

SPORTON International Inc. No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Paten Wireless Technology Inc.	
Applicant Address	F, No.407, Zui Kuang RD. NeiHu District, Taipei 114, Taiwan R.O.C.	
FCC ID	3L-PT-04-MX2	
Manufacturer's company	Weifu and Plastic Mold Factory	
Manufacturer Address	DaBanDe, DaNing, Human, DongGuan, GuangDong, China.	

Product Name	Labtec ultra-flat wireless desktop
Brand Name	PATEN
Model Name	M-RBD109
Test Rule Part(s)	47 CFR FCC Part 15 Subpart C § 15.227
Test Freq. Range	26.957~27.283MHz
Receive Date	Dec. 20, 2005
Test Date	Jan. 3, 2006
Submission Type	Original Equipment

Statement

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart C. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Lab Code: 200079-0

Table of Contents

1.	CER	RTIFICATE OF COMPLIANCE	1
2.	SUIV	MMARY OF THE TEST RESULT	2
3.	GEN	ENERAL INFORMATION	
	3.1.		
	3.2.	2. Table for Filed Antenna	
	3.3.	3. Table for Carrier Frequencies	3
	3.4.		
	3.5.	5. Table for Testing Locations	4
	3.6.	b. Table for Supporting Units	4
	3.7.	7. Test Configurations	5
4.	TEST	ST RESULT	6
	4.1.		
	4.2.	2. 20dB Spectrum Bandwidth Measurement	8
	4.3.	8. Radiated Emissions Measurement	10
	4.4.	Band Edge Emissions Measurement	17
	4.5.	5. Antenna Requirements	19
5.	LIST	t of measuring equipments	20
6.	SPO	ORTON COMPANY PROFILE	
	6.1.		
7.	NVL	/LAP CERTIFICATE OF ACCREDITATION	23
AF	PPEN	NDIX A. PHOTOGRAPHS OF EUT	A1 ~ A7
AF	PPEN	NDIX B. TEST PHOTOS	B1 ~ B3

History of This Test Report

Original Issue Date: Jan. 4, 2006

Report No.: FR521820-01

No additional attachment.

Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

1. CERTIFICATE OF COMPLIANCE

Product Name	:	Labtec ultra-flat wireless desktop
Brand Name	:	PATEN
Model Name	:	M-RBD109
Applicant	:	Paten Wireless Technology Inc.
Test Rule Part(s)	:	47 CFR FCC Part 15 Subpart C § 15.227

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Dec. 20, 2005 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Wayne Hsu / Supervisor Sporton International Inc.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C					
Part	Part Rule Section Description of Test			Under Limit		
4.1	15.227(a)	Field Strength of Fundamental Emissions	Complies	36.26 dB		
4.2	15.215(c)	20dB Spectrum Bandwidth	Complies	-		
4.3	15.227(b)	Radiated Emissions	Complies	17.71 dB		
4.4	15.227(b)	Band Edge Emissions	Complies	33.31 dB		
4.5	15.203	Antenna Requirements	Complies	-		

Test Items	Uncertainty	Remark
Field Strength of Fundamental Emissions	±3.72dB	Confidence levels of 95%
20dB Spectrum Bandwidth	±6.25×10-7	Confidence levels of 95%
Radiated Emissions/ Band Edge Emissions	±3.72dB	Confidence levels of 95%

3. GENERAL INFORMATION

3.1. Product Details

The EUT is a set of Labtec ultra-flat wireless desktop. Only the test results of Mouse are shown in this test report.

Items	Description
Product Type	Low Power Communication Device
Radio Type	Intentional Transmitter
Power Type	3V DC from battery
Interface Type	NA
Modulation	FSK
Frequency Range	26.957~27.283MHz
Channel Number	1
Channel Band Width (99%)	32 kHz
Max. Field Strength	43.74 dBuV/m at 3m (Average)
Carrier Frequencies	Please refer to section 3.3
Antenna	Please refer to section 3.2

3.2. Table for Filed Antenna

Ant.	Antenna Type	Connector	Gain (dBi)	Remark
1	Printed Antenna	On board	-	For mouse

3.3. Table for Carrier Frequencies

Freqeuncy Band	Channel No.	Frequency
26.957~27.283MHz	1	27.045 MHz

3.4. Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Channel	Antenna
AC Power Line Conducted Emissions	Normal Use	1	1
Field Strength of Fundamental Emissions	CTX of X Axis	1	1
Radiated Emissions 9kHz~10 th Harmonic			
Band Edge Emissions	CTX of X Axis	1	1
20dB Spectrum Bandwidth	СТХ	1	NA

Note: CTX=continuously transmitting

3.5. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH03-HY	SAC	Hwa Ya	101377	IC 4088	-
CO01-HY	Conduction	Hwa Ya	101377	IC 4088	-
THO1-HY	OVEN Room	Hwa Ya	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

Please refer section 6 for Test Site Address.

3.6. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	COMPAQ	PP2150	DoC
Printer	EPSON	LQ-680	DoC
Flash	I-DISK	-	-

3.7. Test Configurations

3.7.1. Radiation Emissions Test Configuration

4. TEST RESULT

4.1. Field Strength of Fundamental Emissions Measurement

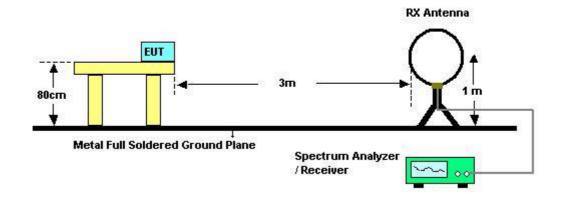
4.1.1. Limit

The field strength of emissions within these bands specified at a distance of 3 meters shall comply with the following table.

Frequency Band	Fundamental Emissions Limit (dBuV/m) at 3m
26.957~27.283MHz	80 (Average)
26.957~27.283MHz	100 (Peak)

4.1.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of the receiver.


Receiver Parameter	Setting
Attenuation	Auto
Center Frequency	Fundamental Frequency
RB	9 kHz
Detector	Peak / Average

4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure peak and average reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

4.1.4. Test Setup Layout

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.1.7. Test Result of Field Strength of Fundamental Emissions

Temperature	28	Humidity	58%
Test Engineer	Eason Lu	Configurations	X axis / Channel 1

	Freq	Level	Over Limit	Read Level	Limit Line		Antenna Factor	30000 St	Remark	Table Pos	Ant Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
2 3	27.040 27.040	37.57 T (5.37)	-54.96 -36.26	59.63 58.33	100.00 80.00	0.52 0.52	THE 1993	22123	Peak Average		

Note:

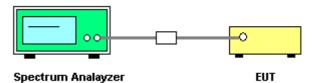
Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

4.2. 20dB Spectrum Bandwidth Measurement

4.2.1. Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (26.957~27.283MHz).

4.2.2. Measuring Instruments and Setting


Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 20dB Bandwidth
RB	1 kHz
VB	1 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 1 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.

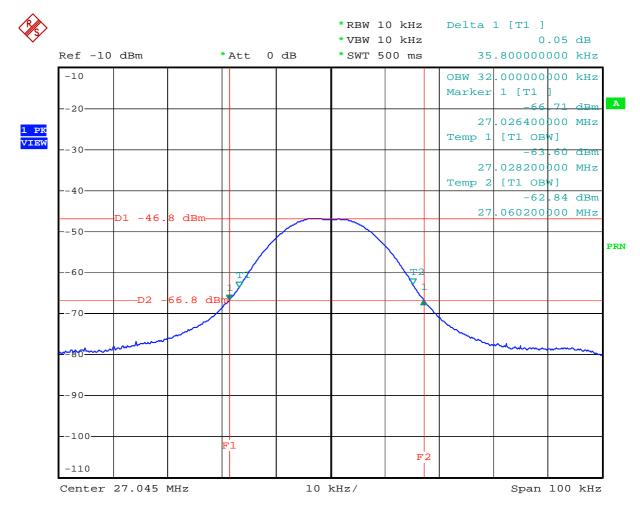
4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



4.2.7. Test Result of 20dB Spectrum Bandwidth

Temperature	28	Humidity	58%
Test Engineer	Eason Lu	Configurations	Channel 1

Frequency	20dB BW (kHz)	99% OBW (kHz)	Frequency range (MHz) f _L > 26.96MHz	Frequency range (MHz) f _H < 27.28MHz	Test Result
27.045 MHz	35.8000	32.00	27.0264	27.0622	Complies

20 dB/99% Bandwidth Plot on 27.045 MHz

Date: 28.DEC.2005 09:53:26

4.3. Radiated Emissions Measurement

4.3.1. Limit

The field strength of any emissions which appear outside of 26.957~27.283MHz band shall not exceed the general radiated emissions limits in Section 15.209(a)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

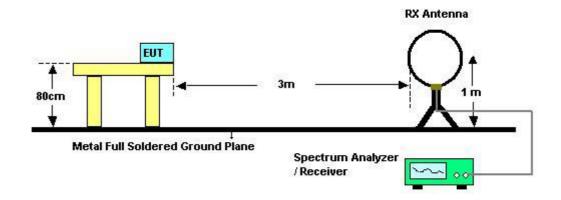
4.3.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of receiver.

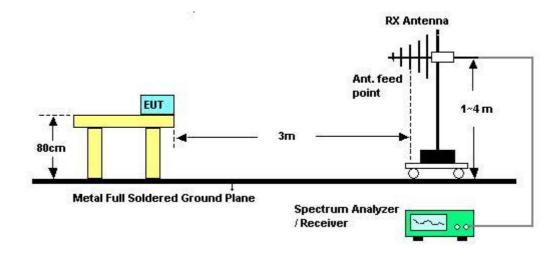
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

4.3.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not



exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.


7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

4.3.4. Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

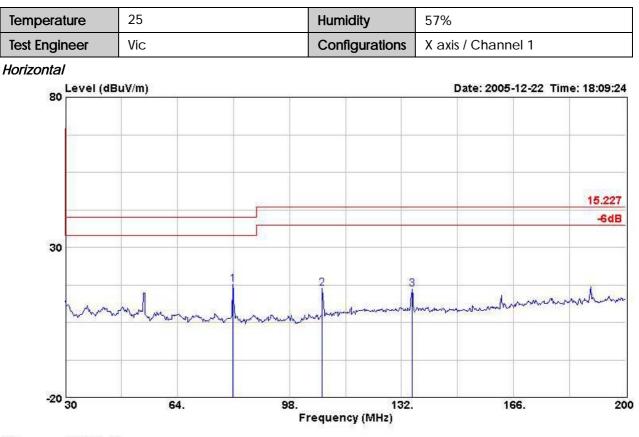
The EUT was programmed to be in continuously transmitting mode.

4.3.7. Results of Radiated Emissions (9kHz~30MHz)

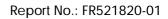
Temperature	25	Humidity	57%
Test Engineer	Vic	Configurations	X axis / Channel 1

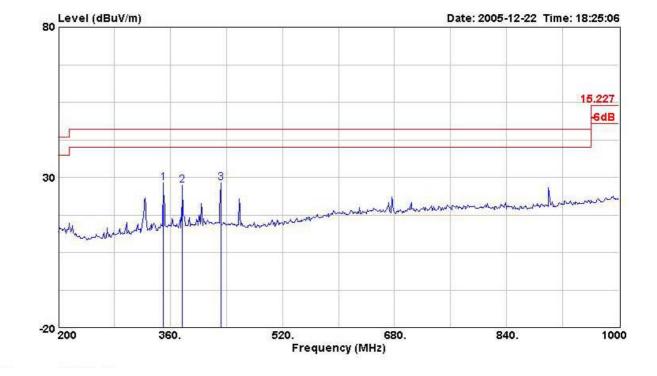
Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

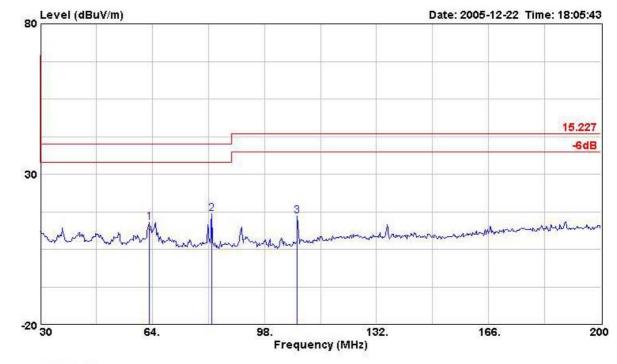

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

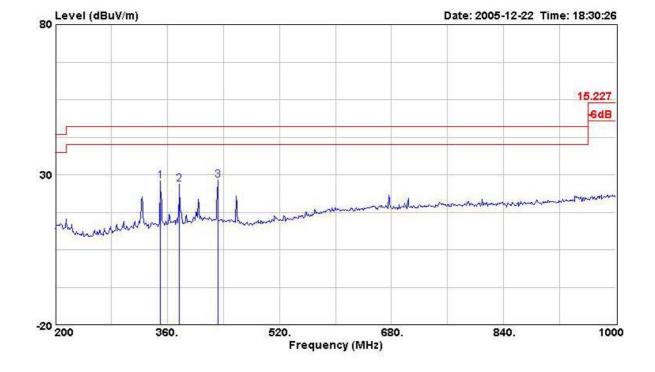

Limit line = specific limits (dBuV) + distance extrapolation factor.


4.3.8. Results for Radiated Emissions (30MHz~1GHz)

			Over	Read	Limit	Cablei	Antenna	Preamp		Table	Ant
	Freq	Level	Limit	Level	Line	Loss	Factor	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	80.830	17.71	-22.29	37.41	40.00	0.88	9.41	29.99	Peak		
2	108.030	16.29	-27.21	35.49	43.50	1.01	10.14	30.36	Peak		
3	135.230	16.16	-27.34	33.26	43.50	1.16	12.47	30.74	Peak		



			Over	Read	Limit	Cable.	Antenna	Preamp		Table	Ant
	Freq	Level	Limit	Level	Line	Loss	Factor	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	349.600	28.10	-17.90	41.85	46.00	1.79	15.30	30.84	Peak		
2	377.600	27.41	-18.59	40.54	46.00	1.88	16.14	31.15	Peak		
3	432.000	28.13	-17.87	40.21	46.00	2.04	16.54	30.66	Peak		<u></u>



Vertical

				Over	Read	Limit	Cable.	Antenna	Preamp		Table	Ant	
		Freq	Freq	Level	Limit	Level	Line	Loss	Factor	Factor	Remark	Pos	Pos
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm	
1	62	.980	13.95	-26.05	33.36	40.00	0.79	10.29	30.49	Peak			
2	82	.020	16.89	-23.11	36.75	40.00	0.89	9.29	30.04	Peak			
3	108	.030	16.16	-27.34	35.36	43.50	1.01	10.14	30.36	Peak			

			Over	Read	Limit	Cable	Antenna	Preamp		Table	Ant
	Fre	q Level	Limit	Level	Line	Loss	Factor	Factor	Remark	Pos	Pos
	МН	z dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	349.60	27.80	-18.20	41.55	46.00	1.79	15.30	30.84	Peak		
2	377.60	26.75	-19.25	39.88	46.00	1.88	16.14	31.15	Peak		
30	432.00	28.29	-17.71	40.37	46.00	2.04	16.54	30.66	Peak		 .

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Pol. : V is Vertical Polarization ; H is Horizontal Polarization.

4.4. Band Edge Emissions Measurement

4.4.1. Limit

Band edge emissions outside of the frequency bands shown in below table.

Outside Frequency Band Edge	Limit (dBuV/m) at 3m
Low band edge	69.54 (QP)
High band edge	69.54 (QP)

4.4.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	Auto
Center Frequency	Fundamental Frequency
RB	9 KHz
Detector	QP or Peak

4.4.3. Test Procedures

The test procedure is the same as section 4.2.3, only the frequency range investigated is limited to 2MHz around bandedges.

4.4.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.2.4.

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Band Edge Emissions

Temperature	25	25			н	umidity		57%			
Test Engineer	Vic	Vic				Configur	ations	X axis / Channel 1			
			Over	Read	Limit	Cable.	Antenna	Preamp		Table	Ant
	Freq	Level	Limit	Level	Line	Loss	Factor	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB/m	dB		deg	cm
1	26.960	36.23	-33.31	50.70	69.54	0.52	15.17	30.17	Peak		
4	27.280	24.94	-44.60	39.65	69.54	0.52	14.93	30.17	Peak		

Note:

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

4.5. Antenna Requirements

4.5.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

4.5.2. Antenna Connector Construction

Please refer to section 3.2 in this test report, all antenna connectors comply with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz – 2.75GHz	Oct. 19, 2005	Conduction (CO01-HY)
LISN	MessTec	NNB-2/16Z	2001/009	9kHz – 30MHz	Apr. 26, 2005	Conduction (CO01-HY)
LISN (Support Unit)	MessTec	NNB-2/16Z	2001/004	9kHz – 30MHz	Apr. 20, 2005	Conduction (CO01-HY)
EMI Filter	LINDGREN	LRE-2060	1004	< 450Hz	N/A	Conduction (CO01-HY)
EMI Filter	LINDGREN	N6006	201052	0 – 60Hz	N/A	Conduction (CO01-HY)
RF Cable-CON	Suhner Switzerland	RG223/U	CB029	9kHz – 30MHz	Dec. 22, 2005	Conduction (CO01-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 16, 2005	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	CPA9231A	18667	9 kHz - 2 GHz	Jan. 10, 2005	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	May 31, 2005	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100004/040	9 kHZ - 40 GHz	Sep. 30, 2005	Radiation (03CH03-HY)
Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30 MHz - 200 MHz	Jul. 22, 2005	Radiation (03CH03-HY)
Log Antenna	SCHWARZBECK	VUSLP 9111	221	200 MHz - 1 GHz	Jul. 22, 2005	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6741	1 GHz - 18 GHz	Apr. 22, 2005	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Feb. 22, 2005	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Dec.01, 2005	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/650/00	0 - 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
Spectrum analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Nov. 26, 2005	Conducted (TH01-HY)
Power meter	R&S	NRVS	100444	DC ~ 40GHz	Jul. 06, 2005	Conducted (TH01-HY)
Power sensor	R&S	NRV-Z55	100049	DC ~ 40GHz	Jul. 06, 2005	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Apr. 28, 2005	Conducted (TH01-HY)
AC power source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Apr. 21, 2005	Conducted (TH01-HY)
DC power source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Dec. 28, 2005	Conducted (TH01-HY)
Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2005	Conducted (TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Jan. 02, 2006	Conducted (TH01-HY)
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Jan. 02, 2006	Conducted (TH01-HY)
Oscilloscope	Tektronix	TDS1012	CO38515	100MHz / 1GS/s	Apr. 15, 2005	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Dec. 30, 2005	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Amplifier	MITEQ	AMF-6F-260400	923364	26.5 GHz - 40 GHz	Jan. 05, 2004*	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 24, 2004*	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	Jun. 09, 2004*	Radiation (03CH03-HY)
Data Generator	Tektronix	DG2030	063-2920-50	0.1Hz~400MHz	Jun. 02, 2005	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is two year.

6. SPORTON COMPANY PROFILE

SPORTON Lab. was established in 1986 with one shielded room: the first private EMI test facility, offering local manufacturers an alternative EMI test familial apart from ERSO. In 1988, one 3M and 10M/3M open area test site were setup and also obtained official accreditation from FCC, VCCI and NEMKO. In 1993, a Safety laboratory was founded and obtained accreditation from UL of USA, CSA of Canada and TUV (Rhineland & PS) of Germany. In 1995, one EMC lab, including EMI and EMS test facilities was setup. In 1997, SPORTON Group has provided financial expense to relocate the headquarter to Orient Scientific Park in Taipei Hsien to offer more comprehensive, more qualified and better service to local suppliers and manufactures. In 1999, Safety Group and Component Group were setup. In 2001, SPORTON has established 3M/10M chamber in Hwa Ya Technology Park.

6.1. Test Location

SHIJR	ADD	:	6Fl., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL	:	02-2696-2468
	FAX	:	02-2696-2255
HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL	:	03-327-3456
	FAX	:	03-318-0055
LINKOU	ADD	:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL	:	02-2601-1640
	FAX	:	02-2601-1695
DUNGHU	ADD	:	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
	TEL	:	02-2631-4739
	FAX	:	02-2631-9740
JUNGHE	ADD	:	7Fl., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL	:	02-8227-2020
	FAX	:	02-8227-2626
NEIHU	ADD	:	4FI., No. 339, Hsin Hu 2 nd Rd., Taipei 114, Taiwan, R.O.C.
	TEL	:	02-2794-8886
	FAX	:	02-2794-9777
JHUBEI	ADD	:	No.8, Lane 728, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.
	TEL	:	03-656-9065
	FAX	:	03-656-9085
	FAX	:	03-656-9085

7. NVLAP CERTIFICATE OF ACCREDITATION

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:1999

NVLAP LAB CODE: 200079-0

Sporton International, Inc. Hwa Ya EMC Laboratory

Tao Yuan Hsien 333 TAIWAN

is recognized by the National Voluntary Laboratory Accreditation Program for conformance with criteria set forth in NIST Handbook 150:2001 and all requirements of ISO/IEC 17025:1999. Accreditation is granted for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

2006-01-01 through 2006-12-31 Effective dates

For the National Institute of Standards and Technology