CERTIFICATION TEST REPORT **Report Number.**: 12132730-E7V2 **Applicant:** SONY MOBILE COMMUNICATIONS, INC. 4-12-3 HIGASHI-SHINAGAWA, SHINAGAWA -KU, TOKYO, 140-0002, JAPAN **FCC ID**: PY7-43153F **EUT Description :** GSM/WCDMA/LTE PHONE with BT, DTS/UNII a/b/g/n/ac & NFC Test Standard(s): FCC 47 CFR PART 15 SUBPART C #### Date Of Issue: March 27, 2018 #### Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888 REPORT NO: 12132730-E7V2 DATE: MARCH 27, 2018 FCC ID: PY7-43153F | | | Revision History | | |------|---------------|------------------------------------|-------------| | Rev. | Issue
Date | Revisions | Revised By | | V1 | 03/22/18 | Initial Review | | | V2 | 03/27/18 | Added Section 6 & Update Section 8 | Kiya Kedida | # **TABLE OF CONTENTS** | 1. | ΑĪ | TESTATION OF TEST RESULTS | 4 | |----|------|--|----| | 2. | TES | ST METHODOLOGY | 5 | | 3. | FA | CILITIES AND ACCREDITATION | 5 | | 4. | CA | LIBRATION AND UNCERTAINTY | 6 | | | 4.1. | MEASURING INSTRUMENT CALIBRATION | 6 | | | 4.2. | SAMPLE CALCULATION | 6 | | | 4.3. | MEASUREMENT UNCERTAINTY | 6 | | 5. | EQ | UIPMENT UNDER TEST | 7 | | | 5.1. | DESCRIPTION OF EUT | 7 | | 6. | TE | ST AND MEASUREMENT EQUIPMENT | 8 | | 7. | RE | USE OF TEST DATA | 9 | | | 7.1. | INTRODUCTION | 9 | | | 7.2. | DEVICES DIFFERENCES | 9 | | | 7.3. | SPOT CHECK VERIFICATION RESULTS SUMMARY | 9 | | | 7.4. | REFERENCE DETAIL | 9 | | 8. | SP | OT CHECK DATA | 10 | | | 8.1. | FUNDAMENTAL EMISSION MASK (11.56 – 15.56MHz) | 12 | | ۵ | SE. | THE BHOTOS | 11 | # 1. ATTESTATION OF TEST RESULTS **COMPANY NAME:** SONY MOBILE COMMUNICATIONS, INC. 4-12-3 HIGASHI-SHINAGAWA, SHINAGAWA -KU, TOKYO, 140-0002, JAPAN **EUT DESCRIPTION:** GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, GPS & NFC BH900070BN **SERIAL NUMBER:** MARCH 3rd, 2018 **DATE TESTED:** #### APPLICABLE STANDARDS **STANDARD TEST RESULTS** CFR 47 Part 15 Subpart C Complies UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government. Approved & Released For UL Verification Services Inc By: Dan Coronia **Operations Leader** UL Verification Services Inc. Reviewed By: Kiva Kedida Project Engineer UL Verification Services Inc. #### 2. TEST METHODOLOGY The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR 47 Part 2, and FCC CFR 47 Part 15 and KDB 484596 D01 Referencing Test Data DR01-42712. #### 3. FACILITIES AND ACCREDITATION The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections. | 47173 Benicia Street | 47266 Benicia Street | | | |--------------------------|--------------------------|--|--| | | ☐ Chamber D(IC: 22541-1) | | | | ☐ Chamber B(IC: 2324B-2) | ☐ Chamber E(IC: 22541-2) | | | | Chamber C(IC: 2324B-3) | ☐ Chamber F(IC: 22541-3) | | | | | ☐ Chamber G(IC: 22541-4) | | | | | ☐ Chamber H(IC: 22541-5) | | | The above test sites and facilities are covered under FCC Test Firm Registration # 208313. UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. Chambers A through C are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-3, respectively. Chambers D through H are covered under Industry Canada company address code 22541 with site numbers 22541 -1 through 22541-5, respectively. ## 4. CALIBRATION AND UNCERTAINTY #### 4.1. MEASURING INSTRUMENT CALIBRATION The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards. ## 4.2. SAMPLE CALCULATION Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m #### 4.3. MEASUREMENT UNCERTAINTY Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus: | Parameter | Uncertainty | |---|-------------| | Worst Case Conducted Disturbance, 9KHz to 0.15 MHz | 3.84 dB | | Worst Case Conducted Disturbance, 0.15 to 30 MHz | 3.65 dB | | Worst Case Radiated Disturbance, 9KHz to 30 MHz | 3.15 dB | | Worst Case Radiated Disturbance, 30 to 1000 MHz | 5.36 dB | | Worst Case Radiated Disturbance, 1000 to 18000 MHz | 4.32 dB | | Worst Case Radiated Disturbance, 18000 to 26000 MHz | 4.45 dB | | Worst Case Radiated Disturbance, 26000 to 40000 MHz | 5.24 dB | Uncertainty figures are valid to a confidence level of 95%. # 5. EQUIPMENT UNDER TEST # 5.1. DESCRIPTION OF EUT The EUT is a GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, & NFC. # 6. TEST AND MEASUREMENT EQUIPMENT The following test and measurement equipment was utilized for the tests documented in this report: | TEST EQUIPMENT LIST | | | | | | | | | | | |--|---------------------------------|---------|------------|------------|--|--|--|--|--|--| | Description Manufacturer Model ID Num Cal Du | | | | | | | | | | | | Antenna, Active Loop 9kHz-30MHz | Com-Power Corp. | AL-130R | PRE0165308 | 12/13/2018 | | | | | | | | Amplifier, 10kHz-1GHz | Agilent (Keysight) Technologies | 8447D | T15 | 08/14/2018 | | | | | | | | Spectrum Analyzer, PXA, 3Hz to 44GHz | Agilent (Keysight) Technologies | N9030A | T1466 | 04/11/2018 | | | | | | | | Test Software List | | | | | | | | |--|----|--------|-----------------------|--|--|--|--| | Description Manufacturer Model Version | | | | | | | | | Radiated Emissions Software | UL | UL EMC | Ver 9.5, Dec 01, 2016 | | | | | NOTE: *testing is completed before equipment calibration expiration date. #### 7. REUSE OF TEST DATA #### 7.1. INTRODUCTION According to the manufacturer, FCC ID: PY7-11821Y and FCC ID: PY7-43153F unlicensed radios (WLAN/BT/BLE/NFC) are electrically identical. The FCC ID: PY7-11821Y test data shall remain representative of FCC ID: PY7-43153F so, FCC ID: PY7-43153F leverages test data from FCC ID: PY7-11821Y. The applicant takes full responsibility that the test data as referenced in this section represents compliance for this FCC ID. #### 7.2. DEVICES DIFFERENCES Difference between PY7-11821Y and PY7-43153F: Sony Mobile Communications Inc. hereby declares that the difference between PY7-11821Y and PY7-43153F is related only to the cellular part and no change is non-cellular (WLAN/Bluetooth/NFC) parts. The non-cellular parts which are electrically identical, and therefore the following report/data of PY7-11821Y may represent for PY7-43153F. ## 7.3. SPOT CHECK VERIFICATION RESULTS SUMMARY Spot check verification has been done on device PY7-43153F for radiated harmonic spurious. The data from the application has been verified through appropriate spot checks to demonstrate compliance for this device as shown in the summary and appendix A. #### 7.4. REFERENCE DETAIL | Equipment Class | Reference FCC ID | Report Title/Section | |------------------------|------------------|------------------------------| | DXX (NFC) | PY7-11821Y | 12132671-E7V2 FCC Report NFC | ## 8. SPOT CHECK DATA #### <u>LIMIT</u> §15.225, 15.209 - (a) The field strength of any emissions within the band 13.553–13.567 MHz shall not exceed 15,848 microvolts/ meter at 30 meters. - (b) Within the bands 13.410–13.553 MHz and 13.567–13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters. - (c) Within the bands 13.110–13.410 MHz and 13.710–14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters. - (d) The field strength of any emissions appearing outside of the 13.110–14.010 MHz and shall not exceed the general radiated emission limits in § 15.209 as follows: §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: | Limits for radiated disturbance of an intentional radiator | | | | | | | | | |--|-----------------|--------------------------|--|--|--|--|--|--| | Frequency range (MHz) | Limits (µV/m) | Measurement Distance (m) | | | | | | | | 0.009 - 0.490 | 2400 / F (kHz) | 300 | | | | | | | | 0.490 - 1.705 | 24000 / F (kHz) | 30 | | | | | | | | 1.705 – 30.0 | 30 | 30 | | | | | | | | 30 – 88 | 100** | 3 | | | | | | | | 88 - 216 | 150** | 3 | | | | | | | | 216 – 960 | 200** | 3 | | | | | | | | Above 960 | 500 | 3 | | | | | | | ^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g. §§ 15.231 and 15.241. §15.209 (b) In the emission table above, the tighter limit applies at the band edges. Formula for converting the filed strength from uV/m to dBuV/m is: Limit $(dBuV/m) = 20 \log limit (uV/m)$ In addition: §15.209 (d) The emission limits shown at the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector. §15.209 (d) The provisions in §§ 15.225, measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part. #### **TEST PROCEDURE** ANSI C63.10-2013 The EUT is an intentional radiator that incorporates a digital device. The highest fundamental frequency generated or used in the device is 13.56 MHz. The frequency range was investigated from 0.15 MHz to the 10th harmonic of the highest fundamental frequency, or 1000 MHz, whichever is greater (1000MHz) #### **RESULTS** No non-compliance noted: ## **KDB 414788 OATS and Chamber Correlation Justification** Device is a Smart Phone. Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. OATs and chamber correlation testing had been performed and chamber measured test result is the worst case test result. # 8.1. FUNDAMENTAL EMISSION MASK (11.56 – 15.56MHz) Note: All data rate Field Strength was investigated and Type A, 106k found to have the highest Field Strength results and represents as the worst case data rate. ## **Trace Markers** | Marker | Frequency
(MHz) | Meter
Reading
(dBuV) | Det | Loop
Antenna
(dB/m) | Cbl
(dB) | Dist
Corr
(dB)
40Log | Corrected
Reading
dB(uVolts/meter) | FCC
15.225
Limit | PK
Margin
(dB) | Azimuth
(Degs) | Face | |--------|--------------------|----------------------------|-----|---------------------------|-------------|-------------------------------|--|------------------------|----------------------|-------------------|------| | 2 | 13.55807 | 35.14 | Pk | 10.6 | 1.6 | -40 | 7.34 | 84 | -76.66 | 0-360 | Off | | 1 | 13.56 | 39.74 | Pk | 10.6 | 1.6 | -40 | 11.94 | 84 | -72.06 | 0-360 | On | Pk - Peak detector # **APPENDIX A** | PY- 43153F SPOT CHECK RESULTS | | | | | | | | | | |-------------------------------------|-------------|------------|-----------------------|------------|-----------|------------|--|--|--| | | Test Item | em Channel | Measured
Frequency | PY7-11821Y | PY-43153F | Delta (dB) | | | | | Technology | | | | Peak | Peak | Peak | | | | | NFC | Fundamental | N/A | 13.56 MHz | 11.21 | 11.94 | 0.73 | | | | | Note: Fundamental is the worst case | | | | | | | | | | # **END OF REPORT**