FCC ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT CERTIFICATION TO FCC PART 15 REQUIREMENTS

for

INTENTIONAL RADIATOR

of

Car Alarm Transmitter

FCC ID Number: KFR-SAIC2

Trade Name : N/A

Model Number: CEREM1-SANEW

Agency Series : N/A

Report Number: 02E0693-D

Date : December 23, 2002

Prepared for:

Vision Automobile Electronics Industrial Co., Ltd. NO. 17, ALLEY 92, LANE 189, SEC. 1, AN CHUNG RD., TAINAN, TAIWAN, R.O.C.

Prepared by:

#B1, 1st Fl., Universal Center, No. 183, Sec. 1, Tatung Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

> TEL: (02)8642-2071~3 FAX: (02)8642-2256

This report shall not be reproduced, except in full, without the written approval of C&C Laboratory Co., Ltd.

TABLE OF CONTENTS

1. VERIFICATION OF COMPLIANCE	3
2. PRODUCT DESCRIPTION	4
3. TEST FACILITY	4
4. MEASUREMENT STANDARDS	4
5. TEST METHODLOGY	4
6. MEASUREMENT EQUIPMENT USED	5
7. POWERLINE RFI LIMIT	5
8. RADIATED EMISSION LIMITS	6
9. SYSTEM TEST CONFIGURATION	6
10. TEST PROCEDURE	7
11. EQUIPMENT MODIFICATIONS	8
12. TEST RESULT	9
12.1. MAXIMUM MODULATION PERCENTAGE(M%)	9
12.2. THE EMISSIONS BANDWIDTH	9
APPENDIX 1 PHOTOGRAPHS OF EUT	10
APPENDIX 2 TEST DATA	14

1. VERIFICATION OF COMPLIANCE

COMPANY NAME : Vision Automobile Electronics Industrial Co., Ltd.

NO. 17, ALLEY 92, LANE 189, SEC. 1, AN CHUNG RD.,

TAINAN, TAIWAN, R.O.C.

CONTACT PERSON : Jessica Chang

TELEPHONE NO. : (886-6) 255-1269

EUT DESCRIPTION : Car Alarm Transmitter

MODEL NAME/NUMBER : CEREM1-SANEW

FCC ID : KFR-SAIC2

DATE TESTED : December 18, 2002

REPORT NUMBER : 02E0693

TYPE OF EQUIPMENT	SECURITY EQUIPMENT (INTENTIONAL RADIATOR)
EQUIPMENT TYPE	433.92 MHz Car Alarm Transmitter
MEASUREMENT PROCEDURE	ANSI 63.4 / 1992
LIMIT TYPE	CERTIFICATION
FCC RULE	CFR 47, PART 15

The above equipment was tested by C&C Laboratory Co., Ltd. for compliance with the requirements set forth in the FCC CFR 47, PART 15. The results of testing in this report apply to the product/system which was tested only. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. **Warning**: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Engineering Services, Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by C&C Laboratory Co., Ltd. will constitute fraud and shall nullify the document.

James Chan / Manager

C&C Laboratory Co., Ltd.

Vince Chiang Far.

2. PRODUCT DESCRIPTION

Fundamental Frequency	433.92 MHz
Power Source	6V Battery
Transmitting Time	Periodic \leq 5 seconds
Associated Receiver	Model: SAIC (DoC)

3. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at No. 199, Chung Sheng Road, Hsin Tien City, Taipei, Taiwan R.O.C. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

4. MEASUREMENT STANDARDS

The site is constructed and calibrated in conformance with the requirements of ANSI C63.4/1992.

5. TEST METHODOLOGY

For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 KHz, up to at least the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. (CFR 47 Section 15.33)

6. MEASUREMENT EQUIPMENT USED

Manufacturer	Model Number	Description	Cal Due Date
H.P.	8595EM	Spectrum Analyzer (9KHz – 6.5GHz)	02/2003
H.P.	8593A	Spectrum Analyzer (9KHz-22GHz)	01/2003
EMCO	3115	Antenna (1-18GHz)	02/2003
SCHWARZBECK	VULB 9160	Antenna (30-2000 MHz)	05/2003
H.P.	8447D	Amplifier	05/2003
H.P.	8449B	Amplifier (1-26.5GHz)	02/2003

7. POWERLINE RFI LIMIT

CONNECTED TO AC POWER LINE	SECTION 15.207
CARRIER CURRENT SYSTEM IN THE FREQUENCY RANGE OF 450 KHz TO 30 MHz	SECTION 15.205 AND SECTION 15.209, 15.221, 15.223, 15.225 OR 15.227, AS APPROPRIATE.
BATTERY POWER	NO REQUIRED.

8. RADIATED EMISSION LIMITS

GENERAL REQUIREMENTS	SECTION 15.209	
RESTRICTED BANDS OF OPERATION	SECTION 15.205	
PERIODIC OPERATION IN THE BAND		
40.66 -40.70 MHz AND ABOVE 70 MHz.	SECTION 15.231	

9. SYSTEM TEST CONFIGURATION

Use a block of foam and combined it with EUT wrapping rubber band around it. This way it can test X.Y, and Z axis. To activate continuous transmission, place a small plastic block between rubber band and EUT push button.

Radiated Open Site Test Set-up

10. TEST PROCEDURE

Radiated Emissions, 15.231(4)(b)

Test Set-up for frequency range 30 – 1000 MHz

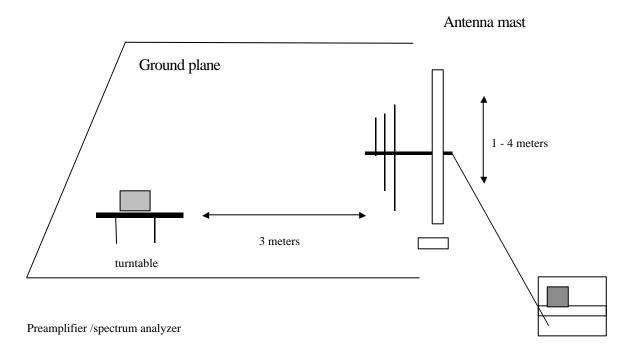


Fig. 1

- 1. The EUT was placed on a wooden table on the outdoor ground plane. The search antenna was placed 3-meters from the EUT.
- 2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205. The EUT was moved throughout the XY, XZ, and YZ planes to maximize emissions received by the search antenna.
- 3. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Ground plane D: 3 Meter Height: 1-2 meters Spectrum Analyzer Pre-amp

Test set-up for measurements above 1GHz

Fig. 2

- The EUT was placed on a wooden table on the outdoor ground plane. The search antenna was placed 1-meters from the EUT. The EUT antenna was mounted vertically as per normal installation.
- 2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205. The EUT was moved throughout the XY, XZ, and YZ planes to maximize emissions received by the search antenna.
- 3. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

11. Equipment Modifications

To achieve compliance to FCC Section 15.231 technical limits, the following change(s) were made during compliance testing:

NONE

12. TEST RESULT

Powerline RFI Class B	Eut	Radiated Emission Limits	Eut
SECTION 15.207		SECTION 15.209	X
SECTION 15.205, 15.209, 15.221, 15.223, x 15.225 OR 15.227		SECTION 15.205	
BATTERY POWER	X	SECTION 15.231 (b)	X
		SECTION 15.231 (e)	

12.1 Maximum Modulation Percentage (M%)

CALCULATION:

Average Reading = Peak Reading (dBuV/m)+ 20log (Duty Cycle)

In order to determine possible Maximum Modulation percentage, alternations are made to the EUT. We measured:

WHERE 1 Period = 96.525 mSLong pulse = 0.70 mSShort pulse = 0.35 mSNo of Long pulse = 37No of Short pulse = 41

Duty Cycle = (N1L1+N2L2+...+Nn-1Ln-1+NnLn)/96.525 or T Duty Cycle = [(37x0.70)+(41x0.35)]/96.525 = 0.417 = 41.7 % or -7.5973dB

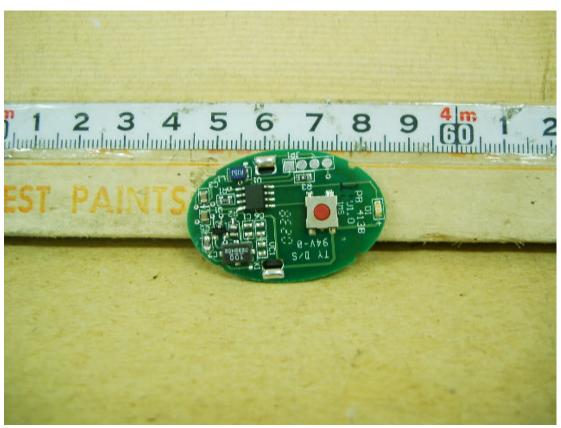
12.2 The Emissions Bandwidth

The bandwidth of the emissions were investigated per 15.231(c)

Center Frequency	Measured	Limits
433,92 MHz	435.0 kHz <	433.92MHzX0.25%=1084.8 kHz
733.72 WIIIZ	(refer to plot)	455.92WIHZAU.25%=1064.6 KHZ

APPENDIX 1

PHOTOGRAPHS OF EUT


External of EUT

Internal of EUT

APPENDIX 2

TEST DATA