Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn #### **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 884 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.923$ S/m; $\varepsilon_r = 52.34$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: • Probe: EX3DV4 - SN7307; ConvF(7.55,7.55,7.55); Calibrated: 3/17/2017; Date: 10.26.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.3 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 25.1 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.88 W/kg Maximum value of SAR (measured) = 20.6 W/kg 0 dB = 20.6 W/kg = 13.14 dBW/kg Certificate No: Z17-97210 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Body TSL Certificate No: Z17-97210 Page 8 of 8 # **Extended Dipole Calibrations** Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | Head | | | | | | | |-------------|------------------|------------|----------------|-------|-----------------|-------| | Date of | Poturn logo (dP) | Dolto (9/) | Real Impedance | Delta | Imaginary | Delta | | measurement | Return-loss (dB) | Delta (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2017-10-26 | -23.8 | | 55.1 | | 4.55 | | | Body | | | | | | | |-------------|------------------|-----------|----------------|-------|-----------------|-------| | Date of | Return-loss (dB) | Delta (%) | Real Impedance | Delta | Imaginary | Delta | | measurement | Return-1055 (db) | Della (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2017-10-26 | -24.2 | | 50.1 | | 6.21 | | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration. ## 1.7. D2600V2 Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates | CALIBRATION (| ZEITH IOAH | | | |--|---|---|---| | Object | D2600V2 - SN: 1 | 120 | | | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | edure for dipole validation kits abo | ove 700 MHz | | Calibration date: | February 03, 201 | 6 | | | This calibration certificate docum
The measurements and the unce | nents the traceability to nat
ertainties with confidence p | ional standards, which realize the physical ur
probability are given on the following pages ar | nits of measurements (SI). | | The measurements and the unce | ertainties with confidence p | ional standards, which realize the physical ur
probability are given on the following pages ar
ry facility: environment temperature $(22\pm3)^\circ$ | nd are part of the certificate. | | The measurements and the unco
All calibrations have been condu
Calibration Equipment used (M&
Primary Standards | ertainties with confidence p | probability are given on the following pages ar | nd are part of the certificate. | | The measurements and the unce
All calibrations have been condu
Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A | ertainties with confidence protected in the closed laborato TE critical for calibration) ID # GB37480704 | orobability are given on the following pages are ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) | C and humidity < 70%. Scheduled Calibration Oct-16 | | The measurements and the uncertainty and the uncertainty and calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481A | ertainties with confidence protected in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 | ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) | C and humidity < 70%. Scheduled Calibration Oct-16 Oct-16 | | The measurements and the uncertainty and the uncertainty and calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | ertainties with confidence protected in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 | ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) | C and humidity < 70%. Scheduled Calibration Oct-16 Oct-16 Oct-16 | | The measurements and the uncertain All calibrations have been conducted Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator | cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) | robability are given on the following pages are ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) | C and humidity < 70%. Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 | | The measurements and the unco- All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination | ertainties with confidence protected in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 | robability are given on the following pages are ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) | C and humidity < 70%. Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 | | The measurements and the uncertainty and the uncertainty and calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | cted in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) | robability are given on the following pages are ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) | C and humidity < 70%. Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 | | The measurements and the uncounter All calibrations have been conducted and calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | retainties with confidence protected in the closed laborato (TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 | ry facility: environment temperature (22 ± 3)° Cal Date (Certificate No.) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) | Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-16 Dec-16 | | The measurements and the unor All calibrations have been conducted and the unor Calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ertainties with confidence protected in the closed laborato TE critical for calibration) ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 | Cal Date (Certificate No.) Or-Oct-15 (No. 217-02222) Or-Oct-15 (No. 217-02222) Or-Oct-15 (No. 217-02222) Or-Oct-15 (No. 217-02223) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) | Scheduled Calibration Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-16 | Calibrated by: This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Laboratory Technician Function Signature Approved by: Katja Pokovic Michael Weber Name Technical Manager Issued: February 5, 2016 Certificate No: D2600V2-1120_Feb16 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1120_Feb16 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 2600 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.1 ± 6 % | 2.01 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.7 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 16.5 % (k=2) | **Body TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.6 ± 6 % | 2.22 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 52.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.87 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 23.3 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1120_Feb16 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.7 Ω - 5.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.0 dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.0 Ω - 4.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.0 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.150 ns | |--|----------| | A STATE OF THE PARTY PAR | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | | | |-----------------|------------------|--|--| | Manufactured on | October 22, 2015 | | | Certificate No: D2600V2-1120_Feb16 #### **DASY5 Validation Report for Head TSL** Date: 03.02.2016 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1120 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.01 S/m; ϵ_r = 38.1; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.49, 7.49, 7.49); Calibrated: 31.12.2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 114.4 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.07 W/kg Maximum value of SAR (measured) = 23.5 W/kg 0 dB = 23.5 W/kg = 13.71 dBW/kg Certificate No: D2600V2-1120_Feb16 ## Impedance Measurement Plot for Head TSL Certificate No: D2600V2-1120_Feb16 Page 6 of 8 #### DASY5 Validation Report for Body TSL Date: 03.02.2016 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1120 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; σ = 2.22 S/m; ϵ_r = 51.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.6, 7.6, 7.6); Calibrated: 31.12.2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 5.87 W/kg Maximum value of SAR (measured) = 21.9 W/kg Certificate No: D2600V2-1120_Feb16 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Certificate No: D2600V2-1120_Feb16 Page 8 of 8 # **Extended Dipole Calibrations** Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | Head | | | | | | | | | |-------------|------------------|-----------|----------------|-------|-----------------|-------|--|--| | Date of | Return-loss (dB) | Delta (%) | Real Impedance | Delta | Imaginary | Delta | | | | measurement | | | (ohm) | (ohm) | impedance (ohm) | (ohm) | | | | 2016-02-03 | -25.0 | | 50.7 | | -5.6 | | | | | 2017-02-01 | -24.9 | 1.16 | 51.5 | 0.8 | -5.2 | 0.4 | | | | Body | | | | | | | |-------------|------------------|-----------|----------------|-------|-----------------|-------| | Date of | Return-loss (dB) | Delta (%) | Real Impedance | Delta | Imaginary | Delta | | measurement | | | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2016-02-03 | -25.0 | | 47.0 | | -4.5 | | | 2017-02-01 | -24.6 | 4.00 | 48.3 | 1.3 | -4.0 | 0.5 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration. -----End-----