

FCC Radio Test Report

FCC ID: RWO-RZ090484

This report concerns: Class II Permissive Changes

Report No. Equipment Model Name Brand Name Applicant Address Manufacturer Address	 BTL-FCCP-5-2209C159 Notebook PC RZ09-0483 RAZER Razer Inc. 9 Pasteur, Suite 100, Irvine, CA92618, USA. Razer Inc. 9 Pasteur, Suite 100, Irvine, CA92618, USA.
Equipment Class	: 6XD - 15E 6 GHz Low Power Indoor Client
Radio Function	: U-NII 6 GHz (U-NII 5, U-NII 6, U-NII 7, U-NII 8)
FCC Rule Part(s) Measurement Procedure(s)	 FCC CFR Title 47, Part15, Subpart E (15.407) ANSI C63.10-2013
Date of Receipt Date of Test Issued Date	: 2022/10/18 : 2022/11/22~2022/11/30 : 2022/12/22

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Eric Lee, Engineer

Jerry Chuang, Supervisor

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Testing Laboratory

0659

ac-mRA

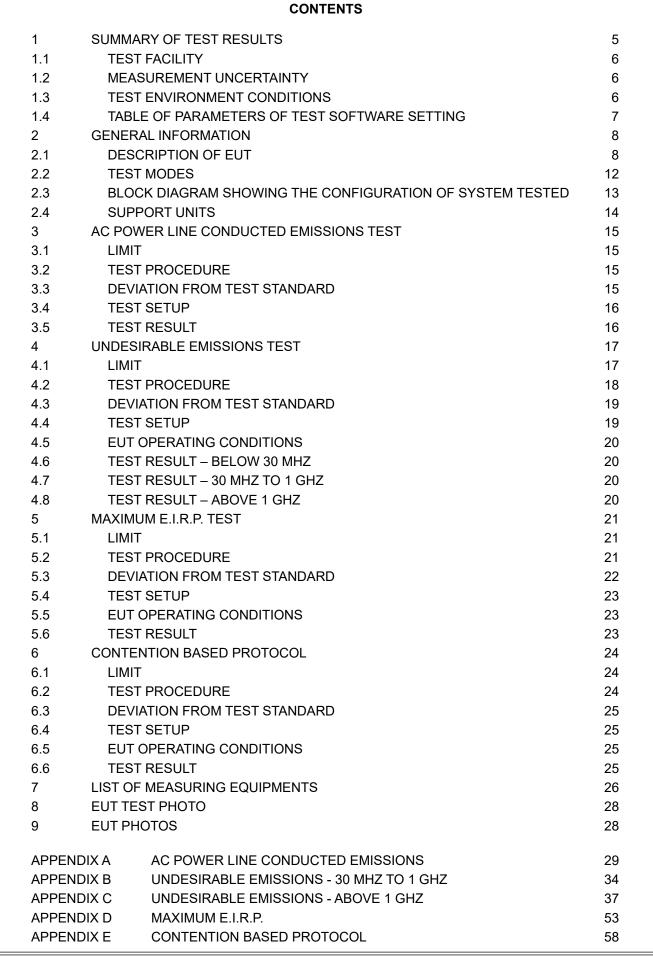
Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.


BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

BIL

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-5-2209C159	R00	Original Report.	2022/12/22	Valid

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.407(b)(9)	AC power line conducted emissions	APPENDIX A	Pass	
15.407(b)(6)(9)	Undesirable emissions	APPENDIX B APPENDIX C	Pass	
15.407(a)(4)(5)(6)(7)(8)	Maximum e.i.r.p.	APPENDIX D	Pass	
15.203 15.407(a)(9)	Antenna requirement	NOTE (3)	Pass	
15.407(a)(12)	Maximum power spectral density	NOTE (3)	Pass	
15.407(b)(7)	In-band emission (Mask)	NOTE (3)	Pass	
15.407(b)(10)	Restricted bands of operation	NOTE (3)	Pass	
15.407(c)	Automatically discontinue transmission	NOTE (3)	Pass	
15.407(d)	Operational restrictions for 6 GHz U-NII devices	NOTE (3)	Pass	
15.407(d)(6)	Contention-based protocol	APPENDIX E	Pass	
15.407(g) 2.1055	Frequency stability	NOTE (3)	Pass	

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.

(2) The report format version is TP.1.1.1.

(3) This item is demonstrated to full compliance referring to the test report number 200611-01.TR38 of the integrated module (model name: AX211NGW, FCC ID: PD9AX211NG).

(4) The ac power lines conducted emissions and radiated emissions are tested to demonstrate full compliance of both module integrated into the host and host itself.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

	2, Ln. 169, Sec. 2 est sites and facil C06	ities a							
No. 68	3-1, Ln. 169, Sec	. 2, D	atong Rd., Xizh	ni Dist.,	New Taipe	i City 221,	Taiwan		
The te	est sites and facil	ities a	are covered und	der FCC	CRN: 6744	15 and DN	: TW0659.		
	C05		CB08		CB11		CB15	CB16	
	SR10								

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95** %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test :

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test :

Test Item	U,(dB)			
Maximum e.i.r.p.	0.3669			
Contention-based protocol	-			

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	23°C, 58%	AC 120V/60Hz	Jay Tien
Radiated emissions below 1 GHz	23°C, 59%	AC 120V/60Hz	Mark Wang
Radiated emissions above 1 GHz	23°C, 59%	AC 120V/60Hz	Mark Wang
Maximum e.i.r.p.	21.2°C, 52%	AC 120V/60Hz	Angela Wang
Contention-based protocol	23.4°C, 55%	AC 120V/60Hz	Tim Lee

Test Software			DRT	U V02593.22.	170.0	
		U	NII-5			
Mode	5955 MHz		6175	MHz	6415 MHz	Data Ra
EE 802.11ax (HE20)	1.625		1.6	625	1.625	HE0
Mode	5965 MHz		6165	MHz	6405 MHz	Data Ra
EE 802.11ax (HE40)	4.5		4	1	4.125	HE0
Mode	5985 MHz		6145	MHz	6385 MHz	Data Ra
EE 802.11ax (HE80)	7.25		7.1	25	7.125	HE0
Mode	6025 MHz		6345	MHz		Data Ra
EE 802.11ax (HE160)	9.875		9.8	375		HE0
		U	NII-6			
Mode	6435 MHz		6475	MHz	6515 MHz	Data Ra
EE 802.11ax (HE20)	2.25		2.2		2.25	HE0
Mode	6445 MHz		6485			Data Ra
E 802.11ax (HE40)	4.75		5.12			HE0
Mode	6465 MHz					Data Ra
E 802.11ax (HE80)	7.5					HE0
Mode	6505 MHz					Data Ra
EE 802.11ax (HE160)	10.25					HE0
		INIII-6	6+ UNII-7			
Mode		JINII-C	6525 M	Hz		Data Rate
EE 802.11ax (HE40)			5.25			HE0
			0.20			
		U	NII-7			
Mode	6535 MHz		6695 MHz		6855 MHz	Data Rat
EE 802.11ax (HE20)	1.875		1.875		1.875	HE0
Mode	6685 MHz		6845	5 MHz		Data Rat
EE 802.11ax (HE40)	4.25		4.	25		HE0
Mode	6545 MHz		6625	6625 MHz		Data Rat
EE 802.11ax (HE80)	7.625		7.3	375	7.375	HE0
Mode	6665 MHz					Data Rat
EE 802.11ax (HE160)	10					HE0
		U	NII-8			
Mode	6875 MHz	69	95 MHz	7095 MHz	7115 MHz	z Data Rat
EE 802.11ax (HE20)	1.875		1.875	1.875	-9.5	HE0
Mode	6885 MHz	70	85 MHz			Data Rat
EE 802.11ax (HE40)	5.25		5.25			HE0
Mode	6865 MHz	69	45 MHz	7025 MHz		Data Rat
EE 802.11ax (HE80)	7.375		8	8		HE0
Mode	6985 MHz					Data Rat
EE 802.11ax (HE160)	10					HE0

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Model Name RZ09-0483 Brand Name RAZER Model Difference N/A Power Source 1# DC voltage supplied from AC adapter. Model 1: RC30-042 Power Source 1# MOdel 1: RC30-0484 2# Supplied from battery. Model 1: I/P: 100-240V~ 4A MAX,50/60Hz O/P: 19.5V==14.36A Power Rating 1# Model 1: I/P: 100-240V~ 4A MAX,50/60Hz O/P: 19.5V==14.36A Power Rating 2* POWER Adapter 1* AC Cable VProducts Covered 2* POWER Adapter 1* AC Cable UNII-5: 5925 MHz ~ 6425 MHz UNII-5: 6525 MHz ~ 6525 MHz UNII-7: 6525 MHz ~ 6625 MHz UNII-7: 6525 MHz ~ 6625 MHz UNII-7: 6525 MHz ~ 6875 MHz UNII-8: 6875 MHz UNII-8: 6875 MHz ~ 7125 MHz UNII-8: 6875 MHz UNII-5 IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0021 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0032 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0032 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0032 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0032 W) IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) <th>Equipment</th> <th>Notebook PC</th>	Equipment	Notebook PC					
Brand Name RAZER Model Difference IVA Model Difference I# DC voltage supplied from AC adapter. Model 1: RC30-042 Model 2: RC30-0484 Power Source If DC voltage supplied from AC adapter. Model 2: RC30-0483 Power Rating If Model 1: IP: 100-240V~ 4A MAX,50/60Hz O/P: 19.5V==14.36A Model 2: I/P: 100-240V~ 4.5A,50/60Hz O/P: 19.5V==16.92A Power Rating If Model 1: IP: 100-240V~ 4.5A,50/60Hz O/P: 19.5V==16.92A Products Covered 2* POWER Adapter 1* AC Cable IVIII-5: 5925 MHz ~ 6425 MHz Operation Band UNII-5: 5925 MHz ~ 6675 MHz UNII-5: 6425 MHz ~ 6875 MHz UNII-7: 6525 MHz Modulation Technology OFDMA Transfer Rate IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0034 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0034 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0034 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0034 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0038 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0032 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0038 W) IEEE 802.11ax (HE40): 11.20 dBm (0.0129 W) IEEE 802.11ax (HE40): 11.20 dBm (0.0032 W) IEEE 802.11ax (HE40): 11.20 dBm (0.0032 W) IEEE 802.11ax (HE40): 7.7.30 dBm (0.0032 W)							
Model Difference N/A 1# DC voltage supplied from AC adapter. Model 1: RC30-042 Model 2: RC30-0484 2# Supplied from battery. Model 2: RC30-0483 2# Supplied from battery. Model 1: I/P: 100-240V~ 4.A MAX,50/60Hz O/P: 19.5V=14.36A Power Rating 1# Model 1: I/P: 100-240V~ 4.A MAX,50/60Hz O/P: 19.5V=14.36A Power Rating 2* DC 15.4V, 6182mAh, 95.2Wh O/P: 19.5V=14.36A Products Covered 2* POWER Adapter 1* AC Cable UNII-5: 55925 MHz ~ 6425 MHz UNII-7: 6525 MHz Operation Band UNII-7: 6525 MHz ~ 6875 MHz UNII-6: 6425 MHz ~ 6875 MHz UNII-8: 6875 MHz Modulation Technology OFDMA Transfer Rate IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE40): 13.64 dBm (0.0216 W) IEEE 802.11ax (HE40): 13.64 dBm (0.0032 W) IEEE 802.11ax (HE40): 13.64 dBm (0.0032 W) IEEE 802.11ax (HE40): 13.64 dBm (0.0032 W) IEEE 802.11ax (HE40): 13.08 dBm (0.0032 W) IEEE 802.11ax (HE40): 11.38 dBm (0.0024 W) IEEE 802.11ax (HE40): 7.73 dBm (0.0028 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0023 W) IEEE 802.11ax (HE40): 7.73							
Power Source 1# DC voltage supplied from AC adapter. Model 1: RC30-042 Model 2: RC30-0483 Power Rating 1# Model 1: I/P: 100-240V~ 4A MAX,50/60Hz O/P: 19.5V==14.36A Model 2: I/P: 100-240V~ 4.5A,50/60Hz O/P: 19.5V===14.36A Model 2: I/P: 100-240V/ Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE40): 13.36 dBm (0.0024 W) IEEE 802.11ax (HE40): 13.36 dBm (0.0024 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0023 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0023 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0023 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0073 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0073 W) IEEE 802.11ax (HE40): 13.57 dBm (0.0073 W) IEEE 802.11ax (HE40): 1							
Model 1: RC30-042 Model 2: RC30-0484 Wodel 2: RC30-0484 2# Supplied from battery. Model : RC30-0483 Power Rating 1# Model 1: I/P: 100-240V~ 4A MAX,50/60Hz O/P: 19.5V==14.36A Power Rating 2* POWER Adapter O/P: 19.5V==14.36A Products Covered 2* POWER Adapter O/P: 19.5V==16.92A UNII-5: 5925 MHz ~ 6425 MHz O/P: 19.5V==16.92A Operation Band UNII-6: 6425 MHz ~ 6425 MHz UNII-7: 6525 MHz ~ 6425 MHz Modulation Technology OFDMA Transfer Rate IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) for UNII-5 IEEE 802.11ax (HE40): 11.10 dBm (0.0129 W) IEEE 802.11ax (HE40): 13.78 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.0072 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 11.10 dBm (0.0129 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0033 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0073 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0073 W) IEEE 802.11ax (HE40): 11.21 dBm (0.0132 W) IE							
Power Source Model 2: RC30-0484 2# Supplied from battery. Model : RC30-0483 Model : RC30-0483 Power Rating 1# Model 1: I/P: 100-240V~ 4.A MAX,50/60Hz O/P: 19.5V=14.36A Power Rating 2# DC 15.4V, 6182mAh, 95.2Wh O/P: 19.5V=16.92A Products Covered 2* POWER Adapter O/P: 19.5V=16.92A 1* AC Cable UNII-5: 5925 MHz ~ 6425 MHz O/P: 19.5V=16.92A Operation Band UNII-6: 6425 MHz ~ 6525 MHz UNII-7: 6525 MHz ~ 6525 MHz Modulation Technology OFDMA Transfer Rate IEEE 802.11ax: up to 2402 Mbps Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.03 dBm (0.0231 W) Maximum E.I.R.P. IEEE 802.11ax (HE160): 13.64 dBm (0.0231 W) IEEE 802.11ax (HE20): 5.03 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) IEEE 802.11ax (HE40): 7.73 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE20): 5.03 dBm (0.0024 W) IEEE 802.11ax (HE40): 1.3.89 dBm (0.0245 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.0072 W) IEEE 802.11ax (HE40): 7.73 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 1.3.76 dBm (0.0028 W) IEEE 802.11ax (HE40): 1.3.76 dBm (0.0032 W) <td></td> <td></td>							
2# Supplied from battery. Model : RC30-0483 Power Rating 1# Model 1: I/P: 100-240V~ 4A MAX,50/60Hz O/P: 19.5V==14.36A Power Rating 2* POWER Adapter 0/P: 19.5V==16.92A 2# DC 15.4V, 6182mAh, 95.2Wh 2' POWER Adapter 0/P: 19.5V==16.92A 0peration Band UNII-5: 5925 MHz ~ 6425 MHz 0/P: 19.5V==16.92A 0peration Band UNII-5: 5925 MHz ~ 6625 MHz 0/N/P: 19.5V==16.92A Modulation Technology OFDMA 6875 MHz Transfer Rate IEEE 802.11ax: up to 2402 Mbps 0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) 1EEE 802.11ax (HE20): 5.05 dBm (0.0024 W) 1EEE 802.11ax (HE20): 5.05 dBm (0.0032 W) 1EEE 802.11ax (HE20): 5.03 dBm (0.0032 W) 1EEE 802.11ax (HE20): 5.03 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) 1EEE 802.11ax (HE20): 5.03 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) 1EEE 802.11ax (HE20): 5.03 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) 1EEE 802.11ax (HE20): 5.03 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) 1EEE 802.11ax (HE20): 5.03 dBm (0.0032 W)	Dower Source						
Model : RC30-0483 Power Rating 1# Model 1: I/P: 100-240V~ 4A MAX,50/60Hz O/P: 19.5V==14.36A Power Rating 2# POWER Adapter O/P: 19.5V==16.92A Products Covered 2* POWER Adapter O/P: 19.5V==16.92A Operation Band UNII-5: 5925 MHz ~ 6425 MHz O/P: 19.5V==16.92A Operation Band UNII-6: 6425 MHz ~ 6525 MHz O/P: 19.5V==16.92A Modulation Technology OFMA CTransfer Rate IEEE 802.11ax: up to 2402 Mbps Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE20): 13.04 dBm (0.0231 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 1.3.89 dBm (0.0072 W) IEEE 802.11ax (HE40): 1.3.89 dBm (0.00245 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.0032 W) IEEE 802.11ax (HE40): 7.73 dBm (0.0023 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.0032 W) IEEE 802.11ax (HE40): 7.73 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.00238 W) IEEE 802.11ax (HE40): 13.76 dBm (Fower Source						
Power Rating 1# Model 1: I/P: 100-240V~ 4A MAX,50/60Hz O/P: 19.5V===14.36A Model 2: I/P: 100-240V~ 4.5A,50/60Hz O/P: 19.5V===14.36A O/P: 19.5V===16.92A Products Covered 2* POWER Adapter 1* AC Cable O/P: 19.5V===16.92A UNII-5: 5925 MHz ~ 6425 MHz UNII-5: 5925 MHz ~ 6425 MHz UNII-7: 6525 MHz ~ 6525 MHz UNII-7: 6525 MHz UNII-7: 6525 MHz ~ 6525 MHz UNII-7: 6525 MHz Modulation Technology OFDMA Transfer Rate IEEE 802.11ax: up to 2402 Mbps IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.03 dBm (0.0064 W) for UNII-5 IEEE 802.11ax (HE40): 13.64 dBm (0.00231 W) IEEE 802.11ax (HE40): 5.85 dBm (0.0038 W) IEEE 802.11ax (HE20): 5.85 dBm (0.0072 W) IEEE 802.11ax (HE40): 13.64 dBm (0.0072 W) IEEE 802.11ax (HE40): 13.89 dBm (0.00245 W) IEEE 802.11ax (HE40): 1.30 dBm (0.0038 W) IEEE 802.11ax (HE40): 1.376 dBm (0.0023 W) IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) IEEE 802.11ax (HE40): 1.3.76 dBm (0.0023 W) IEEE 802.11ax (HE40): 1.3.76 dBm (0.0033 W) IEEE 802.11ax (HE40): 1.3.76 dBm (0.0073 W) IEEE 802.11ax (HE40): 8.66 dBm (0.0073 W) IEEE 802.11ax							
Power Rating Model 2: I/P: 100-240V~ 4.5A,50/60Hz O/P: 19.5V== 16.92A 2# DC 15.4V, 6182mAh, 95.2Wh 2* POWER Adapter 1* AC Cable Products Covered 1* AC Cable 1* AC Cable Operation Band UNII-5: 5925 MHz ~ 6425 MHz UNII-7: 6525 MHz ~ 6525 MHz 0425 MHz Modulation Technology OFDMA 7125 MHz Maximum E.I.R.P. IEEE 802.11ax: up to 2402 Mbps Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.03 dBm (0.0064 W) 160 UNII-5 for UNII-5 IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) 16EE 802.11ax (HE20): 5.85 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) IEEE 802.11ax (HE40): 13.64 dBm (0.0021 W) 16EE 802.11ax (HE20): 5.03 dBm (0.0022 W) IEEE 802.11ax (HE20): 5.03 dBm (0.0025 W) 160 UNII-6 for UNII-6 IEEE 802.11ax (HE20): 5.03 dBm (0.0023 W) IEEE 802.11ax (HE40): 7.3 dBm (0.0028 W) 16EE 802.11ax (HE40): 7.3 dBm (0.0028 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.3 dBm (0.0033 W) IEEE 802.11ax (HE40): 7.3 dBm (0.0033 W) 16UII-7 IEEE 802.11ax (
2# DC 15.4V, 6182mAh, 95.2Wh Products Covered 2* POWER Adapter 1* AC Cable Operation Band UNII-5: 5925 MHz ~ 6425 MHz UNII-6: 6425 MHz ~ 6525 MHz UNII-7: 6525 MHz ~ 6875 MHz Modulation Technology OFDMA Transfer Rate IEEE 802.11ax: up to 2402 Mbps Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.03 dBm (0.00231 W) IEEE 802.11ax (HE40): 8.67 dBm (0.00231 W) IEEE 802.11ax (HE40): 13.64 dBm (0.00231 W) IEEE 802.11ax (HE40): 13.64 dBm (0.00231 W) IEEE 802.11ax (HE40): 13.64 dBm (0.00230 W) IEEE 802.11ax (HE40): 13.64 dBm (0.00245 W) IEEE 802.11ax (HE40): 13.89 dBm (0.00245 W) IEEE 802.11ax (HE40): 13.89 dBm (0.00245 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0032 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.76 dBm (0.0038 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.76 dBm (0.0038 W) IEEE 802.11ax (HE40): 13.76 dBm (0.00238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.76 dBm (0.00238 W) IEEE 802.11ax (HE40): 13.76 dBm (0.00238 W) <	Dower Dating						
Products Covered 2* POWER Adapter 1* AC Cable Operation Band UNII-5: 5925 MHz ~ 6425 MHz UNII-6: 6425 MHz ~ 6525 MHz UNII-7: 6525 MHz ~ 6875 MHz Modulation Technology OFDMA Transfer Rate IEEE 802.11ax: up to 2402 Mbps Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE20): 5.13 dBm (0.0120 W) IEEE 802.11ax (HE40): 8.03 dBm (0.0064 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.03 dBm (0.0021 W) IEEE 802.11ax (HE40): 5.85 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.85 dBm (0.0072 W) IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE20): 5.03 dBm (0.0024 W) IEEE 802.11ax (HE40): 7.73 dBm (0.0245 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.0028 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.0028 W) IEEE 802.11ax (HE40): 7.73 dBm (0.0028 W) IEEE 802.11ax (HE160): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) for UNII-7 IEEE 802.11ax (HE40): 8.71 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.86 dBm (0.0073 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-6 IEEE 802.11ax (HE40): 8.61 dBm (0.0028 W) IEEE	Power Raung						
Products Covered 1* AC Cable Operation Band UNII-5: 5925 MHz ~ 6425 MHz UNII-6: 6425 MHz ~ 6875 MHz UNII-7: 6525 MHz ~ 6875 MHz Modulation Technology OFDMA Transfer Rate IEEE 802.11ax: up to 2402 Mbps Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.03 dBm (0.0044 W) for UNII-5 IEEE 802.11ax (HE40): 8.03 dBm (0.0120 W) IEEE 802.11ax (HE40): 13.64 dBm (0.0231 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE40): 13.64 dBm (0.0224 W) IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) IEEE 802.11ax (HE40): 13.99 dBm (0.0245 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.99 dBm (0.0245 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0032 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0028 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.76 dBm (0.0033 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0033 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0033 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0028 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0							
Operation Band UNII-5: 5925 MHz ~ 6425 MHz UNII-6: 6425 MHz ~ 6525 MHz UNII-7: 6525 MHz ~ 6875 MHz UNII-8: 6875 MHz UNII-8: 6875 MHz ~ 7125 MHz Modulation Technology OFDMA Transfer Rate IEEE 802.11ax: up to 2402 Mbps Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) for UNII-5 IEEE 802.11ax (HE20): 5.13 dBm (0.0044 W) for UNII-5 IEEE 802.11ax (HE20): 10.79 dBm (0.0120 W) IEEE 802.11ax (HE20): 13.64 dBm (0.0231 W) IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.85 dBm (0.00245 W) for UNII-6 IEEE 802.11ax (HE20): 5.03 dBm (0.0025 W) IEEE 802.11ax (HE20): 5.03 dBm (0.0023 W) IEEE 802.11ax (HE20): 5.03 dBm (0.0023 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.03 dBm (0.0232 W) IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) IEEE 802.11ax (HE20): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) for UNII-7 IEEE 802.11ax (HE20): 5.21 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-8 IEEE 802.11ax (HE40): 13.57 dBm (0.0228 W) IEE	Products Covered						
Operation Band UNII-6: 6425 MHz ~ 6525 MHz UNII-7: 6525 MHz ~ 6875 MHz UNII-8: 6875 MHz ~ 7125 MHz Modulation Technology OFDMA Transfer Rate IEEE 802.11ax: up to 2402 Mbps Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.03 dBm (0.0064 W) IEEE 802.11ax (HE40): 10.79 dBm (0.0120 W) IEEE 802.11ax (HE40): 13.64 dBm (0.0231 W) IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE40): 13.69 dBm (0.0245 W) IEEE 802.11ax (HE40): 13.89 dBm (0.0245 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.57 dBm (0.0033 W) IEEE 802.11ax (HE40): 13.57 dBm (0.0033 W) IEEE 802.11ax (HE40): 13.57 dBm (0.0238 W)							
Operation Band UNII-7: 6525 MHz ~ 6875 MHz UNII-8: 6875 MHz ~ 7125 MHz Modulation Technology OFDMA Transfer Rate IEEE 802.11ax: up to 2402 Mbps Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) for UNII-5 IEEE 802.11ax (HE40): 8.03 dBm (0.0064 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.64 dBm (0.0231 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 5.85 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 5.85 dBm (0.0022 W) for UNII-6 IEEE 802.11ax (HE40): 13.89 dBm (0.0245 W) IEEE 802.11ax (HE160): 13.89 dBm (0.0032 W) IEEE 802.11ax (HE40): 7.73 dBm (0.0059 W) for UNII-7 IEEE 802.11ax (HE40): 1.10 dBm (0.0129 W) IEEE 802.11ax (HE160): 13.76 dBm (0.0238 W) IEEE 802.11ax (HE40): 1.376 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0073 W) IEEE 802.11ax (HE40): 1.21 dBm (0.0033 W) IEEE 802.11ax (HE40): 1.21 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 1.21 dBm (0.00238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 1.3.76 dBm (0.00238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 1.21 dBm (0.0033 W)							
UNII-8: 6875 MHz ~ 7125 MHz Modulation Technology OFDMA Transfer Rate IEEE 802.11ax: up to 2402 Mbps Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.03 dBm (0.004 W) for UNII-5 IEEE 802.11ax (HE40): 13.64 dBm (0.0231 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE40): 13.64 dBm (0.0245 W) Maximum E.I.R.P. IEEE 802.11ax (HE160): 13.89 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) IEEE 802.11ax (HE160): 13.76 dBm (0.0032 W) IEEE 802.11ax (HE40): 7.73 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 11.12 dBm (0.0129 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0073 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0073 W) for UNII-7 IEEE 802.11ax (HE40): 5.21 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 5.21 dBm (0.0073 W) for UNII-6+ UNII-7 IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-8 IEEE 802.11ax (HE40): 8.71 dBm	Operation Band						
Modulation Technology OFDMA Transfer Rate IEEE 802.11ax: up to 2402 Mbps Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) for UNII-5 IEEE 802.11ax (HE40): 8.03 dBm (0.0064 W) for UNII-5 IEEE 802.11ax (HE40): 10.79 dBm (0.0120 W) IEEE 802.11ax (HE160): 13.64 dBm (0.0231 W) IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.85 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE20): 5.03 dBm (0.0129 W) IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.0032 W) for UNII-7 IEEE 802.11ax (HE40): 11.12 dBm (0.0129 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0032 W) IEEE 802.11ax (HE40): 13.76 dBm (0.00238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.76 dBm (0.0033 W) for UNII-7 IEEE 802.11ax (HE20): 5.21 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.21 dBm (0.0033 W) for UNII-8 IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-7 IEEE 802.11ax (HE20): 5.21 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-8<							
Transfer Rate IEEE 802.11ax: up to 2402 Mbps Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) for UNII-5 IEEE 802.11ax (HE40): 8.03 dBm (0.0064 W) for UNII-5 IEEE 802.11ax (HE40): 10.79 dBm (0.0120 W) IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.85 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE40): 8.72 dBm (0.00245 W) IEEE 802.11ax (HE160): 13.89 dBm (0.0245 W) IEEE 802.11ax (HE40): 7.73 dBm (0.0059 W) for UNII-7 IEEE 802.11ax (HE40): 7.73 dBm (0.0028 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) for UNII-7 IEEE 802.11ax (HE40): 8.86 dBm (0.0073 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-8 IEEE 802.11ax (HE40): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status Engineering Sample	Modulation Technology						
IEEE 802.11ax (HE20): 5.13 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.03 dBm (0.0064 W) for UNII-5 IEEE 802.11ax (HE40): 10.79 dBm (0.0120 W) IEEE 802.11ax (HE160): 13.64 dBm (0.0231 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE40): 11.10 dBm (0.0129 W) IEEE 802.11ax (HE40): 13.89 dBm (0.0245 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.0032 W) for UNII-7 IEEE 802.11ax (HE40): 11.12 dBm (0.0129 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 13.76 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) IEEE 802.11ax (HE40): 8.16 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) for UNII-6+ UNII-7 IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Engineering Sample							
Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.03 dBm (0.0064 W) for UNII-5 IEEE 802.11ax (HE80): 10.79 dBm (0.0120 W) IEEE 802.11ax (HE160): 13.64 dBm (0.0231 W) IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.85 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) IEEE 802.11ax (HE40): 11.10 dBm (0.0129 W) IEEE 802.11ax (HE160): 13.89 dBm (0.00245 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) for UNII-7 IEEE 802.11ax (HE40): 7.73 dBm (0.0059 W) for UNII-7 IEEE 802.11ax (HE40): 11.12 dBm (0.0129 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) for UNII-6+ UNII-7 IEEE 802.11ax (HE40): 8.61 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-8 IEEE 802.11ax (HE40): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W)							
for UNII-5 IEEE 802.11ax (HE80): 10.79 dBm (0.0120 Ŵ) IEEE 802.11ax (HE160): 13.64 dBm (0.0231 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) for UNII-6 IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) IEEE 802.11ax (HE40): 11.10 dBm (0.0129 W) IEEE 802.11ax (HE60): 13.89 dBm (0.0245 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.0032 W) for UNII-7 IEEE 802.11ax (HE40): 7.73 dBm (0.0059 W) IEEE 802.11ax (HE40): 11.12 dBm (0.0129 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) Maximum E.I.R.P. for UNII-6+ UNII-7 IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) Maximum E.I.R.P. for UNII-8 IEEE 802.11ax (HE40): 11.21 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) IEEE 802.11ax (HE60): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE60): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status Engineering Sample							
IEEE 802.11ax (HE160): 13.64 dBm (0.0231 Ŵ) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) for UNII-6 IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) IEEE 802.11ax (HE40): 8.72 dBm (0.0129 W) IEEE 802.11ax (HE80): 11.10 dBm (0.0129 W) IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) IEEE 802.11ax (HE40): 7.73 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.0059 W) for UNII-7 IEEE 802.11ax (HE40): 13.76 dBm (0.0129 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 5.21 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) IEEE 802.11ax (HE40): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE40): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 RZ09-0483							
IEEE 802.11ax (HE20): 5.85 dBm (0.0038 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE40): 11.10 dBm (0.0129 W) IEEE 802.11ax (HE160): 13.89 dBm (0.0245 W) IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.0059 W) for UNII-7 IEEE 802.11ax (HE40): 11.12 dBm (0.0129 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0073 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 5.21 dBm (0.0077 W) for UNII-6+ UNII-7 IEEE 802.11ax (HE20): 5.21 dBm (0.0073 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-8 IEEE 802.11ax (HE60): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE60): 13.57 dBm (0.0228 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W)							
Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.72 dBm (0.0072 W) for UNII-6 IEEE 802.11ax (HE80): 11.10 dBm (0.0129 W) IEEE 802.11ax (HE160): 13.89 dBm (0.0245 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) for UNII-7 IEEE 802.11ax (HE40): 7.73 dBm (0.0059 W) IEEE 802.11ax (HE40): 7.73 dBm (0.00238 W) IEEE 802.11ax (HE160): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) for UNII-6+ UNII-7 IEEE 802.11ax (HE20): 5.21 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-8 IEEE 802.11ax (HE40): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE60): 13.57 dBm (0.0228 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W)							
for UNII-6 IEEE 802.11ax (HE80): 11.10 dBm (0.0129 W) IEEE 802.11ax (HE160): 13.89 dBm (0.0245 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) for UNII-7 IEEE 802.11ax (HE40): 7.73 dBm (0.0059 W) IEEE 802.11ax (HE40): 11.12 dBm (0.0129 W) IEEE 802.11ax (HE80): 11.12 dBm (0.0129 W) IEEE 802.11ax (HE40): 13.76 dBm (0.0238 W) Maximum E.I.R.P. for UNII-6+ UNII-7 IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) Maximum E.I.R.P. for UNII-8 IEEE 802.11ax (HE40): 5.21 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) IEEE 802.11ax (HE80): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status Engineering Sample							
IEEE 802.11ax (HE160): 13.89 dBm (0.0245 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) for UNII-7 IEEE 802.11ax (HE40): 7.73 dBm (0.0059 W) IEEE 802.11ax (HE40): 11.12 dBm (0.0129 W) IEEE 802.11ax (HE80): 11.12 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) for UNII-6+ UNII-7 IEEE 802.11ax (HE40): 5.21 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-8 IEEE 802.11ax (HE40): 8.61 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status							
Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.03 dBm (0.0032 W) for UNII-7 IEEE 802.11ax (HE40): 7.73 dBm (0.0059 W) IEEE 802.11ax (HE80): 11.12 dBm (0.0129 W) IEEE 802.11ax (HE60): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) for UNII-6+ UNII-7 IEEE 802.11ax (HE20): 5.21 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-8 IEEE 802.11ax (HE40): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status Engineering Sample							
Maximum E.I.R.P. IEEE 802.11ax (HE40): 7.73 dBm (0.0059 W) for UNII-7 IEEE 802.11ax (HE80): 11.12 dBm (0.0129 W) IEEE 802.11ax (HE160): 13.76 dBm (0.0238 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) for UNII-6+ UNII-7 IEEE 802.11ax (HE20): 5.21 dBm (0.0033 W) Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-8 IEEE 802.11ax (HE80): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status Engineering Sample							
for UNII-7 IEEE 802.11ax (HE80): 11.12 dBm (0.0129 Ŵ) IEEE 802.11ax (HE160): 13.76 dBm (0.0238 W) Maximum E.I.R.P. for UNII-6+ UNII-7 IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) Maximum E.I.R.P. for UNII-8 IEEE 802.11ax (HE20): 5.21 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) IEEE 802.11ax (HE80): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status Engineering Sample	Maximum E I R P						
IEEE 802.11ax (HE160): 13.76 dBm (0.0238 Ŵ) Maximum E.I.R.P. for UNII-6+ UNII-7 IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) Maximum E.I.R.P. for UNII-8 IEEE 802.11ax (HE20): 5.21 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) IEEE 802.11ax (HE80): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status Engineering Sample							
Maximum E.I.R.P. for UNII-6+ UNII-7 IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) Maximum E.I.R.P. for UNII-8 IEEE 802.11ax (HE20): 5.21 dBm (0.0033 W) IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) IEEE 802.11ax (HE80): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Engineering Sample							
for UNII-6+ UNII-7 IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W) Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.21 dBm (0.0033 W) for UNII-8 IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) IEEE 802.11ax (HE40): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status Engineering Sample	Maximum F I R P						
Maximum E.I.R.P. IEEE 802.11ax (HE20): 5.21 dBm (0.0033 W) for UNII-8 IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) IEEE 802.11ax (HE80): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status Engineering Sample		IEEE 802.11ax (HE40): 8.86 dBm (0.0077 W)					
Maximum E.I.R.P. IEEE 802.11ax (HE40): 8.61 dBm (0.0073 W) for UNII-8 IEEE 802.11ax (HE80): 11.21 dBm (0.0132 W) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status Engineering Sample		IEEE 802 11ax (HE20): 5.21 dBm (0.0033 W)					
for UNII-8 IEEE 802.11ax (HE80): 11.21 dBm (0.0132 Ŵ) IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status Engineering Sample	Maximum E.I.R.P.						
IEEE 802.11ax (HE160): 13.57 dBm (0.0228 W) Test Model RZ09-0483 Sample Status Engineering Sample							
Test Model RZ09-0483 Sample Status Engineering Sample							
Sample Status Engineering Sample	Test Model						
	EUT Modification(s)	N/A					

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:							
			UN	II-5			
IEEE 802.1	1ax (HE20)	IEEE 802.1	1ax (HE40)	IEEE 802.11ax (HE80) IEEE 802.11ax (HE16			1ax (HE160)
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	5955	3	5965	7	5985	15	6025
5	5975	11	6005	23	6065	47	6185
9	5995	19	6045	39	6145	79	6345
13	6015	27	6085	55	6225		
17	6035	35	6125	71	6305		
21	6055	43	6165	87	6385		
25	6075	51	6205				
29	6095	59	6245				
33	6115	67	6285				
37	6135	75	6325				
41	6155	83	6365				
45	6175	91	6405				
49	6195						
53	6215						
57	6235						
61	6255						
65	6275						
69	6295						
73	6315						
77	6335						
81	6355						
85	6375						
89	6395						
93	6415						

	UNII-6								
IEEE 802.1	IEEE 802.11ax (HE20) IEEE 802.11ax (H			IEEE 802.1	1ax (HE80)	IEEE 802.11ax (HE160)			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
97	6435	99	6445	103	6465	111	6505		
101	6455	107	6485						
105	6475	115	6525						
109	6495								
113	6515								

IEEE 802.11ax (HE20) IEEE 802.11ax (HE40) IEEE 802.11ax (HE80) IEEE 802.11ax (HE10) Channel Frequency (MHz) Frequency Channel Frequency Channel Frequency Frequency Channel Frequency		UNII-7						
Channel Frequency (MHz) Channel (MHz) Frequency (MHz) Channel (MHz) Frequency (MHz) Channel (MHz) Frequency (MHz) 117 6535 123 6565 119 6545 143 6665 121 6555 131 6605 135 6625 175 6825 125 6575 139 6645 151 6705	IEEE 802 1	1ax (HE20)	IEEE 802 1			1ax (HE80)	IEEE 802 1	1ax (HE160)
121 6555 131 6605 135 6625 175 6825 129 6595 147 6685 167 6785 133 6615 155 6725 133 6615 155 6725 137 6635 163 6765 144 6665 113 6675 113 6675 113 6675 113 6675 113 6675 114 6675 117 6845 113 114 6675 113 6675 113 114 6675 113 114 6675 113 114 6675 113 114 6675 113 115 116 116 115 115 115 115 116 116 116 116	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
125 6575 139 6645 151 6705 129 6595 147 6685 167 6785				6565		6545		6665
129 6595 147 6685 167 6785 133 6615 155 6725			131	6605		6625	175	6825
133 6615 155 6725 137 6635 163 6765 141 6655 171 6805 145 6675 179 6845 149 6695								
137 6635 163 6765 141 6655 171 6805 145 6675 179 6845 149 6695	129	6595	147	6685	167	6785		
141 6655 171 6805 145 6675 179 6845 149 6695				6725				
145 6675 179 6845 149 6695	137	6635	163	6765				
149 6695	141	6655	171	6805				
153 6715	145	6675	179	6845				
157 6735	149	6695						
161 6755 165 6775 169 6795	153	6715						
165 6775 169 6795 173 6815 177 6835 177 6835 181 6855 181 6855 181 6855 181 6855 181 6855 181 6855 181 6855 181 6855 182 181 6855 182 181 6855 182 181 6855 183 6865 207 185 6875 187 6885 183 6865 207 6985 6985 193 6915 203 6965 215 7025 197 6935 211 7005 197 6935 211 7005 197 201 6955 219 7045 193 <td< td=""><td>157</td><td>6735</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	157	6735						
169 6795 173 6815 177 6835 181 6855 181 6855 181 6855 181 6855 181 6855 181 6855 181 6855 181 6855 181 6855 181 6855 181 6855 182 181 6855 183 682.11ax (HE80) IEEE 802.11ax (HE160) Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) 6985 195 6925 199 6945 193 6915 203 6965 215 7025 197 6935 211 7005 197 6935 211 7005 197 205 6975 227 7085 193 193 6915 227 7085 193	161	6755						
173 6815 UNII-8 177 6835 Image: State Sta	165	6775						
177 6835 UNII-8 IB1 6855 IEEE 802.11ax (HE20) IEEE 802.11ax (HE40) IEEE 802.11ax (HE80) IEEE 802.11ax (HE160) Channel Frequency (MHz)		6795						
181 6855 UNII-8 IEEE 802.11ax (HE20) IEEE 802.11ax (HE40) IEEE 802.11ax (HE80) IEEE 802.11ax (HE160) Channel Frequency (MHz) Channel	173	6815						
UNII-8 IEEE 802.11ax (HE20) IEEE 802.11ax (HE40) IEEE 802.11ax (HE80) IEEE 802.11ax (HE160) Channel Frequency (MHz) Channel Frequency (MHz) <t< td=""><td>177</td><td>6835</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	177	6835						
IEEE 802.11ax (HE20) IEEE 802.11ax (HE40) IEEE 802.11ax (HE80) IEEE 802.11ax (HE160) Channel Frequency (MHz) Channel Frequency (MHz) Frequency (MHz) <td>181</td> <td>6855</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	181	6855						
IEEE 802.11ax (HE20) IEEE 802.11ax (HE40) IEEE 802.11ax (HE80) IEEE 802.11ax (HE160) Channel Frequency (MHz) Channel Frequency (MHz) Frequency (MHz) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) 185 6875 187 6885 183 6865 207 6985 189 6895 195 6925 199 6945								
Channel (MHz) Channel Channel Chann	IEEE 802.1		IEEE 802.1		IEEE 802.1	/	IEEE 802.1	/
189 6895 195 6925 199 6945 193 6915 203 6965 215 7025 197 6935 211 7005	-	(MHz)	-	(MHz)	-	(MHz)	-	(MHz)
193 6915 203 6965 215 7025 197 6935 211 7005							207	6985
197 6935 211 7005 201 6955 219 7045 205 6975 227 7085 209 6995								
201 6955 219 7045 205 6975 227 7085 209 6995 900 213 7015 900 217 7035 900 221 7055 900 225 7075 900 229 7095 900					215	7025		
205 6975 227 7085 209 6995	-							
209 6995								
213 7015			227	7085				
217 7035								
221 7055								
225 7075								
229 7095								
233 7115								
	233	7115						

(3) Table for Filed Antenna:

Ant.	Manufacturer	P/N	Туре	Connector	Gain (dBi)
1	Amphenol Taiwan Corporation	BY5962-15-001-C	PIFA	N/A	4.27
2	Amphenol Taiwan Corporation	BY5962-15-001-C	PIFA	N/A	4.71

Note:

1) The EUT incorporates a MIMO function. Physically, the EUT provides two completed transmitters and receivers (2T2R).

2) Ant.1 refers to main antenna, Ant.2 refers to aux antenna.

3) The AUX antenna connector of the module connected to the MAIN antenna of the EUT and the MAIN antenna connector of the module connected to the AUX antenna of the EUT.

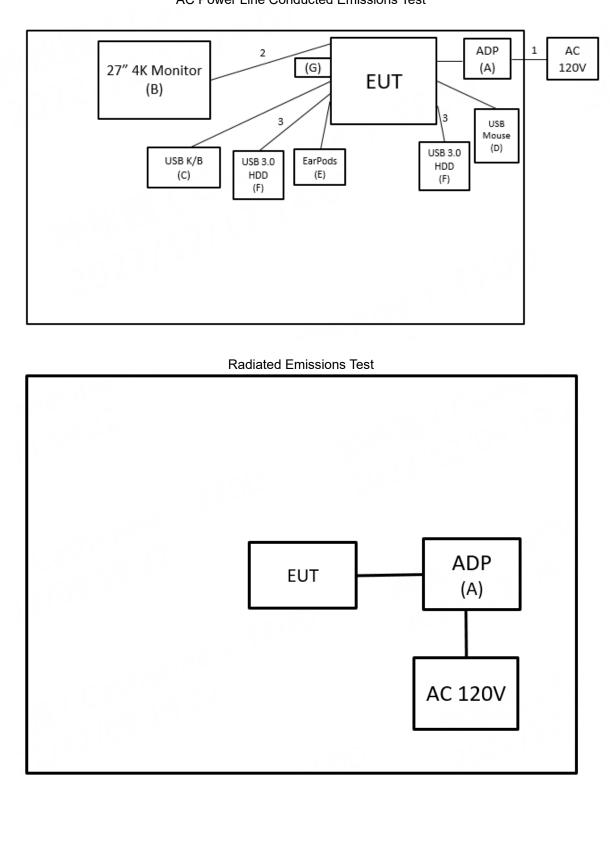
(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	IEEE 802.11ax (HE20)	233	-
	IEEE 802.11ax (HE20)	233	Bandedge
Transmitter Radiated Emissions	IEEE 802.11ax (HE160)	79,111,143,207	Danueuge
(above 1GHz)	IEEE 802.11ax (HE20)	233	Llarmania
	IEEE 802.11ax (HE160)	79,111,143,207	Harmonic
Maximum e.i.r.p.	IEEE 802.11ax (HE20)	1/45/93 97/105/113 117/149/181 185/209/229/233	-
	IEEE 802.11ax (HE160)	15/79 111,143,207	
Contention Record Diretecol	IEEE 802.11ax (HE20)	45,105,149,213	
Contention Based Protocol	IEEE 802.11ax (HE160)	47,111,143,207	

NOTE:

(1) The Radiated emissions test was verified based on the worst conducted power and Bandwidth test results reported in the original report.


(2) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.

(3) This Notebook PC has two mainboards with two adapters. Both mainboard MB1 (with adapter RC30-042) and mainboard MB2 (with adapter RC30-0484) had been pre-tested and in this report only recorded the worst case.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 0.

AC Power Line Conducted Emissions Test

2

3

No

No

Furnished by test lab.

Furnished by test lab.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Ν	lodel No.	Series No.	Remarks
А	ADP	Razer	F	RC30-042	952226U26100653	Supplied by test requester.
В	27" 4K Monitor	DELL	U2720Q		CN-083VF-WSL00- 0B7-332L	Furnished by test lab.
С	USB K/B	DELL	KB216t		CN-0W33XP-L0300- 797-05TY-A03	Furnished by test lab.
D	USB Mouse	DELL	MOCZUL		CN-049TWY-PRC00- 79E-01HA	Furnished by test lab.
Е	EarPods	Apple		A1472	N/A	Furnished by test lab.
F	USB 3.0 HDD	WD	WDBC:	3C0010BSL-0B	WX81A88ALJUC	Furnished by test lab.
G	USB Dongle	Kingston	DataT	raveler Exodia	N/A	Furnished by test lab.
Item	Shielded	Ferrite	Core	Length	Cable Type	Remarks
1	No	N	0	1.2m	Power Cable	Supplied by test requester.

AC power line conducted emissions

Radiated Emissions

HDMI Cable

TypeC to TypeC Cable

1.7m

18cm

No

No

Item	Equipment	Brand	Model No.	Series No.	Remarks
А	ADP	Razer	RC30-042	952226026100653	Supplied by test requester.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1m	PowerCode	Supplied by test requester.

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use) Margin Level = Measurement Value – Limit Value Calculation example:

38.22 + 3.45 =	41.67

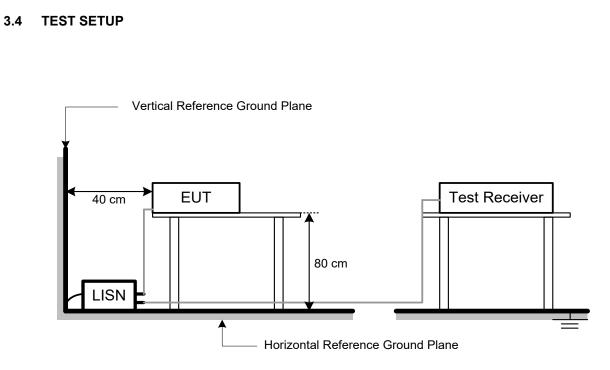
Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 UNDESIRABLE EMISSIONS TEST

4.1 LIMIT

According to 15.407(b)(6) the limits are as follows: For transmitters operating within the 5.925-7.125 GHz band: Any emissions outside of the 5.925-7.125 GHz band must not exceed an e.i.r.p. of -27 dBm/MHz.

According to FCC KDB 987594 D02, clause G. Unwanted Emission Measurement: Use guidance in KDB 789033 for measurements below 1000 MHz and above 1000 MHz. Unwanted emissions outside of restricted bands are measured with a RMS detector. In addition, 15.35(b) applies where the peak emissions must be limited to no more than 20 dB above the average limit

Item	Maximum e.i.r.p. Limit	Maximum field strength Limit @ 3m
Any emissions outside of the 5.925-	Peak: -7 dBm/MHz	88.2 dBuV/m
7.125 GHz band	Average: -27 dBm/MHz	68.2 dBuV/m

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

According to 15.407(b)(9) the limits are as follows:

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

NOTE:

- (1) e.i.r.p. Limit (dBuV/m at 3m) = Power Limit(dBm) + 95.2. (Referring to FCC KDB 987594 D02, clause G.2.d)(iii))
- (2) Emission level (dBuV/m) = 20log Emission level (uV/m).
 3 m Emission level = 10 m Emission level + 20log(10 m/3 m).
- (3) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain (if use) Margin Level = Measurement Value - Limit Value Calculation example:

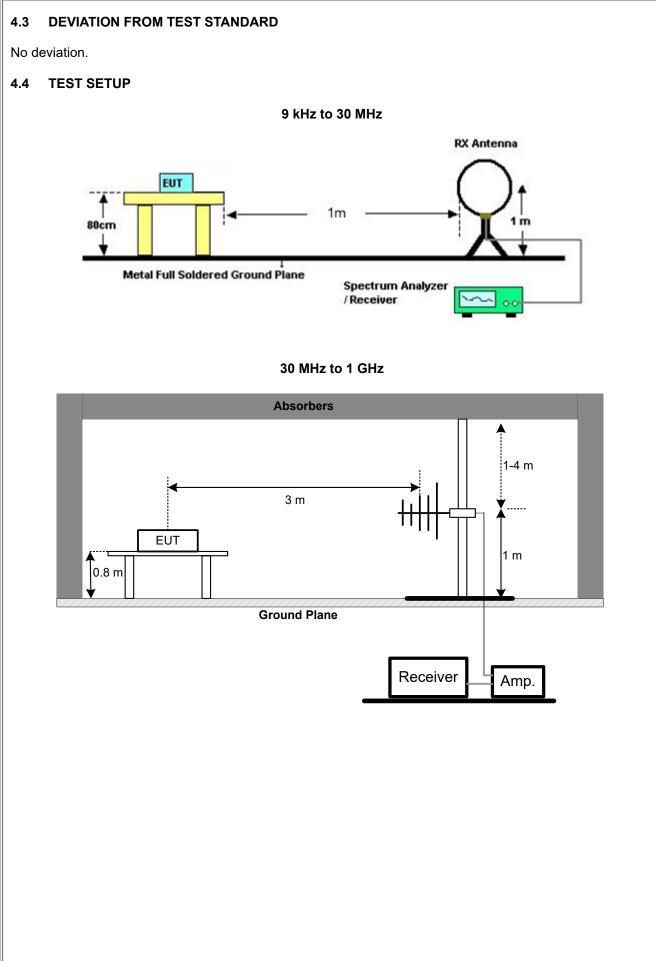
Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	Ш	21.22
Measurement Value		Limit Value		Margin Level

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RBW / VBW	1MHz / 3MHz for Peak,			
(Emission in restricted band)	1MHz / 1/T for Average			
Spectrum Parameter	Setting			
Attenuation	Auto			

Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

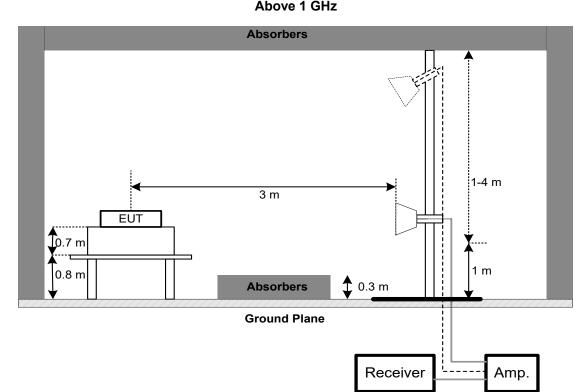
4.2 TEST PROCEDURE

Referring to FCC KDB 987594 D02, clause G. and FCC KDB 789033 D02, clause G. Unwanted Emission Measurement:


For measurements below 30 MHz:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

For measurements 30 MHz to 40 GHz:


- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (between 30 MHz to 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. (between 1 GHz to 40 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (between 30 MHz to 1 GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (between 30 MHz to 1 GHz)

EUT OPERATING CONDITIONS 4.5

The EUT was programmed to be in continuously transmitting mode.

NOTE:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

TEST RESULT – BELOW 30 MHZ 4.6

There were no emissions found below 30 MHz within 20 dB of the limit.

4.7 **TEST RESULT – 30 MHZ TO 1 GHZ**

Please refer to the APPENDIX B.

TEST RESULT – ABOVE 1 GHZ 4.8

Please refer to the APPENDIX C.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5 MAXIMUM E.I.R.P. TEST

5.1 LIMIT

Equipment Category	Band	Maximum e.i.r.p. Limit				
	U-NII 5 (5.925-6.425 GHz)					
Indoor access point client	U-NII 6 (6.425-6.525 GHz)	24 dBm				
devices	U-NII 7 (6.525-6.875 GHz)	24 uBili				
	U-NII 8 (6.875-7.125 GHz)					
* For outdoor devices, the maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the						
horizon must not exceed 125 mW (21 dBm).						

According to 15.407(a)(11):

The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

5.2 TEST PROCEDURE

Referring to FCC KDB 987594 D02, clause E. and FCC KDB 789033 D02, clause E. 3 Measurement using a Power Meter (PM):

a. The maximum peak conducted output power was performed in accordance with method of clause E. 3.
b) Method PM-G (Measurement using a gated RF average power meter): Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Referring to FCC KDB 987594 D02, clause H. Measurement of emission at elevation angles higher than 30° from horizon:

Note: Elevation angle is defined as 0° is horizontal and 90° is straight-up.

For fixed infrastructure, not electrically or mechanically steerable beam antenna

a. If elevation plane radiation pattern is available:

- (i) Determine the device intended mounting elevation angle and define 0° reference angle on the elevation plane radiation pattern.
- (ii) Indicate any radiation pattern between 30° and 90° which has the highest gain.
- (iii) Calculate the EIRP based on this highest gain and conducted output power.
- (iv) Compare to the 125 mW limit to establish compliance.
- (v) Include the elevation pattern data in the application filing with the test report to show how the calculations are made.

Note: For MIMO devices, take the maximum gain of each antenna and apply the guidance in KDB Publication 662911 for calculating the overall gain including directional gain for the maximum EIRP calculation.

- b. If the elevation plane radiation pattern is not available, but the antenna type (such as dipole omnidirectional, Yagi, parabolic, or sector antenna) has a symmetrical elevation plane pattern referenced at the main beam and all lobes on the main beam elevation plane have highest gains, then the following measurement method is acceptable to determine compliance:
 - (i) Determine the device's intended mounting elevation angle referenced to the horizon.
 - (ii) Rotate the EUT antenna by 90° around the main beam axis in a horizontal position to transform the measurement in elevation angle into an azimuth angle and define a 0° reference angle based on the device's intended mounting elevation angle.
 - (iii) Move the test antenna along the horizontal arc, or rotate the turntable with the EUT antenna placed at the center, between 30° and 90° relative to the 0° reference angle, and then continuing down from 90° to 30° on the other side of the pattern, while maintaining the test antenna pointing with constant distance to the EUT antenna. Search for the spot which has the highest measured emission. Both horizontal and vertical polarization shall be investigated to determine the maximum radiated emission level.

Note: Moving the test antenna along the horizontal arc, or rotating the turntable, shall be performed in an angular step size as small as possible, but not larger than 3°.

- (iv) Calculate the EIRP based on the highest measured emission. Compare to the limit of 125 mW to determine compliance.
- (v) The antenna pattern measurements must be included in the filing.

For All Other Antenna Types

For all other antenna types (such as patch antennas, array antennas, antennas with irregular radiator shapes, etc.) which have any combination of following characteristics:

- Asymmetrical, complex radiation patterns
- 2-D or 3-D steerable beam
- Portable/mobile, not fixed infrastructure device

Provide the following information in the report:

- a. Describe what type of antenna is used.
- b. Determine by calculation, measurement or simulation, all radiation lobes/beams, which have EIRP higher than 125 mW within a 3-dB elevation beamwidth.

Provide an explanation of how these antenna beams are controlled to be kept below the 30° elevation angle. The explanation should include device installation instructions, mechanical control, electromechanical control or software algorithms, if the beams are electrically controlled by software.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

EUT	Power Meter

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULT

Please refer to the APPENDIX D.

6 CONTENTION BASED PROTOCOL

6.1 LIMIT

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band (herein referred to as unlicensed devices) are required to use technologies that include a contentionbased protocol to avoid co-channel interference with incumbent devices sharing the band. To ensure incumbent co-channel operations are detected in a technology-agnostic manner, unlicensed devices are required to detect co-channel radio frequency energy (energy detect) and avoid simultaneous transmission.

Unlicensed low-power indoor devices must detect co-channel radio frequency power that is at least -62 dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel and stay off the channel as long as detected radio frequency power is equal to or greater than the threshold (-62 dBm). The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain. (See note) To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel. For example, an 802.11 device that plans to transmit a 40 MHz- wide signal (on a primary 20 MHz channel and a secondary 20 MHz channel) must detect energy throughout the entire 40 MHz channel. Additionally, low-power indoor devices must detect co-channel energy with 90% or greater certainty.

Note: The EUT with a lowest gain is 4.27dBi. All power injected into EUT should be -62+4.27=-57.73dBm.

6.2 TEST PROCEDURE

lf	Number of Tests	Placement of Incumbent Transmission
BW _{EUT} ≪BW _{Inc}	Once	Tune incumbent and EUT transmissions (f _{c1} =f _{c2})
$BW_{Inc} {<} BW_{EUT} {\leqslant} 2BW_{Inc}$	Once	Incumbent transmission is contained within BW _{EUT}
2BWInc <bweut \$4bwinc<="" td=""><td>Twice. Incumbent transmission is contained within BW_{EUT}</td><td>Incumbent transmission is located as closely □s possible to the lower edge and upper edge, respectively, of the EUT channel</td></bweut>	Twice. Incumbent transmission is contained within BW _{EUT}	Incumbent transmission is located as closely □s possible to the lower edge and upper edge, respectively, of the EUT channel
BW _{EUT} >4BW _{Inc} Three times		Incumbent transmission is located as closely as possible to the lower edge of the EUT channel, in the middle of EUT channel, and as closely as possible to the upper edge of the EUT channel

a. Number of times detection threshold:

Where:

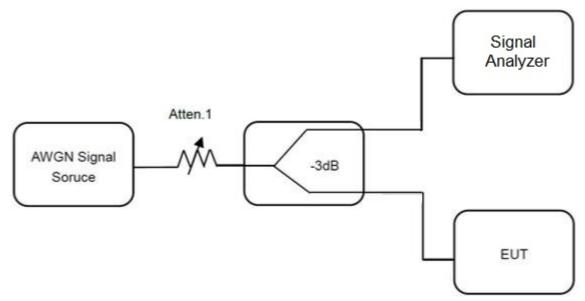
BW_{EUT}: Transmission bandwidth of EUT signal.

BW_{Inc}: Transmission bandwidth of the simulated incumbent signal (10 MHz wide AWGN signal).

 f_{c1} : Center frequency of EUT transmission.

 $f_{\mbox{\scriptsize c2}}$: Center frequency of simulated incumbent signal.

- b. Using an AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use step b table to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
- c. Set the AWGN signal power to an extremely low level (more than 20 dB below the -62 dBm threshold). Connect the AWGN signal source, via a 3-dB splitter, to the signal analyzer and the EUT as show in the block diagram below.
- d. Transmit the AWGN signal (RF ON) and verify its characteristics on the signal analyzer.
- e. Monitor the signal analyzer to verify if the AWGN signal has been detected and the EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.



- f. (Including all losses in the RF paths) Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
- g. Refer to step b table to determine number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step c, choose a different center frequency for the AWGN signal and repeat the process.

6.3 DEVIATION FROM TEST STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATING CONDITIONS

The EUT was Configured to be in normally transmitting mode with a constant duty cycle.

6.6 TEST RESULT

Please refer to the APPENDIX D.

7 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	TWO-LINE V- NETWORK	R&S	ENV216	101051	2022/6/15	2023/6/14					
2	Test Cable	EMCI	EMCRG58-BM- BM-9000	210501	2022/5/2	2023/5/1					
3	EMI Test Receiver	R&S	ESR 7	101433	2022/11/16	2023/11/15					
4	Measurement Software	EZ	EZ_EMC (Version NB- 03A1-01)	N/A	N/A	N/A					

	Radiated Emissions										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Preamplifier	EMCI	EMC330N	980850	2022/9/19	2023/9/18					
2	Preamplifier	EMCI	EMC118A45SE	980819	2022/3/8	2023/3/7					
3	Preamplifier	EMCI	EMC184045SE	980882	2022/2/9	2023/2/8					
4	Preamplifier	EMCI	EMC001340	980579	2022/9/30	2023/9/29					
5	Test Cable	EMCI	EMC104-SM-SM- 1000	220319	2022/3/15	2023/3/14					
6	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2022/3/15	2023/3/14					
7	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2022/3/15	2023/3/14					
8	EXA Signal Analyzer	keysight	N9020B	MY57120120	2022/3/7	2023/3/6					
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2022/9/19	2023/9/18					
10	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2022/5/18	2023/5/17					
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2022/5/18	2023/5/17					
12	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2022/5/20	2023/5/19					
13	6dB Attenuator	EMCI	EMCI-N-6-06	AT-N0625	2022/5/20	2023/5/19					
14	Test Cable	EMCI	EMC101G-KM-KM- 3000	220329	2022/3/15	2023/3/14					
15	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2022/3/15	2023/3/14					
16	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A					

	Maximum e.i.r.p.									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Power Meter	Anritsu	ML2495A	1128008	2022/6/1	2023/5/31				
2	Power Sensor	Anritsu	MA2411B	1126001	2022/6/1	2023/5/31				

	Contention Based Protocol										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	Keysight	N9010A	MY54200240	2022/6/9	2023/6/8					
2	MXG Vector Signal Generator	Agilent	N5182B	MY51350711	2022/4/14	2023/4/13					
3	POWER SPLITTER	Mini-Circuits	ZFRSC-183-S+	N/A	2022/5/12	2023/5/11					
4	POWER SPLITTER	Mini-Cicuits	ZFRSC-123-S+	N/A	2022/5/12	2023/5/11					

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

8 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2209C159-1 (APPENDIX-TEST PHOTOS).


9 EUT PHOTOS

Please refer to document Appendix No.: EP-2209C159-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1973	34.42	0.02	34.44	63.72	-29.28	QP	
2		0.1973	17.97	0.02	17.99	53.72	-35.73	AVG	
3		0.3390	30.54	0.02	30.56	59.23	-28.67	QP	
4		0.3390	25.09	0.02	25.11	49.23	-24.12	AVG	
5		0.4987	27.66	0.02	27.68	56.02	-28.34	QP	
6		0.4987	19.84	0.02	19.86	46.02	-26.16	AVG	
7		1.4663	24.08	0.06	24.14	56.00	-31.86	QP	
8		1.4663	17.15	0.06	17.21	46.00	-28.79	AVG	
9		3.3990	30.14	0.10	30.24	56.00	-25.76	QP	
10		3.3990	23.12	0.10	23.22	46.00	-22.78	AVG	
11	*	9.2108	42.83	0.18	43.01	60.00	-16.99	QP	
12		9.2108	31.15	0.18	31.33	50.00	-18.67	AVG	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1860	34.23	0.02	34.25	64.21	-29.96	QP	
2		0.1860	21.49	0.02	21.51	54.21	-32.70	AVG	
3		0.2895	42.21	0.02	42.23	60.54	-18.31	QP	
4	*	0.2895	37.00	0.02	37.02	50.54	-13.52	AVG	
5		0.7440	29.20	0.03	29.23	56.00	-26.77	QP	
6		0.7440	23.37	0.03	23.40	46.00	-22.60	AVG	
7		1.4078	25.20	0.06	25.26	56.00	-30.74	QP	
8		1.4078	17.01	0.06	17.07	46.00	-28.93	AVG	
9		2.2605	27.01	0.08	27.09	56.00	-28.91	QP	
10		2.2605	19.03	0.08	19.11	46.00	-26.89	AVG	
11		9.0375	37.60	0.18	37.78	60.00	-22.22	QP	
12		9.0375	26.27	0.18	26.45	50.00	-23.55	AVG	
-									

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

BIL

REMARKS:

9.0555

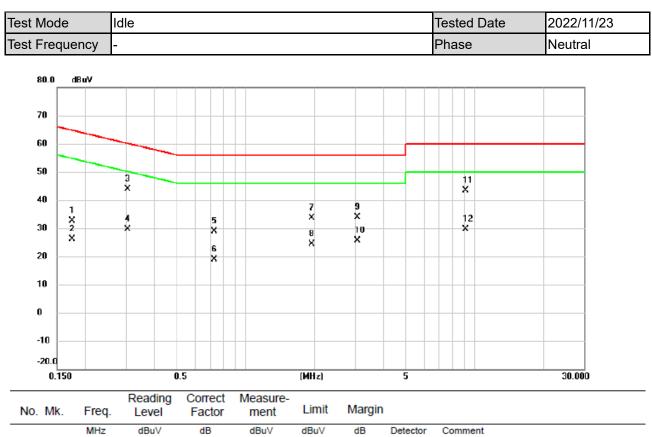
12

(1) Measurement Value = Reading Level + Correct Factor.

0.18

27.34

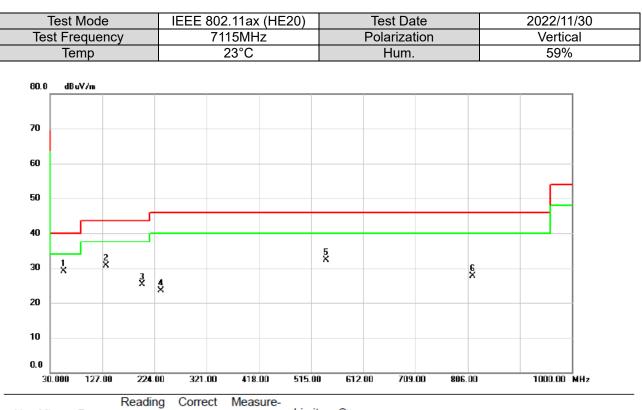
50.00


-22.66

AVG

(2) Margin Level = Measurement Value - Limit Value.

27.16


BIL

No. Mk.	Freq.	Level	Factor	ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1747	32.53	0.02	32.55	64.73	-32.18	QP	
2	0.1747	26.19	0.02	26.21	54.73	-28.52	AVG	
3 *	0.3052	43.93	0.02	43.95	60.10	-16.15	QP	
4	0.3052	29.65	0.02	29.67	50.10	-20.43	AVG	
5	0.7282	28.91	0.03	28.94	56.00	-27.06	QP	
6	0.7282	18.92	0.03	18.95	46.00	-27.05	AVG	
7	1.9387	33.60	0.07	33.67	56.00	-22.33	QP	
8	1.9387	24.34	0.07	24.41	46.00	-21.59	AVG	
9	3.0750	33.88	0.10	33.98	56.00	-22.02	QP	
10	3.0750	25.45	0.10	25.55	46.00	-20.45	AVG	
11	9.1072	43.30	0.18	43.48	60.00	-16.52	QP	
12	9.1072	29.50	0.18	29.68	50.00	-20.32	AVG	

APPENDIX B UNDESIRABLE EMISSIONS - 30 MHZ TO 1 GHZ

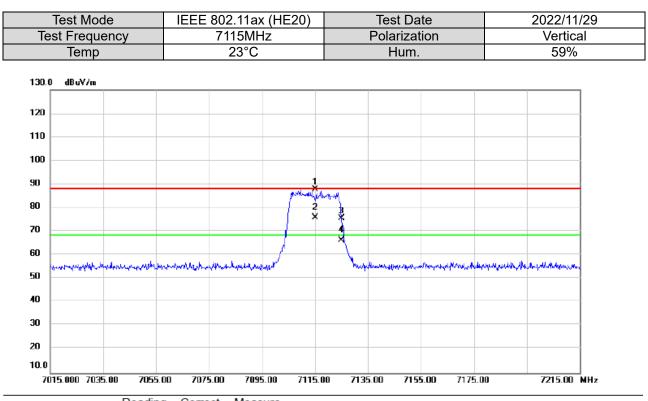
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	55.2523	47.42	-18.23	29.19	40.00	-10.81	peak	
2		134.1455	49.83	-19.18	30.65	43.50	-12.85	peak	
3	2	201.8840	47.00	-21.74	25.26	43.50	-18.24	peak	
4	1	236.0926	44.27	-20.81	23.46	46.00	-22.54	peak	
5	į	543.4210	44.67	-12.28	32.39	46.00	-13.61	peak	
6	8	815.4413	34.53	-6.86	27.67	46.00	-18.33	peak	

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.

(2) Margin Level = Measurement Value - Limit Value.

Test Mode	IEEE 802.11ax (HE20)	Test Date	2022/11/30				
Test Frequency	7115MHz	Polarization	Horizontal				
Temp	23°C	Hum.	59%				
80.0 dBuY/m							
70							
60							
50							
40							
30 2 X 1 X	\$	5× 6×					
20							
10							
0.0		F 00 040 00 700 00 000	1000.00.100				
30.000 127.00		5.00 612.00 709.00 806.1	00 1000.00 MHz				
	eading Correct Measure- evel Factor ment L	mit Over					
MHz d	dBu∀ dB dBu∀/m dBu	IV/m dB Detector Comme	nt				
1 55.7373 4	3.87 -18.27 25.60 40	.00 -14.40 peak					
2 93.0177 5	1.91 -22.34 29.57 43	.50 -13.93 peak					
3 * 133.5313 5	2.38 -19.21 33.17 43	.50 -10.33 peak					
4 202.3043 5	3.33 -21.75 31.58 43	.50 -11.92 peak					
5 529.7763 3	8.28 -12.66 25.62 46	.00 -20.38 peak					
6 647.9870 3	4.61 -9.81 24.80 46	.00 -21.20 peak					


REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

APPENDIX C UNDESIRABLE EMISSIONS - ABOVE 1 GHZ

No.	Mł	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		7115.000	82.34	5.51	87.85	88.20	-0.35	peak	No Limit
2	*	7115.000	70.42	5.51	75.93	68.20	7.73	AVG	No Limit
3		7125.000	69.90	5.52	75.42	88.20	-12.78	peak	
4		7125.000	60.66	5.52	66.18	68.20	-2.02	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mode			2. 11ax (HE 1	160)		est Date		2022/11/2	9
Te	st Frequency	y	6345MHz			Polarization			Vertical	
	Temp			23°C			Hum.		59%	
130.0	0 dBuY/m									1
120										ł
110										ł
100				ريوسلور المندر بطهر	1 Marina	When the second				{
90			for	morphonetal			why the state of t			
80										
70										
60							N	k.l.		ļ
50	anter and an and an and an and an an and an	mankhukhu	LAND WINN					w. white and	nunadanturation	1
40										
30										ł
20										
10.0										
61	45.000 6185.00	6225.0	0 6265.00	6305.00	6345.0	0 6385.0	0 6425.	00 6465.	00 6545.00	MHz
No. M		Reading Level	Correct Factor	Measure- ment	Limit	Over				
	MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	Commen	t	
1 X	6345.000	95.91	4.26	100.17	88.20	11.97	peak	No Limit		

68.20

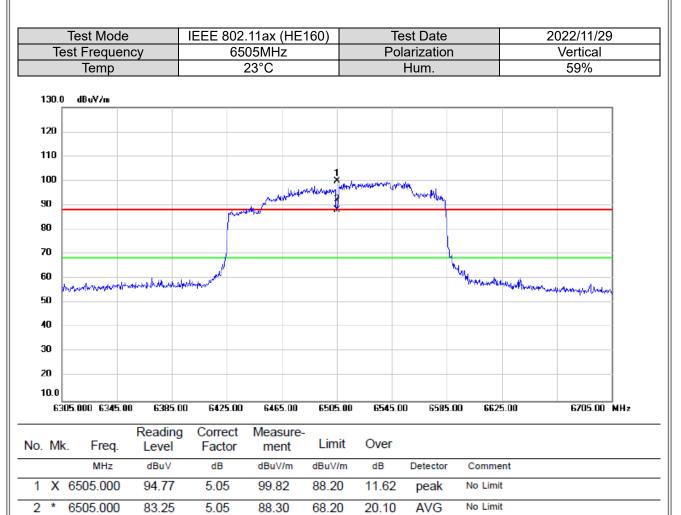
18.94

AVG

No Limit

REMARKS:

2 * 6345.000


Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

4.26

87.14

82.88

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

		Mode		IE	EEE 8				160)		Test D				2022/11/29
Tes		equer	ncy		6665MHz				Polariz				Vertical		
	Te	mp				2	23°C				Hun	n.			59%
130.0 T) dBu	iV/m													
120															
110				_								_			
100									- 	gion his yet May the	Yuuma .				
90						jet when	New Joseph	(hoperator			ryww.	4			
30															
70						-									
50	a. Alta	والمعرفان	wanted and the second	ndhaan	hugh where							y	worthorthe	mahmunta	Winderstein
50		·		-											
10															
30															
20				_											
10.0	CE 004	6505.0	00 65	45.00	CEO	5.00	cen	5.00	666	5.00 676	15.00 6	745.00	670	5.00	6865.00 Mł
64	0.0.000	6.00.0							000	100 671		n 40.00	0/0		DDJ.UU MI
Mk	۲.	Freq.	Read Lev		Corre Fact		Mea: me		Lin	nit Ove	r				
		MHz	dBu	v	dB		dBu\	//m	dBuV	/m dB	Dete	etor	Comme	ent	

88.20

68.20

11.49

19.68

peak

AVG

No Limit

No Limit

99.69

87.88

REMARKS:

1 X 6665.000

2 * 6665.000

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

5.19

5.19

94.50

82.69

	Test Mode			1ax (HE160)		est Date	2022/11/29	
Te	st Frequen	су		5MHz	Polarization		Vertical	
	Temp		23	3°C		Hum.	59%	
130.0	0 dBuY/m							
120								
110								
100					1			
90			genty th	push full aguna har	y hall particular and	manna		
80					×			
70								
60	hhipisusinkulapaulipahi	hhalallongentertur.ber	Kunthentof			My made the same	and the show that the state of	
50							x	
40								
30								
20 10.0								
	785.000 6825.0	0 6865.00	6905.00	6945.00 698	5.00 7025.	00 7065.00 710	05.00 7185.00 M	Hz
No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment Lin	nit Over			
	MHz	dBuV	dB	dBuV/m dBu\	//m dB	Detector Comm	ent	
1 X	6985.000	91.95	5.47	97.42 88.2		peak No Lim		
2 *	6985.000	80.07	5.47	85.54 68.2	20 17.34	AVG No Lim	it	

3

4

7138.760

7138.760

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

5.51

5.51

62.50

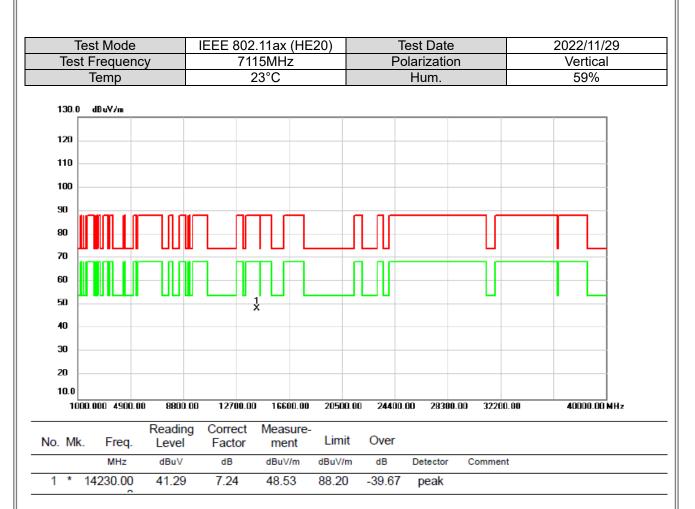
49.00

88.20

68.20

-25.70

-19.20


peak

AVG

56.99

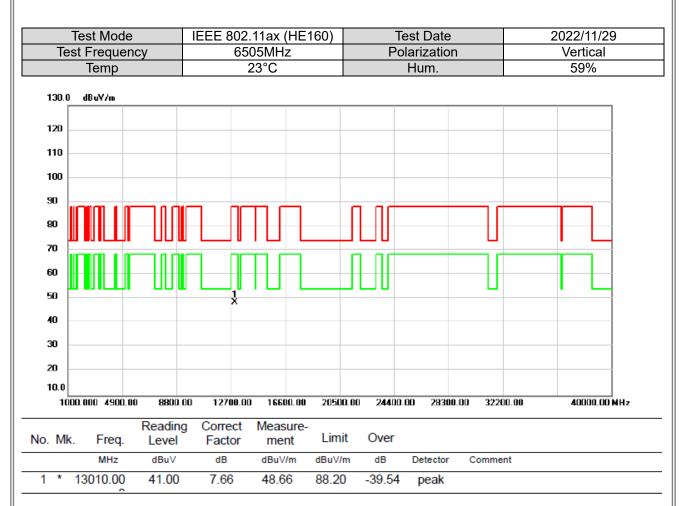
43.49

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

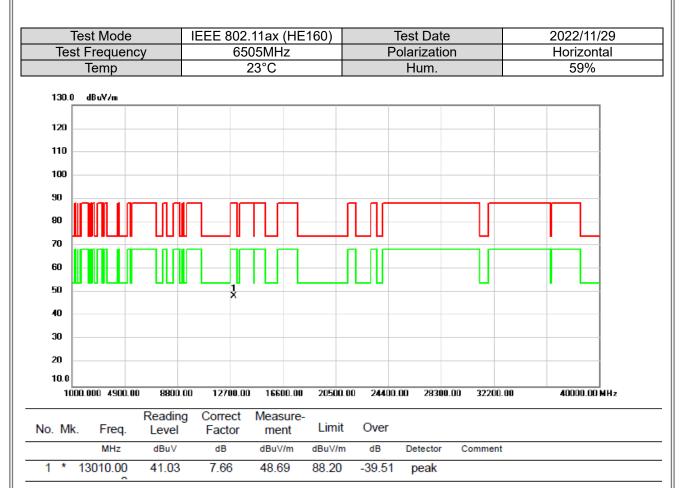
Test Mode	IEEE 802.11ax (HE20)	Test Date	2022/11/29
Test Frequency	7115MHz	Polarization	Horizontal
Temp	23°C	Hum.	59%
130.0 dBu¥/m			
120			
110			
100			
90			
90			
60			
50			
40			
30			
20			
10.0			
1000.000 4900.00 880	0.00 12700.00 16600.00 2050	0.00 24400.00 28300.00 32200	1.00 40000.00 MHz
Readii No. Mk. Freq. Leve		t Over	
MHz dBuV	dB dBuV/m dBuV/	m dB Detector Commen	t
1 * 14230.00 42.53	3 7.24 49.77 88.20) -38.43 peak	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11ax (HE160)	Test Date	2022/11/29
Test Frequency	6345MHz	Polarization	Vertical
Temp	23°C	Hum.	59%
130.0 dBu¥/m 120 110 100 90 90 90 70			
60 50 40 30 20			
10.0	800.00 12700.00 16600.00 2050	0.00 24400.00 28300.00 32200	.00 40000.00 MHz
		aa aa 244aa aa 28300.00 32200	.00 40000.00 MHZ
	iding Correct Measure- vel Factor ment Lim	nit Over	
MHz di	uV dB dBuV/m dBuV	/m dB Detector Comment	t
1 12690.00 41	.19 7.44 48.63 74.0	0 -25.37 peak	
2 * 12690.00 29	.08 7.44 36.52 54.0	0 -17.48 AVG	


- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11ax (HE160)	Test Date	2022/11/29
Test Frequency	6345MHz	Polarization	Horizontal
Temp	23°C	Hum.	59%
130.0 dBu¥/m			
120			
110			
100			
80			
70			
60			
40	2 X		
30	~		
20			
10.0			
1000.000 4900.00 8	BDD.00 12700.00 16600.00 2050	0.00 24400.00 28300.00 32200	.00 40000.00 MHz
Rea No.Mk.Freq.Le	ding Correct Measure- /el Factor ment Lim	it Over	
MHz dB			•
1 12690.00 40			
0		•	
2 * 12690.00 28	99 7.44 36.43 54.00) -17.57 AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

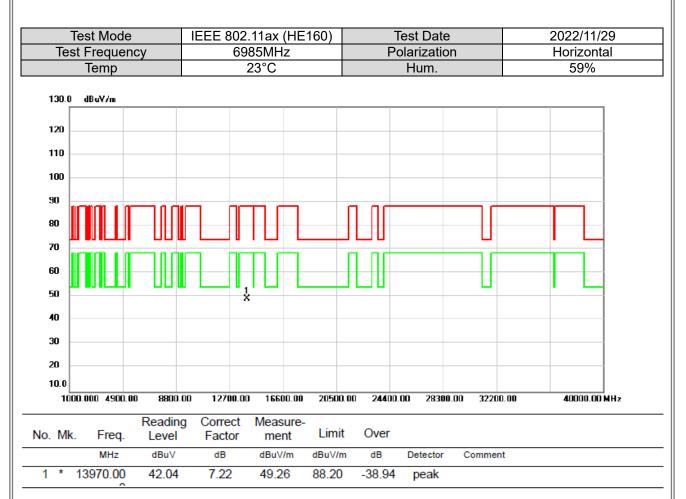
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11ax (HE160)	Test Date	2022/11/29
Test Frequency	6665MHz	Polarization	Vertical
Temp	23°C	Hum.	59%
130.0 dBuY/m			
120			
110			
100			
90			
80			
70 60			
50			
40	2 X		
30			
20			
10.0			
1000.000 4900.00	800.00 12700.00 16600.00 205	00.00 24400.00 28300.00 32200.	00 40000.00 MHz
	ading Correct Measure- vel Factor ment Lin	nit Over	
MHz d	BuV dB dBuV/m dBu√	/m dB Detector Comment	
1 13330.00 4	.58 7.23 48.81 74.0	0 -25.19 peak	
2 * 13330.00 29	.84 7.23 37.07 54.0	0 -16.93 AVG	

- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

Test Mode	IEEE 802.11ax (HE160)	Test Date	2022/11/29
Test Frequency	6665MHz	Polarization	Horizontal
Тетр	23°C	Hum.	59%
130.0 dBuV/m			
120			
110			
100			
80			
60			
50			
40	2 X		
30			
20			
10.0		00 04400 00 00000 00 00000	40000 00 111
1000.000 4900.00 8800.0	00 12700.00 16600.00 20500	00 24400.00 28300.00 32200.1	00 40000.00 MHz
Reading No. Mk. Freq. Level	g Correct Measure- Factor ment Limit	Over	
MHz dBu∨	dB dBuV/m dBuV/m	dB Detector Comment	
1 13330.00 40.87	7.23 48.10 74.00	-25.90 peak	
2 * 13330.00 29.94	7.23 37.17 54.00	-16.83 AVG	


- Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value Limit Value.

Test Mode		IEEE 802.7		60)		st Date		2022/11/29
Test Freque	ncy	6985MHz			Polarization			Vertical
Temp		2	3°C		ł	Hum.		59%
130.0 dBu¥/m								
120								
110								
100								
90 00 00 00 0								
80								
70								
60								
50		×					-	
40								
20								
10.0 1000.000 4900.	00 8800.0	0 12700.00	16600.00	20500.00	24400.00	28300.00	32200.00	40000.00 MHz
1000.000 4300.				20:00.00	24400.00	20300.00	32200.00	+3000.00 MT/2
No. Mk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
MHz	dBuV	dB	dBuV/m	dBuV/m	dB I	Detector C	omment	
1 * 13970.00	42.44	7.22	49.66	88.20	-38.54	peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

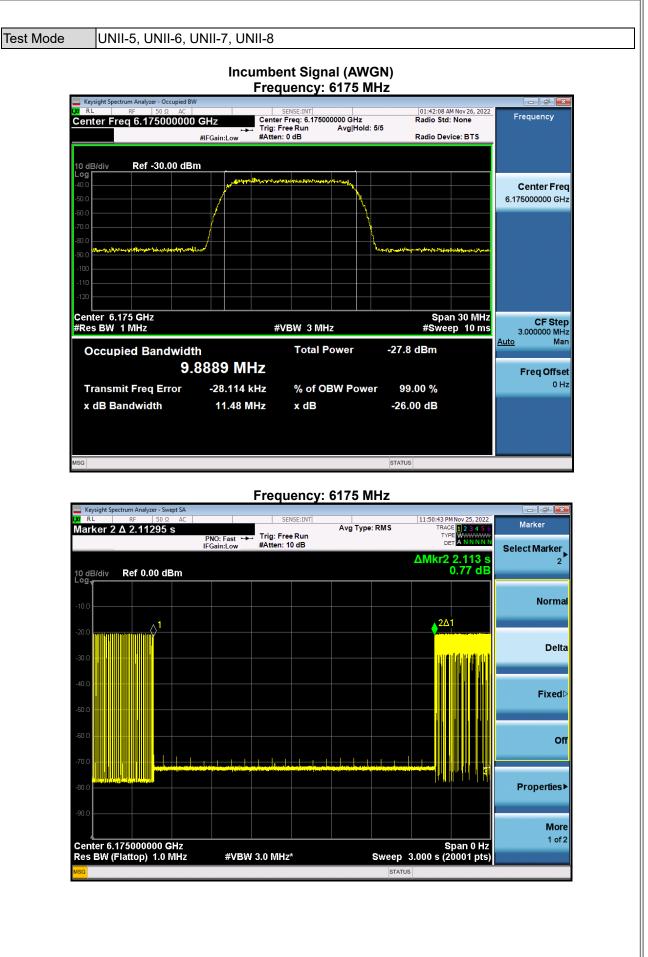
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

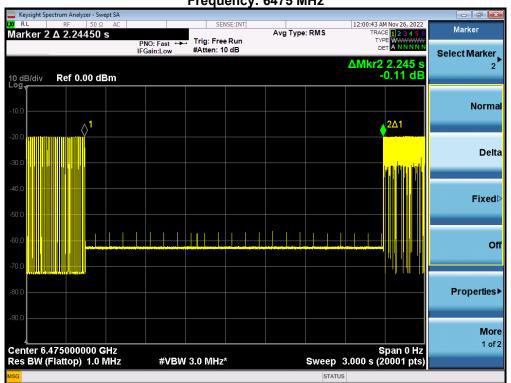
BIL

Test Mode	IEEE 902 11-		(Ant		Tested Date	2022/11/3	20
restiviode	IEEE 802.11ax (HE20)_Aux Ant. Tested Date 2022/11/30						
Test							
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	E.I.R.P. Limit	E.I.R.P. Limit	Result
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)	Result
5955	1.52	0.0014	6.23	0.0042	24.00	0.2512	Pass
6175	1.72	0.0015	6.43	0.0044	24.00	0.2512	Pass
6415	1.49	0.0014	6.20	0.0042	24.00	0.2512	Pass
6435	2.24	0.0017	6.95	0.0050	24.00	0.2512	Pass
6475	2.12	0.0016	6.83	0.0048	24.00	0.2512	Pass
6515	2.37	0.0017	7.08	0.0051	24.00	0.2512	Pass
6535	1.65	0.0015	6.36	0.0043	24.00	0.2512	Pass
6695	1.35	0.0014	6.06	0.0040	24.00	0.2512	Pass
6855	1.63	0.0015	6.34	0.0043	24.00	0.2512	Pass
6875	1.59	0.0014	6.30	0.0043	24.00	0.2512	Pass
6995	2.03	0.0016	6.74	0.0047	24.00	0.2512	Pass
7095	1.75	0.0015	6.46	0.0044	24.00	0.2512	Pass
7115	-10.49	0.0001	-5.78	0.0003	24.00	0.2512	Pass
Test Mode	IEEE 802.11a	x (HE20)_Mai	in Ant.		Tested Date	2022/11/3	30
	-					•	
Test	Conducted	Conducted	E.I.R.P.	E.I.R.P.	E.I.R.P. Limit	EIRPLimit	
Frequency	Power (dBm)	Power (W)	(dBm)	E.I.R.P. (W)	(dBm)	(W)	Result
(MHz)			(UDIII)	(VV)	(ubiii)	(VV)	
5955	2.46	0.0018	7.17	0.0052	24.00	0.2512	Pass
6175	2.49	0.0018	7.20	0.0052	24.00	0.2512	Pass
6415	2.50	0.0018	7.21	0.0053	24.00	0.2512	Pass
6435	3.37	0.0022	8.08	0.0064	24.00	0.2512	Pass
6475	3.09	0.0020	7.80	0.0060	24.00	0.2512	Pass
6515	2.83	0.0019	7.54	0.0057	24.00	0.2512	Pass
6535	2.36	0.0017	7.07	0.0051	24.00	0.2512	Pass
6695	2.27	0.0017	6.98	0.0050	24.00	0.2512	Pass
6855	2.33	0.0017	7.04	0.0051	24.00	0.2512	Pass
6875	2.36	0.0017	7.07	0.0051	24.00	0.2512	Pass
6995	2.36	0.0017	7.07	0.0051	24.00 24.00	0.2512	Pass
7095	2.10	0.0016	6.81	0.0048		0.2512	Pass
7115	-11.67	0.0001	-6.96	0.0002	24.00	0.2512	Pass
Test Mode	IEEE 000 44-	x (HE20) Tota			Tested Date	2022/11/3	20
lest wode			ai		resteu Date	2022/11/3	0
Test Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.	EIPDLimit	E.I.R.P. Limit	
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	W)	Result
5955	5.03	0.0032	9.74	0.0094	24.00	0.2512	Pass
6175	5.13	0.0032	9.84	0.0094	24.00	0.2512	Pass
6415	5.03	0.0032	9.74	0.0094	24.00	0.2512	Pass
6435	5.85	0.0038	10.56	0.0004	24.00	0.2512	Pass
6475	5.64	0.0037	10.35	0.0108	24.00	0.2512	Pass
6515	5.62	0.0036	10.33	0.0108	24.00	0.2512	Pass
6535	5.03	0.0032	9.74	0.0094	24.00	0.2512	Pass
6695	4.84	0.0031	9.55	0.0090	24.00	0.2512	Pass
6855	5.00	0.0032	9.71	0.0094	24.00	0.2512	Pass
6875	5.00	0.0032	9.71	0.0094	24.00	0.2512	Pass
6995	5.21	0.0033	9.92	0.0098	24.00	0.2512	Pass
7095	4.94	0.0031	9.65	0.0092	24.00	0.2512	Pass
7115	-8.03	0.0002	-3.32	0.0005	24.00	0.2512	Pass
			•			•	-

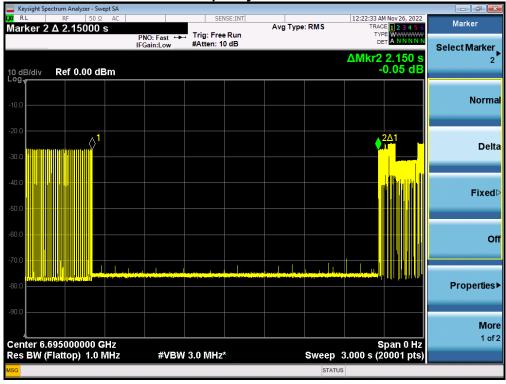
Test Mode IEEE 802.11ax (HE40)_Aux Ant. Tested Date 2022/11/30 Test prouency (MHz) Conducted Power (dBm) Conducted Power (W) E.I.R.P. E.I.R.P. E.I.R.P. Limit (dBm) E.I.R.P. Limit (dBm) Result 6165 4.81 0.0030 9.52 0.0090 24.00 0.2512 Pass 6405 4.57 0.0029 9.28 0.0085 24.00 0.2512 Pass 6445 5.17 0.0033 9.88 0.0097 24.00 0.2512 Pass 6685 5.47 0.0037 10.39 0.0109 24.00 0.2512 Pass 6685 4.37 0.0027 9.08 0.0081 24.00 0.2512 Pass 6685 5.24 0.0033 9.95 0.0099 24.00 0.2512 Pass 7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass 7085 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass										
Frequency (MHz) Conducted Power (dBm) E.I.R.P. E.I.R.P. E.I.R.P. Limit (dBm) Result (W) 5965 4.81 0.0030 9.52 0.0090 24.00 0.2512 Pass 6405 4.51 0.0028 9.22 0.0085 24.00 0.2512 Pass 6405 4.57 0.0033 9.88 0.0097 24.00 0.2512 Pass 6445 5.17 0.0033 9.88 0.0097 24.00 0.2512 Pass 6485 5.47 0.0027 9.08 0.0081 24.00 0.2512 Pass 6845 4.37 0.0027 9.08 0.0081 24.00 0.2512 Pass 6845 5.24 0.0033 9.95 0.0099 24.00 0.2512 Pass 7085 5.48 0.0031 9.19 0.0104 24.00 0.2512 Pass 6405 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass	Test Mode	IEEE 802.11a	x (HE40)_Aux	Ant.		Tested Date	2022/11/3	30		
Frequency (MHz) Conducted Power (dBm) E.I.R.P. E.I.R.P. E.I.R.P. Limit (dBm) Result (W) 5965 4.81 0.0030 9.52 0.0090 24.00 0.2512 Pass 6405 4.51 0.0028 9.22 0.0085 24.00 0.2512 Pass 6405 4.57 0.0033 9.88 0.0097 24.00 0.2512 Pass 6445 5.17 0.0033 9.88 0.0097 24.00 0.2512 Pass 6485 5.47 0.0027 9.08 0.0081 24.00 0.2512 Pass 6845 4.37 0.0027 9.08 0.0081 24.00 0.2512 Pass 6845 5.24 0.0033 9.95 0.0099 24.00 0.2512 Pass 7085 5.48 0.0031 9.19 0.0104 24.00 0.2512 Pass 6405 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass										
S965 4.81 0.0030 9.52 0.0084 24.00 0.2512 Pass 6405 4.57 0.0029 9.28 0.0085 24.00 0.2512 Pass 6445 5.17 0.0035 10.18 0.0104 24.00 0.2512 Pass 6485 5.47 0.0035 10.18 0.0104 24.00 0.2512 Pass 6685 5.47 0.0037 10.39 0.0109 24.00 0.2512 Pass 6685 4.37 0.0027 9.08 0.0081 24.00 0.2512 Pass 6885 5.24 0.0033 9.95 0.0099 24.00 0.2512 Pass 7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass 7085 5.48 0.0033 9.95 0.0098 24.00 0.2512 Pass 6405 5.02 0.0032 9.73 0.0094 24.00 0.2512 Pass <td< td=""><td>Frequency</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Result</td></td<>	Frequency							Result		
6405 4.57 0.0029 9.28 0.0085 24.00 0.2512 Pass 6445 5.17 0.0033 9.88 0.0097 24.00 0.2512 Pass 6485 5.47 0.0035 10.18 0.0109 24.00 0.2512 Pass 6685 4.37 0.0027 9.08 0.0081 24.00 0.2512 Pass 6685 4.37 0.0027 9.08 0.0081 24.00 0.2512 Pass 6885 5.24 0.0023 9.923 0.0084 24.00 0.2512 Pass 7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass 7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass 6405 5.24 0.0032 9.73 0.0094 24.00 0.2512 Pass 6445 5.81 0.0033 9.95 0.0099 24.00 0.2512 Pass <td< td=""><td></td><td>4.81</td><td>0.0030</td><td>9.52</td><td>0.0090</td><td>24.00</td><td>0.2512</td><td>Pass</td></td<>		4.81	0.0030	9.52	0.0090	24.00	0.2512	Pass		
6445 5.17 0.0033 9.88 0.0097 24.00 0.2512 Pass 6485 5.47 0.0035 10.18 0.0104 24.00 0.2512 Pass 6625 5.68 0.0037 10.39 0.0109 24.00 0.2512 Pass 6685 4.37 0.0027 9.08 0.0081 24.00 0.2512 Pass 6885 5.24 0.0033 9.95 0.0099 24.00 0.2512 Pass 7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass 7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass 7085 5.48 0.0033 9.93 0.0098 24.00 0.2512 Pass 6405 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass 6405 5.24 0.0038 10.52 0.0113 24.00 0.2512 Pass <t< td=""><td>6165</td><td>4.51</td><td>0.0028</td><td>9.22</td><td>0.0084</td><td>24.00</td><td>0.2512</td><td>Pass</td></t<>	6165	4.51	0.0028	9.22	0.0084	24.00	0.2512	Pass		
6485 5.47 0.0035 10.18 0.0104 24.00 0.2512 Pass 6525 5.68 0.0037 10.39 0.0109 24.00 0.2512 Pass 6685 4.37 0.0027 9.08 0.0084 24.00 0.2512 Pass 6845 4.52 0.0028 9.23 0.0084 24.00 0.2512 Pass 6885 5.24 0.0035 10.19 0.0104 24.00 0.2512 Pass 7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass 7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass 7085 5.48 0.0033 9.93 0.0098 24.00 0.2512 Pass 6165 5.02 0.0032 9.73 0.0094 24.00 0.2512 Pass 6445 5.81 0.0033 9.95 0.0011 24.00 0.2512 Pass <t< td=""><td>6405</td><td>4.57</td><td>0.0029</td><td>9.28</td><td>0.0085</td><td>24.00</td><td>0.2512</td><td>Pass</td></t<>	6405	4.57	0.0029	9.28	0.0085	24.00	0.2512	Pass		
6525 5.68 0.0037 10.39 0.0109 24.00 0.2512 Pass 6685 4.37 0.0027 9.08 0.0081 24.00 0.2512 Pass 6885 4.52 0.0028 9.23 0.0084 24.00 0.2512 Pass 6885 5.24 0.0035 10.19 0.0104 24.00 0.2512 Pass 7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass 7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass 7085 5.48 0.0033 9.93 0.0098 24.00 0.2512 Pass 6165 5.02 0.0032 9.73 0.0094 24.00 0.2512 Pass 6445 5.81 0.0038 10.52 0.0113 24.00 0.2512 Pass 6485 5.94 0.0039 10.65 0.0116 24.00 0.2512 Pass <	6445	5.17	0.0033	9.88	0.0097	24.00	0.2512	Pass		
6685 4.37 0.0027 9.08 0.0081 24.00 0.2512 Pass 6845 4.52 0.0028 9.23 0.0084 24.00 0.2512 Pass 6885 5.24 0.0033 9.95 0.0099 24.00 0.2512 Pass 7085 5.48 0.0033 9.95 0.0099 24.00 0.2512 Pass 7085 5.48 0.0033 9.95 0.0099 24.00 0.2512 Pass 7085 5.48 0.0033 9.93 0.0104 2022/11/30 Pass Test Conducted Power (W) Conducted (Bm) E.I.R.P. E.I.R.P. Limit E.I.R.P. Limit Result (MHz) Power (dBm) Power (W) (dBm) (W) E.I.R.P. Limit E.I.R.P. Limit E.I.R.P. Limit Pass 6405 5.22 0.0032 9.73 0.0099 24.00 0.2512 Pass 6445 5.81 0.0039 10.65 0.0113 24.00	6485	5.47	0.0035	10.18	0.0104	24.00	0.2512	Pass		
6845 4.52 0.0028 9.23 0.0084 24.00 0.2512 Pass 6885 5.24 0.0033 9.95 0.0099 24.00 0.2512 Pass 7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass Test Mode IEEE 802.11ax (HE40)_Main Ant. Tested Date 2022/11/30 Test Mode Conducted Power (dBm) Conducted (dBm) E.I.R.P. E.I.R.P. Limit (dBm) Result 5965 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass 6405 5.24 0.0032 9.73 0.0094 24.00 0.2512 Pass 6445 5.81 0.0038 10.52 0.0113 24.00 0.2512 Pass 6525 6.01 0.0040 10.72 0.0118 24.00 0.2512 Pass 6845 4.92 0.0031 9.63 0.0092 24.00 0.2512 Pass 6845 4.92 0.0	6525	5.68	0.0037	10.39	0.0109	24.00	0.2512	Pass		
6885 5.24 0.0033 9.95 0.0099 24.00 0.2512 Pass 7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass Test Mode IEEE 802.11ax (HE40)_Main Ant. Tested Date 2022/11/30 Test Mode Conducted Power (W) E.I.R.P. E.I.R.P. E.I.R.P. Limit (HE40)_Main 5965 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass 6405 5.02 0.0032 9.73 0.0094 24.00 0.2512 Pass 6445 5.81 0.0038 10.52 0.0113 24.00 0.2512 Pass 6485 5.94 0.0039 10.65 0.0113 24.00 0.2512 Pass 6685 4.87 0.0031 9.58 0.0091 24.00 0.2512 Pass 6685 5.76 0.0031 9.63 0.0092 24.00 0.2512 Pass 6845 5.72 0.0031	6685	4.37	0.0027	9.08	0.0081	24.00	0.2512	Pass		
7085 5.48 0.0035 10.19 0.0104 24.00 0.2512 Pass Test Mode IEEE 802.11ax (HE40)_Main Ant. Tested Date 2022/11/30 Test Mode Conducted Power (dBm) Conducted Power (W) E.I.R.P. (dBm) E.I.R.P. (dBm) E.I.R.P. (w) E.I.R.P. Limit (Bm) E.I.R.P. Limit (W) Result (W) 5965 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass 6405 5.24 0.0033 9.95 0.0094 24.00 0.2512 Pass 6445 5.81 0.0038 10.52 0.0113 24.00 0.2512 Pass 6485 5.94 0.0039 10.65 0.0116 24.00 0.2512 Pass 6685 4.87 0.0031 9.58 0.0092 24.00 0.2512 Pass 6885 5.76 0.0038 10.47 0.0118 24.00 0.2512 Pass 6885 5.72 0.0037 10.43 0.0110 24.00 <td< td=""><td>6845</td><td>4.52</td><td>0.0028</td><td>9.23</td><td>0.0084</td><td>24.00</td><td>0.2512</td><td>Pass</td></td<>	6845	4.52	0.0028	9.23	0.0084	24.00	0.2512	Pass		
Test Mode IEEE 802.11ax (HE40)_Main Ant. Tested Date 2022/11/30 Test Frequency (MHz) Conducted Power (dBm) Conducted Power (W) E.I.R.P. (dBm) E.I.R.P. (W) E.I.R.P. Limit (dBm) E.I.R.P. Limit (W) Result 5965 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass 6405 5.24 0.0032 9.73 0.0094 24.00 0.2512 Pass 6445 5.81 0.0038 10.52 0.0113 24.00 0.2512 Pass 6485 5.94 0.0039 10.65 0.0116 24.00 0.2512 Pass 6685 4.87 0.0031 9.58 0.0091 24.00 0.2512 Pass 66845 4.92 0.0031 9.63 0.0092 24.00 0.2512 Pass 6885 5.76 0.0038 10.47 0.0111 24.00 0.2512 Pass 7085 5.72 0.0037 10.43 0.0110 24.00 0.2512 <td< td=""><td>6885</td><td>5.24</td><td>0.0033</td><td>9.95</td><td>0.0099</td><td>24.00</td><td>0.2512</td><td>Pass</td></td<>	6885	5.24	0.0033	9.95	0.0099	24.00	0.2512	Pass		
Test Mode IEEE 802.11ax (HE40)_Main Ant. Tested Date 2022/11/30 Test Frequency (MHz) Conducted Power (dBm) Conducted Power (W) E.I.R.P. (dBm) E.I.R.P. (W) E.I.R.P. Limit (dBm) E.I.R.P. Limit (W) Result 5965 5.22 0.0032 9.73 0.0094 24.00 0.2512 Pass 6405 5.24 0.0032 9.73 0.0094 24.00 0.2512 Pass 6445 5.81 0.0038 10.52 0.0113 24.00 0.2512 Pass 6485 5.94 0.0039 10.65 0.0116 24.00 0.2512 Pass 6685 4.87 0.0031 9.58 0.0091 24.00 0.2512 Pass 66845 4.92 0.0031 9.63 0.0092 24.00 0.2512 Pass 6885 5.76 0.0038 10.47 0.0111 24.00 0.2512 Pass 7085 5.72 0.0037 10.43 0.0110 24.00 0.2512 <td< td=""><td>7085</td><td>5.48</td><td></td><td>10.19</td><td></td><td>24.00</td><td>0.2512</td><td>Pass</td></td<>	7085	5.48		10.19		24.00	0.2512	Pass		
Test Frequency (MHz) Conducted Power (dBm) Conducted Power (W) E.I.R.P. (dBm) E.I.R.P. (W) E.I.R.P. Limit (dBm) E.I.R.P. Limit (W) Result 5965 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass 6165 5.02 0.0032 9.73 0.0094 24.00 0.2512 Pass 6405 5.24 0.0038 10.52 0.0113 24.00 0.2512 Pass 6445 5.81 0.0039 10.65 0.0116 24.00 0.2512 Pass 6485 5.94 0.0039 10.65 0.0116 24.00 0.2512 Pass 6625 6.01 0.0040 10.72 0.0118 24.00 0.2512 Pass 68845 4.92 0.0031 9.63 0.0092 24.00 0.2512 Pass 6885 5.76 0.0037 10.43 0.0110 24.00 0.2512 Pass 7085 5.72 0.0037 10.43 0.0110										
Test Frequency (MHz) Conducted Power (dBm) Conducted Power (W) E.I.R.P. (dBm) E.I.R.P. (W) E.I.R.P. Limit (dBm) E.I.R.P. Limit (W) Result 5965 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass 6405 5.24 0.0032 9.73 0.0094 24.00 0.2512 Pass 6445 5.81 0.0038 10.52 0.0113 24.00 0.2512 Pass 6445 5.81 0.0039 10.65 0.0116 24.00 0.2512 Pass 6485 5.94 0.0039 10.65 0.0116 24.00 0.2512 Pass 6625 6.01 0.0040 10.72 0.0118 24.00 0.2512 Pass 6845 4.92 0.0031 9.63 0.0092 24.00 0.2512 Pass 6885 5.76 0.0038 10.47 0.0111 24.00 0.2512 Pass 7085 5.72 0.0037 10.43 0.0110	Test Mode	IEEE 802.11a	x (HE40) Ma	in Ant.		Tested Date	2022/11/3	30		
Frequency (MHz) Conducted Power (dBm) Conducted Power (W) E.I.R.P. (dBm) E.I.R.P. (W) E.I.R.P. Limit (dBm) Result 5965 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass 6405 5.02 0.0032 9.73 0.0094 24.00 0.2512 Pass 6405 5.24 0.0033 9.95 0.0099 24.00 0.2512 Pass 6445 5.81 0.0038 10.52 0.0113 24.00 0.2512 Pass 6485 5.94 0.0039 10.65 0.0116 24.00 0.2512 Pass 6685 4.87 0.0031 9.63 0.0091 24.00 0.2512 Pass 6885 5.76 0.0031 9.63 0.0092 24.00 0.2512 Pass 7085 5.72 0.0037 10.43 0.0110 24.00 0.2512 Pass 7085 5.72 0.0037 10.43 0.0110 24.00 0.2512			()_							
Frequency (MHz) Power (dBm) Power (W) (dBm) (W) (dBm) (W) Result 5965 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass 6165 5.02 0.0032 9.73 0.0094 24.00 0.2512 Pass 6405 5.24 0.0033 9.95 0.0099 24.00 0.2512 Pass 6445 5.81 0.0038 10.52 0.0113 24.00 0.2512 Pass 6445 5.81 0.0039 10.65 0.0116 24.00 0.2512 Pass 6685 4.87 0.0031 9.58 0.0091 24.00 0.2512 Pass 6685 4.87 0.0031 9.63 0.0092 24.00 0.2512 Pass 6885 5.76 0.0038 10.47 0.0111 24.00 0.2512 Pass 7085 5.72 0.0037 10.43 0.0110 24.00 0.2512 Pass	Test									
(MHz) Power (W) (UBm) (W) (UBm) (W) 5965 5.22 0.0033 9.93 0.0098 24.00 0.2512 Pass 6165 5.02 0.0032 9.73 0.0094 24.00 0.2512 Pass 6405 5.24 0.0033 9.95 0.0099 24.00 0.2512 Pass 6445 5.81 0.0038 10.52 0.0113 24.00 0.2512 Pass 6445 5.81 0.0039 10.65 0.0116 24.00 0.2512 Pass 6485 5.94 0.0039 10.65 0.0118 24.00 0.2512 Pass 6685 4.87 0.0031 9.58 0.0091 24.00 0.2512 Pass 6885 5.76 0.0038 10.47 0.0111 24.00 0.2512 Pass 7085 5.72 0.0037 10.43 0.0110 24.00 0.2512 Pass 7085 5.72 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Result</td></td<>								Result		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Power (dBm)	Power (W)	(aBm)	(vv)	(dBm)	(VV)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5965	5.22	0.0033	9.93	0.0098	24.00	0.2512	Pass		
6445 5.81 0.0038 10.52 0.0113 24.00 0.2512 Pass 6485 5.94 0.0039 10.65 0.0116 24.00 0.2512 Pass 6525 6.01 0.0040 10.72 0.0118 24.00 0.2512 Pass 6685 4.87 0.0031 9.58 0.0091 24.00 0.2512 Pass 6845 4.92 0.0031 9.63 0.0092 24.00 0.2512 Pass 6885 5.76 0.0038 10.47 0.0111 24.00 0.2512 Pass 6885 5.76 0.0037 10.43 0.0110 24.00 0.2512 Pass 7085 5.72 0.0037 10.43 0.0110 24.00 0.2512 Pass Test Mode IEEE 802.11ax (HE40)_Total Tested Date 2022/11/30 Frequency (MHz) Conducted Power (dBm) E.I.R.P. E.I.R.P. Limit E.I.R.P. Limit Result 6165 7.78	6165	5.02	0.0032	9.73	0.0094	24.00	0.2512	Pass		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6405	5.24	0.0033	9.95	0.0099	24.00	0.2512	Pass		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6445	5.81	0.0038	10.52	0.0113	24.00	0.2512	Pass		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6485	5.94	0.0039	10.65	0.0116	24.00	0.2512	Pass		
6845 4.92 0.0031 9.63 0.0092 24.00 0.2512 Pass 6885 5.76 0.0038 10.47 0.0111 24.00 0.2512 Pass 7085 5.72 0.0037 10.43 0.0110 24.00 0.2512 Pass Test Mode IEEE 802.11ax (HE40)_Total Tested Date 2022/11/30 Test Mode Conducted Power (dBm) Conducted Power (W) E.I.R.P. (dBm) E.I.R.P. Limit (dBm) E.I.R.P. Limit (dBm) Result 5965 8.03 0.0064 12.74 0.0188 24.00 0.2512 Pass 6165 7.78 0.0060 12.49 0.0177 24.00 0.2512 Pass 6445 8.51 0.0071 13.22 0.0210 24.00 0.2512 Pass 6485 8.72 0.0075 13.43 0.0220 24.00 0.2512 Pass 6485 8.72 0.0075 13.43 0.0220 24.00 0.2512 Pass	6525	6.01	0.0040	10.72	0.0118	24.00	0.2512	Pass		
6885 5.76 0.0038 10.47 0.0111 24.00 0.2512 Pass 7085 5.72 0.0037 10.43 0.0110 24.00 0.2512 Pass Test Mode IEEE 802.11ax (HE40)_Total Tested Date 2022/11/30 Test Mode IEEE 802.11ax (HE40)_Total Tested Date 2022/11/30 Test Mode Conducted Power (dBm) Conducted Power (W) E.I.R.P. (MBm) E.I.R.P. Limit (dBm) E.I.R.P. Limit (dBm) Result 5965 8.03 0.0064 12.74 0.0188 24.00 0.2512 Pass 6405 7.93 0.0060 12.49 0.0177 24.00 0.2512 Pass 6445 8.51 0.0071 13.22 0.0210 24.00 0.2512 Pass 6485 8.72 0.0075 13.43 0.0220 24.00 0.2512 Pass 6525 8.86 0.0077 13.57 0.0228 24.00 0.2512 Pass 6685 7.64 0.0058 <td>6685</td> <td>4.87</td> <td>0.0031</td> <td>9.58</td> <td>0.0091</td> <td>24.00</td> <td>0.2512</td> <td>Pass</td>	6685	4.87	0.0031	9.58	0.0091	24.00	0.2512	Pass		
7085 5.72 0.0037 10.43 0.0110 24.00 0.2512 Pass Test Mode IEEE 802.11ax (HE40)_Total Tested Date 2022/11/30 Test Conducted Power (dBm) Conducted Power (W) E.I.R.P. (dBm) E.I.R.P. (W) E.I.R.P. Limit (dBm) E.I.R.P. Limit (W) Result 5965 8.03 0.0064 12.74 0.0188 24.00 0.2512 Pass 6165 7.78 0.0060 12.49 0.0177 24.00 0.2512 Pass 6405 7.93 0.0062 12.64 0.0184 24.00 0.2512 Pass 6445 8.51 0.0071 13.22 0.0210 24.00 0.2512 Pass 6485 8.72 0.0075 13.43 0.0220 24.00 0.2512 Pass 6525 8.86 0.0077 13.57 0.0228 24.00 0.2512 Pass 6685 7.64 0.0058 12.35 0.0172 24.00 0.2512 Pass </td <td>6845</td> <td>4.92</td> <td>0.0031</td> <td>9.63</td> <td>0.0092</td> <td>24.00</td> <td>0.2512</td> <td>Pass</td>	6845	4.92	0.0031	9.63	0.0092	24.00	0.2512	Pass		
Test Mode IEEE 802.11ax (HE40)_Total Tested Date 2022/11/30 Test Frequency (MHz) Conducted Power (dBm) Conducted Power (W) E.I.R.P. (dBm) E.I.R.P. Limit (dBm) E.I.R.P. Limit (W) Result 5965 8.03 0.0064 12.74 0.0188 24.00 0.2512 Pass 6165 7.78 0.0060 12.49 0.0177 24.00 0.2512 Pass 6405 7.93 0.0062 12.64 0.0184 24.00 0.2512 Pass 6445 8.51 0.0071 13.22 0.0210 24.00 0.2512 Pass 6485 8.72 0.0075 13.43 0.0220 24.00 0.2512 Pass 6525 8.86 0.0077 13.57 0.0228 24.00 0.2512 Pass 6525 8.86 0.0077 13.57 0.0228 24.00 0.2512 Pass 6685 7.64 0.0058 12.35 0.0172 24.00 0.2512 Pass	6885	5.76	0.0038	10.47	0.0111	24.00	0.2512	Pass		
Test Frequency (MHz) Conducted Power (dBm) Conducted Power (W) E.I.R.P. (dBm) E.I.R.P. (W) E.I.R.P. Limit (dBm) E.I.R.P. Limit (W) Result 5965 8.03 0.0064 12.74 0.0188 24.00 0.2512 Pass 6165 7.78 0.0060 12.49 0.0177 24.00 0.2512 Pass 6405 7.93 0.0062 12.64 0.0184 24.00 0.2512 Pass 6445 8.51 0.0071 13.22 0.0210 24.00 0.2512 Pass 6485 8.72 0.0075 13.43 0.0220 24.00 0.2512 Pass 6525 8.86 0.0077 13.57 0.0228 24.00 0.2512 Pass 6685 7.64 0.0058 12.35 0.0172 24.00 0.2512 Pass	7085	5.72	0.0037	10.43	0.0110	24.00	0.2512	Pass		
Test Frequency (MHz) Conducted Power (dBm) Conducted Power (W) E.I.R.P. (dBm) E.I.R.P. (W) E.I.R.P. Limit (dBm) E.I.R.P. Limit (W) Result 5965 8.03 0.0064 12.74 0.0188 24.00 0.2512 Pass 6165 7.78 0.0060 12.49 0.0177 24.00 0.2512 Pass 6405 7.93 0.0062 12.64 0.0184 24.00 0.2512 Pass 6445 8.51 0.0071 13.22 0.0210 24.00 0.2512 Pass 6485 8.72 0.0075 13.43 0.0220 24.00 0.2512 Pass 6525 8.86 0.0077 13.57 0.0228 24.00 0.2512 Pass 6685 7.64 0.0058 12.35 0.0172 24.00 0.2512 Pass		-								
Frequency (MHz)Conducted Power (dBm)Conducted Power (W)E.I.R.P. (dBm)E.I.R.P. (W)E.I.R.P. Limit (dBm)E.I.R.P. Limit (W)E.I.R.P. Limit (W)Result59658.030.006412.740.018824.000.2512Pass61657.780.006012.490.017724.000.2512Pass64057.930.006212.640.018424.000.2512Pass64458.510.007113.220.021024.000.2512Pass64858.720.007513.430.022024.000.2512Pass65258.860.007713.570.022824.000.2512Pass66857.640.005812.350.017224.000.2512Pass	Test Mode	IEEE 802.11a	x (HE40)_Tota	al		Tested Date	2022/11/3	30		
Frequency (MHz)Conducted Power (dBm)Conducted Power (W)E.I.R.P. (dBm)E.I.R.P. (W)E.I.R.P. Limit (dBm)E.I.R.P. Limit (W)E.I.R.P. Limit (W)Result59658.030.006412.740.018824.000.2512Pass61657.780.006012.490.017724.000.2512Pass64057.930.006212.640.018424.000.2512Pass64458.510.007113.220.021024.000.2512Pass64858.720.007513.430.022024.000.2512Pass65258.860.007713.570.022824.000.2512Pass66857.640.005812.350.017224.000.2512Pass		-					-			
Frequency (MHz)Power (dBm)Power (W)(dBm)(W)(dBm)(W)Result59658.030.006412.740.018824.000.2512Pass61657.780.006012.490.017724.000.2512Pass64057.930.006212.640.018424.000.2512Pass64458.510.007113.220.021024.000.2512Pass64858.720.007513.430.022024.000.2512Pass65258.860.007713.570.022824.000.2512Pass66857.640.005812.350.017224.000.2512Pass	Test	Conducted	Conducted	EIDD	EIDD	EIPPLimit	ELPPLimit			
(MH2) 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	Frequency							Result		
61657.780.006012.490.017724.000.2512Pass64057.930.006212.640.018424.000.2512Pass64458.510.007113.220.021024.000.2512Pass64858.720.007513.430.022024.000.2512Pass65258.860.007713.570.022824.000.2512Pass66857.640.005812.350.017224.000.2512Pass	(MHz)		• •				. ,			
64057.930.006212.640.018424.000.2512Pass64458.510.007113.220.021024.000.2512Pass64858.720.007513.430.022024.000.2512Pass65258.860.007713.570.022824.000.2512Pass66857.640.005812.350.017224.000.2512Pass										
64458.510.007113.220.021024.000.2512Pass64858.720.007513.430.022024.000.2512Pass65258.860.007713.570.022824.000.2512Pass66857.640.005812.350.017224.000.2512Pass										
64858.720.007513.430.022024.000.2512Pass65258.860.007713.570.022824.000.2512Pass66857.640.005812.350.017224.000.2512Pass										
65258.860.007713.570.022824.000.2512Pass66857.640.005812.350.017224.000.2512Pass										
6685 7.64 0.0058 12.35 0.0172 24.00 0.2512 Pass										
6845 7.73 0.0059 12.44 0.0175 24.00 0.2512 Pass										
6885 8.52 0.0071 13.23 0.0210 24.00 0.2512 Pass								Pass		
7085 8.61 0.0073 13.32 0.0215 24.00 0.2512 Pass	7085	8.61	0.0073	13.32	0.0215	24.00	0.2512	Pass		

Test Mode	IEEE 802.11a	x (HE80) _Au	x Ant.	Tested Date	30				
Test Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	E.I.R.P. (dBm)	E.I.R.P. (W)	E.I.R.P. Limit (dBm)	E.I.R.P. Limit (W)	Result		
5985	7.58	0.0057	12.29	0.0169	24.00	0.2512	Pass		
6145	7.63	0.0058	12.34	0.0171	24.00	0.2512	Pass		
6385	7.40	0.0055	12.11	0.0163	24.00	0.2512	Pass		
6465	7.77	0.0060	12.48	0.0177	24.00	0.2512	Pass		
6545	7.88	0.0061	12.59	0.0182	24.00	0.2512	Pass		
6625	7.64	0.0058	12.35	0.0172	24.00	0.2512	Pass		
6785	7.59	0.0057	12.30	0.0170	24.00	0.2512	Pass		
6865	7.46	0.0056	12.17	0.0165	24.00	0.2512	Pass		
6945	8.17	0.0066	12.88	0.0194	24.00	0.2512	Pass		
7025	7.86	0.0061	12.57	0.0181	24.00	0.2512	Pass		
	•			•	•				
Test Mode	IEEE 802.11a	x (HE80) Ma	ain Ant.	Tested Date	2022/11/30				
		()_							
Test									
Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.		E.I.R.P. Limit	Result		
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)			
5985	7.82	0.0061	12.53	0.0179	24.00	0.2512	Pass		
6145	7.92	0.0062	12.63	0.0183	24.00	0.2512	Pass		
6385	7.96	0.0063	12.67	0.0185	24.00	0.2512	Pass		
6465	8.39	0.0069	13.10	0.0204	24.00	0.2512	Pass		
6545	8.32	0.0068	13.03	0.0201	24.00	0.2512	Pass		
6625	7.87	0.0061	12.58	0.0181	24.00	0.2512	Pass		
6785	7.77	0.0060	12.48	0.0177	24.00	0.2512	Pass		
6865	7.86	0.0061	12.57	0.0181	24.00	0.2512	Pass		
6945	8.23	0.0067	12.94	0.0197	24.00	0.2512	Pass		
7025	8.25	0.0067	12.96	0.0198	24.00	0.2512	Pass		
Test Mode	IEEE 802.11a	x (HE80) _To	tal		Tested Date	2022/11/3	30		
		· · · · ·							
Test	O a male saturate al	O a malurata al							
Frequency	Conducted	Conducted	E.I.R.P.	E.I.R.P.		E.I.R.P. Limit	Result		
(MHz)	Power (dBm)	Power (W)	(dBm)	(W)	(dBm)	(W)			
5985	10.71	0.0118	15.42	0.0348	24.00	0.2512	Pass		
6145	10.79	0.0120	15.50	0.0355	24.00	0.2512	Pass		
6385	10.70	0.0117	15.41	0.0348	24.00	0.2512	Pass		
6465	11.10	0.0129	15.81	0.0381	24.00	0.2512	Pass		
6545	11.12	0.0129	15.83	0.0383	24.00	0.2512	Pass		
6625	10.77	0.0119	15.48	0.0353	24.00	0.2512	Pass		
6785	10.69	0.0117	15.40	0.0347	24.00	0.2512	Pass		
6865	10.67	0.0117	15.38	0.0345	24.00	0.2512	Pass		
6945	11.21	0.0132	15.92	0.0391	24.00	0.2512	Pass		
7025	11.07	0.0128	15.78	0.0378	24.00	0.2512	Pass		
6945	11.21	0.0132	15.92	0.0391	24.00	0.2512	Pass		

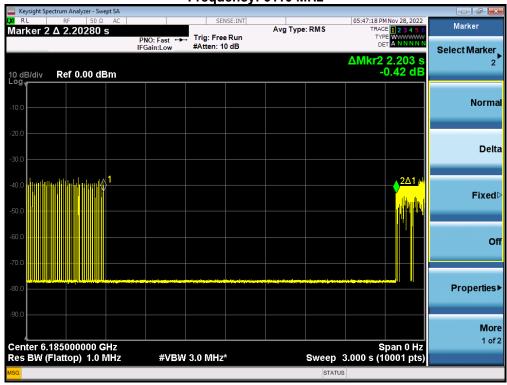



Test Mode	IEEE 802.11a	x (HE160)_Au	ıx Ant.	Tested Date	2022/11/3	2/11/30				
Test Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	E.I.R.P. (dBm)	E.I.R.P. (W)	E.I.R.P. Limit (dBm)	E.I.R.P. Limit (W)	Result			
6025	10.46	0.0111	15.17	0.0329	24.00	0.2512	Pass			
6345	10.37	0.0109	15.08	0.0322	24.00	0.2512	Pass			
6505	10.70	0.0117	15.41	0.0348	24.00	0.2512	Pass			
6665	10.56	0.0114	15.27	0.0337	24.00	0.2512	Pass			
6985	10.29	0.0107	15.00	0.0316	24.00	0.2512	Pass			
Test Mode	IEEE 802.11a	x (HE160)_M		Tested Date	2022/11/3	2022/11/30				
Test Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	E.I.R.P. (dBm)	E.I.R.P. (W)	E.I.R.P. Limit (dBm)	E.I.R.P. Limit (W)	Result			
6025	10.66	0.0116	15.37	0.0344	24.00	0.2512	Pass			
6345	10.87	0.0122	15.58	0.0361	24.00	0.2512	Pass			
6505	11.05	0.0127	15.76	0.0377	24.00	0.2512	Pass			
6665	10.94	0.0124	15.65	0.0367	24.00	0.2512	Pass			
6985	10.82	0.0121	15.53	0.0357	24.00	0.2512	Pass			
	T									
Test Mode	IEEE 802.11a	x (HE160)_To	tal		Tested Date	2022/11/3	30			
						-				
Test Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	E.I.R.P. (dBm)	E.I.R.P. (W)	E.I.R.P. Limit (dBm)	E.I.R.P. Limit (W)	Result			
6025	13.57	0.0228	18.28	0.0673	24.00	0.2512	Pass			
6345	13.64	0.0231	18.35	0.0684	24.00	0.2512	Pass			
6505	13.89	0.0245	18.60	0.0724	24.00	0.2512	Pass			
6665	13.76	0.0238	18.47	0.0703	24.00	0.2512	Pass			
6985	13.57	0.0228	18.28	0.0673	24.00	0.2512	Pass			

APPENDIX E CONTENTION BASED PROTOCOL



Frequency: 6475 MHz

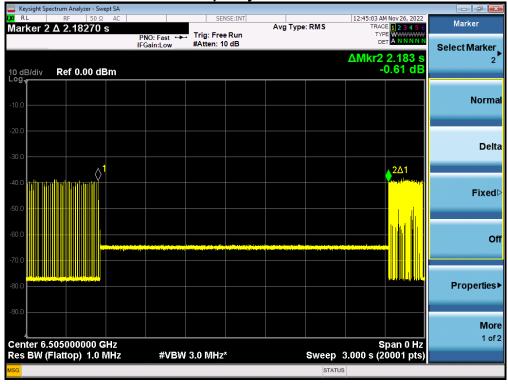

Frequency: 6695 MHz

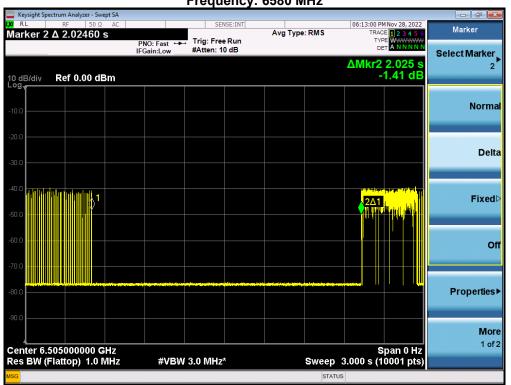
Frequency: 7015 MHz


Frequency: 6110 MHz

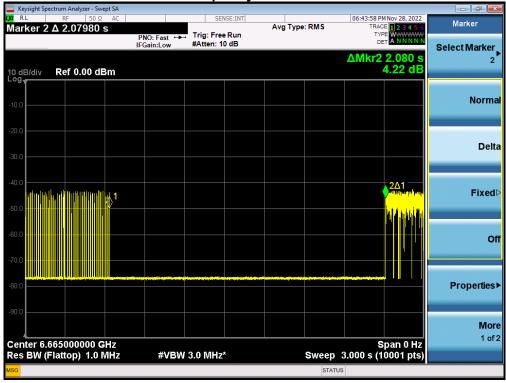


Frequency: 6185 MHz


Frequency: 6260 MHz



Frequency: 6430 MHz

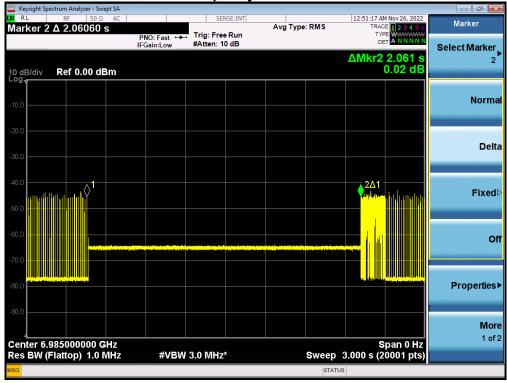

Frequency: 6505 MHz

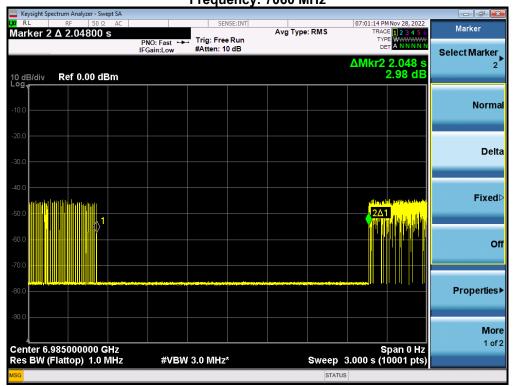
Frequency: 6580 MHz

Frequency: 6590 MHz



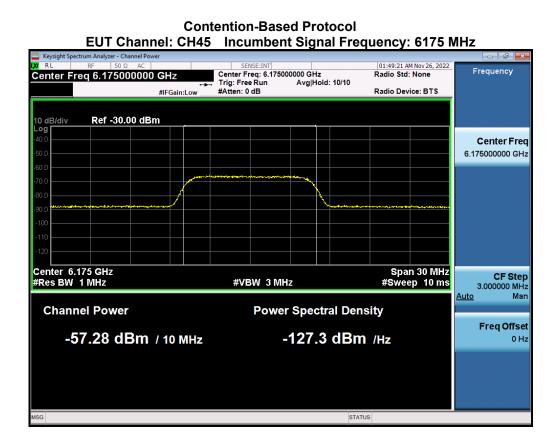
Frequency: 6665 MHz

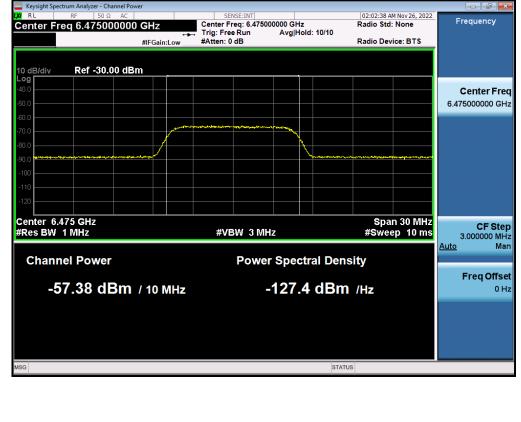

Frequency: 6740 MHz

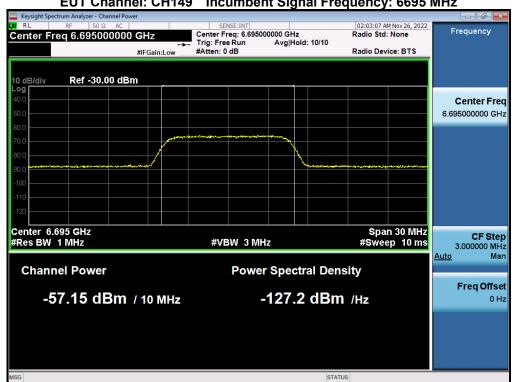


Frequency: 6910 MHz

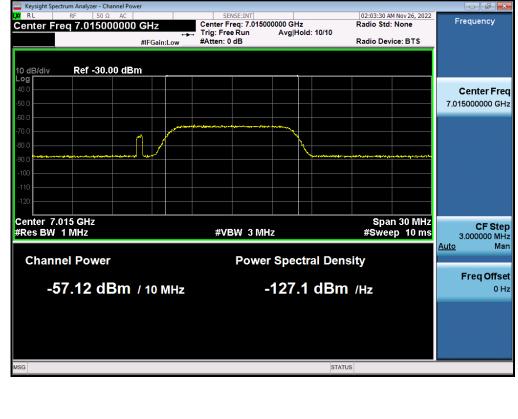
Frequency: 6985 MHz




Frequency: 7060 MHz


Detection power level and detection probability												
Bands	Test Mode	Bandwidth (MHz)	Channel	Frequency (MHz)	interference Frequency (MHz)	Detection power level (dBm)	Detection Power Limit (dBm)	Number of Times	Number of Detected	Detection Probability	Detection Probability Limit	Test Result
	802.11a	20	45	6175	6175	-65.03	-57.29	10	9	90%	90%	Pass
UNII-5 802.11				6185	6110	-66.20	-57.29	10	10	100%	90%	Pass
	802.11ax	160	47		6185	-66.31	-57.29	10	10	100%	90%	Pass
					6260	-65.98	-57.29	10	9	90%	90%	Pass
UNII-6	802.11a	20	105	6475	6475	-71.50	-57.29	10	10	100%	90%	Pass
		160	111	6505	6430	-70.62	-57.29	10	9	90%	90%	Pass
	802.11ax				6505	-69.85	-57.29	10	9	90%	90%	Pass
					6580	-70.44	-57.29	10	10	100%	90%	Pass
UNII-7	802.11a	20	149	6695	6695	-66.95	-57.29	10	10	100%	90%	Pass
		160	143	6665	6590	-67.02	-57.29	10	9	90%	90%	Pass
	802.11ax				6665	-67.53	-57.29	10	10	100%	90%	Pass
					6740	-65.11	-57.29	10	10	100%	90%	Pass
UNII-8	802.11a	20	213	7015	7015	-67.30	-57.29	10	10	100%	90%	Pass
	802.11ax	160	207	6985	6910	-65.52	-57.29	10	9	90%	90%	Pass
					6985	-68.53	-57.29	10	9	90%	90%	Pass
					7060	-68.25	-57.29	10	10	100%	90%	Pass

Detection power level and detection probability


EUT Channel: CH105 Incumbent Signal Frequency: 6475 MHz

EUT Channel: CH149 Incumbent Signal Frequency: 6695 MHz

EUT Channel: CH213 Incumbent Signal Frequency: 7015 MHz

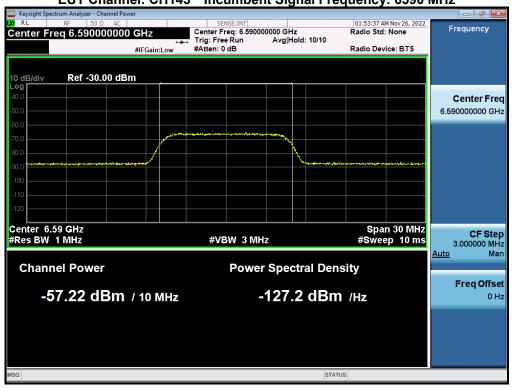
EUT Channel: CH47 Incumbent Signal Frequency: 6110 MHz

EUT Channel: CH47 Incumbent Signal Frequency: 6185 MHz



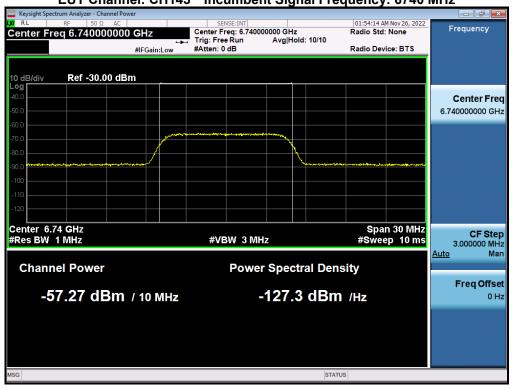
EUT Channel: CH47 Incumbent Signal Frequency: 6260 MHz

EUT Channel: CH111 Incumbent Signal Frequency: 6430 MHz



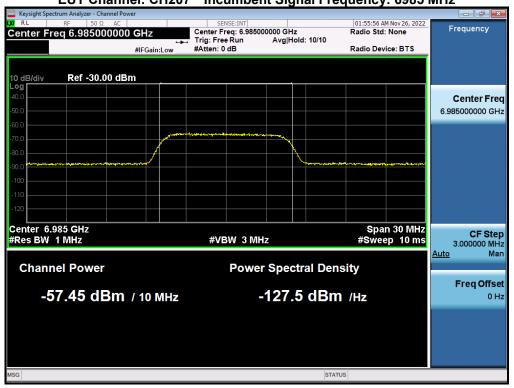
EUT Channel: CH111 Incumbent Signal Frequency: 6505 MHz


EUT Channel: CH111 Incumbent Signal Frequency: 6580 MHz



EUT Channel: CH143 Incumbent Signal Frequency: 6590 MHz





EUT Channel: CH143 Incumbent Signal Frequency: 6740 MHz

EUT Channel: CH207 Incumbent Signal Frequency: 6985 MHz

End of Test Report