

CFR 47 FCC PART 15 SUBPART C

TEST REPORT

For

Smart Door Sensor

MODEL NUMBER: D1-M

REPORT NUMBER: E04A25010438F00102

ISSUE DATE: February 21, 2025

FCC ID: 2AK7XD1-M

Prepared for

Shenzhen Heiman Technology Co.,Ltd.

101, No.4 Dafu Industrial Park, Kukeng Community, Guanlan Street, Longhua District, Shenzhen, Guangdong, China

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned Product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

REPORT NO.: E04A25010438F00102 Page 2 of 62

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	February 21, 2025	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c) RSS-GEN Clause 6.8	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207 RSS-GEN Clause 8.8	N/A
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1.3	FCC Part 15.247 (b)(3) RSS-247 Clause 5.4 (d)	Pass
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d) RSS-247 Clause 5.5	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.11 & Clause 11.12	FCC Part 15.247 (d) FCC Part 15.205/15.209 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

Note:

1. N/A: In this whole report not applicable.

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C, ISED RSS-247 ISSUE 3 (DTS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1.	ATTES	TATION OF TEST RESULTS	5
2.	TEST N	IETHODOLOGY	6
3.	FACILI	TIES AND ACCREDITATION	6
4.	CALIB	RATION AND UNCERTAINTY	7
4	.1.	MEASURING INSTRUMENT CALIBRATION	7
4	.2.	MEASUREMENT UNCERTAINTY	7
5.	EQUIP	MENT UNDER TEST	8
5	.1.	DESCRIPTION OF EUT	8
5	.2.	CHANNEL LIST	8
5	.3.	MAXIMUM CONDUCTED OUTPUT POWER	9
5	.4.	TEST CHANNEL CONFIGURATION	9
5	.5.	THE WORSE CASE POWER SETTING PARAMETER	9
5	.6.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5	.7.	SUPPORT UNITS FOR SYSTEM TEST	9
5	.8.	SETUP DIAGRAM1	0
6.	MEASU	IRING EQUIPMENT AND SOFTWARE USED1	1
7.	ANTEN	NA PORT TEST RESULTS1	3
7	.1.	Conducted Output Power1	3
7	.2.	6dB Bandwidth and 99% Occupied Bandwidth1	4
7	.3.	Power Spectral Density1	6
7	.4.	Conducted Band edge and spurious emission1	7
7	.5.	Duty Cycle	
			9
8.	RADIA	IED TEST RESULTS	
	RADIA ⁻ .1.		20
	.1.	IED TEST RESULTS	2 0 26
8	.1.	TED TEST RESULTS 2 Radiated Band edge and Spurious Emission 2	26 88

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	Shenzhen Heiman Technology Co.,Ltd.
Address:	101, No.4 Dafu Industrial Park, Kukeng Community, Guanlan
	Street, Longhua District, Shenzhen, Guangdong, China

Manufacturer Information

Company Name:	Shenzhen Heiman Technology Co.,Ltd.
Address:	101, No.4 Dafu Industrial Park, Kukeng Community, Guanlan
	Street Longhua District Shenzhen Guangdong China

EUT Information

Product Description:	Smart Door Sensor
Model:	D1-M
Series Model:	1
Brand:	1
Sample Received Date:	February 12, 2025
Sample Status:	Normal
Sample ID:	A25010438 001
Date of Tested:	February 12, 2025 to February 21, 2025

APPLICABLE STANDARDS STANDARD TEST RESULTS CFR 47 FCC PART 15 SUBPART C Pass

Prepared By:

Checked By:

San La

Alan He Laboratory Leader

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 6947.01)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been assessed and proved to be in compliance with A2LA.	
	FCC (FCC Designation No.: CN1343)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been recognized to perform compliance testing on equipment	
Accreditation Certificate	subject to Supplier's Declaration of Conformity (SDoC) and	
	Certification rules	
	ISED (Company No.: 30714)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been registered and fully described in a report filed with ISED.	
	The Company Number is 30714 and the test lab Conformity	
	Assessment Body Identifier (CABID) is CN0148.	
	The Company Number is 30714 and the test lab Conformity	

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty		
DTS Bandwidth	1.96	±9.2 PPM		
20dB Emission Bandwidth	1.96	±9.2 PPM		
Carrier Frequency Separation	1.96	±9.2 PPM		
Time of Occupancy	1.96	±0.57%		
Conducted Output Power	1.96	±1.5 dB		
Power Spectral Density Level	1.96	±1.9 dB		
Conducted Spurious Emission		9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1dB		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.				

Test Item	Measurement Frequency Range	К	U(dB)	
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37	
Radiated emissions	9 kHz ~ 30 MHz	2	4.16	
Radiated emissions	30 MHz ~ 1 GHz	2	3.79	
Radiated emissions	1 GHz ~ 18 GHz	2	5.62	
Radiated emissions	18 GHz ~ 40 GHz	2	5.54	
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.				

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Smart Door Sensor
Model		D1-M
Series Model		1
Model Difference		1
Hardware Version		V04
Software Version		V1.0
Ratings		DC 3V
Power Supply	DC	3V

Frequency Band:	2400 MHz to 2483.5 MHz	
Frequency Range:	2405 MHz to 2480 MHz	
Mode:	Matter	
Type of Modulation:	O-QPSK	
Number of Channels:	16	
Channel Separation:	5 MHz	
Maximum Peak Power:	4.53 dBm	
Antenna Type:	PCB Antenna	
Antenna Gain:	-1.52 dBi	
Normal Test Voltage:	3 Vdc	
EUT Test software:	sscom5.12.1	
Note:	The Antenna Gain was provided by customer, and this information may affect the validity of the results, customer should be responsible for this.	

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)
11	2405	22	2460
12	2410	23	2465
13	2415	24	2470
14	2420	25	2475
15	2425	26	2480
16	2430	/	/
17	2435	/	/
18	2440	/	/
19	2445	/	/
20	2450	/	/
21	2455	1	1

5.3. MAXIMUM CONDUCTED OUTPUT POWER

Test Mode	Frequency (MHz) Channel Number		Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
O-QPSK	2405 ~ 2480	11-26[16]	4.53	/

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
O-QPSK	CH 11(Low Channel), CH 18(MID Channel), CH 26(High Channel)	2405 MHz, 2440 MHz, 2480 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software Version sscom5.12.1						
	Transmit	Test Software setting value				
	Antenna Number	CH11	CH 18	CH 26		
O-QPSK	1	65 65 75				

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

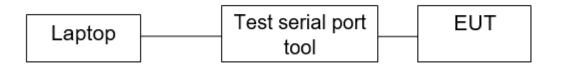
Antenna Frequency (MHz)		Antenna Type	MAX Antenna Gain (dBi)	
1	2405-2480	PCB	-1.52	

Test Mode	Transmit and Receive Mode	Description
O-QPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
Note:		

5.7. SUPPORT UNITS FOR SYSTEM TEST

The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Laptop	Lenovo	Thinkpad T14	PF-3EAKYR	GTG Support
E-2	2 Serial Port Tool N/A		N/A	N/A	GTG Support


The following cables were used to form a representative test configuration during the tests.

Item	Type of cable	Shielded Type	Ferrite Core	Length
C-1	USB cable	Unshielded	without ferrite	1.0 m

C-2	Dupont cable	Unshielded	without ferrite	0.6 m
-----	--------------	------------	-----------------	-------

5.8. SETUP DIAGRAM

Radiated emissions:

Test Equipment of Conducted RF								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2024/09/14	2025/09/13			
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2024/09/14	2025/09/13			
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2024/09/14	2025/09/13			
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2024/09/14	2025/09/13			
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2024/09/14	2025/09/13			
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2024/09/14	2025/09/13			
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2024/09/14	2025/09/13			
temperature humidity chamber	Espec	SH-241	SH-241-2014	2024/09/14	2025/09/13			
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A			

Test Equipment of Radiated emissions below 1GHz								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date			
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29			
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2024/09/14	2025/09/13			
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2024/09/14	2025/09/13			
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2024/09/14	2025/09/13			
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09			
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22			
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29			
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A			

Test Equipment of Radiated emissions above 1GHz									
EquipmentManufacturerModel No.Serial No.Last Cal.Due Date									
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29				
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2024/09/14	2025/09/13				
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2024/09/14	2025/09/13				
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2024/09/14	2025/09/13				
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10				
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2024/09/14	2025/09/13				

TRF No.: 04-E001-0B

Global Testing , Great Quality.

REPORT NO.: E04A25010438F00102 Page 12 of 62

Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

<u>LIMITS</u>


CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit Frequency Range (MHz)			
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.7°C	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit Frequency Range (MHz)			Frequency Range (MHz)
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	For reporting purposes only.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum and	alyser and use the following settings:
-------------------------------------	--

Center Frequency	The center frequency of the channel under test
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
RBW	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
VBW	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.7°C	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.3. POWER SPECTRAL DENSITY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit Frequency Range (MHz)			Frequency Range (MHz)
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	PEAK
RBW	$3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.7°C	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

TRF No.: 04-E001-0B

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

Shan	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.7°C	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.5. DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.7°C	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m	
		Quasi-l	Peak
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
	300	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz			
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)			
0.009-0.490	2400/F(kHz)	300	
0.490-1.705	24000/F(kHz)	30	
1.705-30.0	30	30	

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz			
Frequency Magnetic field strength (H-Field) (μA/m) Measurement distance (m)			
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300	
490 - 1705 kHz	63.7/F (F in kHz)	30	
1.705 - 30 MHz	0.08	30	

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

	Table 7 – Restricted frequency bands ^N	1016 1
MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 - 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	980 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1628.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1660 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
18.42 - 18.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7- <mark>1</mark> 56.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

TRF No.: 04-E001-0B

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

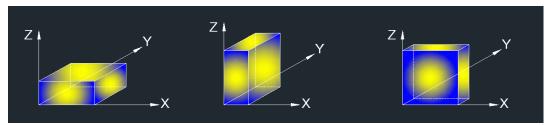
Above 1G

The setting of the spectrum analyser

RBW	1 MHz
IV BW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

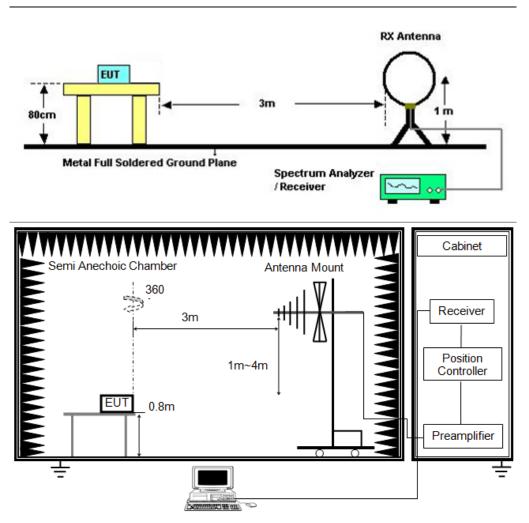
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

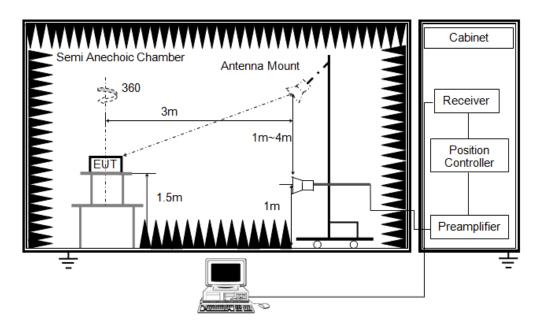
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.


6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

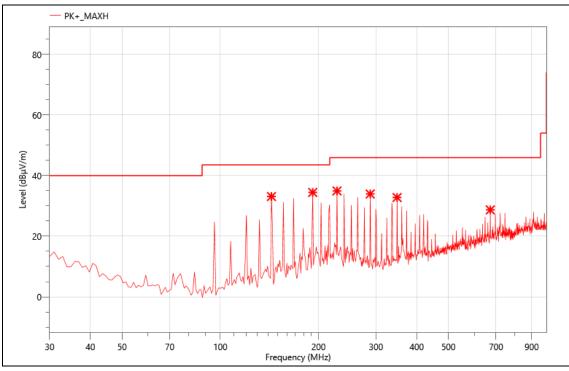

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST SETUP

TEST ENVIRONMENT

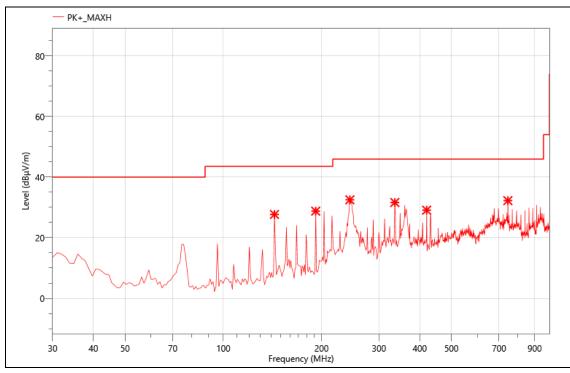
Temperature	22.1°C	Relative Humidity	51%
Atmosphere Pressure	101kPa		


TEST RESULTS

8.1. RADIATED BAND EDGE AND SPURIOUS EMISSION

Undesirable radiated Spurious Emission below 1GHz (30MHz to 1GHz)

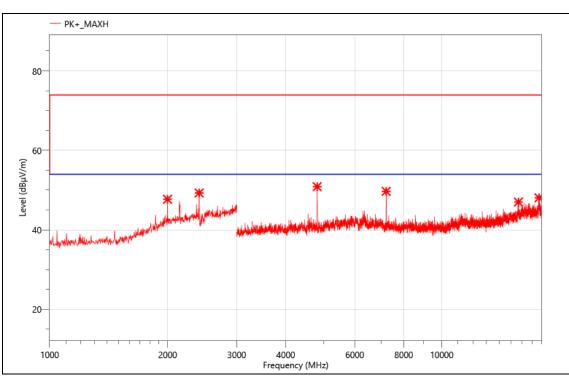
All modes have been tested and the worst result as bellow:


Mode:	Matter 2405
Power:	DC 3V
TE:	Berny
Date	2025/02/20
T/A/P	22.1°C/51%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	143.490	56.11	-23.01	33.10	43.50	10.40	PK+	Н
2	191.990	57.04	-22.59	34.45	43.50	9.05	PK+	Н
3	227.880	55.00	-20.06	34.94	46.00	11.06	PK+	Н
4	288.020	53.34	-19.4	33.94	46.00	12.06	PK+	Н
5	348.160	49.10	-16.32	32.78	46.00	13.22	PK+	Н
6	672.140	36.09	-7.39	28.70	46.00	17.30	PK+	Н

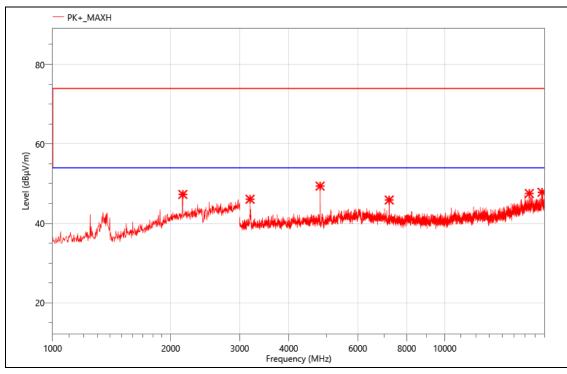
Mode:	Matter 2405
Power:	DC 3V
TE:	Berny
Date	2025/02/20
T/A/P	22.1°C/51%/101Kpa



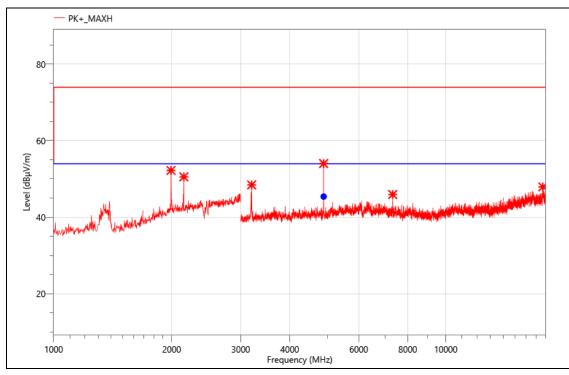
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	143.490	50.69	-23.01	27.68	43.50	15.82	PK+	V
2	191.990	51.36	-22.59	28.77	43.50	14.73	PK+	V
3	244.370	51.44	-18.93	32.51	46.00	13.49	PK+	V
4	335.550	48.51	-16.88	31.63	46.00	14.37	PK+	V
5	419.940	42.74	-13.64	29.10	46.00	16.90	PK+	V
6	744.890	38.80	-6.56	32.24	46.00	13.76	PK+	V

Undesirable radiated Spurious Emission Above 1GHz (1GHz to 40GHz)

Mode:	Matter 2405
Power:	DC 3V
TE:	Berny
Date	2025/02/20
T/A/P	22.1°C/51%/101Kpa


All modes have been tested and the worst result as bellow:

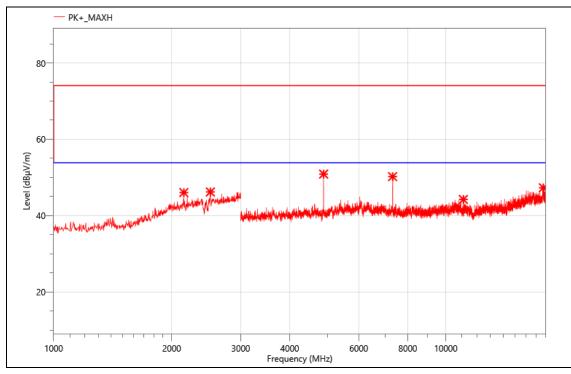
Critical_Freqs


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	1998.000	56.81	-9.1	47.71	74.00	26.29	PK+	Н
2	2406.000	57.81	-8.52	49.29	74.00	24.71	PK+	Н
3	4810.500	62.25	-11.38	50.87	74.00	23.13	PK+	Н
4	7216.500	57.71	-8.02	49.69	74.00	24.31	PK+	Н
5	15687.000	49.47	-2.46	47.01	74.00	26.99	PK+	Н
6	17701.500	47.92	0.14	48.06	74.00	25.94	PK+	Н

Mode:	Matter 2405
Power:	DC 3V
TE:	Berny
Date	2025/02/20
T/A/P	22.1°C/51%/101Kpa

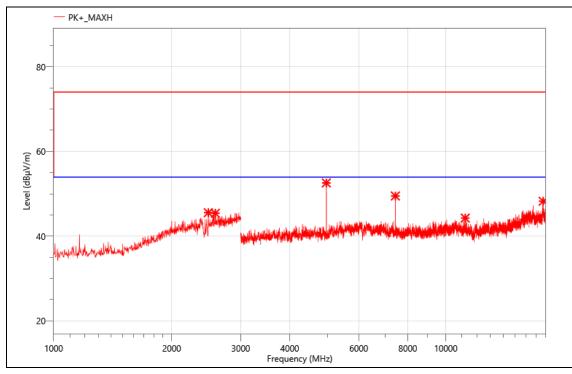
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2148.000	56.34	-9.05	47.29	74.00	26.71	PK+	V
2	3187.500	60.90	-14.82	46.08	74.00	27.92	PK+	V
3	4809.000	60.75	-11.37	49.38	74.00	24.62	PK+	V
4	7216.500	53.91	-8.02	45.89	74.00	28.11	PK+	V
5	16426.500	48.93	-1.41	47.52	74.00	26.48	PK+	V
6	17703.000	47.72	0.11	47.83	74.00	26.17	PK+	V

Mode:	Matter 2440
Power:	DC 3V
TE:	Berny
Date	2025/02/20
T/A/P	22.1°C/51%/101Kpa

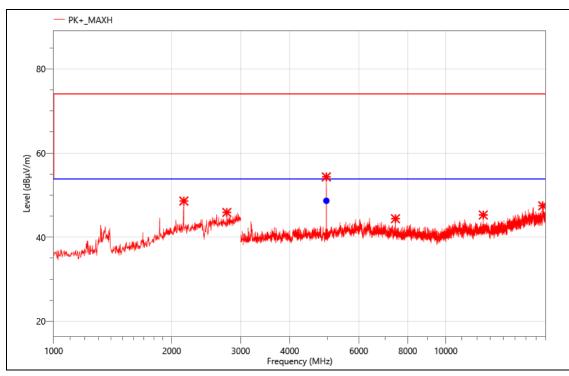


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	1992.000	61.32	-9.11	52.21	74.00	21.79	PK+	V
2	2148.000	59.58	-9.05	50.53	74.00	23.47	PK+	V
3	3199.500	63.23	-14.8	48.43	74.00	25.57	PK+	V
4	4881.000	65.15	-11.14	54.01	74.00	19.99	PK+	V
5	7321.500	53.83	-7.91	45.92	74.00	28.08	PK+	V
6	17680.500	47.62	0.29	47.91	74.00	26.09	PK+	V

Final_Result


1 4881.008 56.51 -11.14 45.37 53.90 8.53 AVG V PASS	No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
	1	4881.008	56.51	-11.14	45.37	53.90	8.53	AVG	V	PASS

Mode:	Matter 2440
Power:	DC 3V
TE:	Berny
Date	2025/02/20
T/A/P	22.1°C/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2148.000	55.09	-9.05	46.04	74.00	27.96	PK+	Н
2	2510.000	54.64	-8.45	46.19	74.00	27.81	PK+	Н
3	4881.000	62.02	-11.14	50.88	74.00	23.12	PK+	Н
4	7318.500	58.04	-7.82	50.22	74.00	23.78	PK+	Н
5	11086.500	48.70	-4.47	44.23	74.00	29.77	PK+	Н
6	17734.500	47.69	-0.4	47.29	74.00	26.71	PK+	Н

Mode:	Matter 2480
Power:	DC 3V
TE:	Berny
Date	2025/02/20
T/A/P	22.1°C/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2480.000	53.97	-8.43	45.54	74.00	28.46	PK+	Н
2	2584.000	53.48	-8.07	45.41	74.00	28.59	PK+	Н
3	4959.000	63.92	-11.35	52.57	74.00	21.43	PK+	Н
4	7438.500	57.44	-7.95	49.49	74.00	24.51	PK+	Н
5	11209.500	48.51	-4.24	44.27	74.00	29.73	PK+	Н
6	17712.000	48.32	-0.08	48.24	74.00	25.76	PK+	Н

Mode:	Matter 2480
Power:	DC 3V
TE:	Berny
Date	2025/02/20
T/A/P	22.1°C/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2148.000	57.64	-9.05	48.59	74.00	25.41	PK+	V
2	2764.000	54.01	-8.12	45.89	74.00	28.11	PK+	V
3	4959.000	65.68	-11.35	54.33	74.00	19.67	PK+	V
4	7441.500	52.37	-7.98	44.39	74.00	29.61	PK+	V
5	12463.500	50.04	-4.77	45.27	74.00	28.73	PK+	V
6	17671.500	47.18	0.28	47.46	74.00	26.54	PK+	V

Final_Result

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
1	4958.831	60.00	-11.35	48.65	53.90	5.25	AVG	V	PASS

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

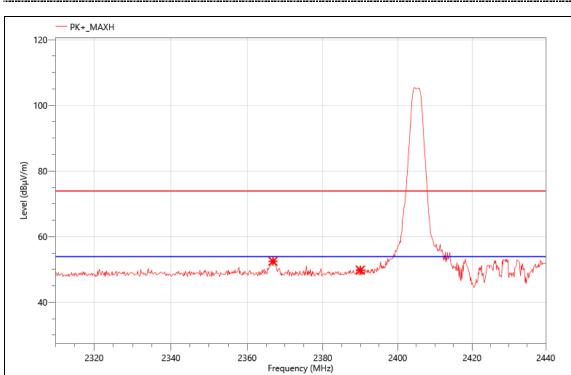
Note:

1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

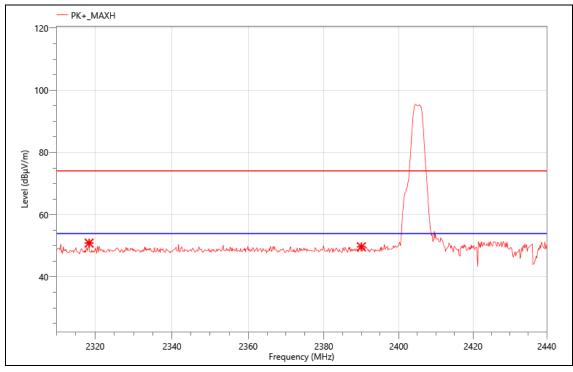
4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


For the frequency above 18 GHz, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.

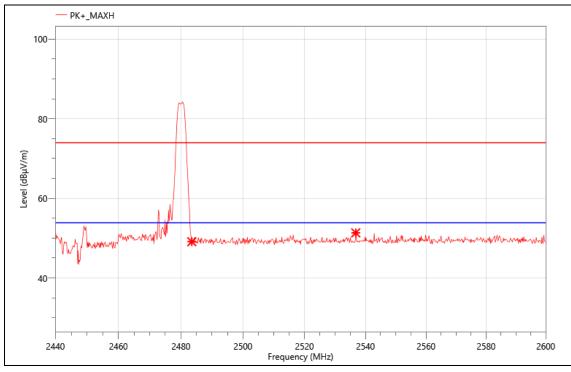
TRF No.: 04-E001-0B

Band Edge

Mode:	Matter 2405
Power:	DC 3V
TE:	Berny
Date	2025/02/20
T/A/P	22.1°C/51%/101Kpa

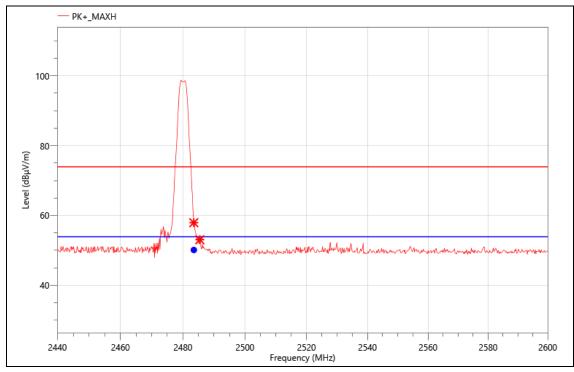

All modes have been tested and the worst result as bellow:

Critical_Freqs


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2366.810	29.85	22.66	52.51	74.00	21.49	PK+	Н
2	2390.000	27.10	22.72	49.82	74.00	24.18	PK+	Н

Mode:	Matter 2405
Power:	DC 3V
TE:	Berny
Date	2025/02/20
T/A/P	22.1°C/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2318.450	28.45	22.41	50.86	74.00	23.14	PK+	V
2	2390.000	26.93	22.72	49.65	74.00	24.35	PK+	V


Mode:	Matter 2480
Power:	DC 3V
TE:	Berny
Date	2025/02/20
T/A/P	22.1°C/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.500	25.96	23.15	49.11	74.00	24.89	PK+	V
2	2536.800	28.14	23.2	51.34	74.00	22.66	PK+	V

Note: [Margin=Limit-Meas.]; [Mea.=Reading+Corr.]

Mode:	Matter 2480
Power:	DC 3V
TE:	Berny
Date	2025/02/20
T/A/P	22.1°C/51%/101Kpa

Critical_Freqs

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.500	34.79	23.15	57.94	74.00	16.06	PK+	Н
2	2485.440	29.92	23.14	53.06	74.00	20.94	PK+	Н

Final_Result

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
1	2483.500	26.99	23.15	50.14	53.90	3.76	AVG	Н	PASS

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

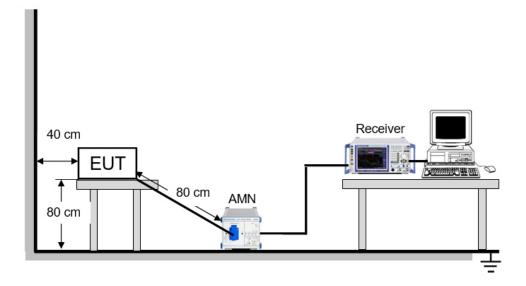
DESCRIPTION

Pass.

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8


FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

TEST SETUP

TEST ENVIRONMENT

Temperature	٦°	Relative Humidity	%
Atmosphere Pressure	kPa		

TEST RESULTS

N/A.

11. TEST DATA - Appendix A

Duty Cycle

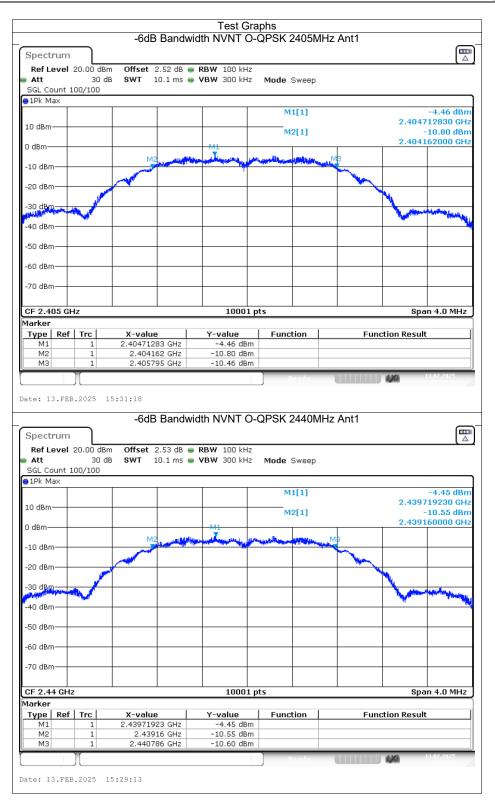
Condition	Mode	Frequency (MHz)	Antenna	On Time (ms)	Period (ms)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)	Final settingFor VBW (kHz)
NVNT	O- QPSK	2405	Ant1	0	0	100	0	0	1
NVNT	O- QPSK	2440	Ant1	0	0	100	0	0	1
NVNT	O- QPSK	2480	Ant1	0	0	100	0	0	1

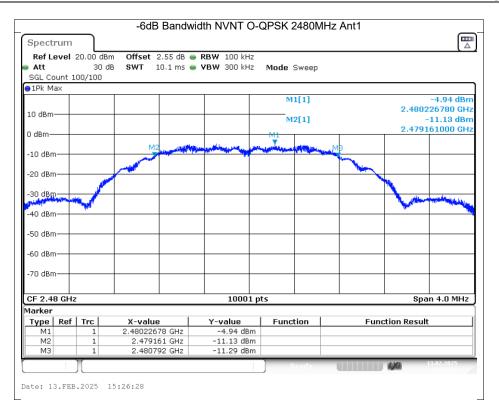
	_	Du	ity Cycle	NVNT O-0	JPSK 240	05MHz /	Ant1		6
Spectrum									
	20.00 dBm			RBW 1 MHz					
Att SGL	30 dB	SWT	5 ms 👄	VBW 3 MHz					
1Pk Clrw									
					M	1[1]			-1.30 dB
10 dBm						-		-	919.000
	M1								
) dBm — H	Additional of the	(Landschaft Matheur	In balance and the block	Bearling International Constitution	dallation and states	distant and distant	PANJER OF BUILDING	I BAJ ARE AL HADA	
10 dBm									
-20 dBm									
30 dBm								_	
40 dBm									
50 dBm							-		
60 db									
60 dBm									
70 dBm							_		
CF 2.405 G	Hz			1000	l pts				500.0 µs
arker		×	1		1 -		-		
		X-value		Y-value	Func	tion	Fu	nction Re	esuit
			9.0 us	-1.30 dB	m				
M1	1 B.2025 15	91 5:32:31	9.0 µs	-1.30 dB		teady	0	4)61	13.02.2025
	1 B.2025 15	91 5:32:31		-1.30 dB		40MHz /	Ant1	196	13.02.2025
M1 te: 13.FE Spectrum Ref Level	1 B.2025 15 20.00 dBm	91 5:32:31 Du Offset	ity Cycle	NVNT O-C		40MHz /	Ant1	J 490	13.02.2025
M1 te: 13.FE Spectrum Ref Level Att	1 B.2025 15 20.00 dBm	91 5:32:31 Du	ity Cycle	NVNT O-C		40MHz /	Ant1	444	13.02.2025
M1 te: 13.FE Spectrum Ref Level Att SGL	1 B.2025 15 20.00 dBm	91 5:32:31 Du Offset	ity Cycle	NVNT O-C		40MHz /	Ant1	4,451	13.02.2025
M1 te: 13.FE Spectrum Ref Level Att SGL	1 B.2025 15 20.00 dBm	91 5:32:31 Du Offset	ity Cycle	NVNT O-C	QPSK 244	40MHz /	Ant1	4,454	-1.25 dB
M1 te: 13.FE Spectrum Ref Level Att SGL 1Pk Clrw	1 B.2025 15 20.00 dBm	91 5:32:31 Du Offset	ity Cycle	NVNT O-C	QPSK 244		Ant1	4,40	-1.25 dB
M1 te: 13.FE Spectrum Ref Level Att GGL 1Pk Clrw 0 dBm	1 B.2025 15 20.00 dBm	91 5:32:31 Du Offset	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB
M1 te: 13.FE Spectrum Ref Level Att GGL 1Pk Clrw 0 dBm	1 B.2025 15 20.00 dBm	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 r
M1 te: 13.FE Spectrum Ref Level Att SGL 1Pk Clrw 0 dBm dBm dBm	1 B.2025 19 20.00 dBm 30 dB	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 n
M1 te: 13.FE Spectrum Ref Level Att SGL 1Pk Clrw 0 dBm continuent 10 dBm	1 B.2025 19 20.00 dBm 30 dB	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 n
M1 te: 13.FE Spectrum Ref Level Att SGL 1Pk Clrw 0 dBm dBm dBm dBm dBm dBm dBm dBm	1 B.2025 19 20.00 dBm 30 dB	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 r
M1 te: 13.FE Spectrum Ref Level Att SGL 1Pk Clrw 0 dBm 10 dBm 20 dBm 20 dBm	1 B.2025 19 20.00 dBm 30 dB	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 n
M1 te: 13.FE Spectrum Ref Level Att SGL 1Pk Clrw 0 dBm 10 dBm 20 dBm 30 dBm	1 B.2025 19 20.00 dBm 30 dB	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 n
M1 te: 13.FE Spectrum Ref Level Att SGL 1Pk Clrw 0 dBm 10 dBm 20 dBm 30 dBm	1 B.2025 19 20.00 dBm 30 dB	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 n
M1 te: 13.FE Spectrum Ref Level Att SGL 1Pk Clrw 0 dBm 10 dBm 20 dBm 20 dBm 40 dBm	1 B.2025 19 20.00 dBm 30 dB	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 n
M1 Spectrum Ref Level Att SGL 1Pk Clrw 0 dBm 0 dBm 20 dBm 20 dBm 40 dBm 50 dBm 50 dBm	1 B.2025 19 20.00 dBm 30 dB	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 n
M1 te: 13.FE Spectrum Ref Level Att SGL 1Pk Clrw 0 dBm 10 dBm 20 dBm 40 dBm 50 dBm	1 B.2025 19 20.00 dBm 30 dB	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 n
M1 te: 13.FE Spectrum Ref Level Att SGL 1Pk Clrw 0 dBm 10 dBm 20 dBm 30 dBm 50 dBm 50 dBm 60 dBm	1 B.2025 19 20.00 dBm 30 dB	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 n
M1 te: 13.FE Spectrum Ref Level Att SGL 1Pk Clrw 0 dBm 10 dBm 20 dBm 30 dBm 50 dBm 50 dBm 60 dBm	1 B.2025 19 20.00 dBm 30 dB	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 n
M1 te: 13.FE Spectrum Ref Level Att SGL .1Pk Clrw 0 dBm .10 dBm .20 dBm .20 dBm .40 dBm .40 dBm .40 dBm .50 dBm .5	1 B.2025 19 20.00 dBm 30 dB	91 5:32:31 Du Offset • SWT	ity Cycle	NVNT O-C RBW 1 MHz VBW 3 MHz	QPSK 244		Ant1		-1.25 dB 2.416500 n
M1 te: 13.FE Spectrum Ref Level Att SGL 1Pk Clrw 0 dBm 10 dBm 20 dBm 40 dBm 50 dBm 50 dBm 70 dBm 70 dBm 37 2.44 GH	1 B.2025 19 20.00 dBm 30 dB	91	Ity Cycle	NVNT O-C	PSK 244				-1.25 dB 2.416500 n
M1 te: 13.FE	1 B.2025 19 20.00 dBm 30 dB	91	Ity Cycle	NVNT O-C	QPSK 244				-1.25 dB 2.416500 n

	_	Du	uty Cycle	e NVNT O-0	QPSK 248	BOMH:	z Ant1		
Spectrum									
Ref Level				RBW 1 MHz					
Att	30 (ib 🖷 SWT	5 ms 🧉	• VBW 3 MHz					
SGL 1Pk Clrw									
JIFK CIIW					м	1[1]			-1.70 dBm
									653.500 µs
10 dBm									
0 dBm	M1								
d as all hans to hand the s	Also on her hours	durandrossedana and	the consideration of the	and and all data to Alternal de-	sussiliation for a feature	Milatheoplat	Readed and the state of the sta	takan di bandar kanakan	THE PROPERTY OF THE PARTY OF TH
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
50 d0									
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.48 GHz	2	·		1000	1 pts				500.0 µs/
Marker	1 1				1 -		_		•
Type Ref M1	Trc 1	X-value) 3.5 µs	<u>Y-value</u> -1.70 dB	Funct	tion	Fi	Inction Res	JIC
THE .	ι <u>+</u> ι γ	0.	1010 H2	1.70 00		_		4.565	13.02.2025
	Л							4,0	
ate: 13.FEB	.2025	15:25:23							

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict						
NVNT	O-QPSK	2405	Ant1	4.42	30	Pass						
NVNT	O-QPSK	2440	Ant1	4.15	30	Pass						
NVNT	O-QPSK	2480	Ant1	4.53	30	Pass						

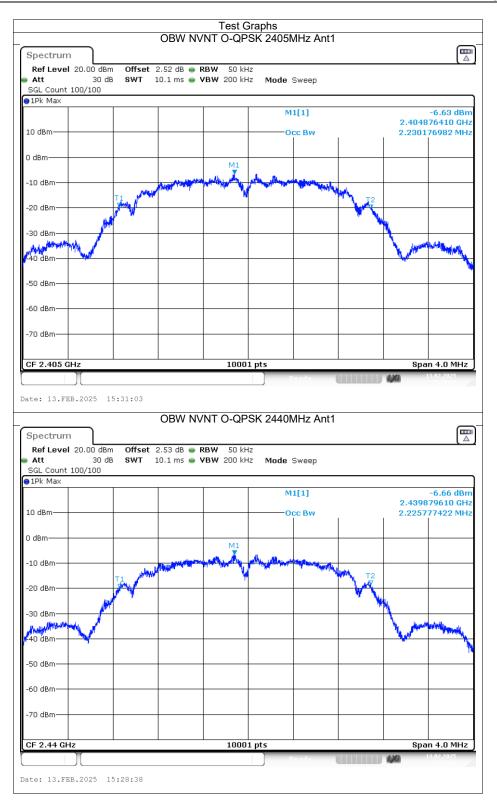
Maximum Conducted Output Power

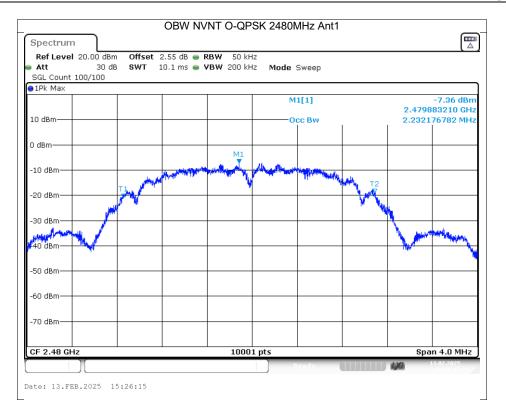

			Test G	raphs			
		Power NVI	NT O-QPS	SK 2405	MHz Ant1		Ē
Ref Level 20.00 dE	Bm Offset (2.52 dB 👄 RE	W 3 MHz				
Att 30		10.1 ms 🖷 VE		Mode S	weep		
SGL Count 100/100							
				M	1[1]		4.42 dBm
10 dBm						2.4044	+24100 GHz
			M1				
0 dBm							
-10 dBm							
-10 dbm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm	-						
			10001	pts			10.0 MHz
		Power NVI		SK 24401	oodv MHz Ant1	4,961	20.02.2025
CF 2.405 GHz ate: 20.FEB.2025			NT O-QP	SK 2440	onto MHz Ant1	aya	20.02.2025
ate: 20.FEB.2025	Bm Offset 2	Power NVI 2.53 dB • RE 10.1 ms • VE	NT O-QPS			4,49	20.02.2025
Att 30 SGL Count 100/100	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS			4,46	20.02.2025
Spectrum Ref Level 20.00 db	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S			4.15 dBm
ate: 20.FEB.2025 Spectrum Ref Level 20.00 df Att 30 SGL Count 100/100 1Pk Max	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		
ate: 20.FEB.2025 Spectrum Ref Level 20.00 df Att 30 SGL Count 100/100	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S	iweep		(∆ 4.15 dBm
ate: 20.FEB.2025 Spectrum Ref Level 20.00 de Att 30 SGL Count 100/100 IPk Max 10 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		(∆ 4.15 dBm
Att 30 Spectrum Ref Level 20.00 de Att 30 SGL Count 100/100 IPk Max 10 dBm 0 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		(∆ 4.15 dBm
ate: 20.FEB.2025 Spectrum Ref Level 20.00 de Att 30 SGL Count 100/100 IPk Max 10 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		(∆ 4.15 dBm
Att 30 Spectrum Ref Level 20.00 de Att 30 SGL Count 100/100 IPk Max 10 dBm 0 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		(∆ 4.15 dBm
ate: 20.FEB.2025 Spectrum Ref Level 20.00 de Att 30 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		(∆ 4.15 dBm
Att 30 Spectrum Ref Level 20.00 de Att 30 SGL Count 100/100 1Pk Max 10 dBm -10 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		(∆ 4.15 dBm
ate: 20.FEB.2025 Spectrum Ref Level 20.00 de Att 30 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		(∆ 4.15 dBm
ate: 20.FEB.2025 Spectrum Ref Level 20.00 db Att 30 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		(∆ 4.15 dBm
ate: 20.FEB.2025 Spectrum Ref Level 20.00 df Att 30 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		(∆ 4.15 dBm
ate: 20.FEB.2025 Spectrum Ref Level 20.00 db Att 30 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		4.15 dBm
ate: 20.FEB.2025 Spectrum Ref Level 20.00 de Att 30 SGL Count 10D/100 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		4.15 dBm
ate: 20.FEB.2025 Spectrum Ref Level 20.00 de Att 30 SGL Count 10D/100 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S M:	iweep		4.15 dBm
ate: 20.FEB.2025 Spectrum Ref Level 20.00 db Att 30 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S	iweep	2.4405	4.15 dBm 510900 GHz
ate: 20.FEB.2025 Spectrum Ref Level 20.00 de Att 30 SGL Count 10D/100 IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Bm Offset 2	2.53 dB 👄 RE	NT O-QPS	Mode S	iweep	2.4405	4.15 dBm


Ref Level 20.00 dBm Offset 2.55 dB RBW 3 MHz Att 30 dB SWT 10.1 ms VBW 10 MHz Mode Sweep SGL Count 100/100 ID MAX M1[1] 4.53 d 2.479335100 (10 dBm M1 0 M1 0 0 0 -10 dBm M1 0 <t< th=""><th>Spectrum</th><th></th><th></th><th></th><th></th></t<>	Spectrum				
SGL Count 100/100 1Pk Max 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm			Mada Guerr		
10 dBm M1[1] 4.53 d 10 dBm M1 2.479335100 (10 dBm M1 10 dBm 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 30 dBm 10 dBm 10 dBm 30 dBm 10 dBm 10 dBm 40 dBm 10 dBm 10 dBm 40 dBm 10 dBm 10 dBm 50 dBm 10 dBm 10 dBm 60 dBm 10 dBm 10 dBm	SGL Count 100/100	10.1 MS 🖶 VBW 10 MHz	Mode Sweep		
10 dBm M1)1Pk Max				
0 dBm 10 dBm <td></td> <td></td> <td>MILI</td> <td>2.4793</td> <td></td>			MILI	2.4793	
0 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm 70 dBm 70 dBm 10 dBm	10 dBm				
10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 60 dBm 70 dBm					
20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -10					
-30 dBm	-10 dBm				
-30 dBm					
-40 dBm	-20 dBm				
-50 dBm	-30 dBm				
-50 dBm					
-60 dBm	-40 dBm				
-60 dBm	-50 dBm				
-70 dBm					
	-60 dBm				
	-/U dBm				
CE 2 49 CHz 10001 ntc Snan 10 0 M	CF 2.48 GHz	10001	nts	Snan	10.0 MHz
CF 2.46 GH2 10001 pts 8 8 9 8 10.0 Mi		10001	Pro Ready		20.02.2025

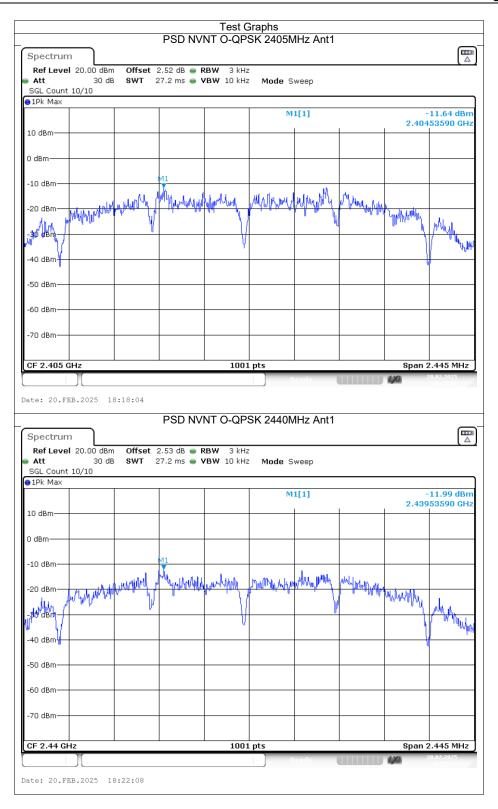
•••=						
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	O-QPSK	2405	Ant1	1.63	0.5	Pass
NVNT	O-QPSK	2440	Ant1	1.63	0.5	Pass
NVNT	O-QPSK	2480	Ant1	1.63	0.5	Pass

-6dB Bandwidth


TRF No.: 04-E001-0B



Occupied Channel Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	O-QPSK	2405	Ant1	2.23
NVNT	O-QPSK	2440	Ant1	2.226
NVNT	O-QPSK	2480	Ant1	2.232

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	O-QPSK	2405	Ant1	-11.64	8	Pass
NVNT	O-QPSK	2440	Ant1	-11.99	8	Pass
NVNT	O-QPSK	2480	Ant1	-11.92	8	Pass

Spectrum		
Ref Level 20.00 dBm Offset 2.55 dB RBW 3 kH		•
Att 30 dB SWT 27.2 ms	z Mode Sweep	
1Pk Max		
	M1[1]	-11.92 dBn 2.48040060 GH
0 dBm		
dBm		
10 dBm	M1	
20 dam - shand some mar hundred the	mathyrowypowelly	Marily and Marine Marine
20 dBm	The operated with the second state of the seco	Winning and the second se
	/ }	h h h
JU'UBIT		1 THINK
40 dBm		
50 dBm		
50 dBm		
70 dBm		
F 2.48 GHz 100	1 pts	Span 2.445 MHz
	Ready	20.02.2025

Band	Edge					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	O-QPSK	2405	Ant1	-52.85	-20	Pass
NVNT	O-QPSK	2480	Ant1	-51.41	-20	Pass

		Bai	nd Edge I	NVNT O-QPS	SK 2405MHz A			
Spectrum			0	,				
Ref Level				RBW 100 kHz				(=
GL Count 1	30 (100/100	db SWT	1 ms 👄	VBW 300 kHz	Mode Sweep			
1Pk Max	100, 100							
					M1[1]		2.401	-0.41 dBn
10 dBm				_			2.40	547950 GH
					M1			
0 dBm			-	mon	m.			
10 d0m								
-10 dBm			N N		- Sh			
-20 dBm			1		<u> </u>			
-30 dBm		M	72			Po yearly		
10 10-		N				1 bry		
-40 dBm	N						Nr.	
-50 dBm	walnut						hunny	. n
www.bu							'	www
-60 dBm								
-70 dBm								
	-			1001 -				
ate: 20.FEF)(3.2025		Edge NV	1001 p NT O-QPSK	2405MHz Ant1	Emission	Spa	20.02.2025
ate: 20.FEE Spectrum Ref Level	20.00 dE	Band m Offset	2.52 dB 👄	NT O-QPSK RBW 100 kHz	Prodv 2405MHz Ant1	Emission	Spa	20.02.2025
ate: 20.FEE Spectrum Ref Level Att	20.00 dE	Band m Offset	2.52 dB 👄	NT O-QPSK	Ready	Emission	Spa	20.02.2025
ate: 20.FEE Spectrum Ref Level Att SGL Count :	20.00 dE	Band m Offset	2.52 dB 👄	NT O-QPSK RBW 100 kHz	Prodv 2405MHz Ant1 Mode Sweep	Emission	Spa	20.02.2025
Spectrum Ref Level Att SGL Count :) 1Pk Max	20.00 dE	Band m Offset	2.52 dB 👄	NT O-QPSK RBW 100 kHz	Prodv 2405MHz Ant1	Emission) (4)(A)	20.02.2025 □ -0.05 dBr
Spectrum Ref Level Att SGL Count :) 1Pk Max	20.00 dE	Band m Offset	2.52 dB 👄	NT O-QPSK RBW 100 kHz	Prodv 2405MHz Ant1 Mode Sweep	Emission	2,404	-0.05 dBr +75000 GH
Spectrum Ref Level Att SGL Count 1 1Pk Max	20.00 dE	Band m Offset	2.52 dB 👄	NT O-QPSK RBW 100 kHz	2405MHz Ant1 Mode Sweep	Emission	2,404	-0.05 dBr +75000 GH
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm	20.00 dE	Band m Offset	2.52 dB 👄	NT O-QPSK RBW 100 kHz	2405MHz Ant1 Mode Sweep	Emission	2,404	-0.05 dBr +75000 GH
Spectrum Ref Level Att SGL Count : SGL Count : 10 dBm 0 dBm	20.00 dE 30 dE 100/100	Band m Offset B SWT	2.52 dB 👄	NT O-QPSK RBW 100 kHz	2405MHz Ant1 Mode Sweep	Emission	2,404	-0.05 dBr +75000 GH
Spectrum Ref Level Att SGL Count : SGL Count : ID dBm 0 dBm -10 dBm	20.00 dE	Band m Offset B SWT	2.52 dB 👄	NT O-QPSK RBW 100 kHz	2405MHz Ant1 Mode Sweep	Emission	2,404	-0.05 dBr +75000 GH
Spectrum Ref Level Att SGL Count 1 91Pk Max 10 dBm -10 dBm -10 dBm	20.00 dE 30 dE 100/100	Band m Offset B SWT	2.52 dB 👄	NT O-QPSK RBW 100 kHz	2405MHz Ant1 Mode Sweep	Emission	2,404	-0.05 dBr +75000 GH
Ate: 20.FEE Spectrum Ref Level Att SGL Count : PIPk Max 10 dBm -10 dBm -10 dBm -30 dBm	20.00 dE 30 dE 100/100	Band m Offset B SWT	2.52 dB 👄	NT O-QPSK RBW 100 kHz	2405MHz Ant1 Mode Sweep	Emission	2,404	-0.05 dBr +75000 GH
Ate: 20.FEE Spectrum Ref Level Att SGL Count : 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm	20.00 dE 30 dE 100/100	Band m Offset B SWT	2.52 dB 👄	NT O-QPSK RBW 100 kHz	2405MHz Ant1 Mode Sweep	Emission	2,404	-0.05 dBr +75000 GH
Ate: 20.FEF Spectrum Ref Level Att SGL Count : 10 dBm 10 dBm 20 dBm -10 dBm -10 dBm -30 dBm -40 dBm	20.00 dE 30 0 100/100	Band m Offset swT 6 dBm	2.52 dB • 1 ms •	NT O-QPSK RBW 100 kHz VBW 300 kHz	Peedv 2405MHz Ant1 Mode Sweep M1[1] M2[1]		2.404	-0.05 dBr +75000 GH
Ate: 20.FEF Spectrum Ref Level Att SGL Count : 10 dBm 10 dBm 20 dBm 20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm	20.00 dE 30 0 100/100	Band m Offset B SWT	2.52 dB • 1 ms •	NT O-QPSK RBW 100 kHz	Prodv 2405MHz Ant1 Mode Sweep M1[1] M2[1]		2.404	-0.05 dBr +75000 GH
ate: 20.FEF Spectrum Ref Level Att SGL Count : 91Pk Max 10 dBm 10 dBm	20.00 dE 30 0 100/100	Band m Offset swT 6 dBm	2.52 dB • 1 ms •	NT O-QPSK RBW 100 kHz VBW 300 kHz	Peedv 2405MHz Ant1 Mode Sweep M1[1] M2[1]		2.404	-0.05 dBr +75000 GH
Spectrum Ref Level Att SGL Count : SGL Cou	20.00 dE 30 0 100/100	Band m Offset swT 6 dBm	2.52 dB • 1 ms •	NT O-QPSK RBW 100 kHz VBW 300 kHz	Pe setv 2405MHz Ant1 Mode Sweep M1[1] M2[1] M2[1]		2.404 2.400	-0.05 dBr -0.05 dBr +75000 GH -53.36 dBr 00000 GH
Ate: 20.FEE Spectrum Ref Level Att SGL Count : SIPK Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm	20.00 dE 30 0 100/100	Band m Offset swT 6 dBm	2.52 dB • 1 ms •	NT O-QPSK RBW 100 kHz VBW 300 kHz	Pe setv 2405MHz Ant1 Mode Sweep M1[1] M2[1] M2[1]		2.404 2.400	-0.05 dBr -0.05 dBr +75000 GH -53.36 dBr 000000 GH
Ate: 20.FEF Spectrum Ref Level Att SGL Count : 9 IPk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -70 dBm	20.00 dE 30 0 100/100 01 -20.40	Band	2.52 dB • 1 ms •	NT O-QPSK RBW 100 kHz VBW 300 kHz	Produ 2405MHz Ant1 Mode Sweep M1[1] M2[1]	h _e lfalfatut periodisi	2.404 2.400	-0.05 dBr +75000 GH
Att SGL Count : SGL Count : IPk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	20.00 dE 20.00 dE 30 d 100/100 01 -20.40 GHz 1 1	Band m Offset B SWT 6 dBm 6 dBm 4 db db m b b b b b b b b b b b b b b b b	2.52 dB 1 ms 1 ms 1	NT O-QPSK RBW 100 kHz VBW 300 kHz	2405MHz Ant1 Mode Sweep M1[1] M2[1] M2[1] Sts Function	h _e lfalfatut periodisi	2.404 2.400	-0.05 dBn +75000 GH -53.36 dBn 00000 GH
Ate: 20.FEF Ref Level Att SGL Count : PIPK Max 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm	20.00 dE 30 100/100 01 -20.40 GHz	Band	2.52 dB 1 ms 1 ms 1	NT O-QPSK RBW 100 kHz VBW 300 kHz	Production	h _e lfalfatut periodisi	2.404 2.400	-0.05 dBn +75000 GH -53.36 dBn 00000 GH

	Dan	la Eugen	VNT O-QPS				Ē
Spectrum Ref Level 20.00 Att	dBm Offset		RBW 100 kHz VBW 300 kHz	Mada Cuisan			
SGL Count 100/10		1 IIIS 🖶 I	DW 300 KHZ	Mode Sweep			
1Pk Max			1 1				
				M1[1]		2 470	0.19 dBm 73630 GHz
10 dBm						2.175	70000 0112
			M1				
0 dBm			mont	way .			
		N		The second se			
-10 dBm		C		h			
-20 dBm							
-30 dBm		TV			/ m		
	1000				1 V		
-40 dBm						~ <u>`</u>	
FO down and	Nucle .					man	
59 dBm v W							hunder
-60 dBm							
-70 dBm		+					
CF 2.48 GHz			1001 pt	s	1	Spa	n 8.0 MHz
		Edge NVN	IT O-QPSK 2	2480MHz Ant1	Emission		
Spectrum Ref Level 20.00 Att 3	Band B dBm Offset 30 dB SWT	2.55 dB 👄 I	IT O-QPSK 2 RBW 100 kHz VBW 300 kHz	2480MHz Ant1 Mode Sweep	Emission		
	Band B dBm Offset 30 dB SWT	2.55 dB 👄 I	RBW 100 kHz	Mode Sweep	Emission		(△
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max	Band B dBm Offset 30 dB SWT	2.55 dB 👄 I	RBW 100 kHz		Emission	2.479	0.10 dBm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 11Pk Max 10 dBm	Band B dBm Offset 30 dB SWT	2.55 dB 👄 I	RBW 100 kHz	Mode Sweep	Emission	-	0.10 dBm 45000 GHz 51.68 dBm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 01Pk Max 10 dBm M1	Band B dBm Offset 30 dB SWT	2.55 dB 👄 I	RBW 100 kHz	Mode Sweep M1[1]	Emission	-	0.10 dBn 45000 GH: 51.68 dBn
Spectrum Ref Level 20.00 Att 33 SGL Count 100/10 PIPK Max 10 dBm M1 0 dEm	Band B dBm Offset 30 dB SWT	2.55 dB 👄 I	RBW 100 kHz	Mode Sweep M1[1]	Emission	-	0.10 dBm 45000 GHz 51.68 dBm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 0 dBm 10 dBm 10 dBm	Band B dBm Offset 30 dB SWT	2.55 dB 👄 I	RBW 100 kHz	Mode Sweep M1[1]	Emission	-	0.10 dBm 45000 GHz 51.68 dBm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 0 dBm 10 dBm 10 dBm	Band B dBm Offset 30 dB SWT	2.55 dB 👄 I	RBW 100 kHz	Mode Sweep M1[1]	Emission	-	0.10 dBm 45000 GHz 51.68 dBm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1PK Max 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm	Band B dBm Offset 30 dB SWT	2.55 dB 👄 I	RBW 100 kHz	Mode Sweep M1[1]	Emission	-	0.10 dBm 45000 GHz 51.68 dBm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 0 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 30 dBm	Band B dBm Offset 30 dB SWT	2.55 dB 👄 I	RBW 100 kHz	Mode Sweep M1[1]	Emission	-	0.10 dBm 45000 GHz 51.68 dBm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 10PK Max 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm	Band B dBm Offset 30 dB SWT	2.55 dB 👄 I	RBW 100 kHz	Mode Sweep M1[1]	Emission	-	0.10 dBm 45000 GHz 51.68 dBm
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm -10 dBm -20 dBm -10 dBm -0 dBm -0 dBm -50 dBm	Band B d dBm Offset 30 dB SWT 00 00 00 00 00 00 00 00 00 0	2.55 dB • F	RBW 100 kHz VBW 300 kHz	Mode Sweep M1[1] M2[1] M2[1]		2.483	0.10 dBn 45000 GHz 51.68 dBn 50000 GHz
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 0 dBm 10 dBm 11 dBm 20 dBm 10 dBm 30 dBm 40 dBm 50 dBm	Band B d dBm Offset 30 dB SWT 00 00 00 00 00 00 00 00 00 0	2.55 dB • F	RBW 100 kHz VBW 300 kHz	Mode Sweep M1[1]		2.483	0.10 dBn 45000 GH; 51.68 dBn 50000 GH;
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 10 dBm 60 dBm	Band B d dBm Offset 30 dB SWT 00 00 00 00 00 00 00 00 00 0	2.55 dB • F	RBW 100 kHz VBW 300 kHz	Mode Sweep M1[1] M2[1] M2[1]		2.483	0.10 dBn 45000 GH; 51.68 dBn 50000 GH;
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 10 dBm 60 dBm	Band B d dBm Offset 30 dB SWT 00 00 00 00 00 00 00 00 00 0	2.55 dB • F	RBW 100 kHz VBW 300 kHz	Mode Sweep M1[1] M2[1] M2[1]		2.483	0.10 dBn 45000 GH; 51.68 dBn 50000 GH;
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 10 dBm	Band B d dBm Offset 30 dB SWT 00 00 00 00 00 00 00 00 00 0	2.55 dB • F	RBW 100 kHz VBW 300 kHz	Mode Sweep M1[1] M2[1] 		2.483	0.10 dBn 45000 GH; 51.68 dBn 50000 GH;
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm -10 dBm	Band E	2.55 dB • 1 1 ms • 1	RBW 100 kHz VBW 300 kHz	Mode Sweep 	Lanobug din yaya ku	 	0.10 dBm 45000 GHz 51.68 dBm 50000 GHz
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 IPK Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm Start 2.476 GHz Type Ref Level Type	Band B	2.55 dB • 1 1 ms • 1	RBW 100 kHz VBW 300 kHz Image: set of the set o	Mode Sweep M1[1] M2[1] 	Lanobug din yaya ku	2.483	0.10 dBm 45000 GHz 51.68 dBm 50000 GHz
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 0 dBm 10 dBm -10 dBm	Band E	2.55 dB • 1 1 ms • 1 	RBW 100 kHz VBW 300 kHz	Mode Sweep 	Lanobug din yaya ku	 	0.10 dBm 45000 GHz 51.68 dBm 50000 GHz
Spectrum Ref Level 20.00 Att 3 SGL Count 100/10 1Pk Max 10 dBm -10 dBm <td>Band E</td> <td>2.55 dB • 1 ms • 1 ms • 1</td> <td>RBW 100 kHz VBW 300 kHz Image: second sec</td> <td>Mode Sweep </td> <td>Lanobug din yaya ku</td> <td> </td> <td>45000 GHz 51.68 dBm 50000 GHz ավարչունելել 2.576 GHz</td>	Band E	2.55 dB • 1 ms • 1 ms • 1	RBW 100 kHz VBW 300 kHz Image: second sec	Mode Sweep 	Lanobug din yaya ku	 	45000 GHz 51.68 dBm 50000 GHz ավարչունելել 2.576 GHz

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	O-QPSK	2405	Ant1	-44.86	-20	Pass
NVNT	O-QPSK	2440	Ant1	-43.72	-20	Pass
NVNT	O-QPSK	2480	Ant1	-45.1	-20	Pass

	Tx. Spurio	Test Gra us NVNT O-QP	apris SK 2405MHz An	t1 Ref		
Spectrum	- [0					
Ref Level 20.00 dBm	Offset 2.52 dB	RBW 100 kHz				12
Att 30 dB		VBW 300 kHz	Mode Sweep			
SGL Count 100/100						
1Pk Max						0.50.10
			M1[1]		2.404	0.50 dBr 70480 GH
10 dBm					2.101	
	M1					
D dBm	mannathre	mmyn	manth	a same are	muum	
manna		ware warding	·			man
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-30 UBIII						
-60 dBm						
-70 dBm						
CF 2.405 GHz		1001 p	ts		Spa	n 1.5 MHz
te: 20.FEB.2025 18		NVNT O-QPSK	Prody 2405MHz Ant1	Emission	1/4	0.02.2025
spectrum	Tx. Spurious		2405MHz Ant1	Emission	494	0.02.2025
Spectrum Ref Level 20.00 dBm	Tx. Spurious	● RB₩ 100 kHz		Emission		0.02.2025
Spectrum Ref Level 20.00 dBm Att 30 dB	Tx. Spurious		2405MHz Ant1 Mode Sweep	Emission		0.02.2025
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10	Tx. Spurious	● RB₩ 100 kHz		Emission	44	(1.02.2025
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10	Tx. Spurious	● RB₩ 100 kHz		Emission	40	-0.91 dBr
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10) IPk Max	Tx. Spurious	● RB₩ 100 kHz	Mode Sweep M1[1]	Emission		-0.91 dBi 05600 GH
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 dBm M1	Tx. Spurious	● RB₩ 100 kHz	Mode Sweep	Emission	-	-0.91 dBi 05600 GH 44.36 dBi
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 dBm M1	Tx. Spurious	● RB₩ 100 kHz	Mode Sweep M1[1]	Emission	-	-0.91 dBr 05600 GH 44.36 dBr
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 dBm M1 0 dBm	Tx. Spurious	● RB₩ 100 kHz	Mode Sweep M1[1]	Emission	-	-0.91 dBr 05600 GH 44.36 dBr
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 dBm -10 dBm -10 dBm	Tx. Spurious Offset 2.52 dB SWT 265 ms	● RB₩ 100 kHz	Mode Sweep M1[1]	Emission	-	-0.91 dBr 05600 GH 44.36 dBr
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 dBm -10 dBm -10 dBm	Tx. Spurious Offset 2.52 dB SWT 265 ms	● RB₩ 100 kHz	Mode Sweep M1[1]	Emission	-	-0.91 dBr 05600 GH 44.36 dBr
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 PIPk Max 10 dBm 10 dBm 10 dBm -10 dBm 01 -19.503	Tx. Spurious Offset 2.52 dB SWT 265 ms	● RB₩ 100 kHz	Mode Sweep M1[1]	Emission	-	-0.91 dBr 05600 GH 44.36 dBr
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 IPk Max 10 dBm -10 dBm -10 dBm -20 dBm	Tx. Spurious Offset 2.52 dB SWT 265 ms	● RB₩ 100 kHz	Mode Sweep M1[1]	Emission	-	-0.91 dBr 05600 GH 44.36 dBr
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 PK Max 10 dBm	Tx. Spurious Offset 2.52 dB SWT 265 ms	● RB₩ 100 kHz	Mode Sweep M1[1]	Emission	-	-0.91 dBr 05600 GH 44.36 dBr 10482 GH
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 dBm 10 dBm 10 dBm -10 dBm 01 -19.503 -30 dBm 40 dBm	Tx. Spurious Offset 2.52 dB SWT 265 ms	● RB₩ 100 kHz	Mode Sweep M1[1]	Emission	-	-0.91 dBr 05600 GH 44.36 dBr
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 dBm 10 dBm 10 dBm -10 dBm 01 -19.503 -30 dBm 40 dBm	Tx. Spurious Offset 2.52 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Sweep M1[1] M2[1]		4.8	-0.91 dBr 05600 GH 44.36 dBr
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 dBm 10 dBm 10 dBm -10 dBm 01 -19.503 -30 dBm 40 dBm	Tx. Spurious Offset 2.52 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Sweep 		4.8	-0.91 dBr 05600 GH 44.36 dBr
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 IPk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx. Spurious Offset 2.52 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Sweep 		4.8	-0.91 dBr 05600 GH 44.36 dBr 10482 GH
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm 01 -19,503 -30 dBm	Tx. Spurious Offset 2.52 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Sweep 		4.8	-0.91 dBr 05600 GH 44.36 dBr 10482 GH
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 dBm 10 dBm 10 dBm -10 dBm 01 -19.503 -30 dBm 01 -19.503 -50 dBm 10 dBm -70 dBm 10 dBm	Tx. Spurious Offset 2.52 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Sweep M1[1] M2[1] M2[1		- 4.8	-0.91 dBi 05600 GH 44.36 dBi 10482 GH
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 IPK Max 10 dBm 10 dBm 10 -10 dBm 10 -20 dBm 01 -10 dBm 01 -10 dBm 10 -10 dBm 01 -20 dBm 01 -10 dBm M2 -30 dBm M2 -50 dBm -10 -50 dBm -10 -70 dBm -10 -70 dBm -10 Start 30.0 MHz -10	Tx. Spurious Offset 2.52 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Sweep M1[1] M2[1] M2[1		- 4.8	-0.91 dBi 05600 GH 44.36 dBi 10482 GH
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1PK Max 10 10 dBm 10 -10 dBm 11 -20 dBm 01 -30 dBm 11 -70 dBm 10	Tx. Spurious Offset 2.52 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Sweep M1[1] M2[1] M2[1] Distribution for the second seco		- 4.8	-0.91 dBr 05600 GH 44.36 dBr 10482 GH
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 IPK Max 10 dBm 10 dBm 10 -10 dBm 10 -20 dBm 01 -10 dBm 01 -10 dBm 10 -10 dBm 01 -20 dBm 01 -10 dBm M2 -30 dBm M2 -50 dBm -10 -50 dBm -10 -70 dBm -10 -70 dBm -10 Start 30.0 MHz -10	Tx. Spurious Offset 2.52 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Sweep M1[1] M2[1] M2[1		- 4.8	-0.91 dBi 05600 GH 44.36 dBi 10482 GH
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 1Pk Max 10 10 dBm 10 -10 dBm 01 -20 dBm 01 -30 dBm 01 -70 dBm 01 -70 dBm 00 Start 30.0 MHz 10 Type Ref Trc	Tx. Spurious Offset 2.52 dB SWT 265 ms	RBW 100 kHz VBW 300 kHz	Mode Sweep M1[1] M2[1] M2[1] Distribution for the second seco		- 4.8	-0.91 dBr 05600 GH 44.36 dBr 10482 GH

	Tx. Sp	ourious in	VNT O-QF	SK 24401		I/CI		Ē
Spectrum								
Ref Level 20.00 dBn			BW 100 kHz					
Att 30 di	B SWT	1 ms 😑 🎗	BW 300 kHz	Mode Sw	eep			
SGL Count 100/100								
1Pk Max	1 1							
				M1[1]		2 440	0.02 dBr 46000 GH
10 dBm							2.440	
						r i	11	
0 dBm	mount	www.	Marker and	man	mmmu	mound	Much	- and a
-10 dBm								
-20 dBm	+							
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm	+							
-70 dBm								
CF 2.44 GHz			1001	ots			Spa	n 1.5 MHz
					adar (ili		100	20.02.2025
ate: 20.FEB.2025 1		ious NVN	IT O-QPSK	2440MHz	z Ant1 En	nission		_
Spectrum	Tx. Spur	ious NVN	IT O-QPSK	2440MHz	z Ant1 En	nission		
Spectrum Ref Level 20.00 dBn	Tx. Spur	.53 dB 😑 R	BW 100 kHz			nission		
Spectrum Ref Level 20.00 dBn Att 30 da	Tx. Spur	.53 dB 😑 R		X 2440MHz Mode Sw		nission		
Spectrum Ref Level 20.00 dBr Att 30 di SGL Count 10/10	Tx. Spur	.53 dB 😑 R	BW 100 kHz			nission		
Spectrum Ref Level 20.00 dBn Att 30 da	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw	еер	nission		
Spectrum Ref Level 20.00 dBr Att 30 di SGL Count 10/10	Tx. Spur	.53 dB 😑 R	BW 100 kHz		еер	nission		-1.16 dBr
Spectrum Ref Level 20.00 dBr Att 30 di SGL Count 10/10	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw	reep 1]	nission	2.4	-1.16 dBr 40010 GH
Spectrum Ref Level 20.00 dBn Att 30 dB SGL Count 10/10 PIPk Max 10 dBm	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw	reep 1]	nission	2.4	-1.16 dBr 40010 GH 43.70 dBr
Spectrum Ref Level 20.00 dBn Att 30 db SGL Count 10/10 1Pk Max 10 dBm	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw	reep 1]	nission	2.4	-1.16 dBr 40010 GH 43.70 dBr
Spectrum Ref Level 20.00 dBn Att 30 db SGL Count 10/10 1Pk Max 10 dBm 10 dBm M1	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw	reep 1]	nission	2.4	-1.16 dBr 40010 GH 43.70 dBr
Spectrum Ref Level 20.00 dBn Att 30 dB SGL Count 10/10 PIPk Max 10 dBm	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw	reep 1]	nission	2.4	-1.16 dBr 40010 GH 43.70 dBr
Spectrum Ref Level 20.00 dBn a Att 30 df SGL Count 10/10 1Pk Max 10 dBm -10 dBm -10 dBm	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw	reep 1]	nission	2.4	-1.16 dBr 40010 GH 43.70 dBr
Spectrum Ref Level 20.00 dBn Att 30 db SGL Count 10/10 1Pk Max 10 dBm 10 dBm M1	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw	reep 1]	nission	2.4	-1.16 dBr 40010 GH 43.70 dBr
Spectrum Ref Level 20.00 dBn Att 30 ds SGL Count 10/10 IPk Max 30 ds 10 dBm 10 dBm -10 dBm 01 -19,984	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw	reep 1]	nission	2.4	-1.16 dBr 40010 GH 43.70 dBr
Spectrum Ref Level 20.00 dBn a Att 30 df SGL Count 10/10 1Pk Max 10 dBm -10 dBm -10 dBm	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw	reep 1]	nission	2.4	-1.16 dBr 40010 GH 43.70 dBr
Spectrum Ref Level 20.00 dBn Att 30 ds SGL Count 10/10 IPk Max 30 ds 10 dBm 10 dBm -10 dBm 01 -19,984	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw	reep 1]	nission	2.4	-1.16 dBr 40010 GH 43.70 dBr
Spectrum Ref Level 20.00 dBn Att 30 df SGL Count 10/10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw	reep 1]	nission	2.4	-1.16 dBr 40010 GH 43.70 dBr
Spectrum Ref Level 20.00 dBn a Att 30 df SGL Count 10/10 PIPk Max 10 dBm -10 dBm -10 dBm -20 dBm D1 -19.984 -30 dBm	Tx. Spur	.53 dB 😑 R	BW 100 kHz	Mode Sw M1[M2[1] 1]		2.4	-1.16 dBr 40010 GH 43.70 dBr
Spectrum Ref Level 20.00 dBn Att 30 db SGL Count 10/10 IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 01 -19.984 -30 dBm 01 -19.984	Tx. Spur	.53 dB 😑 R	BW 100 kHz BW 300 kHz	Mode Sw M1[M2[reep 1] 1]		2.4 - 4.8	-1.16 dBr 440010 GH 43.70 dBr 81069 GH
Spectrum Ref Level 20.00 dBn Att 30 db SGL Count 10/10 IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 01 -19.984 -30 dBm 01 -19.984	Tx. Spur	.53 dB 😑 R	BW 100 kHz BW 300 kHz	Mode Sw M1[M2[reep 1] 1]		2.4	-1.16 dBr 440010 GH 43.70 dBr 81069 GH
Spectrum Ref Level 20.00 dBn Att 30 dB SGL Count 10/10 IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm -20 dBm D1 -19.984 -30 dBm -40 dBm	Tx. Spur	.53 dB 😑 R	BW 100 kHz BW 300 kHz	Mode Sw M1[M2[reep 1] 1]		2.4 - 4.8	-1.16 dBr 440010 GH 43.70 dBr 81069 GH
Spectrum Ref Level 20.00 dBn Att 30 db SGL Count 10/10 IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 01 -19.984 -30 dBm 01 -19.984	Tx. Spur	.53 dB 😑 R	BW 100 kHz BW 300 kHz	Mode Sw M1[M2[reep 1] 1]		2.4 - 4.8	-1.16 dBr 440010 GH 43.70 dBr 81069 GH
Spectrum Ref Level 20.00 dBn Att 30 dB SGL Count 10/10 IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm -20 dBm D1 -19.984 -30 dBm -40 dBm	Tx. Spur	.53 dB 😑 R	BW 100 kHz BW 300 kHz	Mode Sw M1[M2[reep 1] 1]		2.4 - 4.8	-1.16 dBr 40010 GH 43.70 dBr 81069 GH
Spectrum Ref Level 20.00 dBn Att 30 dB SGL Count 10/10 IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm -20 dBm D1 -19.984 -30 dBm -40 dBm	Tx. Spur	.53 dB 😑 R	BW 100 kHz BW 300 kHz	Mode Sw M1[M2[reep 1] 1]		2.4 - 4.8	-1.16 dBr 40010 GH 43.70 dBr 81069 GH
Spectrum Ref Level 20.00 dBn Att 30 db SGL Count 10/10 IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm -20 dBm D1 -19.984 -30 dBm -40 dBm -40 dBm -40 dBm -70 dBm 10 dBm	Tx. Spur	.53 dB 😑 R	BW 100 kHz BW 300 kHz	Mode Sw M1[M2[reep 1] 1]		2.4 - 4.8	-1.16 dBr 40010 GH 43.70 dBr 81069 GH
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm -20 dBm D1 -19.984 -30 dBm M1 -20 dBm D1 -19.984 -30 dBm M2 -50 dBm M2 -70 dBm M2 Start 30.0 MHz Marker Type Ref	Tx. Spur	.53 dB R	BW 100 kHz BW 300 kHz	Mode Sw M1[M2[M2] pts Function	1] 1]		2.4 - 4.8	26.5 GHz
Spectrum Ref Level 20.00 dBn Att 30 dB SGL Count 10/10 IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm -20 dBm D1 -19.984 -30 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm	Tx. Spuri	.53 dB e R 65 ms v	BW 100 kHz BW 300 kHz	Mode Sw M1[M2[D D D D D D D	1] 1]		2.4 	-1.16 dBr 40010 GH 43.70 dBr 81069 GH
Spectrum Ref Level 20.00 dBm Att 30 dB SGL Count 10/10 IPk Max 10 dBm 10 dBm 10 dBm -10 dBm 10 dBm -20 dBm D1 -19.984 -30 dBm M1 -20 dBm D1 -19.984 -30 dBm M2 -50 dBm M2 -70 dBm M2 Start 30.0 MHz Marker Type Ref	Tx. Spur	.53 dB e R 65 ms v	BW 100 kHz BW 300 kHz	Mode Sw M1[M2[D D D D D D D			2.4 	-1.16 dBr 40010 GH 43.70 dBr 81069 GH
Spectrum Ref Level 20.00 dBn Att 30 db SGL Count 10/10 10/10 1Pk Max 10 dBm 10 dBm	Tx. Spuri	.53 dB e R 65 ms v	BW 100 kHz BW 300 kHz	Mode Sw M1[M2[D D D D D D D			2.4 	-1.16 dBr 40010 GH 43.70 dBr 81069 GH

		17. 0	, paneae	NVNT O-QF	0.12.00				G
Spectrur									
Ref Leve Att	1 20.00 df 30			RBW 100 kHz VBW 300 kHz		ween			
SGL Count		00 0111	1 115	1011 300 KHZ	moue c	теер			
1Pk Max									
					M	[1]		0.400	0.68 dB
10 dBm		_						2.48)22780 GH
						M1			
0 dBm	0.20	al 02 - at 0 -	Man			math		Mr. Marine A.	
wwww	MALIC V. I	man	man	man	Mar Market	J. 0	row with	10 10000	manna
-10 dBm—									
-20 dBm—									
-30 dBm—									
-40 dBm									
-50 dBm									
-30 uBM									
-60 dBm		_							
10 GDIII									
-70 dBm—									
CF 2.48 G				1001				0	
CF 2.48 G	HZ			1001	pts			spa	an 1.5 MHz
Spectrur	n			NT O-QPSI		Hz Ant1 E	Emission		
Spectrur Ref Leve Att	n 1 20.00 df 30	Tx. Spu	2.55 dB 😑	NT O-QPSH RBW 100 kHz VBW 300 kHz			Emission		
Spectrur Ref Leve Att SGL Count	n 1 20.00 df 30	Tx. Spu	2.55 dB 😑	RBW 100 kHz			Emission		
Spectrur Ref Leve Att SGL Count	n 1 20.00 df 30	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S	weep	mission		
Spectrur Ref Leve Att SGL Count 1Pk Max	n 1 20.00 df 30	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S	weep	Emission		0.16 dB 180600 GF
Spectrur Ref Leve Att SGL Count 1Pk Max	n 1 20.00 df 30	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S	weep	Emission		0.16 dB 180600 GH -44.42 dB
Spectrur Ref Leve Att SGL Count 1Pk Max 10 dBm-	n 1 20.00 df 30	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S	weep	Emission		0.16 dB #80600 GH
Spectrun Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm	n 1 20.00 df 30	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S	weep	Emission		0.16 dB 180600 GH -44.42 dB
Spectrun Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm	n 1 20.00 df 30	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S	weep			0.16 dB 180600 GH -44.42 dB
Spectrur Ref Leve Att SGL Count JPk Max 10 dBm 0 dBm -10 dBm	n 1 20.00 df 30	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S	weep			0.16 dB 180600 GH -44.42 dB
Spectrur Ref Leve Att SGL Count JIPk Max 10 dBm 0 dBm -10 dBm -20 dBm	n 30 30 30 10/10	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S	weep			0.16 dB 180600 GH -44.42 dB
Spectrur Ref Leve Att SGL Count JIPk Max 10 dBm 0 dBm -10 dBm -20 dBm	n 30 30 30 10/10	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S	weep			0.16 dB 180600 GH -44.42 dB
Spectrur Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm	n 30 30 30 10/10	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S	weep			0.16 dB 180600 GH -44.42 dB
Spectrur Ref Leve Att SGL Count IPK Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 30 30 30 10/10	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S	weep			0.16 dB 180600 GH -44.42 dB
Spectrur Ref Leve Att SGL Count 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 30 30 30 10/10	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S M3 M2	weep			0.16 dB 180600 GH -44.42 dB
Spectrur Ref Leve Att SGL Count 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 30 30 30 10/10	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S M3 M2	weep [1] 2[1]			0.16 dB 180600 GH -44.42 dB
Spectrur Ref Leve Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -40 dBm	n 30 30 30 10/10	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S M3 M2	weep [1] 2[1]			0.16 dB 180600 GH -44.42 dB
Spectrur Ref Leve Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -40 dBm	n 30 30 30 10/10	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S M3 M2	weep [1] 2[1]			0.16 dB 180600 GH -44.42 dB
Spectrur Ref Leve Att SGL Count IP Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	n30 30 : 10/10	Tx. Spu	2.55 dB 😑	RBW 100 kHz VBW 300 kHz	Mode S MI M2	weep [1] 2[1]			0.16 dB 180600 G -44.42 dB 560479 G
Spectrur Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm	n30 30 : 10/10	Tx. Spu	2.55 dB 😑	RBW 100 kHz	Mode S MI M2	weep [1] 2[1]			0.16 dB 180600 GH -44.42 dB
Spectrur Ref Leve Att SGL Count IP Max ID dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -50 dBm -70 dBm -70 dBm -70 dBm	n 30 30 : 10/10	Tx. Spu	2.55 dB • 265 ms • 1	RBW 100 kHz VBW 300 kHz	Mode S M3 M2 b, o jib 0 M1 b, o jib 0 M1 pts Funct	weep [1] [1] [1]			0.16 dB 180600 GF 444.42 dB 960479 GF
Spectrur Ref Leve Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70	n 30 : 10/10 =D1 -19.3: =D1 -19.3: MHz f Trc	Tx. Spu	2.55 dB 265 ms 265 m	RBW 100 kHz VBW 300 kHz	Mode S M3 M2 M2 M2 M2 M2 M2 M2 M3 M2 M3 M2 M3 M3 M2 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	weep [1] [1] [1]		4.5	0.16 dB 180600 GF 444.42 dB 960479 GF
Spectrur Ref Leve Att SGL Count IP Max ID dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -50 dBm -70 dBm -70 dBm -70 dBm	n 30 30 : 10/10	Tx. Spu	2.55 dB • 265 ms • 1	RBW 100 kHz VBW 300 kHz	Mode S M3 M2 M2 M2 M2 M2 M2 M2 M3 M2 M3 M2 M3 M3 M2 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3 M3	weep [1] [1] [1]		4.5	0.16 dB 180600 GF 444.42 dB 960479 GF

END OF REPORT