

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

Smart Projector

MODEL NUMBER: HY300

REPORT NUMBER: E01A23070868F00301

ISSUE DATE: August 31, 2023

FCC ID:2BCAX-T08

Prepared for

GuangDong SINOY Smart Technology CO., LTD 5TH Floor, Building #2, RunFengZhiGu Industrial Park,Changpin Town,DongGuan City, Guangdong, China

Prepared by

Dong Guan Anci Electronic Technology Co., Ltd.

1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hitech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Electronic Technology Co., Ltd.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	August 31, 2023	Initial Issue	Poal Chen

Summary of Test Results

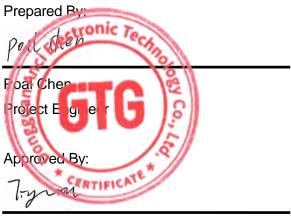
Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013 Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC Part 15.247 (b)(1)	Pass
20 dB Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC Part 15.247 (a)(1)	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC Part 15.247 (a)(1)	Pass
Number of Hopping Frequency	ANSI C63.10-2013 Clause 7.8.3	FCC Part 15.247 (b)(1)	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	FCC Part 15.247 (a)(1)	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC Part 15.247(d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC Part 15.205/15.209	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C> when <Accuracy Method> decision rule is applied.

CONTENTS

1.	ATTESTATION OF TEST RESULTS	5
2.	TEST METHODOLOGY	6
3.	FACILITIES AND ACCREDITATION	6
4.	CALIBRATION AND UNCERTAINTY	.7
	4.1. MEASURING INSTRUMENT CALIBRATION	. 7
	4.2. MEASUREMENT UNCERTAINTY	. 7
5.	EQUIPMENT UNDER TEST	8
	5.1. DESCRIPTION OF EUT	.8
	5.2. CHANNEL LIST	.8
	5.3. Maximum Peak Output Power	.8
	5.4. TEST CHANNEL CONFIGURATION	.9
	5.5. THE WORSE CASE POWER SETTING PARAMETER	.9
	5.6. DESCRIPTION OF AVAILABLE ANTENNAS	10
	5.7. SUPPORT UNITS FOR SYSTEM TEST	10
	5.8. SETUP DIAGRAM	10
6.	MEASURING EQUIPMENT AND SOFTWARE USED1	1
7.	ANTENNA PORT TEST RESULTS1	3
	7.1. Conducted Output Power	13
	7.2. 20 dB Bandwidth	15
	7.3. Carrier Hopping Channel Separation	17
	7.4. Number of Hopping Frequency	19
	7.5. Time of Occupancy (Dwell Time)	
		21
	7.5. Time of Occupancy (Dwell Time) 7.6. Conducted Bandedge and Spurious Emission	
8.		23
	7.6. Conducted Bandedge and Spurious Emission	23 25
9.	7.6. Conducted Bandedge and Spurious Emission	23 25 13
9. 1(7.6. Conducted Bandedge and Spurious Emission	23 25 13


1. ATTESTATION OF TEST RESULTS

Applicant Information

Date of Tested:	August 3, 2023 to August 30, 2023		
Sample ID:	A23070868 004		
Sample Status:	Normal		
Sample Received Date:	W13-S,W13-M,M8,G1,G5,BL108,BL128,A1 July 31, 2023		
Series Model:	P1, P2, P5, P6, P7, P8, P9, HY300A, S27, T08, T09,		
Model:	HY300		
EUT Information Product Description:	Smart Projector		
Company Name: Address:	GuangDong SINOY Smart Technology CO., LTD 5TH Floor, Building #2, RunFengZhiGu Industrial Park,Changpin Town,DongGuan City, Guangdong, China		
Factory Information			
Manufacturer Information Company Name: Address:	GuangDong SINOY Smart Technology CO., LTD 5TH Floor, Building #2, RunFengZhiGu Industrial Park,Changpin Town,DongGuan City, Guangdong, China		
Company Name: Address:	GuangDong SINOY Smart Technology CO., LTD 5TH Floor, Building #2, RunFengZhiGu Industrial Park,Changpin Town,DongGuan City, Guangdong, China		

LICARI E STANDARDS

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 FCC PART 15 SUBPART C Pass				

Checked By:

Das

Dyson Dai **Project Engineer**

Tiger Xu Laboratory Supervisor

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4422.01)
	Dong Guan Anci Electronic Technology Co., Ltd. has been
	assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1230)
	Dong Guan Anci Electronic Technology Co., Ltd. has been
Accreditation Certificate	recognized to perform compliance testing on equipment subject to
Accreditation Certificate	Supplier's Declaration of Conformity (SDoC) and Certification rules
	ISED (Company No.: 22768)
	Dong Guan Anci Electronic Technology Co., Ltd. has been
	registered and fully described in a report filed with ISED. The
	Company Number is 22768 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0079.

Note: All tests measurement facilities use to collect the measurement data are located at 1-2/F., Building A, and 1F Building B, No.11, Headquarters 2 Road, Songshan Lake Hightech Industrial Development Zone, Dongguan, Guangdong, China

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty				
DTS Bandwidth	1.96	±9.2 PPM				
20dB Emission Bandwidth	1.96	±9.2 PPM				
Carrier Frequency Separation	1.96	±9.2 PPM				
Number of Hopping Channel	1.96	±9.2 PPM				
Time of Occupancy	1.96	±0.57%				
Maximum Conducted Output Power	1.96	± 0.73 dB				
Max Peak Conducted Output Power	1.96	±1.5 dB				
Maximum Power Spectral Density Level	1.96	±1.9 dB				
Conducted Band edge	1.96	±9.2 PPM				
Conducted spurious emission 9 kHz-30 MHz: ± 0.95 dB 1.96 30 MHz-1 GHz: ± 1.5 dB 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1dB						
Note: This uncertainty represents an expanded uncertainty expressed at approximately the						
95% confidence level using a coverage factor of k=1.96.						

Test Item	Measurement Frequency Range	К	U(dB)		
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37		
Radiated emissions	30 MHz ~ 1 GHz	2	3.79		
Radiated emissions	1 GHz ~ 18 GHz	2	5.62		
Radiated emissions	18 GHz ~ 40 GHz	2	5.54		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.					

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Smart Projector
Model		HY300
Series Model		P1, P2, P5, P6, P7, P8, P9, HY300A, S27, T08, T09, W13-S, W13-M, M8, G1, G5, BL108, BL128, A1
EUT Classification		Class B
Hardware Versio	n	V1.0
Software Version		V1.0
Ratings		AC100-260V~ 50/60Hz 2.5A
Power Supply AC		120V/60Hz

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.3. MAXIMUM PEAK OUTPUT POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)
GFSK	2402 ~ 2480	0-78[79]	7.58
8DPSK	2402 ~ 2480	0-78[79]	7.69

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
8DPSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz

Note: The hop is hopping mode.

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)
	DH1	27
GFSK	DH3	183
	DH5	339
	2-DH1	54
∏/4-DQPSK	2-DH3	367
	2-DH5	679
	3-DH1	83
8DPSK	3-DH3	552
	3-DH5	1021

5.5. THE WORSE CASE POWER SETTING PARAMETER

WORST-CASE CONFIGURATIONS

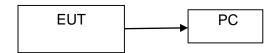
Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

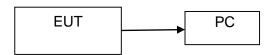
The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Se	oftware	rf_test			
Modulation Type	Transmit Antenna	Test Software setting value			
	Number	CH 00	CH 39	CH 78	
GFSK	1	5	5	5	
8DPSK	1	5	5	5	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

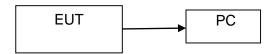
Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	PCB	-3.91


Test Mode	Transmit and Receive Mode	Description		
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.		
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.		
Note: 1.BT&WLAN 2.4G, BT & WLAN 5G, WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client)				

5.7. SUPPORT UNITS FOR SYSTEM TEST


Equipment	Manufacturer	Model No.
PC	Lenovo	T14

5.8. SETUP DIAGRAM


AC conducted emission :

Radiated Emission:

RF conducted:

6.	MEASURING	EQUIPMENT	AND SOFT	WARE USED
----	-----------	-----------	----------	-----------

Test Equipment of Conducted RF					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Spectrum Analyzer	KEYSIGHT	N9020A	MY51281878	2022-10-08	2023-10-07
Radio Frequency control box	MWRF-test	MW200- RFCB	MW220111ANCI	2023-05-10	2024-05-09
Radio Frequency control box	MWRF-test	MW200- RFCB 2#	/	2023-05-10	2024-05-09
RF Test Software	MWRF-test	MTS 8310	N/A	N/A	N/A

Test Equipment of Radiated emissions below 1GHz						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
3m Semi-anechoic Chamber	Keysight	9m*6m*6m	N/A	2021-11-13	2024-11-12	
EMI Test Receiver	ROHDE&SCHWARZ	ESCI	100302	2023-05-10	2024-05-09	
Bilog Antenna	Schwarzbeck	VULB9163	VULB9163- 1290	2022-12-12	2023-12-11	
RF Cable	ZKJC	ZT06S-NJ- NJ-11M	19060398	2023-05-10	2024-05-09	
RF Cable	ZKJC	ZT06S-NJ- NJ-0.5M	19060400	2023-05-10	2024-05-09	
RF Cable	ZKJC	ZT06S-NJ- NJ-2.5M	19060404	2023-05-10	2024-05-09	
Test Software	Farad	EZ-EMC (Ver.FA- 03A2 RE)	N/A	N/A	N/A	

Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi- anechoic Chamber	Keysight	9m*6m*6m	N/A	2021-11-13	2024-11-12
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-10-29	2023-10-28
Horn antenna	A-INFO	LB-10180-SF	J203109061 2123	2023-05-10	2024-05-09
Low noise Amplifiers	A-INFO	LA1018N400 9	J101313052 4001	2023-05-10	2024-05-09
RF Cable	ZKJC	ZT26-NJ-NJ- 11M	19060401	2023-05-10	2024-05-09
RF Cable	ZKJC	ZT26-NJ-NJ- 2.5M	19060402	2023-05-10	2024-05-09
RF Cable	ZKJC	ZT26-NJ-NJ- 0.5M	19060403	2023-05-10	2024-05-09

TRF No.: 01-R005-3A

Global Testing , Great Quality.

Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A
Test Equipment	of Conducted er	missions			
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
1# Shielded Room	chengyu	8m*4m*3.3m	N/A	2022-11-22	2025-11-21
EMI Test Receiver	ROHDE&SCH WARZ	ESCI	101358	2023-05-10	2024-05-09
LISN	ROHDE&SCH WARZ	ENV216	101413	2022-10-08	2023-10-07
RF Cable	N/A	ZT06S-NJ- NJ-2.5M	19044022	2023-05-10	2024-05-09
Test Software	Farad	EZ-EMC (Ver.ANCI- 3A1)	N/A	N/A	N/A

7. ANTENNA PORT TEST RESULTS 7.1. CONDUCTED OUTPUT POWER LIMITS

CFR 47 FCC Part15 (15.247), Subpart C				
Section Test Item Limit				
CFR 47 FCC §15.207 (a) Conducted output power no greater than 125 mW				

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.5.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	>20 dB bandwidth of the emission being measured	
VBW	≥RBW	
Span	Approximately five times the 20 dB bandwidth, centered on a hopping channel.	
Trace	Max hold	
Sweep time	Auto	

Allow trace to stabilize.

Use the marker-to-peak function to set the marker to the peak of the emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6 ℃	Relative Humidity	41%RH
Atmosphere Pressure	101kPa		

TRF No.: 01-R005-3A

TEST RESULTS

Test results refer to report E01A23070868F00302 - Appendix A

TRF No.: 01-R005-3A

Global Testing, Great Quality.

7.2. 20 DB BANDWIDTH

<u>LIMITS</u>

CFR 47FCC Part15 (15.247) Subpart C			
Section Test Item Limit Frequency Ra (MHz)			Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
IBBW/	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth	
	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW	
Span	Approximately 2 to 3 times the 20dB bandwidth	
Trace	Max hold	
Sweep	Auto couple	

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6 ℃	Relative Humidity	41%RH
Atmosphere Pressure	101kPa		

TEST RESULTS

Test results refer to report E01A23070868F00302 - Appendix B

TRF No.: 01-R005-3A

Global Testing , Great Quality.

7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247),				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.


Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Span	wide enough to capture the peaks of two adjacent channels
Detector	Peak
	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.
VBW	≥RBW
Trace	Max hold
Sweep time	Auto couple

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6 ℃	Relative Humidity	41%RH
Atmosphere Pressure	101kPa		

TEST RESULTS

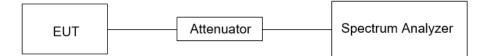
Test results refer to report E01A23070868F00302 - Appendix C

7.4. NUMBER OF HOPPING FREQUENCY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C			
Section	Test Item Limit		
CFR 47 15.247 (a) (1) III	Number of Hopping Frequency	at least 15 hopping channels	

TEST PROCEDURE


Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak	
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.	
VBW	≥RBW	
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.	
Trace	Max hold	
Sweep time	Auto couple	

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6 ℃	Relative Humidity	41%RH
Atmosphere Pressure	101kPa		

TEST RESULTS

Test results refer to report E01A23070868F00302 - Appendix H

TRF No.: 01-R005-3A

Global Testing , Great Quality.

7.5. TIME OF OCCUPANCY (DWELL TIME)

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 15.247 (a) (1) III	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6 ℃	Relative Humidity	41%RH
Atmosphere Pressure	101kPa		

TEST RESULTS

Test results refer to report E01A23070868F00302 - Appendix D

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C		
Section	Test Item	Limit
CFR 47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

5040	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

TEST SETUP

TEST ENVIRONMENT

Temperature	24.6 ℃	Relative Humidity	41%RH
Atmosphere Pressure	101kPa		

TEST RESULTS

Test results refer to report E01A23070868F00302 - Appendix E, Appendix F and Appendix G.

8. RADIATED TEST RESULTS

Radiated Band edge and Spurious EmissionLIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Strength Limit	
(MHz)	(uV/m) at 3 m	(dBuV/m) at 3 m
((uv/iii) at o iii	Quasi-Peak	
30 - 88	100	40)
88 - 216	150	43	.5
216 - 960	200	46	6
Above 960	500	54	
Above 1000	500	Peak	Average
		74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5. 4 6
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123- 1 38	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

The setting of the spectrum analyser

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

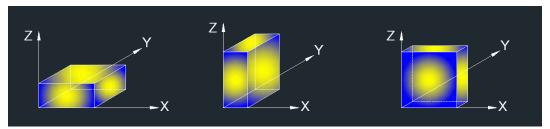
Above 1 GHz

RBW	1 MHz
VBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

The setting of the spectrum analyser

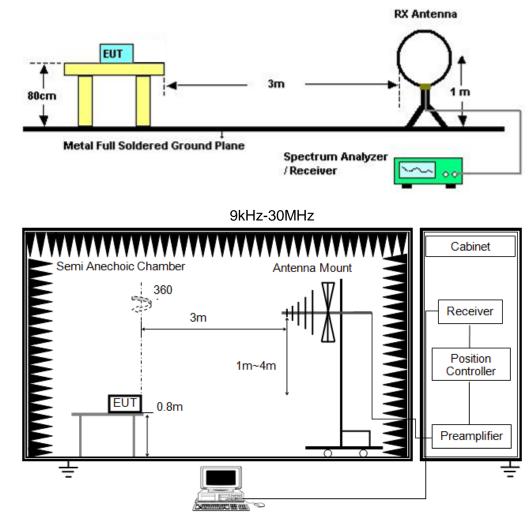
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

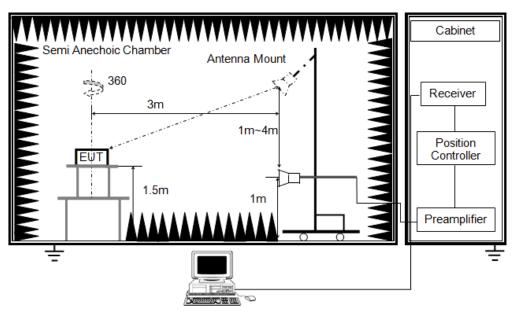

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.


6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:


Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST SETUP

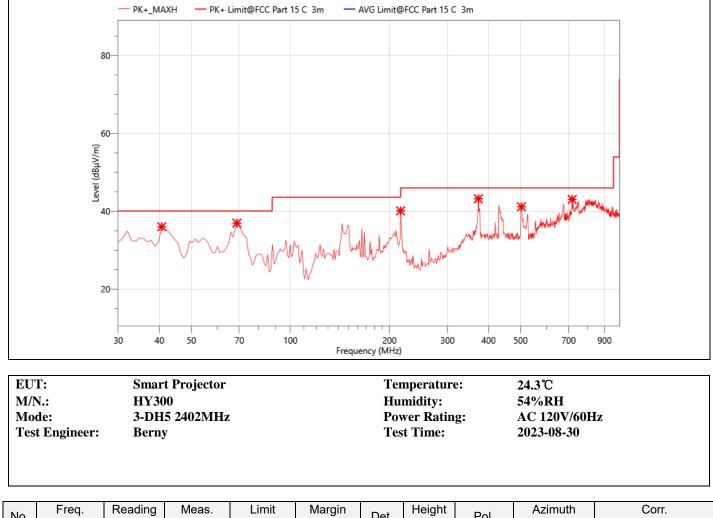
30MHz-1GHz

Above 1GHz

TEST ENVIRONMENT

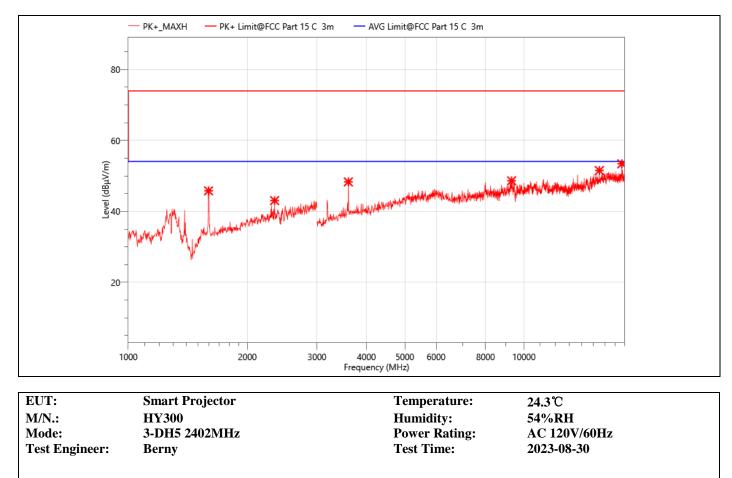
Temperature	24.3 ℃	Relative Humidity	54%RH
Atmosphere Pressure	101kPa		

TEST RESULTS

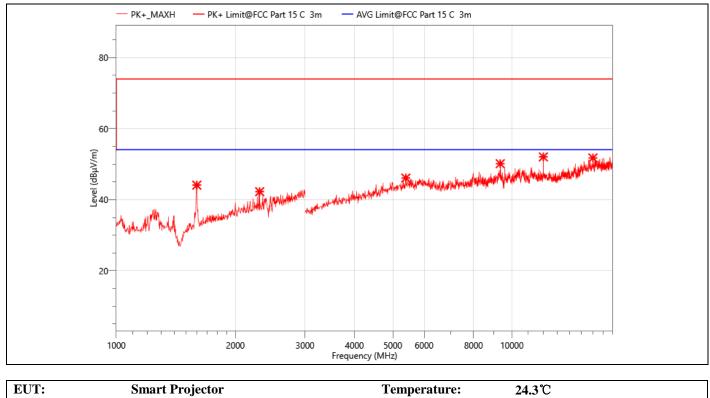

• Undesirable radiated Spurious Emission below 1GHz (30MHz to 1GHz)

PK+_MAXH - PK+ Limit@FCC Part 15 C 3m AVG Limit@FCC Part 15 C 3m 80 60 Level (dBµV/m) 40 * 20 200 Frequency (MHz) 50 70 100 300 900 30 40 400 500 700

The worst	result as	hellow.
	icouit ao	Denow.

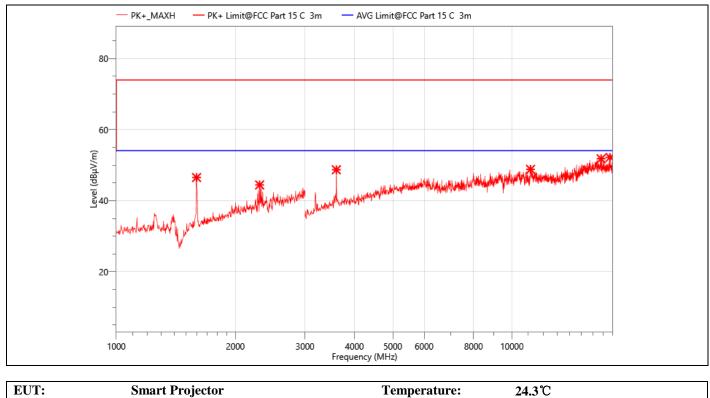

EUT:	Smart Projector	Temperature:	24.3°C	
M/N.:	HY300	Humidity:	54%RH	
Mode:	3-DH5 2402MHz	Power Rating:	AC 120V/60Hz	
Test Engineer:	Berny	Test Time:	2023-08-30	

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	46.490	37.84	33.76	40.00	6.24	PK+	100.0	Н	182.1	-4.08
2	73.650	39.99	34.78	40.00	5.22	PK+	100.0	Н	182.1	-5.21
3	167.740	41.57	36.24	43.50	7.26	PK+	100.0	Н	182.1	-5.33
4	312.270	40.79	40.29	46.00	5.71	PK+	100.0	Н	182.1	-0.5
5	431.580	37.36	41.41	46.00	4.59	PK+	100.0	Н	182.1	4.05
6	864.200	30.92	44.23	46.00	1.77	PK+	100.0	Н	182.1	13.31



No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBuV/m)	Limit (dBµV/m)	Margin (dBuV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	40.670	40.68	36.01	40.00	3.99	PK+	100.0	V	182.1	-4.67
2	68.800	41.37	36.94	40.00	3.06	PK+	100.0	V	182.1	-4.43
3	216.240	44.76	40.11	46.00	5.89	PK+	100.0	V	182.1	-4.65
4	372.410	41.39	43.21	46.00	2.79	PK+	100.0	V	182.1	1.82
5	503.360	35.51	41.15	46.00	4.85	PK+	100.0	V	182.1	5.64
6	717.730	32.76	43.05	46.00	2.95	PK+	100.0	V	182.1	10.29

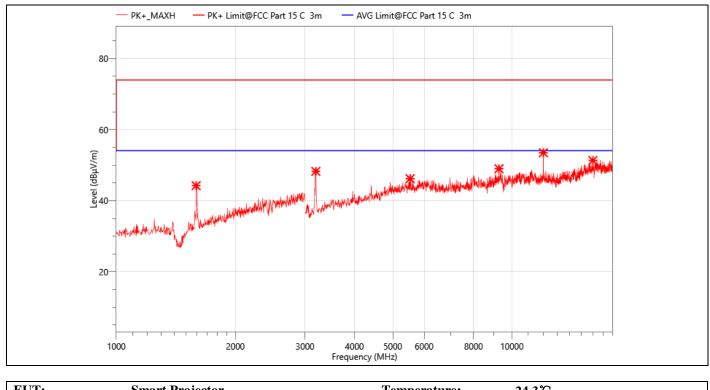
• Undesirable radiated Spurious Emission Above 1GHz (1GHz to 26.5GHz) All modes has been tested and the worst result (3-DH5) recorded as below:



		-		-			-			
No.	Freq.	Reading	Meas.	Limit	Margin	Det.	Height	Pol.	Azimuth	Corr.
INO.	(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Del.	(cm)	FUI.	(deg)	(dB)
1	1596.000	63.05	45.81	74.00	28.19	PK+	150.0	Н	182.1	-17.24
2	2344.000	55.33	43.06	74.00	30.94	PK+	150.0	Н	182.1	-12.27
3	3600.000	62.18	48.32	74.00	25.68	PK+	150.0	Н	182.1	-13.86
4	9310.000	49.59	48.65	74.00	25.35	PK+	150.0	Н	182.1	-0.94
5	15515.000	48.97	51.54	74.00	22.46	PK+	150.0	Н	182.1	2.57
6	17680.000	48.41	53.42	74.00	20.58	PK+	150.0	Н	182.1	5.01

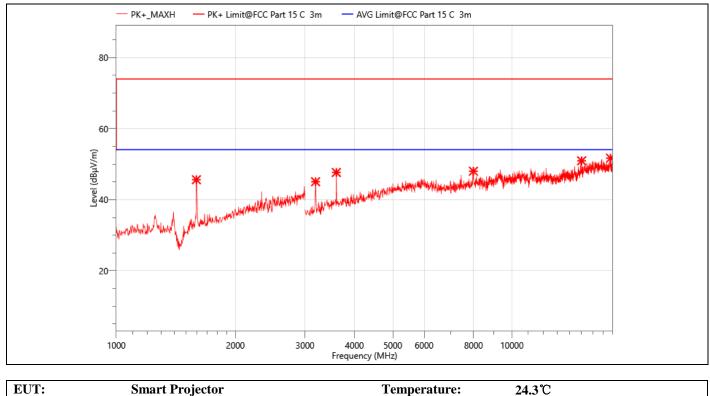
EUT:	Smart Projector	Temperature:	24.3°C
M/N.:	HY300	Humidity:	54%RH
Mode:	3-DH5 2402MHz	Power Rating:	AC 120V/60Hz
Test Engineer:	Berny	Test Time:	2023-08-30
_	-		

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	1598.000	61.32	44.11	74.00	29.89	PK+	150.0	V	182.1	-17.21
2	2304.000	55.27	42.26	74.00	31.74	PK+	150.0	V	182.1	-13.01
3	5395.000	53.15	46.10	74.00	27.90	PK+	150.0	V	182.1	-7.05
4	9345.000	51.06	50.14	74.00	23.86	PK+	150.0	V	182.1	-0.92
5	12010.000	51.74	52.05	74.00	21.95	PK+	150.0	V	182.1	0.31
6	16025.000	48.95	51.76	74.00	22.24	PK+	150.0	V	182.1	2.81


EUT:	Smart Proje
M/N.:	HY300
Mode:	3-DH5 2441
Test Engineer:	Berny

MHz

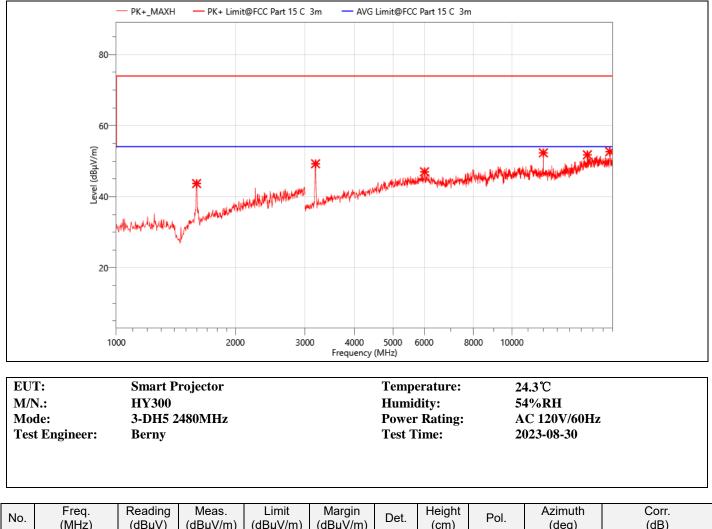
Humidity: Power Rating: **Test Time:**


54%RH AC 120V/60Hz 2023-08-30

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	1596.000	63.77	46.53	74.00	27.47	PK+	150.0	Н	182.1	-17.24
2	2304.000	57.45	44.44	74.00	29.56	PK+	150.0	Н	182.1	-13.01
3	3600.000	62.57	48.71	74.00	25.29	PK+	150.0	Н	182.1	-13.86
4	11145.000	48.41	48.84	74.00	25.16	PK+	150.0	Н	182.1	0.43
5	16810.000	48.23	51.82	74.00	22.18	PK+	150.0	Н	182.1	3.59
6	17700.000	47.44	52.19	74.00	21.81	PK+	150.0	Н	182.1	4.75

EUT:	Smart Projector	Temperature:	24.3°C
M/N.:	HY300	Humidity:	54%RH
Mode:	3-DH5 2441MHz	Power Rating:	AC 120V/60Hz
Test Engineer:	Berny	Test Time:	2023-08-30
-			

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	1592.000	61.53	44.24	74.00	29.76	PK+	150.0	V	182.1	-17.29
2	3195.000	64.35	48.26	74.00	25.74	PK+	150.0	V	182.1	-16.09
3	5530.000	53.32	46.19	74.00	27.81	PK+	150.0	V	182.1	-7.13
4	9275.000	49.59	49.00	74.00	25.00	PK+	150.0	V	182.1	-0.59
5	12010.000	53.20	53.51	74.00	20.49	PK+	150.0	V	182.1	0.31
6	16025.000	48.52	51.33	74.00	22.67	PK+	150.0	V	182.1	2.81



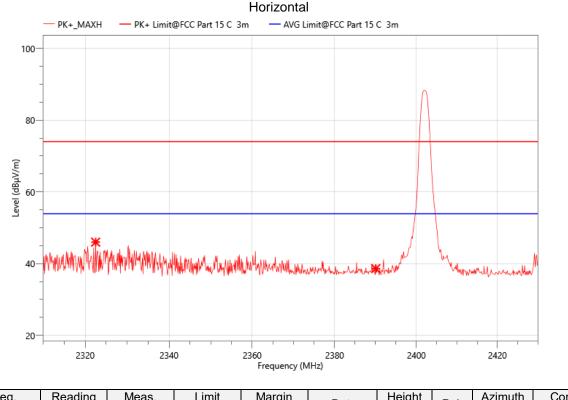
EUT:	Sma
M/N.:	HY.
Mode:	3-D
Test Engineer:	Ber

HY300 3-DH5 2480MHz Berny Temperature: Humidity: Power Rating: Test Time:

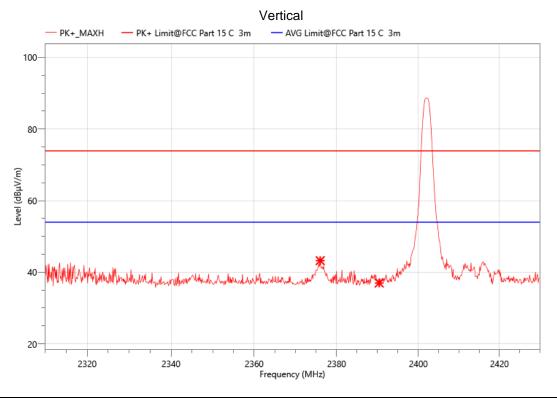
24.3 C 54%RH AC 120V/60Hz 2023-08-30

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	1594.000	62.90	45.63	74.00	28.37	PK+	150.0	Н	182.1	-17.27
2	3190.000	61.17	45.07	74.00	28.93	PK+	150.0	Н	182.1	-16.1
3	3600.000	61.52	47.66	74.00	26.34	PK+	150.0	Н	182.1	-13.86
4	7995.000	50.18	48.02	74.00	25.98	PK+	150.0	Н	182.1	-2.16
5	15005.000	48.49	50.95	74.00	23.05	PK+	150.0	Н	182.1	2.46
6	17755.000	47.53	51.70	74.00	22.30	PK+	150.0	Н	182.1	4.17

No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
1	1596.000	60.95	43.71	74.00	30.29	PK+	150.0	V	182.1	-17.24
2	3190.000	65.37	49.27	74.00	24.73	PK+	150.0	V	182.1	-16.1
3	6015.000	52.59	47.02	74.00	26.98	PK+	150.0	V	182.1	-5.57
4	12010.000	52.03	52.34	74.00	21.66	PK+	150.0	V	182.1	0.31
5	15515.000	49.22	51.79	74.00	22.21	PK+	150.0	V	182.1	2.57
6	17680.000	47.67	52.68	74.00	21.32	PK+	150.0	V	182.1	5.01

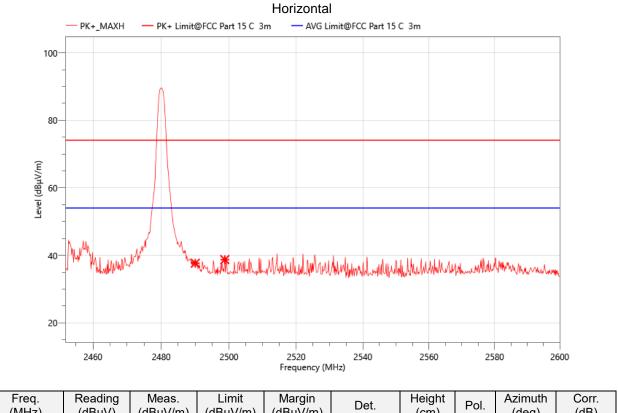

Note: 1.All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

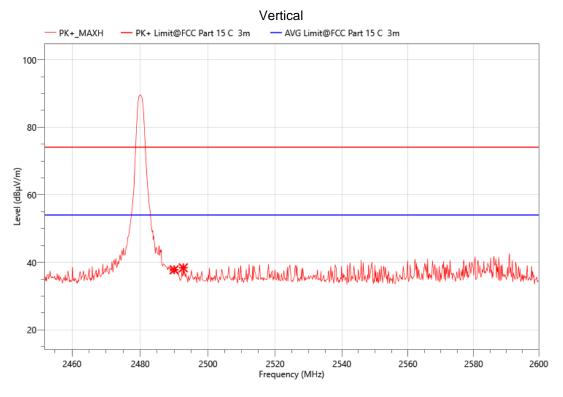
2.Emission Level= Reading Level+Probe Factor +Cable Loss.


 $3.EIRP[dBm] = E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$

d is the measurement distance in 3 meters

Band Edge 3-DH5 2402MHz


Freq. (MHz)	Reading (dBµV)	ineas. (dBµV/m)	(dBµV/m)	(dBµV/m)	Det.	(cm)	Pol.	deg)	(dB)
2322.480	67.01	46.01	74.00	27.99	PK+	150.0	Н	182.1	-21
2390.040	59.36	38.63	74.00	35.37	PK+	150.0	Н	182.1	-20.73


Freq.	Reading	Meas.	Limit	Margin	Det.	Height	Pol.	Azimuth	Corr.
(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dBµV/m)		(cm)		(deg)	(dB)
2376.000	63.99	43.25	74.00	30.75	PK+	150.0	V	182.1	-20.74
2390.400	57.71	36.98	74.00	37.02	PK+	150.0	V	182.1	-20.73

3-DH5 2480MHz

Г

(MHz)	(dBµV)	(dBµV/m)	(dBµV/m)	(dBµV/m)	Det.	(cm) Pol.		(deg)	(dB)
2490.036	57.93	37.65	74.00	36.35	PK+	150.0	Н	182.1	-20.28
2498.768	58.99	38.73	74.00	35.27	PK+	150.0	Н	182.1	-20.26

Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Height (cm)	Pol.	Azimuth (deg)	Corr. (dB)
2490.000	58.06	37.78	74.00	36.22	PK+	150.0	V	182.1	-20.28
2492.700	58.63	38.36	74.00	35.64	PK+	150.0	V	182.1	-20.27

Note:1.DH5, 2-DH5, 3-DH5, all has been tested, the worst case is 3-DH5,only shown the worst case.

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

Pass

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

	CFF	R 47 FCC Part15	Subpart C		
FREQUENCY	Class A	(dBµV)	Class B (dBµV)		
(MHz)	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46*	
0.50 -5.0	73.00	60.00	56.00	46.00	
5.0 -30.0	73.00	60.00	60.00	50.00	

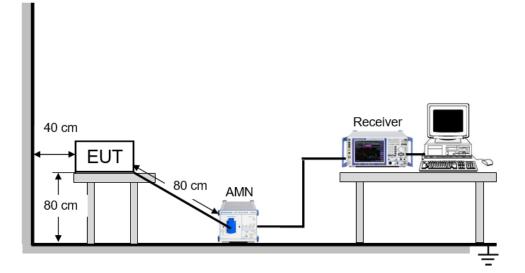
Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

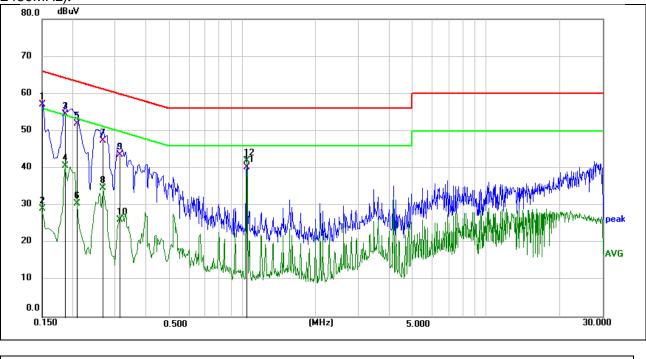
Receiver Parameters	Setting			
Attenuation	10 dB			
Start Frequency	0.15 MHz			
Stop Frequency	30 MHz			
IF Bandwidth	9 kHz			


TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

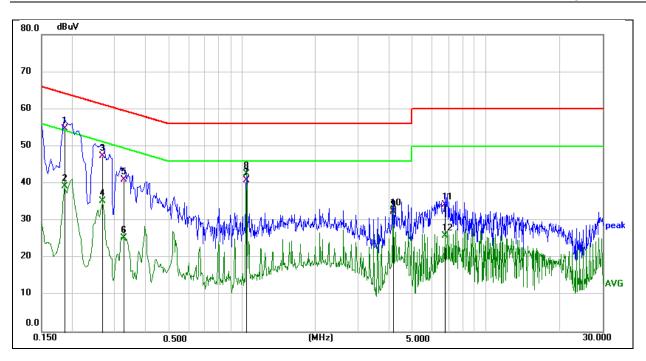
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.


TEST SETUP

TEST ENVIRONMENT

Temperature	26 ℃	Relative Humidity	54%RH
Atmosphere Pressure	101kPa		


TEST RESULTS

All the modes have been tested, only the worst data was recorded in the report (3-DH5 2480MHz).

EUT:	Smart Projector	Phase:	L1
M/N.:	HY300	Temperature:	26℃
Mode:	3-DH5 2480MHz	Humidity:	54%RH
Test Engineer:	Aiden	Power Rating:	AC120V/60Hz
Test Time:	2023-08-04		

No.	Frequency	Reading	Factor	Measure-	Limit	Margin	Detector
	(MHz)	Level(dBuV)	(dB)	ment(dBuV)	(dBuV)	(dB)	
1	0.1500	47.34	9.76	57.10	66.00	-8.90	QP
2	0.1500	19.39	9.76	29.15	56.00	-26.85	AVG
3	0.1860	44.59	9.81	54.40	64.21	-9.81	QP
4	0.1860	30.81	9.81	40.62	54.21	-13.59	AVG
5	0.2085	42.10	9.80	51.90	63.26	-11.36	QP
6	0.2085	20.59	9.80	30.39	53.26	-22.87	AVG
7	0.2670	37.68	9.72	47.40	61.21	-13.81	QP
8	0.2670	24.93	9.72	34.65	51.21	-16.56	AVG
9	0.3120	33.69	9.91	43.60	59.92	-16.32	QP
10	0.3120	16.24	9.91	26.15	49.92	-23.77	AVG
11	1.0410	30.31	9.79	40.10	56.00	-15.90	QP
12	1.0410	32.22	9.79	42.01	46.00	-3.99	AVG

EUT:	Smart Projector	Phase:	N	
M/N.:	HY300	Temperature:	26°C	
Mode:	3-DH5 2480MHz	Humidity:	54%RH	
Test Engineer:	Aiden	Power Rating:	AC120V/60Hz	
Test Time:	2023-08-04			

No.	Frequency (MHz)	Reading Level(dBuV)	Factor (dB)	Measure- ment(dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1860	44.95	9.75	54.70	64.21	-9.51	QP
2	0.1860	29.36	9.75	39.11	54.21	-15.10	AVG
3	0.2670	37.51	9.79	47.30	61.21	-13.91	QP
4	0.2670	25.37	9.79	35.16	51.21	-16.05	AVG
5	0.3255	31.17	9.73	40.90	59.57	-18.67	QP
6	0.3255	15.63	9.73	25.36	49.57	-24.21	AVG
7	1.0410	30.83	9.87	40.70	56.00	-15.30	QP
8	1.0410	32.69	9.87	42.56	46.00	-3.44	AVG
9	4.1640	22.38	9.92	32.30	56.00	-23.70	QP
10	4.1640	22.65	9.92	32.57	46.00	-13.43	AVG
11	6.7875	24.37	9.93	34.30	60.00	-25.70	QP
12	6.7875	15.94	9.93	25.87	50.00	-24.13	AVG

Note: 1. Result = Reading + Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

PENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

Please refer to report E01A23070868F00307.

APPENDIX: PHOTOGRAPHS OF THE EUT

Please refer to report E01A23070868F00308.

--- END OF REPORT---