Constrained emission from 9kHz to 30MHz							

6.6.2 Radiated Emission Method

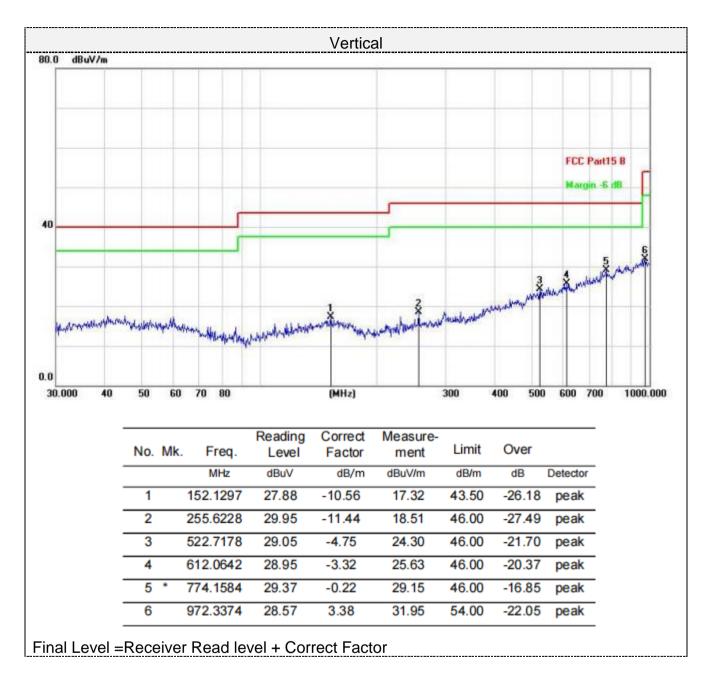
Report No.: HTT2025031361F02

	maximum reading.5. The test-receiver system was set to Peak Detect Function and						
	 Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 						
Test Instruments:	Refer to see	ction 6.0 for a	details				
Test mode:	Refer to see	ction 5.2 for a	details				
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

Measurement data:

Remarks:

- 1. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 2. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 3. Tested all modes and saved the worst data in BLE 1M2402MHz as below:



.0 dBuV	1							rizontal						
G GBUY	/10	1		T	11				1			T	1	
	-	_	-	-		_				-	-	-		_
													Part15	Г
								_	_	_	_			-
0	-	_	_	_					_	-	_	-		_
	-	-	-	-	-									5 6
-		-							-	-	2	3	1 Au	water
											6	. X.M	Vie T	
							1		_	have	wind	Margary .		
apatroja	rundhar	levener	<i>L'anisa</i>	No. Wyraffe	prycologie	untratheter	numia Mumura	man had the state	unanter hand and	Mawara	Horas	Augur dany		
wheelin mile	regenting	le son and a second	hormulan	how where	niyularu	aphinithally	annia tha annia	month Month	washiki katan	Manura	porate	August the second s		
4444/10/14	yuundhay 40	50	60	70	80	agmatura dan	1 X Northe March M	nantication Marca Ada	300	400	500	600	700	1000.000
apadomia 0 30.000		50	60	70	80		(MHz)		300	400	500	600	700	1000.000
apadomiki 0 30.000		50 No.	60	70	80 Freq.	Read	(MHz)	ect Measur	300 'e-	400	500 /er	600	700	1000.000
akashiri ku 0 30.000		50	60	70 F	80	Read	(MHz) ng Corre el Fact	ect Measur or ment	300 re- Limit	400 O\	500 /er	600 Detecto	700	1000.000
apadomiki 0 30.000		50	60 Mk.	70 F	80 Freq.	Read Lev dBu	(MHz) ng Corre el Fact / dB,	ect Measur or ment 'm dBuV/m	300 'e- Limit dB/m	400 O\ d	500 /er	600	700 or	1000.000
apadomiki 0 30.000		50 No.	60 Mk.	70 F 141.	80 Freq.	Read Lev dBu	(MHz) ng Corre el Fact / dB, 0 -11.6	ect Measur or ment /m dBuV/m 5 18.05	300 'e- Limit dB/m	400 Ov d	500 /er B	600 Detecto	700 or c	1000.000
apadom/4		50 No.	60 Mk.	70 F 141. 531.	80 Freq. MHz 8262	Read Lev dBu 29.7 28.5	(MHz) ng Corre el Fact / dB, 0 -11.6 4 -4.6	ect Measur or ment /m dBuV/m 5 18.05 3 23.91	300 re- Limit dB/m 43.50	400 Ov d) -2:) -2:	500 ver B 5.45	600 Detecto peak	700 or c	1000.000
apadomiki 0		50 No.	60 Mk.	70 F 141. 531. 618.	80 Freq. MHz 8262 9633	Read Lev dBu 2 29.7 3 28.5 5 28.2	(MHz) ng Corre el Fact / dB, 0 -11.6 4 -4.6 5 -3.2	ect Measur or ment 'm dBuV/m 5 18.05 3 23.91 4 25.01	300 re- Limit 43.50 46.00 46.00	400 Ov d) -2:) -2:) -2:	500 /er B 5.45 2.09	600 Detecto peak	700 Dr C	1000.000
apadom/4		50 No. 1 2 3	60 Mk.	70 F 141. 531. 618. 758.	80 Freq. MHz 8262 9633 5366	Read Lev dBu 29.7 3 28.5 5 28.2 7 28.5	(MHz) ng Corre el Fact / dB, 0 -11.6 4 -4.6 5 -3.2 5 -0.4	ect Measur or ment /m dBuV/m 5 18.05 3 23.91 4 25.01 9 28.06	300 re- Limit 43.50 46.00 46.00 46.00	400 Ov 0 -29 0 -22 0 -21 0 -21	500 ver B 5.45 2.09 0.99	Detecto peak peak peak	700 or c	1000.000

Below 1GHz

Report No.: HTT2025031361F02

Above 1-25GHz

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction	
(MHz)	Level	-	(dBuV/m)	(dB)	Value (dBuV)	Factor (dB/m)	Factor (dB)	amplifier (dB)	Factor (dB/m)	
4804.00	58.90	PK	74	15.10	53.20	31	6.5	31.8	5.7	
4804.00	42.66	AV	54	11.34	36.96	31	6.5	31.8	5.7	
7206.00	52.87	PK	74	21.13	40.22	36	8.15	31.5	12.65	
7206.00	43.29	AV	54	10.71	30.64	36	8.15	31.5	12.65	

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	58.62	PK	74	15.38	52.92	31	6.5	31.8	5.7	
4804.00	43.07	AV	54	10.93	37.37	31	6.5	31.8	5.7	
7206.00	53.30	PK	74	20.70	40.65	36	8.15	31.5	12.65	
7206.00	44.20	AV	54	9.80	31.55	36	8.15	31.5	12.65	

Freque	Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4880.00	60.10	PK	74	13.90	53.94	31.2	6.61	31.65	6.16	
4880.00	43.54	AV	54	10.46	37.38	31.2	6.61	31.65	6.16	
7320.00	52.00	PK	74	22.00	39.05	36.2	8.23	31.48	12.95	
7320.00	43.23	AV	54	10.77	30.28	36.2	8.23	31.48	12.95	

Freque	Frequency(MHz):			2440		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4880.00	60.70	PK	74	13.30	54.54	31.2	6.61	31.65	6.16	
4880.00	43.26	AV	54	10.74	37.10	31.2	6.61	31.65	6.16	
7320.00	52.47	PK	74	21.53	39.52	36.2	8.23	31.48	12.95	
7320.00	43.78	AV	54	10.22	30.83	36.2	8.23	31.48	12.95	

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le [.] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	62.76	, PK	74	11.24	56.10	31.4	6.76	31.5	6.66	
4960.00	41.50	AV	54	12.50	34.84	31.4	6.76	31.5	6.66	
7440.00	53.79	PK	74	20.21	40.49	36.4	8.35	31.45	13.3	
7440.00	44.61	AV	54	9.39	31.31	36.4	8.35	31.45	13.3	

Freque	Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency	Emission Level (dBuV/m)		Limit		Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor	
(MHz)			(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)	
4960.00	63.35	PK	74	10.65	56.69	31.4	6.76	31.5	6.66	
4960.00	43.76	AV	54	10.24	37.10	31.4	6.76	31.5	6.66	
7440.00	55.18	PK	74	18.82	41.88	36.4	8.35	31.45	13.3	
7440.00	45.06	AV	54	8.94	31.76	36.4	8.35	31.45	13.3	

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

Shenzhen HTT Technology Co.,Ltd.Tel: 0755-23595200Fax: 0755-235952011F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
Shenzhen, Guangdong, China

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was -4.62 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the **appendix I** for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----