

CTC Laboratories, Inc.

		TEST REPORT				
Report No: CTC2024240712						
FCC ID:	XUJCRT511SV2					
IC:	29886-CRT511SV2					
Applicant / Manufacturer::	Launch Tech Co., Ltd.					
FCC Address:	Launch Industrial Park, North o Longgang Shenzhen 518129 (
ISED Address	Launch Industrial Park, North of Wuhe Road, Bantian Street, Longgang District, Shenzhen Guangdong 518129 China					
Product Name:	SMART TPMS DIAGNOSTIC	SYSTEM				
Trade Mark:	LAUNCH					
Model/Type reference:	Creader TPMS 511S V2					
Listed Model(s):	Creader TPMS 5011 V2					
Standard:	FCC Rules Part 15C RSS-210 Issue 11					
Date of receipt of test sample:	Oct. 14, 2024					
Date of testing	Oct. 14, 2024 ~ Dec. 24, 2024					
Date of issue:	Dec. 24, 2024					
Result	PASS					
Compiled by:		T. Jiang				
(Printed name + signature)	Jim Jiang	Jin Jiang				
Supervised by:		Zic zhang				
(Printed name + signature)						
Approved by: 1220						
Approved by: (Printed name + signature) Totti Zhao						

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

CTC Laboratories, Inc.

Table of Contents

Page

1. TES	ST SUMMARY	
1.1.	Test Standards	3
1.2.	REPORT VERSION	
1.3.	Test Description	
1.4.	Test Facility	
1.5.	MEASUREMENT UNCERTAINTY	
1.6.	Environmental Conditions	
1.7.	EUT OPERATION STATE	
-		
2. GE	ENERAL INFORMATION	
2.1.	CLIENT INFORMATION	6
2.2.	GENERAL DESCRIPTION OF EUT	6
2.3.	Accessory Equipment Information	7
2.4.	Measurement Instruments List	8
3. TE	ST ITEM AND RESULTS	10
3.1.	Conducted Emission	
3.2.	Radiated Emission	
3.3.	Bandwidth	
3.4.	ANTENNA REQUIREMENT	24

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15C: Radio Frequency Devices.

<u>RSS-210 Issue 11:</u> Licence-Exempt Radio Apparatus: Category I Equipment. <u>ANSI C63.10-2013:</u> American National Standard for Testing Unlicensed Wireless Devices. <u>RSS-Gen Issue 5</u>: General Requirements for Compliance of Radio Apparatus.

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC2024240712	Dec. 24, 2024	Original

1.3. Test Description

FCC Part 15C & RSS-210 Issue 11					
Test Item	Standard	Standard Section		Test	
iest nem	FCC	ISED	Result	Engineer	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Jim Jiang	
Radiated Emission	15.209	RSS-Gen 8.9	Pass	Jim Jiang	
Occupied Bandwidth	/	RSS-Gen 6.7	Pass	Jim Jiang	
Antenna Requirement	15.203	RSS-Gen 6.8	Pass	Jim Jiang	

Note:

N/A: Not applicable.

The measurement uncertainty is not included in the test result.

Address of the report laboratory

CTC Laboratories, Inc.

Add: Room 101 of Building B, Room 107, 108, 207, 208 of Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 2" and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	21°C~27°C
Relative Humidity:	40%~60%
Air Pressure:	101kPa

1.7. EUT Operation State

The EUT has been tested under typical operating condition. The applicant provides normal EUT, to maintain continuous transmission mode for testing. Or in the state of charging.

2. GENERAL INFORMATION

2.1. Client Information

Applicant / Manufacturer:	Launch Tech Co., Ltd.
FCC Address:	Launch Industrial Park, North of Wuhe Rd., Banxuegang, Longgang Shenzhen 518129 China
ISED Address:	Launch Industrial Park, North of Wuhe Road, Bantian Street, Longgang District, Shenzhen Guangdong 518129 China

2.2. General Description of EUT

Product Name:	SMART TPMS DIAGNOSTIC SYSTEM
Trade Mark:	LAUNCH
Model/Type reference:	Creader TPMS 511S V2
Listed Model(s):	Creader TPMS 5011 V2
Model Difference:	All these models are identical in the same PCB, layout, electrical circuit and enclosure. The difference is the color of the plastic sleeve.
Sample ID:	CTC240919-001-S001
Power supply:	Vehicle Input: DC12V 1A, USB Input: DC5V 2A 3.7V 6000mAh from lithium battery
Hardware version:	V2
Software version:	CRT501S_V2_V100
RF Parameter	
Operation frequency:	125kHz
Modulation:	ASK
Antenna type:	Coil Antenna

2.3. Accessory Equipment Information

Equipment Information				
Name	Model	S/N	Manufacturer	
RF-Sensor	LTR-V	/	LAUNCH	
Adapter	A2167	/	Apple	
Cable Information				
Name	Shielded Type	Ferrite Core	Length	
USB Cable	Unshielded	NO	100cm	
Test Software Information				
Name	Version	1	/	
/	/	/	/	

2.4. Measurement Instruments List

	RF Test System - SRD					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 12, 2024	
2	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 12, 2024	
3	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 12, 2024	

	Radiated Emission					
Item	m Test Equipment Manufacturer Model No. Serial No. Calibrated U					
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024	
2	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024	
3	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024	
4	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024	

	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	LISN	R&S	ENV216	101112	Dec. 12, 2024	
2	LISN	R&S	ENV216	101113	Dec. 12, 2024	
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024	
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2024	
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2024	
6	Test Software	R&S	EMC32	6.10.10	/	

		RF Tes	t System - SRD		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 21, 2025
2	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 12, 2025
3	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 12, 2025
4	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 21, 2025
5	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 21, 2025
6	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 12, 2025
7	RF Control Unit	Tonscend	JS0806-2	/	Aug. 21, 2025
8	Test Software	Tonscend	JS1120-3	V3.3.38	/
9	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 21, 2025

		Radiated I	Emission		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 24, 2025
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2025
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2025
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2025
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
7	Test Software	FARA	EZ-EMC	FA-03A2	/

		Conducted	d Emission		
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	LISN	R&S	ENV216	101112	Dec. 12, 2025
2	LISN	R&S	ENV216	101113	Dec. 12, 2025
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2025
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2025
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2025
6	Test Software	R&S	EMC32	6.10.10	/

Note:

1. The Cal. Interval was one year.

- 2. The cable loss has calculated in test result which connection between each test instruments.
- 3. The cable loss has been calculated in test result which connection between each test instruments.

CTC Laboratories, Inc.

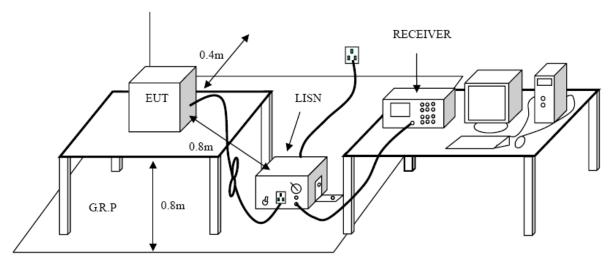
3. TEST ITEM AND RESULTS

3.1. Conducted Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207, RSS-Gen 8.8

	Limit (d	BuV)		
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

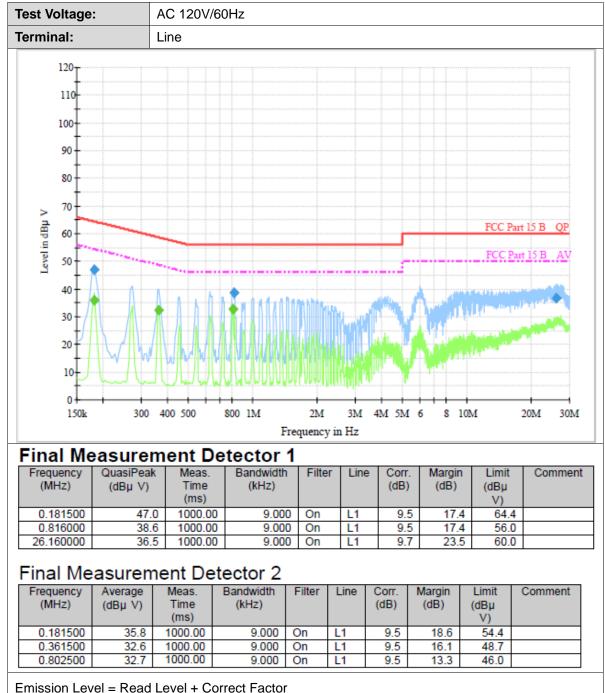
(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

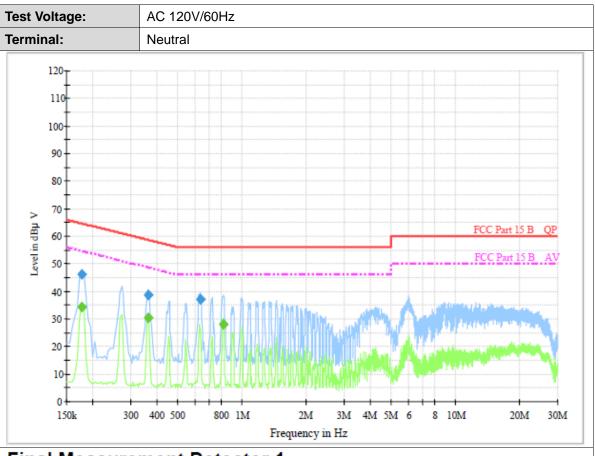
Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

CTC Laboratories, Inc.


Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

Test Mode


Please refer to the clause 1.7.

Test Results

CTC Laboratories, Inc.

Final Measurement Detector 1

Frequency (MHz)	QuasiPeak (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ V)	Comment
0.177000	46.0	1000.00	9.000	On	Ν	9.5	18.6	64.6	
0.361500	38.8	1000.00	9.000	On	N	9.4	19.9	58.7	
0.636000	37.3	1000.00	9.000	On	N	9.4	18.7	56.0	

Final Measurement Detector 2

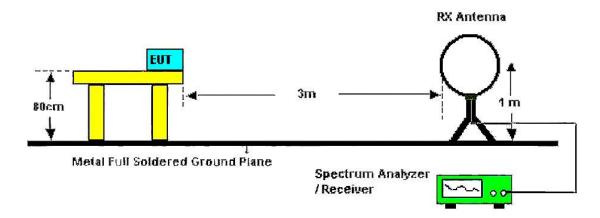
Frequency	Average	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµ V)	Time	(kHz)			(dB)	(dB)	(dBµ	
		(ms)						V)	
0.177000	34.2	1000.00	9.000	On	N	9.5	20.4	54.6	
0.361500	30.5	1000.00	9.000	On	N	9.4	18.2	48.7	
0.816000	28.1	1000.00	9.000	On	N	9.4	17.9	46.0	

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of China Inspection And Testing

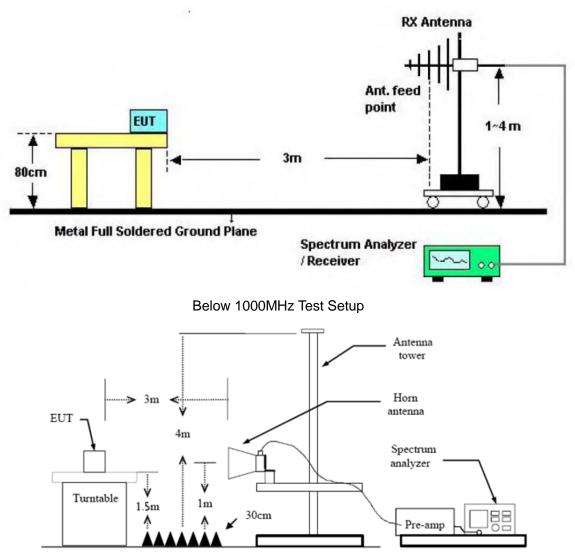
Society : <u>yz.cnca.cn</u>

3.2. Radiated Emission


<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209, RSS-Gen 8.9

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3


	dBµV/m (at 3 meters)					
Frequency Range (MHz)	Peak	Average				
Above 1000	74	54				

Test Configuration

Below 30MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of China Inspection And Testing

Society : <u>yz.cnca.cn</u>

- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) 9Hz 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) 150kHz - 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(4) 30MHz - 1GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=3MHz RMS detector for Average value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements.

Test Mode

Please refer to the clause 1.7.

9 KHz~150 KHz

Ant.	. Pol.		Horizontal								
140.	0 dBuV/	'm									
130											
	_										
120											
110					+	_		EC.	C Par		9K-20M
100									igin -6		
90											
80											6 X
70	<u> </u>										
60	<u> </u>						_	+			
50	<u> </u>	\	2		3			+	_	5	
40				\sim	-×	m	<u>Å</u> ~	win	n	Å	walkan
30											
20.0											
	.009			[MHz]							0.1
Γ		Fraguanau	Deading	Fastar		aval	1.50	nit	Ma	rain	
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)		.evel 3uV/m)				rgin B)	Detector
		` '			ļ				· ·	<u> </u>	
	1	0.0126	23.93	27.21	5	1.14	125	5.58	-74	.44	peak
	2	0.0260	26.90	22.11	4	9.01	119	.29	-70	.28	peak
ľ	3	0.0418	25.67	19.87	4	5.54	115	5.17	-69	.63	peak
ŀ	4	0.0591	25.48	19.21	4	4.69	112	2.16	-67	.47	peak
ŀ	5	0.0997	27.92	17.82	4	5.74	107	.62	-61	.88	peak
ŀ	6 *	0.1252	53.89	18.01	7	1.90	105	6.65	-33	.75	peak
L		Frequency	Level	Leve		Lin	nit	M	argir	1	
	No.	(MHz)	(dBuV/m)	(dBuA/i	m)	(dBu/	4/m)		dB)		Detecto
	1	0.0126	51.14	-0.36		74.			4.44		peak
	2	0.0260	49.01	-2.49		67.			0.28		peak
	3	0.0418	45.54	-5.96		63.			9.63		<u>peak</u>
	4 5	0.0591	44.69 45.74	-6.81 -5.76		60. 56			7.47		peak
	<u>5</u> 6	0.0997	45.74	-5.76		56. 54.			1.88 3.75		peak peak
	0	0.1202	11.00	20.40	,	54.	10	-0	0.70	,	pear

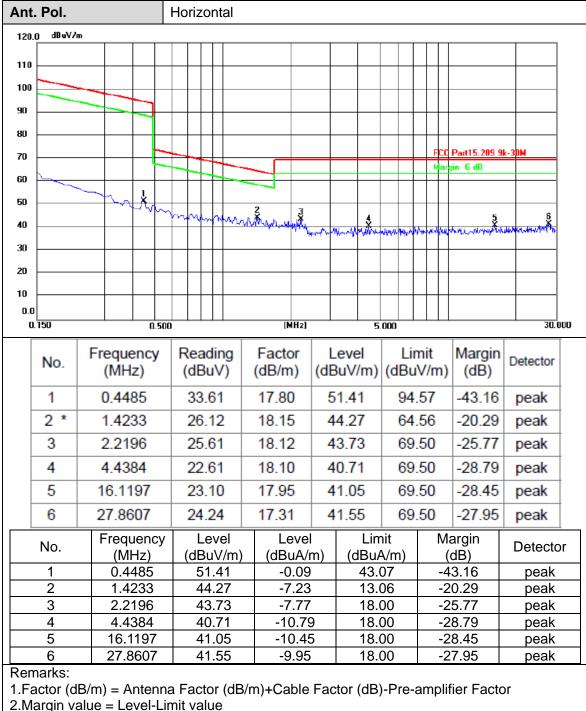
3.Level(dBuA/m) = Level(dBuV/m)-51.5

CTC Laboratories, Inc.

Ant. P	ol.		Vertical									
140.0	dBuV/n	n										_
130												
120												
					+							1
110					+			FC	C Partr	. 209	9k-20M	
100					+			Ma	rgin -6-4	-		
90 -					-		_	+		+-		-
80												
70											e X	
												1
60 -			1		+					+		
50 🏳		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	ž i	+		3	4	5	+		+
40 -					<u> </u>	~~~~	m	<u>h x</u> t	<u>~n</u> ×	Y~	montemp	4
30 🖵					_		_			_		4
20.0												
0.00	9			(MHz)							0.1	150
N	lo.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)		.evel 8uV/m)	1	nit V/m)	Mar (dE		Detector	
-	1	0.0187	26.52	23.91	5	0.43	122	.15	-71.	72	peak	t
1	2	0.0336	25.38	20.89	4	6.27	117	.06	-70.	79	peak	t
	3	0.0566	25.53	19.21	4	4.74	112	.54	-67.	80	peak	t
4	1	0.0767	25.92	18.18	4	4.10	109	.90	-65.	80	peak	t
(5	0.0922	26.37	18.12	4	4.49	108	.30	-63.	81	peak	t
6	; *	0.1252	57.02	18.01	7	5.03	105	6.65	-30.	62	peak	t
N	0.	Frequency (MHz)	Level (dBuV/m)	Leve (dBuA/		Lin (dBu/			⊥ argin dB)		Detecto	or
	1	0.0187	50.43	-1.07		70.			1.72		peak	
	2	0.0336	46.27	-5.23		65.			0.79		peak	
	3	0.0566	44.74	-6.76		61.			7.80		peak	
	4	0.0767	44.10	-7.40		58.			5.80		peak	
	5	0.0922	44.49	-7.01		56.			3.81		<u>peak</u>	
Remar	<u>6</u>	0.1252	75.03	23.53)	54.	10	-3	0.62		peak	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

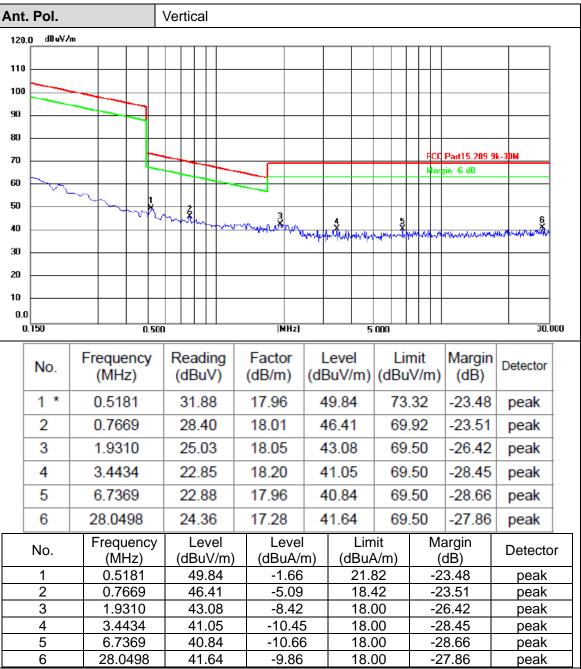
2.Margin value = Level-Limit value


3.Level(dBuA/m) = Level(dBuV/m)-51.5

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

150 KHz~30 MHz


3.Level(dBuA/m) = Level(dBuV/m)-51.5

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of China Inspection And Testing

Page 19 of 24

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level-Limit value

3.Level(dBuA/m) = Level(dBuV/m)-51.5

CTC Laboratories, Inc.

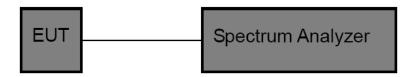
Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

For anti-fake verification, please visit the official website of China Inspection And Testing Society : <u>yz.cnca.cn</u>

2.Margin value = Level -Limit value

t. Pol. .0 dBuV/	m		Vert	loa										
													Т	٦
													+	_
													_	
									15 RE-CI	ase B 3	0-100	DM		Ч
								Margin -				_	+	┦
							╞┅──				3	4	5 X	ş
		1				<u> </u>	lin, mit					х м ^л ит	,Ť.	Anil
ի հայները	A AN	A MAR	lk lat			LAND AND A		haventer		apart 174	1		_	_
White	W/""	nt n	MN WIM	11h	n all and a	VMbc.Aldun , innali	. WMMM							
30.000		60.00				(MHz)		300.00					1	000
No.		lency			ing	Factor	Level		mit		rgin	De	tect	tor
		Hz)	``		V)	(dB/m)	(dBuV/m	· ·	iV/m)	· ·	B)			
1		147	-	4.1		-16.81	27.32		.00		.68		QP	
2	188.4	4123	4	9.9)1	-18.66	31.25	43	.50	<u> </u>	.25	(QP	/
3	649.	6594	3	8.5	54	-6.70	31.84	46	.00	-14	.16	(QP	·
4	747.4	4823	3	7.0)6	-4.83	32.23	46	.00	-13	.77	(QP	-
5	848.	0561	3	6.3	30	-3.28	33.02	46	.00	-12	.98	(QP	
6 *	948.	7608	3	6.6	67	-1.71	34.96	46	.00	-11	.04	(QP	

2.Margin value = Level -Limit value



3.3. Bandwidth

<u>Limit</u>

None.

Test Configuration

Test Procedure

The occupied bandwidth per RSS-Gen Issue 5 Clause 6.7 was measured using the Spectrum Analyzer. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3 x RBW.

Test Mode

Please refer to the clause 1.7.

Test Results

nnel Frequency(kHz)	20dB Bandw	vidth(Hz)	Occupied Bandwidth(Hz										
125	74.6	7	225.76										
Spectrum	Spectrum 🕎												
	fset 20.00 dB 👄 RBW 10 Hz		(*)										
e Att 20 dB SV	/T 190.1 ms 👄 VBW 30 Hz	Mode Auto FFT											
●1Pk View		D2[1]	0.09 dB										
0.0 40-1		02[1]	74.670 Hz										
20 dBm	MB T	Occ Bw	225.759768452 Hz										
10 dBm	-+	M1[1]	-5.22 dBm										
0 40		1 1	124.960060 kHz										
0 dBm	M1 T	02											
-10 dBm		T2											
		- M											
20,d8m~~		`	- Trank										
-30 dBm													
-40 dBm													
-50 dBm													
-60 dBm													
CF 125.0 kHz Marker	691 pt:	•	Span 600.0 Hz										
	value Y-value	Function	Function Result										
	4.96006 kHz -5.22 dBm		- the set in some										
	4.88712 kHz -16.59 dBm	Occ Bw	225.759768452 Hz										
	25.11288 kHz -15.12 dBm												
D2 M1 1 M3 1 12	74.67 Hz 0.09 dB 4.99826 kHz 14.80 dBm												
			24.12.2024										
		Measuring	221.12.21021										
Date: 24.DEC.2024 10:21:	38												

3.4. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

<u>Result</u>

The EUT's antenna is a Coil Antenna, there is no gain requirement.

RSS-Gen Issue 5 Section 6.8:

The applicant for equipment certification, as per RSP-100, must provide a list of all antenna types that may be used with the licence-exempt transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. Licence-exempt transmitters that have received equipment certification may operate with different types of antennas. However, it is not permissible to exceed the maximum equivalent isotropically radiated power(e.i.r.p.) limits specified in the applicable standard (RSS) for licence-exempt apparatus.

<u>Result</u>

PASS.

The EUT has a Coil Antenna with a frequency of 125kHz.

Note: Antenna use a permanently attached antenna which is not replaceable.

Not using a standard antenna jack or electrical connector for antenna replacement.

The antenna has to be professionally installed (please provide method of installation).

Which in accordance to RSS-Gen 6.8, please refer to the internal photos.