

No.: FCCSZ2024-0048-RF1

TEST REPORT

FCC ID	:	2AYHY-VS360
NAME OF SAMPLE	:	IR Breakbeam People Counter
APPLICANT	:	Xiamen Milesight IoT Co., Ltd.
CLASSIFICATION OF TEST	:	N/A

CVC Testing Technology (Shenzhen) Co., Ltd.

Page 2 of 39

		Name: Xiamen Milesight IoT Co., Ltd.					
Applicant		Address: Building C09, Software Park Phase III, Xiamen 361024, Fujian, China					
Manufacturer		Name: Xiamen Mil	lesight IoT Co., I	Ltd.			
		Address: Building Fujian,		e Park Phase III, Xiamen 361024,			
		Name: IR Breakb	eam People Co	unter			
		Model/Type: VS3	60-915M				
		Additional Model	/Type: See Sec	tion 2.2			
Equipment U	nder Test	Brand: Milesight					
		Serial No.: N/A					
		Sample No.: 3-1					
Date of Receipt. 2024-06-25			Date of Testing	2024-06-25 ~ 2024-07-31			
Те	st Specificatio	on	Test Result				
FCC Part 15,	Subpart C, Se	ection 15.247	PASS				
		The equipm	ent under test v	was found to comply with the			
		requirements of the standards applied.					
Evaluation of Te	st Result						
				Seal of CVC			
				Issue Date: 2024-08-02			
Compiled by:		Reviewed by:		Approved by:			
Zhu Y	ubn	Mox	Vints				
Zhu Yu l Name Sig	l in gnature	Mo Xiar Name	ibiao Signature	Dong Sanbi Name Signature			
Other Aspects: I	NONE.			-			
Abbreviations:OK, Pas	s= passed Fail	l = failed N/A= not appli	icable EUT= equi	pment, sample(s) under tested			

This test report relates only to the EUT, and shall not be reproduced except in full, without written approval of CVC.

Test Report No.: FCCSZ2024-0048-RF1

Page 3 of 39

TABLE OF CONTENTS

RELEASE CONTROL RECORD	4
1 SUMMARY OF TEST RESULTS	5
1.1 TEST LOCATION	5
1.2 LIST OF TEST AND MEASUREMENT INSTRUMENTS	6
1.3 MEASUREMENT UNCERTAINTY	7
2 GENERAL INFORMATION	8
2.1 GENERAL PRODUCT INFORMATION	8
2.2 ADDITIONAL MODEL/TYPE	8
2.3 DESCRIPTION OF ACCESSORIES	
2.4 CHANNEL FREQUENCY	
2.5 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	
2.6 GENERAL DESCRIPTION OF APPLIED STANDARDS	
2.7 DESCRIPTION OF SUPPORT UNITS	
3 TEST TYPES AND RESULTS	
3.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT	
3.2 NUMBER OF HOPPING FREQUENCY USED	21
3.3 DWELL TIME ON EACH CHANNEL	
3.4 20db EMISSION BANDWIDTH	
3.5 HOPPING CHANNEL SEPARATION	
3.6 CONDUCTED OUTPUT POWER	
3.7 POWER SPECTRAL DENSITY MEASUREMENT	
3.8 OUT OF BAND EMISSION MEASUREMENT	
3.9 ANTENNA REQUIREMENT	
4 PHOTOGRAPHS OF TEST SETUP	
5 PHOTOGRAPHS OF THE EUT	

Page 4 of 39

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
FCCSZ2024-0048-RF1	Original release	2024-08-02

Test Report No.: FCCSZ2024-0048-RF1

Page 5 of 39

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15 Subpart C							
STANDARD SECTION	TEST TYPE AND LIMIT	RESULT	REMARK				
15.207	AC Power Conducted Emission	N/A	The product is battery powered				
15.247(a)(1)	Number of Hopping Frequency Used	PASS	See section 3.6				
15.247(a)(1)	Hopping Channel Separation	N/A	See section 3.4				
15.247(a)(1)	Dwell Time of Each Channel	PASS	See section 3.4				
15.247(a)(1)	20dB Emissions Bandwidth	PASS	See section 3.5				
15.247(b)	Conducted Output Power	PASS	See section 3.7				
15.247(d), 15.209,15.205	Radiated Emissions and Band Edge Measurement	PASS	See section 3.2				
15.247(d)	Out of band Emission Measurement	PASS	See section 3.9				
FCC 15.247(e)	Power Spectral Density	PASS	See section 3.8				
15.203 15.247(b)	Antenna Requirement	PASS	See section 3.10				

1.1 TEST LOCATION

The tests and measurements refer to this report were performed by EMC testing Lab of CVC Testing Technology (Shenzhen) Co., Ltd.

Address: No. 1301-14&16, Guanguang Road, Xinlan Community, Guanlan Subdistrict, Longhua District, Shenzhen, Guangdong, China

Post Code: 518110 Tel: 0755-23763060-8805 Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn FCC(Test firm designation number: CN1363) IC(Test firm CAB identifier number: CN0137) CNAS(Test firm designation number: L16091)

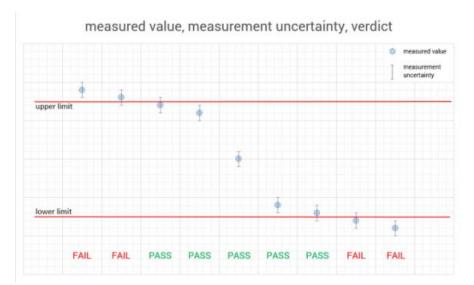
Page 6 of 39

1.2 LIST OF TEST AND MEASUREMENT INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial Number	Cal. interval	Cal. Due			
Antenna Port Conducted Test								
Signal&Spectrum Analyzer	Rohde&Schwarz	FSV 30	104408	1 year	2025/4/28			
#3Shielding room	MORI	443	N/A	3 year	2026/5/16			
Wideband radio communication tester	Rohde&Schwarz	CMW 500	168778	1 year	2025/5/24			
Analog signal Generator (100kHz ~ 40GHz)	Rohde&Schwarz	SMB 100A	181934	1 year	2025/4/27			
Vector signal Generator (9kHz ~ 6GHz)	Rohde&Schwarz	SGT 100A	111724	1 year	2025/4/27			
RF control unit(BT/WiFi)	Tonscend	JS0806-2-8CH	20E8060261	1 year	2025/4/28			
Temperature and humidity meter	/	C193561457	C193561457	1 year	2025/4/27			
Radiation Spurious Test - 3M Cha	mber #2							
Signal&Spectrum Analyzer	Rohde&Schwarz	FSV 40	101898	1 year	2025/4/28			
EMI Test Receiver	Rohde&Schwarz	ESR3	102693	1 year	2025/4/28			
Antenna(30MHz~1001MHz)	SCHWARZBECK	VULB 9168	1133	1 year	2025/2/20			
Horn antenna(1GHz-18GHz)	ETS	3117	227611	1 year	2025/2/4			
Horn antenna(18GHz-40GHz)	QMS	QMS-00880	22051	1 year	2025/3/24			
3m anechoic chamber	MORI	966	CS0300011	3 year	2026/5/18			
Filter group(RSE-BT/WiFi)	Rohde&Schwarz	WiFi /BT Variant 1	100820	1 year	2025/4/28			
Filter group(RSE-Cellular)	Rohde&Schwarz	Cellular Variant 1	100768	1 year	2025/4/28			
Preamplifier(10kHz-1GHz)	Rohde&Schwarz	SCU-01F	100299	1 year	2025/4/28			
Preamplifier(1GHz-18GHz)	Rohde&Schwarz	SCU-18F	100799	1 year	2025/4/28			
Preamplifier(1GHz-18GHz)	Rohde&Schwarz	SCU-18F	100801	1 year	2025/4/28			
Preamplifier(18GHz-40GHz)	Rohde&Schwarz	SCU-40A	101209	1 year	2025/4/28			
Temperature and humidity meter	/	C193561517	C193561517	1 year	2025/4/27			
Radiation Spurious Test - 3M Cha	mber #1							
EMI Test Receiver	Rohde&Schwarz	ESR 26	101718	1 year	2025/5/24			
Antenna(30MHz~1000MHz)	SCHWARZBECK	VULB 9168	01132	1 year	2025/5/27			
Horn antenna(1GHz-18GHz)	ETS	3117	227634	1 year	2025/3/25			
Horn antenna(18GHz-40GHz)	SCHWARZBECK	BBHA 9170	01003	1 year	2025/3/25			
3m anechoic chamber	MORI	966	CS0200019	3 year	2026/5/18			
LISN (single-phase)	Rohde&Schwarz	ESH3-Z6	102152/102156	1 year	2025/4/27			
Preamplifier(10kHz-1GHz)	Rohde&Schwarz	SCU-01F	100298	1 year	2025/4/28			
Attenuator	1	SJ-5dB	607684	1 year	2025/2/4			
#1 control room	MORI	433	CS0300028	3 year	2026/5/17			
Temperature and humidity meter	UNI-T	A10T	C193561473	1 year	2025/4/27			

Test Report No.: FCCSZ2024-0048-RF1

Page 7 of 39


1.3 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

No.	Item	Measurement Uncertainty					
1	Conducted emission test	+/-2.7 dB					
2	Radiated emission 9kHz-30MHz	+/-5.6 dB					
3	Radiated emission 30MHz-1GHz	+/-4.6 dB					
4	Radiated emission 1GHz-18GHz	+/-4.4 dB					
5	Radiated emission 18GHz-40GHz	+/-5.1 dB					
6	RF power	+/-0.9 dB					
7	Power Spectral Density	+/-0.8 dB					
8	Conducted spurious emissions	+/-2.7 dB					
9	Transmission Time	+/-0.27%					
10	Occupied Bandwidth +/-1.86%						
Rema	Remark: 95% Confidence Levels, k=2.						

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed.

The measurement uncertainty is mentioned in this test report, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

Test Report No.: FCCSZ2024-0048-RF1

Page 8 of 39

2 GENERAL INFORMATION

2.1 GENERAL PRODUCT INFORMATION

PRODUCT	IR Breakbeam People Counter
BRAND	Milesight
MODEL	VS360-915M
ADDITIONAL MODEL	See Section 2.2
POWER SUPPLY (Remark 6)	DC 3.6V(2*3.6V ER14505 LITHIUM BATTERY AA SIZE)
MODULATION TYPE	DTS, FHSS
OPERATING FREQUENCY	Hybrid 125kHz, 902.3MHz ~ 927.8MHz
NUMBER OF CHANNEL	128
PEAK OUTPUT POWER	18.81dBm (Max. Measured)
ANTENNA TYPE (Remark 4/5)	FPC Antenna, with -6.74dBi Gain
I/O PORTS	Refer to user's manual
CABLE SUPPLIED	N/A

Remark:

- 1. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 3. Please refer to the EUT photo document for detailed product photo. (Report NO.: FCCSZ2024-0048-EUT1)

4. Please refer to the antenna report.

- 5. Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, CVC is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 6. The product supplies power to parallel circuits.

2.2 ADDITIONAL MODEL/TYPE

Main Model	Serial Model	Difference
VS360-915M	VS360,NF360-915M,NF360	The only differences are the silk- screen and model.

2.3 DESCRIPTION OF ACCESSORIES

BATTERY				
Brand RAMWAY				
Model No.: ER14505 LITHIUM BATTERY				
Size	AA			
Output:	3.6V			
Number	2			

Test Report No.: FCCSZ2024-0048-RF1

Page 9 of 39

2.4 CHANNEL FREQUENCY

Operation Frequency Each of Channel							
Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	902.3	32	908.7	64	915.2	96	921.6
1	902.5	33	908.9	65	915.4	97	921.8
2	902.7	34	909.1	66	915.6	98	922
3	902.9	35	909.3	67	915.8	99	922.2
4	903.1	36	909.5	68	916	100	922.4
5	903.3	37	909.7	69	916.2	101	922.6
6	903.5	38	909.9	70	916.4	102	922.8
7	903.7	39	910.1	71	916.6	103	923
8	903.9	40	910.3	72	916.8	104	923.2
9	904.1	41	910.5	73	917	105	923.4
10	904.3	42	910.7	74	917.2	106	923.6
11	904.5	43	910.9	75	917.4	107	923.8
12	904.7	44	911.1	76	917.6	108	924
13	904.9	45	911.3	77	917.8	109	924.2
14	905.1	46	911.5	78	918	110	924.4
15	905.3	47	911.7	79	918.2	111	924.6
16	905.5	48	911.9	80	918.4	112	924.8
17	905.7	49	912.1	81	918.6	113	925
18	905.9	50	912.3	82	918.8	114	925.2
19	906.1	51	912.5	83	919	115	925.4
20	906.3	52	912.7	84	919.2	116	925.6
21	906.5	53	912.9	85	919.4	117	925.8
22	906.7	54	913.1	86	919.6	118	926
23	906.9	55	913.3	87	919.8	119	926.2
24	907.1	56	913.5	88	920	120	926.4
25	907.3	57	913.7	89	920.2	121	926.6
26	907.5	58	913.9	90	920.4	122	926.8
27	907.7	59	914.1	91	920.6	123	927
28	907.9	60	914.3	92	920.8	124	927.2
29	908.1	61	914.5	93	921	125	927.4
30	908.3	62	914.7	94	921.2	126	927.6
31	908.5	63	914.9	95	921.4	127	927.8

Note: The channels which were indicated in bold type of the above channel list were selected as representative test channel. Therefor only the data of the test channels were recorded in this report.

Test Report No.: FCCSZ2024-0048-RF1

Page 10 of 39

2.5 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, xyz axis and antenna ports

The worst case was found when positioned on xaxis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT	APPLICABLE TEST ITEMS		EMS			
CONFIGURE MODE		RSE≥1G	PLC	АРСМ	DESCRIPTION	
А	\checkmark	\checkmark	\checkmark		Lora Link	

Where **RSE<1G:** Radiated Emission below 1GHz. **PLC:** Power Line Conducted Emission. **RSE≥1G:** Radiated Emission above 1GHz. **APCM:** Antenna Port Conducted Measurement.

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
A	0 to 127	0	FHSS	DR0

For the test results, only the worst case was shown in test report.

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
A	0 to 127	0,63,127	FHSS	DR0

Test Report No.: FCCSZ2024-0048-RF1

Page 11 of 39

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
А	0 to 127	0,63,127	FHSS	DR0

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY
RSE<1G	RSE<1G 25.2deg. C, 55%RH		Wang Zhiming
RSE≥1G	25.2deg. C, 55%RH	DC 3.6V	Wang Zhiming
PLC 25.2deg. C, 55%RH		DC 3.6V	Wang Zhiming
APCM			

Test Report No.: FCCSZ2024-0048-RF1

Page 12 of 39

2.6 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product, according to the specifications of the manufacturers. It must comply with the requirements of the following standards:

FCC PART 15, Subpart C. Section 15.247 KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2020

All test items have been performed and recorded as per the above standards

2.7 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Support Equipment										
NO	Description	в	Brand Model No. Set		Serial N	umber	Supplied by				
1	N/A	1	N/A	N/A	N/A	4	N/A				
	Support Cable										
NO	Description	Quantity (Number)	Length (m)	Detachable (Yes/ No)	Shielded (Yes/ No)	Cores (Numbe	Supplied by 1				
1	N/A	N/A	N/A	N/A	N/A	N/A	N/A				

Test Report No.: FCCSZ2024-0048-RF1

Page 13 of 39

3 TEST TYPES AND RESULTS

3.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

3.1.1 Limits

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FREQUENCIES (MHz)	FIELD STRENGTH (Microvolts/Meter)	MEASUREMENT DISTANCE (Meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE: 1. The lower limit shall apply at the transition frequencies.

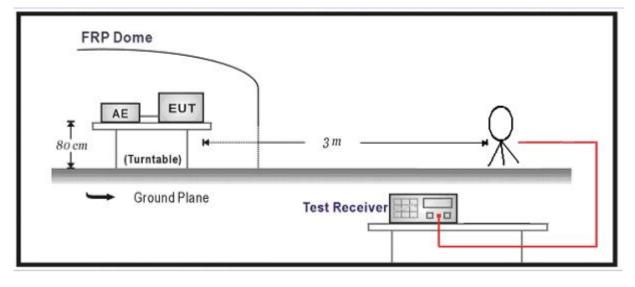
NOTE: 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

NOTE: 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.1.2 Measurement procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters(above 1GHz) and 0.8 meters(below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f.For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

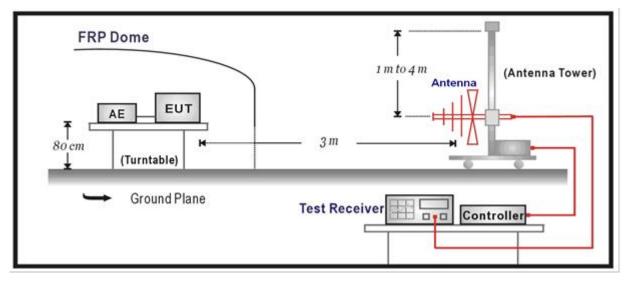
Test Report No.: FCCSZ2024-0048-RF1

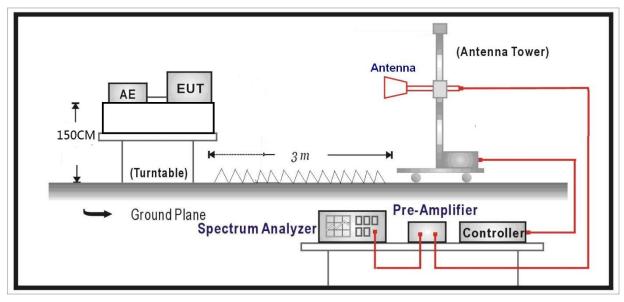

Page 14 of 39

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.

3.1.3 Test setup

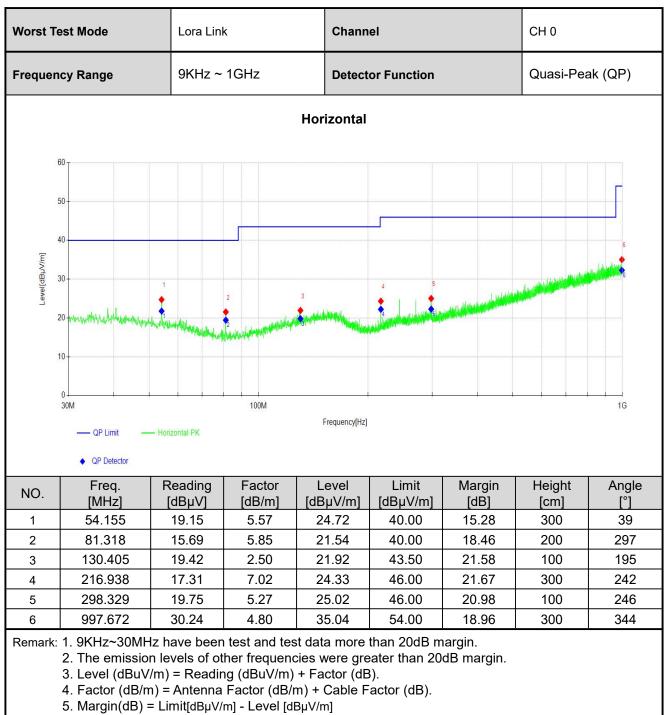

Below 30MHz Test Setup:


Test Report No.: FCCSZ2024-0048-RF1

Page 15 of 39

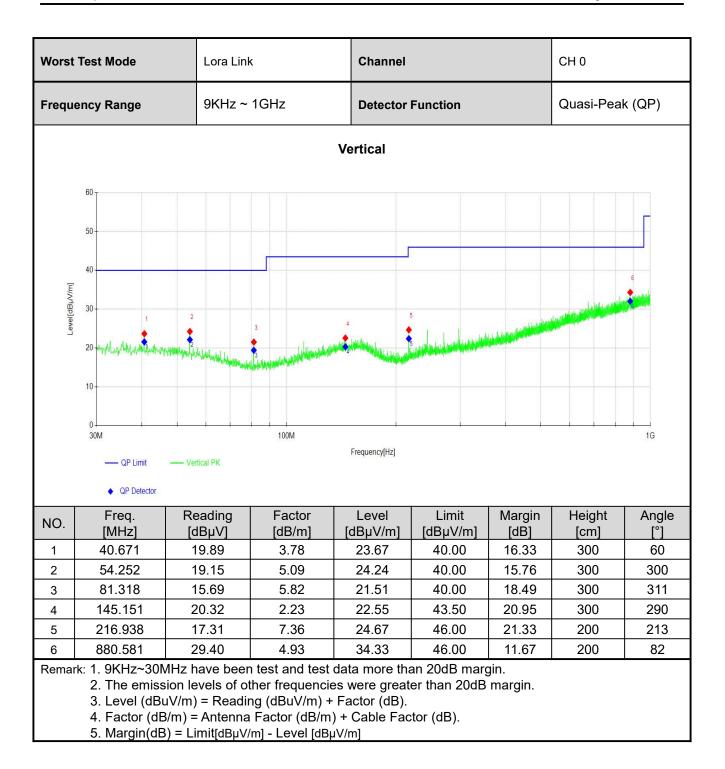
Below 1GHz Test Setup:

Above 1GHz Test Setup:



Test Report No.: FCCSZ2024-0048-RF1

Page 16 of 39


3.1.4 Test results

BELOW 1GHz WORST-CASE DATA

Test Report No.: FCCSZ2024-0048-RF1

Page 17 of 39

ABOVE 1GHz DATA

Channel	nnel CH 0		Frequency		902.3MHz				
Frequency R	Frequency Range 1GHz~9.3G			Detector Function	on	PK/AV			
	Horizontal								
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m	Margin] [dB]	Detector		
1	1804.00	48.55	5.46	54.01	74.00	19.99	PK		
2	1804.00	44.86	5.46	50.32	54.00	3.68	AV		
3	2706.90	45.11	9.93	55.04	74.00	18.96	PK		
4	2706.90	35.85	9.93	45.78	54.00	8.22	AV		
			v	/ertical					
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m	Margin] [dB]	Detector		
1	1804.00	39.76	5.46	45.22	54.00	8.78	AV		
2	1804.00	46.21	5.46	51.67	74.00	22.33	PK		
3	2706.90	35.63	9.93	45.56	54.00	8.44	AV		
4	2706.90	43.68	9.93	53.61	74.00	20.39	PK		
2. L 3. F	evel (dBuV/m) actor (dB/m) =) = Reading (dl	BuV/m) + F or (dB/m) +	- Cable Factor (d		argin.			

Channel		CH 63		Frequency		914.9MHz				
Frequency R	Frequency Range 1GHz~9.3G		Detector Function	on	PK/AV					
	Horizontal									
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector			
1	1829.80	47.90	5.74	53.64	74.00	20.36	PK			
2	1829.80	44.51	5.74	50.25	54.00	3.75	AV			
3	2744.70	36.57	10.93	47.50	54.00	6.50	AV			
4	2744.70	43.98	10.93	54.91	74.00	19.09	PK			
			v	ertical						
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector			
1	1829.80	44.25	5.74	49.99	54.00	4.01	AV			
2	1829.80	47.97	5.74	53.71	74.00	20.29	PK			
3	2744.70	36.88	10.93	47.81	54.00	6.19	AV			
4	2744.70	44.40	10.93	55.33	74.00	18.67	PK			
2. L 3. F	evel (dBuV/m) actor (dB/m) =	4 2744.70 44.40 10.93 55.33 74.00 18.67 PK Remark: 1. The emission levels of other frequencies were greater than 20dB margin. 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB). 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB). 4. Margin(dB) = Limit[dBµV/m] - Level [dBµV/m]								

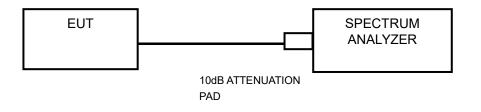
Page 20 of 39

Channel		CH 127		Frequency		927.8MH z			
Frequency R	Frequency Range 1GHz~9.3G		Detector Function	on	PK/AV				
Horizontal									
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector		
1	1855.60	43.51	6.02	49.53	54.00	4.47	AV		
2	1855.60	48.24	6.02	54.26	74.00	19.74	PK		
3	2783.40	44.08	10.20	54.28	74.00	19.72	PK		
4	2783.40	37.19	10.20	47.39	54.00	6.61	AV		
			v	/ertical					
NO.	Freq. [MHz]	Reading [dBµV/m]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector		
1	1855.60	48.02	6.02	54.04	74.00	19.96	PK		
2	1855.60	43.02	6.02	49.04	54.00	4.96	AV		
3	2783.40	44.49	10.20	54.69	74.00	19.31	PK		
4	2783.40	36.50	10.20	46.70	54.00	7.30	AV		
2. L 3. F	4 2783.40 36.50 10.20 46.70 54.00 7.30 AV Remark: 1. The emission levels of other frequencies were greater than 20dB margin. 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB). 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB). 4. Margin(dB) = Limit[dBµV/m] - Level [dBµV/m]								

Test Report No.: FCCSZ2024-0048-RF1

Page 21 of 39

3.2 NUMBER OF HOPPING FREQUENCY USED


3.2.1 Limits

N/A

3.2.2 Measurement procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were completed.

3.2.3 Test setup

Test Report No.: FCCSZ2024-0048-RF1

Page 22 of 39

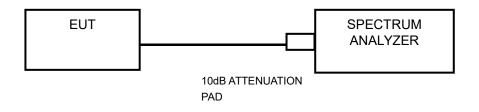
3.2.4 Test result

There are 64 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

Mode	Channel	Result [Num]	Limit [Num]	Verdict
DR0	Нор	128		N/A
1 Frequency Sweep 10 dBm	1.50 dB = RBW 100 kHz .01 ms = VBW 300 kHz Mode Auto			C 1Pk Max
-70 dBm				
900.0 MHz	2001 pt:	3	.0 MHz/	930.0 MHz
2 Marker Table 13:54:34 27.06.2024			Measuring	27.06.2024 13:54:24

Page 23 of 39

3.3 DWELL TIME ON EACH CHANNEL


3.3.1 Limits

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measurement procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

3.3.3 Test setup

Test Report No.: FCCSZ2024-0048-RF1

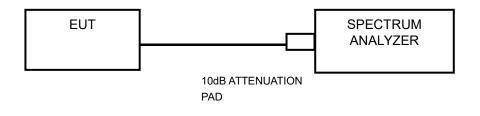
Page 24 of 39

3.3.4 Test result

de	Number of Hopping Channel	in a per	f transmission iod(channel er*0.4 sec)	Length of transmission time (sec)	Result (sec)	Limit (sec)	Verdi
२०	128		51.2	0.371	0.371	≪0.4	PASS
		1	Number of trans	mission in a pe	riod		
							
	MultiView Spe Ref Level 15.00 dBm Att 25 dB • TRG:VID	ectrum RBW 3 MHz SWT 51.2 s VBW 3 MHz				SGL	
	1 Zero Span					O 1Pk Max M1[1] 10.81 dBm	
						1.0 ms	
	0 dBm						
	-10 dBm Tf	RG -10.000 dBm					
	-20 dBm						
	-30 dBm						
	-40 dBm						
	c50 dBm erraneora	and a stand and	-	and the contraction of the second second	an war and a second and the second second	have and the second	
	-60 dBm						
	-70 dBm						
	-80 dBm						
	CF 904.9 MHz		10	001 pts		5.12 s/	
	13:34:12 01.07.20	124			Ready Ready	01.67.2024 13:34:11	
			l ength of tra	nsmission time	•		
			Longin of the				
	MultiView Spe					1.00	
	Ref Level 20.00 dBm Att 30 dB # TRG:VID ************************************	RBW 3 MHz SWT 1 s VBW 3 MHz				SGL	
	1 Zero Span	ŕ			0	19k Max M1[1] 11.42 dBm	
	10 dBm		D2			0 s D2[1] -0.30 dB	
	0 dBm					371.000 ms	
	1914/020101						
	-10 dBm TD	G -10.000 dHm					
		:G -10:000 dBm					
	-20 dBm	G -10.000 dtim					
		G -10.000 dtim					
	-20 dBm -30 dBm -40 dBm	G10.000 dtim					
	-20 dBm	G-10.000 dtm		and harding betray betray betray to the same	May mark and a mark	enter and a second second	
	-20 dBm	G-10.000 dtm		n- literature part of the part of the part	magazinethe construction	under and a state of the state	
	-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm	G-10.000 dtm		hand have the global program the nation	Mageryang Ung, Support Conference of Confere		
	-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -60 dBm	G-10.000 dtm		And Annothing between the second s		100.0 ms/	

Page 25 of 39

3.4 20dB EMISSION BANDWIDTH


3.4.1 Limits

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

3.4.2 Measurement procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

3.4.3 Test setup

Test Report No.: FCCSZ2024-0048-RF1

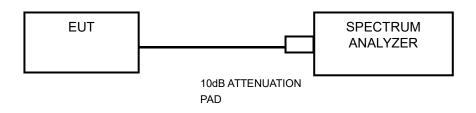
Page 26 of 39

3.4.4 Test result

Mode	Channel	Channel Frequency (MHz)	20dB Emission Bandwidth(kHz)	Limit (kHz)	
	0	902.3	139.125	≤250	
DH0	63	914.9	137.625	≤250	
	127	927.8	139.500	≤250	
	CH0		СН	63	
Count 100/100 0 FP. View 20 dBm 10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm -70 dBm -80 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -10 dBm -20 dBm -10 dBm -20 dBm		ULD FFT (13) 002.394075 MHz (14) 002.394075 MHz (14) 002.394075 MHz (14) 002.394075 MHz (14) 002.394075 MHz (15) 002.394075 MHz	Spectrum Offset 0.03 db Status 0.04 db 0.05 db Status 0.05 db 0.05 db	M1[1] -17.44 dbm 914.03.175.044 M2[1] 914.03.075.046 914.92005 0012 914.92005 0012 914.92005 0012 914.92005 0012 914.92005 0012 914.92005 0012 915 6pon 975.0 kHz	
Com 100/100 0 08m	M	Nuto FFT 311 -10.99 dbm 927.730.023 MHz 2.23 dbm 2(1) 92.730.023 MHz 007.01728.0 MHz 2.33 dbm 007.01728.0 MHz 500 mm 007.01728.0 MHz 500 mm 000 500 mm 001 Function Result			

Page 27 of 39

3.5 HOPPING CHANNEL SEPARATION


3.5.1 Limits

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

3.5.2 Measurement procedure

- a. Span: Wide enough to capture the peaks of two adjacent channels.
- b. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c. Video (or average) bandwidth (VBW) \geq RBW.
- d. Sweep: Auto.
- e. Detector function: Peak.
- f.Trace: Max hold.
- g. Allow the trace to stabilize.

3.5.3 Test setup

Test Report No.: FCCSZ2024-0048-RF1

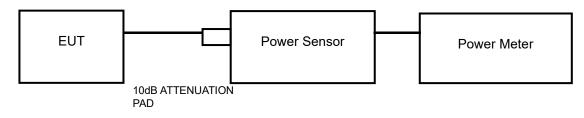
Page 28 of 39

3.5.4 Test result

Mode		ent Channel ration (kHz)	Minimum I 20dB Bandwid	-	Verdict
DR0	200.00		137.62	137.625	
	•	CHANNEL SE			
		CHANNEL SE	PARATION		6
					4
AultiView Spectrum Ref Level 21.00 dBm Offset Att 30 dB SWT 10 n Frequency Sweep	0.50 dB RBW 10 kHz (~19 ms) VBW 30 kHz	Mode Auto FFT	40 - St		O 1Pk Ma
	6				M1[1] 1.75 de
0 dBm	-				914.700 000 M D2[1] 0.00
	MT		0	2	200.000 k
dBm					
10 dBm	-	- 1			···/7
20 dBm			/		<u> </u>
30 dBm					
40 dBm	9				
50 dBm	-				
CO. JD					
50 dBm					
70 dBm					
F 914.8 MHz		1001 pts	50.0 kHz/		Span 500.0 kl
Marker Table Type Ref Trc	X-Value	Y-Value	Function		Constant Downla
Type Ref Trc M1 1	914.7 MHz	1.75 dBm	Punction		Function Result
D2 M1 1	200.0 kHz	-0.00 dB			
				Measuring	02.07.20

Page 29 of 39

3.6 CONDUCTED OUTPUT POWER


3.6.1 Limits

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

3.6.2 Measurement procedure

- a. A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor and set the detector to PEAK. Record the power level.
- b. Anaverage power sensor was used on the output port of the EUT. A power meter was used to read the response of the average power senso and set the detector to AVERAGE. Record the power level.

3.6.3 Test setup

Page 30 of 39

3.6.4 Test result

PEAK OUTPUT POWER

Channel	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power (mW)	Peak Power Limit (mW)	Verdict
0	902.3	18.81	76.03	1000	PASS
63	914.9	18.61	72.61	1000	PASS
127	927.8	18.08	64.27	1000	PASS

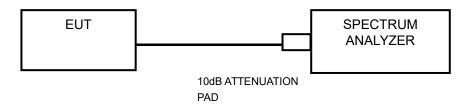
AVERAGE OUTPUT POWER

Mode	Channel Frequency (MHz)	Average Power (dBm)	Average Power (mW)	Average Power Limit (mW)	Verdict
0	902.3	-1.44	0.72	1000	PASS
63	914.9	-0.76	0.84	1000	PASS
127	927.8	-2.30	0.59	1000	PASS

Test Report No.: FCCSZ2024-0048-RF1

Page 31 of 39

3.7 POWER SPECTRAL DENSITY MEASUREMENT


3.7.1 Limits

The Maximum of Power Spectral Density Measurement is 8dBm/3KHz.

3.7.2 Measurement procedure

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set RBW to: 3KHz
- 4. Set VBW ≥3 x RBW.
- 5. Detector = peak
- 6. Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- 7. Sweep time = auto couple.
- 8 .Use the peak marker function to determine the maximum amplitude level.

3.7.3 Test setup

Test Report No.: FCCSZ2024-0048-RF1

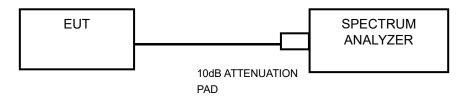
Page 32 of 39

3.7.4 Test result

Channel	Channel Frequency (MHz)	PSD (dBm/3	3kHz)	Limit (dBm/3kHz)	Verdict
0	902.3	3.31		8	PASS
63	914.9	914.9 3.13		8	PASS
127	927.8	2.24		8	PASS
CH0			CH63 Spectrum Image: Spectrum <		
Date: 20.JUN.2024 15:40:33	CH127		Date: 28.JUN	.2024 15:42:55	
Count 100/100 © JPF View 20 dfm 10 dfm -0 dfm -20 dfm	0.63 db = RBW 3 5H2 0.92.1 µs VBW 10 5H2 Milij Occ Bw T3 Occ Bw T3 Milij J00, pts	224 dBm 927 85940 WH 927 85940 WH 126 629376629 WH 928 95940 WH 928 95940 WH 126 629376629 HH 126 629376629 HH 126 629376629 HH			

Page 33 of 39

3.8 OUT OF BAND EMISSION MEASUREMENT

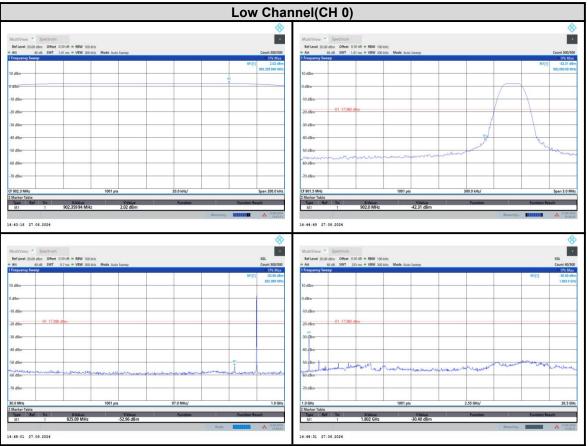

3.8.1 Limits

Below -20dB of the highest emission level of operating band (in 100KHz RBW).

3.8.2 Measurement procedure

The transmitter output was connected to the spectrum analyzer via a low loss cable. of Spectrum Analyzer was set RBW to 100 kHz and VBW to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. Detector = PEAK and Trace mode = Max Hold. The band edges was measured and recorded.

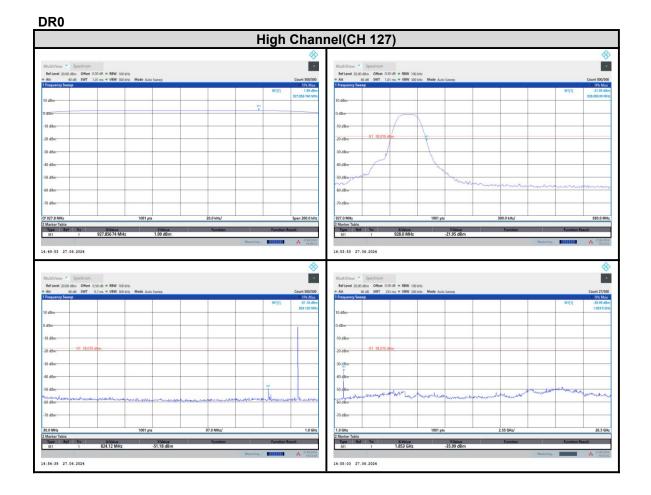
3.8.3 Test setup


Test Report No.: FCCSZ2024-0048-RF1

Page 34 of 39

3.8.4 Test result

The spectrum plots are attached on the following images.



Test Report No.: FCCSZ2024-0048-RF1

Page 35 of 39

DR0-HOPPING

Page 36 of 39

3.9 ANTENNA REQUIREMENT

3.9.1 Limits Of Antenna Requirement

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.9.2 Antenna Anti-Replacement Construction

The antenna used for this product is FPC antenna and that no antenna other than that furnished by the responsible party shall be used with the device

3.9.3 Antenna Gain

The maximum peak gain of the transmit antenna is -6.74 dBi.

Page 37 of 39

4 PHOTOGRAPHS OF TEST SETUP

Please refer to the attached file (Test Photos).

Page 38 of 39

5 PHOTOGRAPHS OF THE EUT

Please refer to the attached file (External Photos and Internal Photos report).

----- End of the Report ------

Page 39 of 39

Important

(1) The test report is invalid without the official stamp of CVC;

(2) Any part photocopies of the test report are forbidden without the written permission from CVC;

(3) The test report is invalid without the signatures of Approval and Reviewer;

- (4) The test report is invalid if altered;
- (5) Objections to the test report must be submitted to CVC within 15 days.
- (6) Generally, commission test is responsible for the tested samples only.

(7) As for the test result "-" or "N" means "not applicable", "/" means "not test", "P" means "pass" and "F" means "fail"

Address: No. 1301-14&16, Guanguang Road, Xinlan Community, Guanlan Subdistrict, Longhua District, Shenzhen, Guangdong, China Post Code: 518110 Tel: 0755-23763060-8805 Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn http://www.cvc.org.cn