

FCC Test Report FCC Part 22 / RSS 132

FOR:

Tri-band GSM Mobile Phone

MODEL #: AL21a

BENQ MOBILE HAIDENAUPLATZ 1 81667 MUNCHEN GERMANY

FCC ID: PWX-AL21a IC ID: 6175C-AL21a

TEST REPORT #: EMC_BENQ0-008-06001_FCC22 DATE: April 17th, 2006

Facility

(BQTF)

FCC listed# 101450

IC recognized # 3925

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A. Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecomusa.com • http://www.cetecom.com *CETECOM* Inc. is a Delaware Corporation with Corporation number: 2113686 Board of Directors: Dr. Harald Ansorge, Dr. Klaus Matkey, Hans Peter May © Copyright by *CETECOM*

Table of Contents

1	ASSESSMENT	
2	ADMINISTRATIVE DATA	4
	 2.1 IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT 2.2 IDENTIFICATION OF THE CLIENT	4
3		
-	3.1 IDENTIFICATION OF THE EQUIPMENT UNDER TEST	
4	SUBJECT OF INVESTIGATION	
7		····· U
5	MEASUREMENTS	
	5.1 RF POWER OUTPUT	7
	5.1.1 FCC 2.1046 Measurements required: RF power output	7
	5.1.2 Limits:	
	5.1.2.1 FCC 22.913 (a) Effective radiated power limits.	
	 5.1.3 Radiated Output Power Measurement procedure: 5.1.4 ERP Results 800 MHz band: 	
	 5.1.4 ERP Results 800 MHz band: 5.2 OCCUPIED BANDWIDTH/EMISSION BANDWIDTH. 	
	5.2.1 FCC 2.1049 Measurements required: Occupied bandwidth	
	5.2.2 Occupied / emission bandwidth measurement procedure:	
	5.2.3 Occupied / Emission bandwidth results 800 MHz band:	
	5.3 FREQUENCY STABILITY	
	5.3.1 Limit	
	5.3.2 FREQUENCY STABILITY	
	5.4 Spurious Emissions Conducted	
	5.4.1 FCC 2.1051 Measurements required: Spurious emissions at antenna terminals	
	5.4.2 <i>Limits:</i>	
	5.4.2.1 FCC 22.917 Emission miniations for centular equipment.	
	5.4.4 Bandedge Results GSM 850	
	5.4.5 Conducted Spurious Results GSM 850	
	5.5 SPURIOUS EMISSIONS RADIATED	
	5.5.1 FCC 2.1053 Measurements required: Field strength of spurious radiation	
	5.5.2 Limits:	
	5.5.2.1 FCC 22.917 Emission limitations for cellular equipment.	
	5.5.3 Radiated out of band measurement procedure:	
	5.6 RECEIVER RADIATED EMISSIONS § 2.1053 / RSS-132 5.6.1 Receiver Spurious on EUT	
	 5.6.1 Receiver Spurious on EUT 5.7 AC POWERLINE CONDUCTED EMISSIONS § 15.107/207 	
	5.7 AC FOWEREINE CONDUCTED EMISSIONS § 15.10//207	
6		
0		
7	REFERENCES	55
8	BLOCK DIAGRAMS	

1 Assessment

The following is in compliance with the applicable criteria specified in FCC rules Parts 2, and 22 of Title 47 of the Code of Federal Regulations and in compliance with the applicable criteria specified in Industry Canada rules RSS132.

Company	Description	Model #
BENQ MOBILE	Tri-BAND GSM MOBILE PHONE	AL21a

Lothar Schmidt Test Lab Manager

The test results of this test report relate exclusively to the test item specified in Identification of the Equipment under Test. The CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	EMC
Address:	411 Dixon Landing Road
	Milpitas, CA 95035
	U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Responsible Test Lab Manager:	Lothar Schmidt
Responsible Project Leader:	Pete Krebill
Date of test:	4/12/2006 to 4/17/2006

2.2 Identification of the Client

Applicant's Name:	BENQ MOBILE
Street Address:	HAIDENAUPLATZ 1
City/Zip Code	81667 MUNCHEN
Country	GERMANY
Contact Person:	MARTIN WEINBERGER
Phone No.	+49.89.722.37148
Fax:	+49.89.722.24799
e-mail:	Martin.weinberger@benq.com

2.3 Identification of the Manufacturer

Manufacturer's Name:	BENQ SHA MOBILE		
Manufacturers Address:	CHUAN QIAO RD. 777, PUDONG		
City/Zip Code	SHANGHAI 201206		
Country	CHINA		

3 Equipment under Test (EUT)

3.1 Identification of the Equipment under Test

Marketing Name:	AL21a
Description:	Tri-BAND GSM MOBILE PHONE
Model No:	AL21a
FCC ID:	PWX-AL21a
IC ID:	6175C-AL21a
Frequency Range:	824.2 MHz – 848.8 MHz
Type(s) of Modulation:	GMSK
Number of Channels:	124 for 850 band
Antenna Type:	INTERNAL
Output Power:	0.23 W ERP@ 836.6 MHz for 850 band

4 <u>Subject of Investigation</u>

The objective of the measurements done by Cetecom Inc. was to measure the performance of the EUT as specified by requirements listed in FCC rules Parts 2 and 22 of Title 47 of the Code of Federal Regulations and Industry Canada rules RSS132.

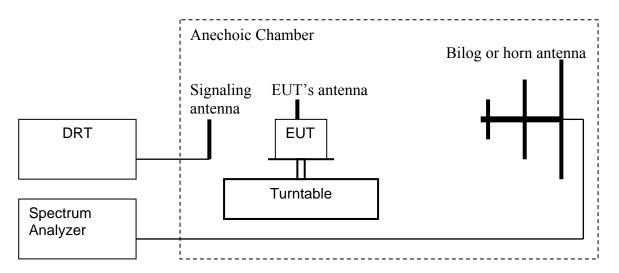
5 <u>Measurements</u>

5.1 <u>RF Power Output</u>

5.1.1 FCC 2.1046 Measurements required: RF power output.

Power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on circuit elements as specified. The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

5.1.2 <u>Limits:</u>


5.1.2.1 FCC 22.913 (a) Effective radiated power limits.

The effective radiated power (ERP) of mobile transmitters must not exceed 7 Watts.

5.1.3 Radiated Output Power Measurement procedure:

Based on TIA-603B November 2002

2.2.17.2 Effective Radiated Power (ERP) or Effective Isotropic Radiated Power (EIRP)

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a vertical orientation.
- 2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to the channel frequency. Set the analyzer to measure peak hold with the required settings.
- 4. Rotate the EUT 360°. Record the peak level in dBm (LVL).
- 5. Replace the EUT with a vertically polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.

- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (LOSS). LOSS = Generator Output Power (dBm) Analyzer reading (dBm).
- 7. Determine the ERP using the following equation: ERP (dBm) = LVL (dBm) + LOSS (dB)
- 8. Determine the EIRP using the following equation: EIRP (dBm) = ERP (dBm) + 2.15 (dB)
- 9. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

(**note:** Steps 5 and 6 above are performed prior to testing and **LOSS** is recorded by test software. Steps 3, 4, 7 and 8 above are performed with test software.)

Spectrum analyzer settings:

Res B/W: 3 MHz Vid B/W: 3 MHz

Page 9 of 57

5.1.4 ERP Results 800 MHz band:

Frequency (MHz)	Effective Radiated Power (dBm)
824.2	23.15
836.6	23.54
848.8	22.63

411 Dixon Landing Road, Milpitas CA 95035, USA

V

V

BenQ

TX CH128, GSM only

Page 10 of 57

EIRP (GSM 850) CHANNEL 128

CETECOM Inc.

Operating Mode:

Customer:

Antenna:

EUT:

EUT / Description: AL21a

§22.913(a)

Test operat Voltage: Sweep:	or:	Mike AC/D EIRP	С				
SWEEP TABLE Start Frequency 819.2 MHz	Stop Freque	ency	Detector	Meas. Time Coupled	IF Bandw. 3 MHz	Transduce DUMMY-DBM	
Marker:	824.1	499 MF	Hz	25.25 dl	Bm		
Level [dBm] 40							
30				\diamond			
20							
10							
0							
-10							
-20 819.2M		822	2M Frequenc	824M cy [Hz]	826M		829.2M

411 Dixon Landing Road, Milpitas CA 95035, USA

BenQ

TX CH190, GSM only

Page 11 of 57

EIRP (GSM 850) CHANNEL 190

CETECOM Inc.

Operating Mode:

Customer:

EUT / Description: AL21a

§22.913(a)

Antenr EUT:	operato: ge:	V V r: Mi	/DC	1			
SWEEP	TABLE:	"EIRP 85	0 CH 190 V"				
Star		Stop	Detector	Meas.	IF	Transducer	
		Frequenc 841.6 MH		Time Coupled	Bandw. 3 MHz	DUMMY-DBM	
Marker	:	836.7903	81 MHz	25.6	4 dBm		
	l [dBm]						
40 r							
40							
30							
20 -							
20							
10							-
0							\square
-							
10							
-10							
-20 ^L	331.6M	834	V 8	36M	838M	841.6M]
-			Frequence			-	

Page 12 of 57

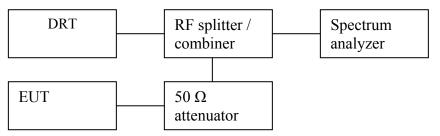
EIRP (GSM 850) CHANNEL 251

§22.913(a)

CETECOM Inc. 411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description:	AL21a			
Customer:	BenQ			
Operating Mode:	TX CH251, GSM only			
Antenna:	V			
EUT:	V			
Test operator:	Mike			
Voltage:	AC/DC			
Sweep:	EIRP			

SWEEP TABLE: "EIRP 850 CH 251 V"

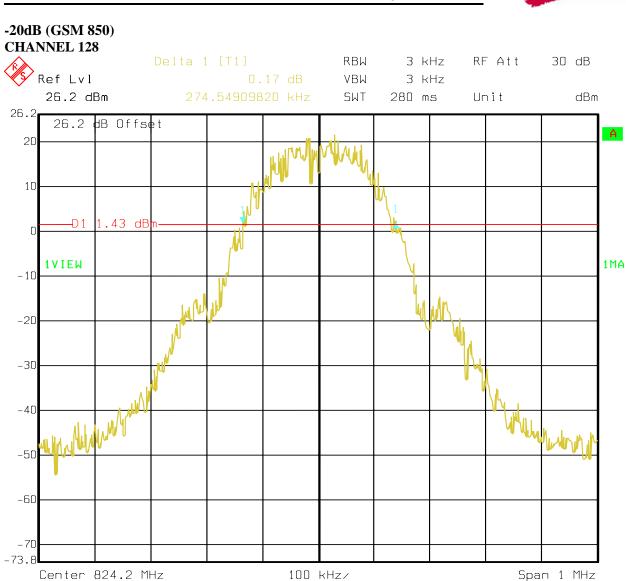

5.2 Occupied Bandwidth/Emission Bandwidth

5.2.1 FCC 2.1049 Measurements required: Occupied bandwidth

The occupied bandwidth, that is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable.

(h) Transmitters employing digital modulation techniques-when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated.

5.2.2 <u>Occupied / emission bandwidth measurement procedure:</u>

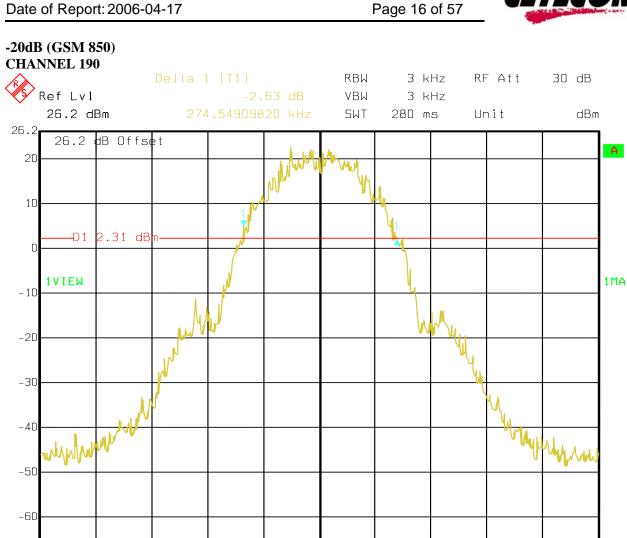


- 1. Connect the equipment as shown in the above diagram.
- 2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to measure the 99% (-20 dB) occupied bandwidth. Record the value.
- 4. Set the spectrum analyzer to measure the 99.5% (-26 dB) emission bandwidth. Record the value.
- 5. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

5.2.3 Occupied / Emission bandwidth results 800 MHz band:

Frequency	Occupied B/W -20 dB	Emission B/W -26 dB
(MHz)	(kHz)	(kHz)
824.2	274.55	316.63
836.6	274.55	314.63
848.8	274.55	314.63

Page 14 of 57


Test Report #: EMC_BENQ0-008-06001_FCC22 Date of Report: 2006-04-17

Date:

17.APR.2006 12:43:14

Page 15 of 57

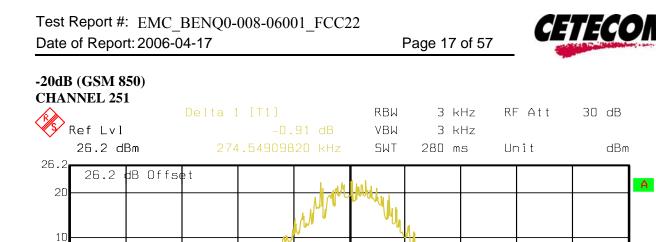
Test Report #: EMC_BENQ0-008-06001_FCC22

-70 -73.8

Date:

Center 836.6 MHz

17.APR.2006 12:47:10


Page 16 of 57

Span 1 MHz

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

100 kHz/

-D1

1. March 1. Marth

Center 848.8 MHz

17.APR.2006 13:06:17

1VIEW

ſ

-10

-20

-30

-40

-50

-60

-70 -73.8

Date:

2.63 dB

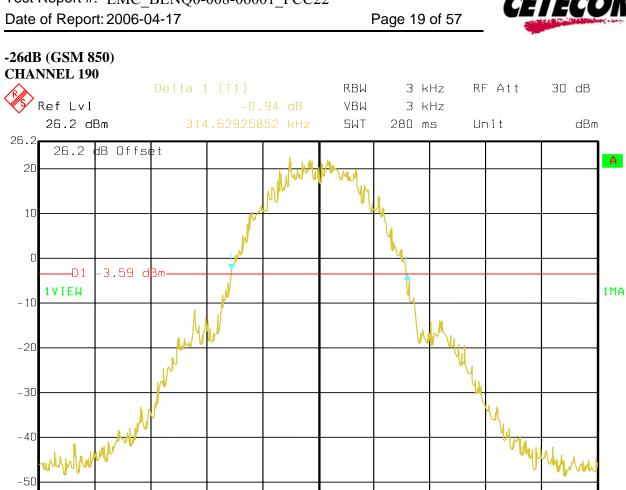
A

1MA

hilly

My Mary

Span 1 MHz


100 kHz/

Test Report #: EMC_BENQ0-008-06001_FCC22 Date of Report: 2006-04-17

Page 18 of 57

-50

-60

-70 -73.8

Date:

Center 836.6 MHz

17.APR.2006 12:48:12

Span 1 MHz

A

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

100 kHz/

Test Report #: EMC_BENQ0-008-06001_FCC22

-50

-60

-70 -73.8

Date:

Center 848.8 MHz

17.APR.2006 13:07:46

A

1MA

Span 1 MHz

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

100 kHz/

5.3 Frequency Stability

5.3.1 <u>Limit</u>

For Hand carried battery powered equipment:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment" Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.6VDC and 4.5VDC, with a nominal voltage of 3.7VDC. Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of -2.7% and +21.62%. For the purposes of measuring frequency stability these voltage limits are to be used.

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMU 200 UNIVERSAL RADIO COMMUNICATION TESTER.

1. Measure the carrier frequency at room temperature.

2. Subject the EUT to overnight soak at -30 C.

3. With the EUT, powered via nominal voltage, connected to the CMU 200 and in a simulated call on mid channel (190 for GSM 850 & 661 for PCS-1900), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the EUT, to prevent significant self-warming.

4. Repeat the above measurements at 10 C increments from -30 C to +50 C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

5. Remeasure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments remeasuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.

6. Subject the EUT to overnight soak at +50 C.

7. With the EUT, powered via nominal voltage, connected to the CMU 200 and in a simulated call on mid channel (190 for GSM 850 & 661 for PCS-1900), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the EUT, to prevent significant self-warming.

8. Repeat the above measurements at 10 C increments from +50 C to -30 C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

For equipment powered by primary supply voltage:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

For this EUT section 2.1055(d)(1) applies. This requires to vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

5.3.2 FREQUENCY STABILITY

850 Band AFC FREQ ERROR vs. VOLTAGE

Voltage (VDC)	Frequency Error (Hz)	Frequency Error (ppm)
3.6	-31	0.04
4.5	-43	0.05

AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE (°C)	Frequency Error (Hz)	Frequency Error (ppm)
-30	-37	0.04
-20	-29	0.03
-10	-29	0.03
0	-33	0.04
+10	-31	0.04
+20	-33	0.04
+30	-33	0.04
+40	-36	0.04
+50	-33	0.04

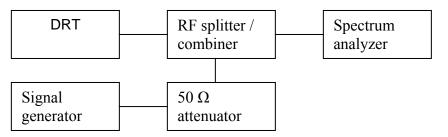
5.4 Spurious Emissions Conducted

5.4.1 FCC 2.1051 Measurements required: Spurious emissions at antenna terminals.

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in FCC 2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

5.4.2 Limits:

5.4.2.1 FCC 22.917 Emission limitations for cellular equipment.


The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service.

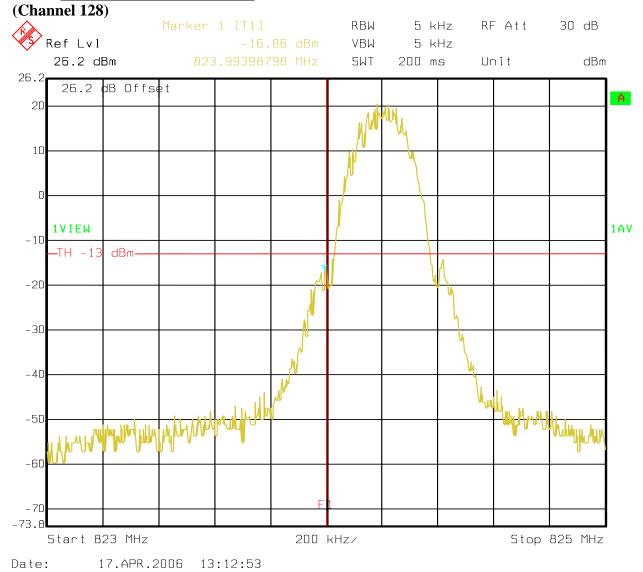
(a) *Out of band emissions*. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

(b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.4.3 <u>Conducted out of band emissions measurement procedure:</u> Based on TIA-603B November 2002

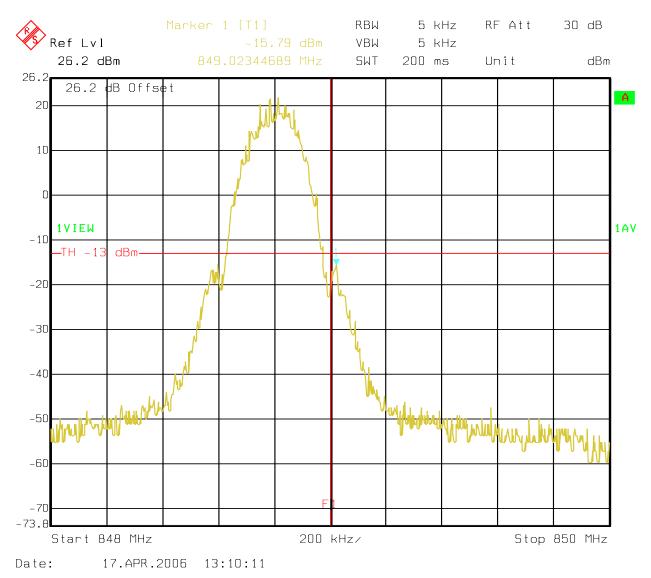
2.2.13 Unwanted Emissions: Conducted Spurious

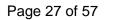
- 1. Connect the equipment as shown in the above diagram.
- 2. Set the spectrum analyzer to measure peak hold with the required settings.


- 3. Set the signal generator to a known output power and record the path loss in dB (LOSS) for frequencies up to the tenth harmonic of the EUT's carrier frequency. LOSS = Generator Output Power (dBm) Analyzer reading (dBm).
- 4. Replace the signal generator with the EUT.
- 5. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 6. Set the spectrum analyzer to measure peak hold with the required settings. Offset the spectrum analyzer reference level by the path loss measured above.
- 7. Measure and record all spurious emissions up to the tenth harmonic of the carrier frequency.
- 8. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.
- 9. If necessary steps 6 and 7 may be performed with the spectrum analyzer set to average detector.

(**note:** Step 3 above is performed prior to testing and **LOSS** is recorded by test software. Steps 2, 6, and 7 above are performed with test software.)

Page 25 of 57

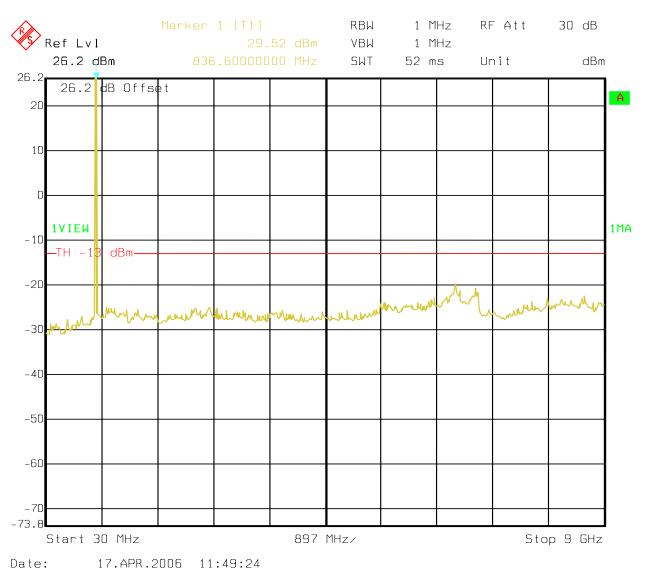

5.4.4 Bandedge Results GSM 850



Page 26 of 57


(Channel 251)

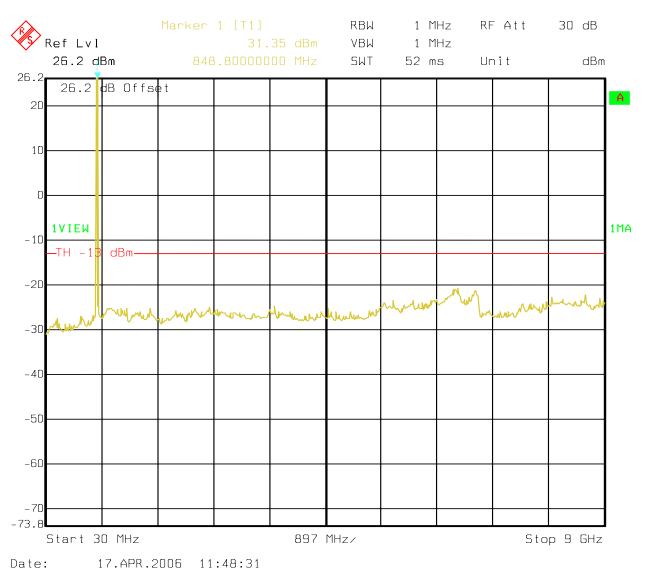
5.4.5 <u>Conducted Spurious Results GSM 850</u> CHANNEL 128 30 MHz – 9 GHz



Page 28 of 57

CHANNEL 190 30MHz – 9GHz

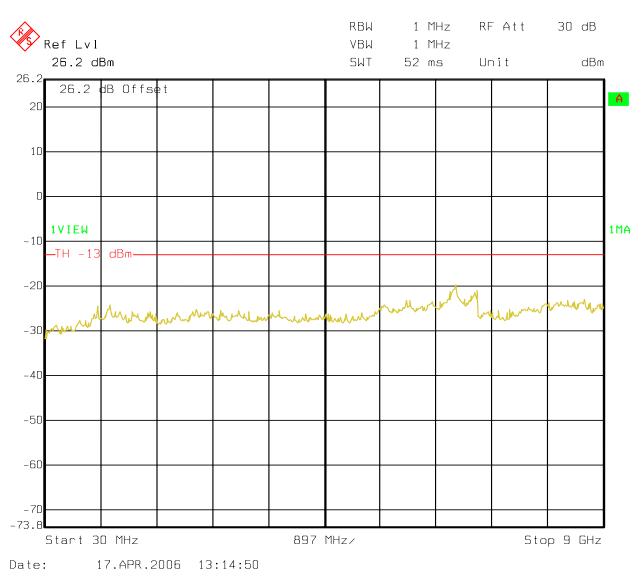
Note: The peak above the limit line is the carrier freq. at ch-190



Page 29 of 57

CHANNEL 251 30MHz – 9GHz

Note: The peak above the limit line is the carrier freq. at ch-251



Test Report #: EMC_BENQ0-008-06001_FCC22 Date of Report: 2006-04-17

Page 30 of 57

IDLE (GSM 850) 30MHz – 9GHz

5.5 Spurious Emissions Radiated

5.5.1 FCC 2.1053 Measurements required: Field strength of spurious radiation.

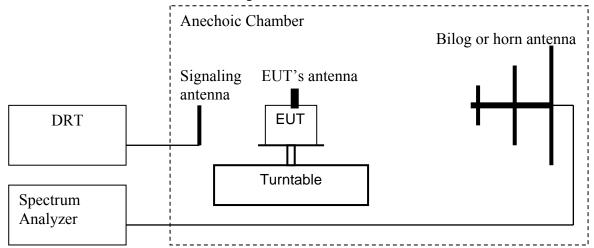
(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission.

5.5.2 <u>Limits:</u>

5.5.2.1 FCC 22.917 Emission limitations for cellular equipment.

The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service.

(a) *Out of band emissions*. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.


(b) *Measurement procedure*. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 100 kHz of 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

5.5.3 Radiated out of band measurement procedure:

Based on TIA-603B November 2002

2.2.12 Unwanted emissions: Radiated Spurious

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a horizontal orientation.
- 2. Adjust the settings of the Digital Radiocommunication Tester (DRT) to set the EUT to its maximum power at the required channel.
- 3. Set the spectrum analyzer to measure peak hold with the required settings.
- 4. Place the measurement antenna in a horizontal orientation. Rotate the EUT 360°. Raise the measurement antenna up to 4 meters in 0.5 meters increments and rotate the EUT 360° at each height to maximize all emissions. Measure and record all spurious emissions (LVL) up to the tenth harmonic of the carrier frequency.
- 5. Replace the EUT with a horizontally polarized half wave dipole or known gain antenna. The center of the antenna should be at the same location as the center of the EUT's antenna.
- 6. Connect the antenna to a signal generator with known output power and record the path loss in dB (**LOSS**). **LOSS** = Generator Output Power (dBm) Analyzer reading (dBm).
- 7. Determine the level of spurious emissions using the following equation: **Spurious** (dBm) = **LVL** (dBm) + **LOSS** (dB):
- 8. Repeat steps 4, 5 and 6 with all antennas vertically polarized.
- 9. Determine the level of spurious emissions using the following equation: **Spurious** (dBm) = **LVL** (dBm) + **LOSS** (dB):
- 10. Measurements are to be performed with the EUT set to the low, middle and high channel of each frequency band.

(**note:** Steps 5 and 6 above are performed prior to testing and **LOSS** is recorded by test software. Steps 3, 4 and 7 above are performed with test software.)

Spectrum analyzer settings:

Res B/W: 1 MHz Vid B/W: 1 MHz

Measurement Survey:

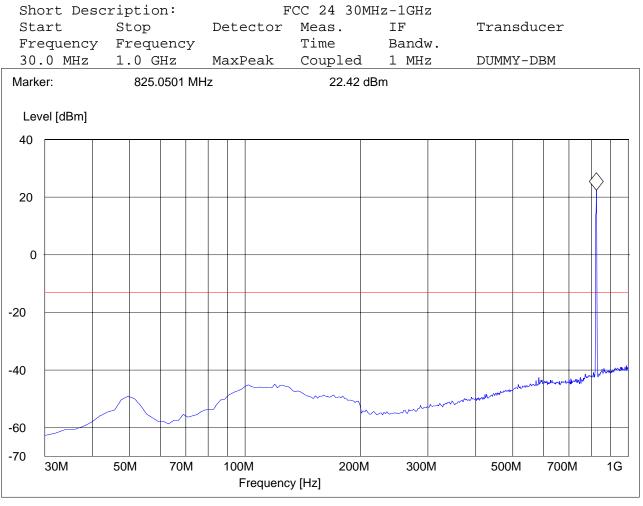
Radiated emissions measurements were made only at the upper, middle, and lower carrier frequencies of the GSM-850 band. It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the GSM-850 band into any of the other blocks respectively. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

Harmonics	Tx ch-128 Freq. (MHz)	Level (dBm)	Tx ch-190 Freq. (MHz)	Level (dBm)	Tx ch-251 Freq. (MHz)	Level (dBm)
2	1648.4	NF	1673.2	NF	1697.6	NF
3	2472.6	NF	2509.8	NF	2546.4	NF
4	3296.8	NF	3346.4	NF	3395.2	NF
5	4121	NF	4183	NF	4244	NF
6	4945.2	NF	5019.6	NF	5092.8	NF
7	5769.4	NF	5856.2	NF	5941.6	NF
8	6593.6	NF	6692.8	NF	6790.4	NF
9	7417.8	NF	7529.4	NF	7639.2	NF
10	8242	NF	8366	NF	8488	NF
NF = NOISE FLOOR						

RESULTS OF RADIATED TESTS GSM-850:

Page 34 of 57

RADIATED SPURIOUS EMISSIONS (GSM-850) TX: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: vertical Note: 1.The peak above the limit line is the carrier freq.


2. This plot is valid for low, mid & high channels (worst-case plot)

CETECOM Inc.

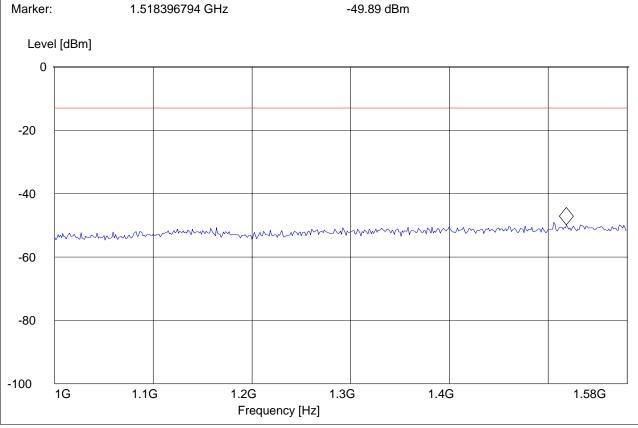
411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description:	AL21a
Customer:	BenQ
Operating Mode:	TX CH128, GSM only
Antenna:	V
EUT:	V
Test operator:	Mike
Voltage:	AC/DC
Sweep:	FCC 24 30M-1GHz

SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

RADIATED SPURIOUS EMISSIONS (GSM-850)

Page 35 of 57


Tx @ 824.2MHz: 1GHz – 1.58GHz Spurious emission limit –13dBm

CETECOM Inc. 411 Dixon Landing Road, Milpitas CA 95035, USA

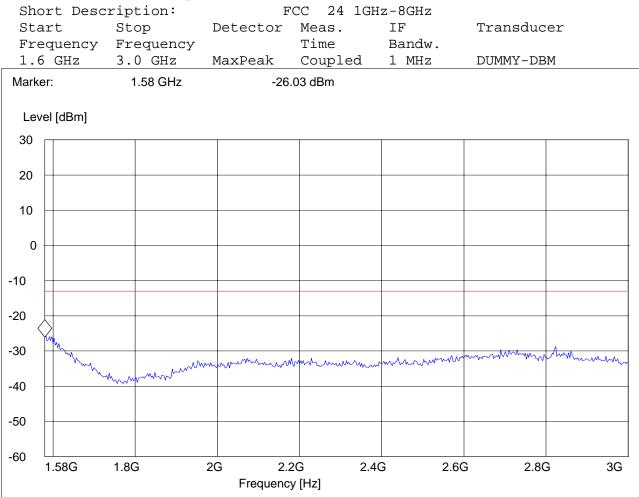
EUT / Description:	AL21a		
Customer:	BenQ		
Operating Mode:	TX CH128, GSM only		
Antenna:	V		
EUT:	V		
Test operator:	Mike		
Voltage:	AC/DC		
Sweep:	FCC 1-1.58GHz		

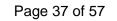
SWEEP TABLE: "FCC 22Spuri 1-1.58G"

	cription:		CC 24 1G	Hz-8GHz		
Start	Stop	Detector	Meas.	IF	Transducer	
Frequency	Frequency		Time	Bandw.		
1.0 GHz	1.6 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM	
	4 = 4 0 0 0 0 7 0 4	011	10.1			

Page 36 of 57

RADIATED SPURIOUS EMISSIONS (GSM-850)


Tx @ 824.2MHz: 1.58GHz – 3GHz Spurious emission limit –13dBm

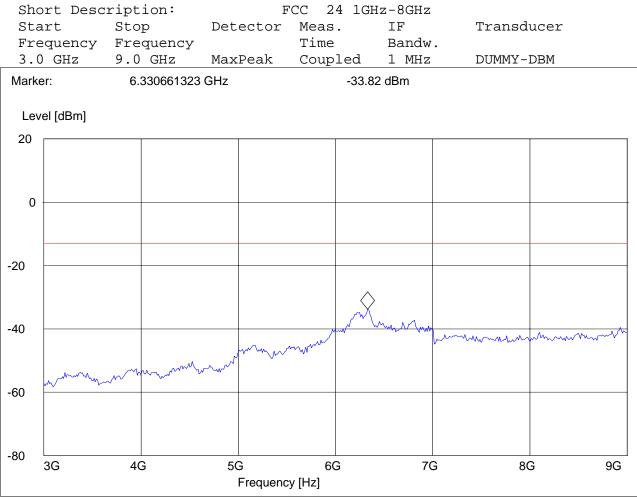

CETECOM Inc.

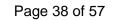
411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description:	AL21a		
Customer:	BenQ		
Operating Mode:	TX CH128, GSM only		
Antenna:	V		
EUT:	V		
Test operator:	Mike		
Voltage:	AC/DC		
Sweep:	FCC 1.58-3GHz		

SWEEP TABLE: "FCC 22Spuri 1.58-3G"

RADIATED SPURIOUS EMISSIONS (GSM-850)


Tx @ 824.2MHz: 3GHz – 9GHz Spurious emission limit –13dBm

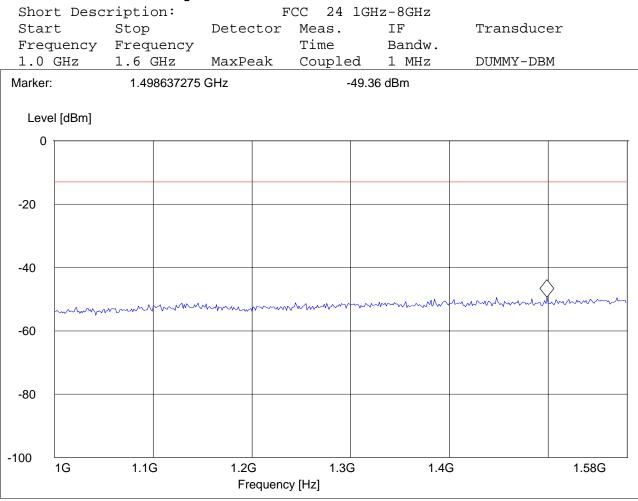

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description:	AL21a		
Customer:	BenQ		
Operating Mode:	TX CH128, GSM only		
Antenna:	V		
EUT:	V		
Test operator:	Mike		
Voltage:	AC/DC		
Sweep:	FCC 3-9GHz		

SWEEP TABLE: "FCC 22Spuri 3-9G"

RADIATED SPURIOUS EMISSIONS (GSM-850)


Tx @ 836.6MHz: 1GHz – 1.58GHz Spurious emission limit –13dBm

CETECOM Inc.

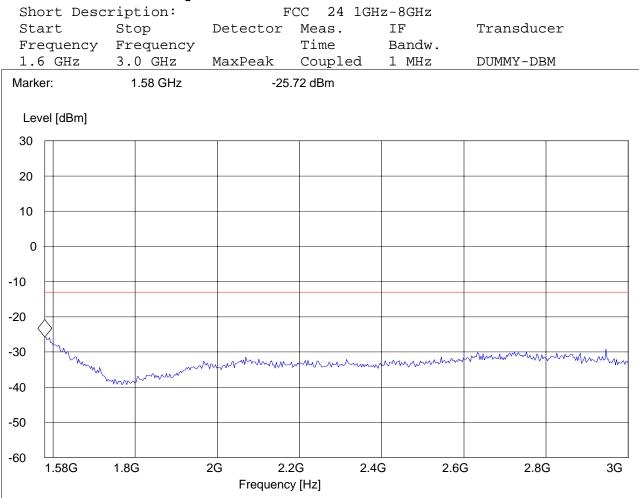
411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description:	AL21a		
Customer:	BenQ		
Operating Mode:	TX CH190, GSM only		
Antenna:	V		
EUT:	V		
Test operator:	Mike		
Voltage:	AC/DC		
Sweep:	FCC 1-1.58GHz		

SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Page 39 of 57

RADIATED SPURIOUS EMISSIONS (GSM-850)


Tx @ 836.6MHz: 1.58GHz – 3GHz Spurious emission limit –13dBm

CETECOM Inc.

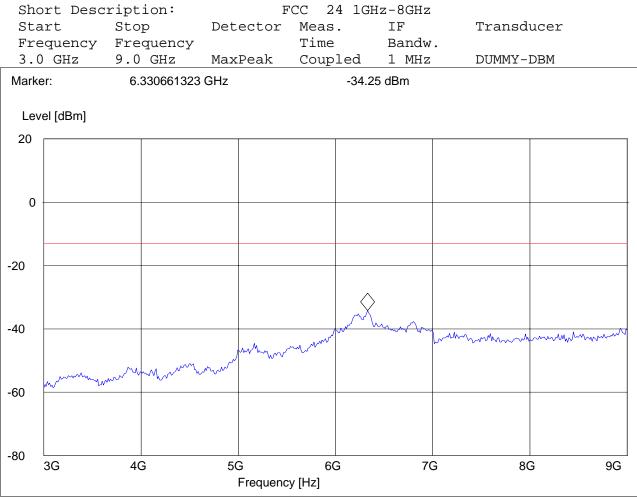
411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description:	AL21a		
Customer:	BenQ		
Operating Mode:	TX CH190, GSM only		
Antenna:	V		
EUT:	V		
Test operator:	Mike		
Voltage:	AC/DC		
Sweep:	FCC 1.58-3GHz		

SWEEP TABLE: "FCC 22Spuri 1.58-3G"

Page 40 of 57

RADIATED SPURIOUS EMISSIONS (GSM-850)


Tx @ 836.6MHz: 3GHz – 9GHz Spurious emission limit –13dBm

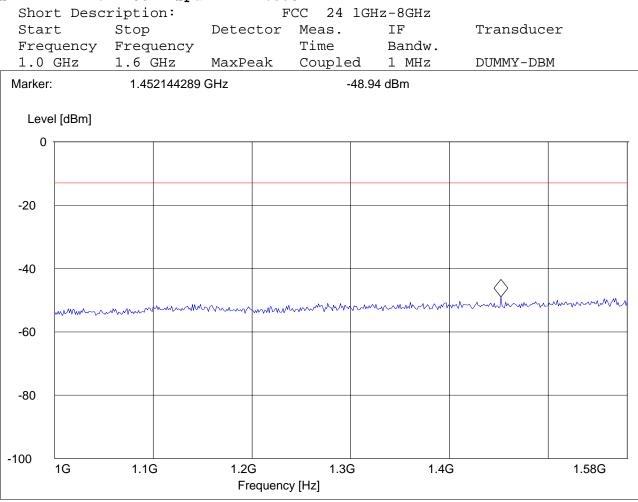
CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description:	AL21a		
Customer:	BenQ		
Operating Mode:	TX CH190, GSM only		
Antenna:	V		
EUT:	V		
Test operator:	Mike		
Voltage:	AC/DC		
Sweep:	FCC 3-9GHz		

SWEEP TABLE: "FCC 22Spuri 3-9G"

RADIATED SPURIOUS EMISSIONS (GSM-850)


Tx @ 848.8MHz: 1GHz – 1.58GHz Spurious emission limit –13dBm

CETECOM Inc.

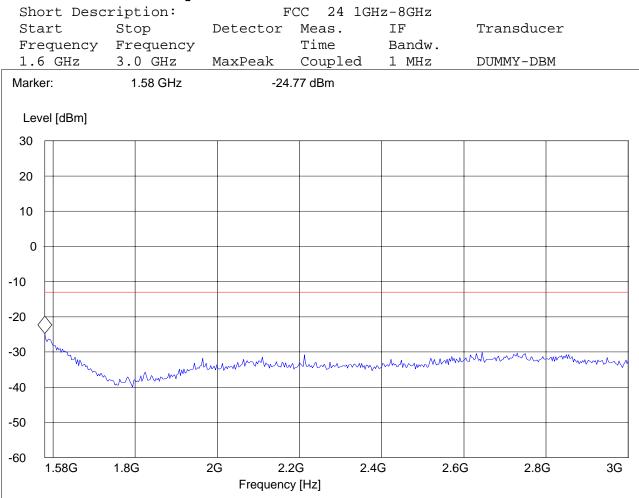
411 Dixon Landing Road, Milpitas CA 95035, USA

AL21a		
BenQ		
TX CH251, GSM only		
V		
V		
Mike		
AC/DC		
FCC 1-1.58GHz		

SWEEP TABLE: "FCC 22Spuri 1-1.58G"

Page 42 of 57

RADIATED SPURIOUS EMISSIONS (GSM-850)


Tx @ 848.8MHz: 1.58GHz – 3GHz Spurious emission limit –13dBm

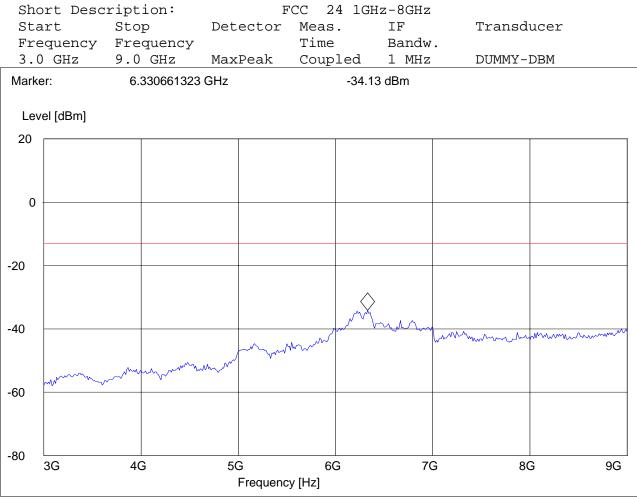
CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

•	· •		
EUT / Description:	AL21a		
Customer:	BenQ		
Operating Mode:	TX CH251, GSM only		
Antenna:	V		
EUT:	V		
Test operator:	Mike		
Voltage:	AC/DC		
Sweep:	FCC 1.58-3GHz		

SWEEP TABLE: "FCC 22Spuri 1.58-3G"

RADIATED SPURIOUS EMISSIONS (GSM-850)


Tx @ 848.8MHz: 3GHz – 9GHz Spurious emission limit –13dBm

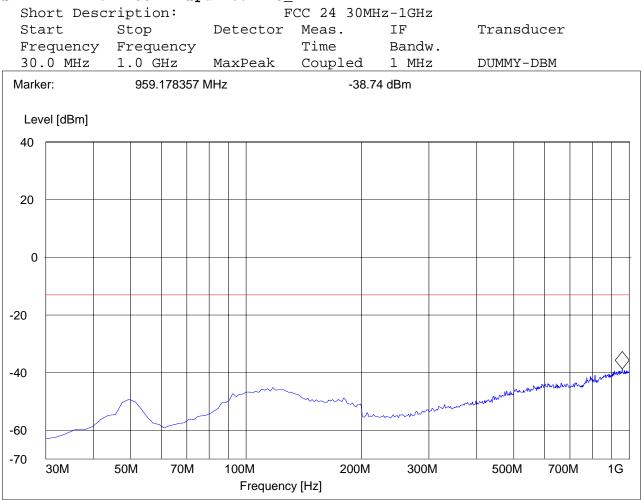
CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description:	AL21a		
Customer:	BenQ		
Operating Mode:	TX CH251, GSM only		
Antenna:	V		
EUT:	V		
Test operator:	Mike		
Voltage:	AC/DC		
Sweep:	FCC 3-9GHz		

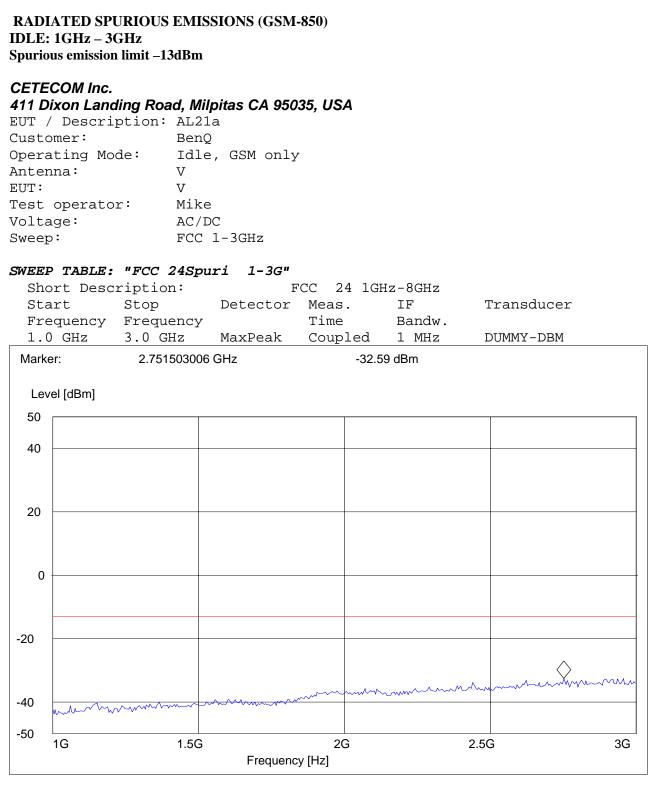
SWEEP TABLE: "FCC 22Spuri 3-9G"

Page 44 of 57


RADIATED SPURIOUS EMISSIONS (GSM-850) IDLE: 30MHz - 1GHz Spurious emission limit –13dBm Antenna: vertical

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA


EUT / Description:	AL21a
Customer:	BenQ
Operating Mode:	Idle, GSM only
Antenna:	V
EUT:	V
Test operator:	Mike
Voltage:	AC/DC
Sweep:	FCC 24 30M-1GHz

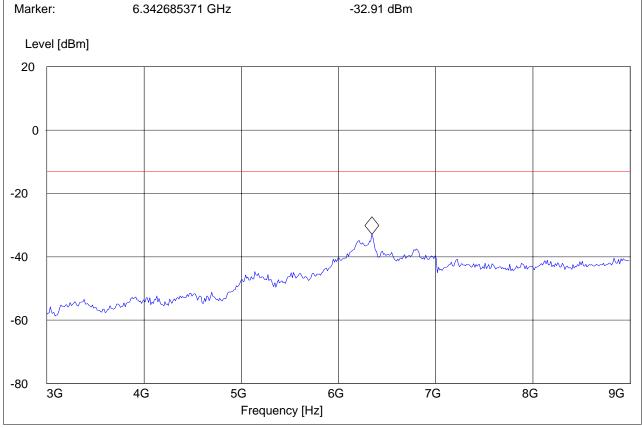
SWEEP TABLE: "FCC 24 Spur 30M-1G_V"

Page 45 of 57

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

Page 46 of 57

RADIATED SPURIOUS EMISSIONS (GSM-850) IDLE: 3GHz – 9GHz


CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description:	AL21a		
Customer:	BenQ		
Operating Mode:	Idle, GSM only		
Antenna:	V		
EUT:	V		
Test operator:	Mike		
Voltage:	AC/DC		
Sweep:	FCC 3-9GHz		

SWEEP TABLE: "FCC 22Spuri 3-9G"

		0.040005074	011	00.0		
	3.0 GHz	9.0 GHz	MaxPeak	Coupled	1 MHz	DUMMY-DBM
	Frequency	Frequency		Time	Bandw.	
	Start	Stop	Detector	Meas.	IF	Transducer
	Short Desc	ription:	F	CC 24 1GH	Iz-8GHz	
~ .						

Page 47 of 57

CETECOM

5.6 RECEIVER RADIATED EMISSIONS

§ 2.1053 / RSS-132

NOTE:

1. The radiated emissions were done with different settings, using the relevant pre-amplifiers for the relevant frequency ranges. This is the reason that the graphs show different noise levels. In the range between 3GHz and 26.5GHz very short cable connections to the antenna was used to minimize the noise level.

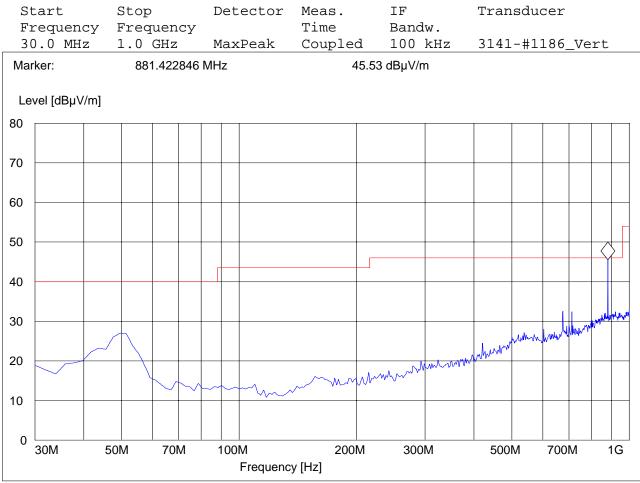
Limits

SUBCLAUSE § RSS-133

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2400/F (kHz)	300
0.490 - 1.705	24000/F (kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Page 48 of 57

5.6.1 <u>Receiver Spurious on EUT</u>


RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 30MHz – 1GHz Antenna: vertical

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description:	AL21a		
Customer:	BenQ		
Operating Mode:	Idle, GSM only		
Antenna:	V		
EUT:	V		
Test operator:	Mike		
Voltage:	AC/DC		
Sweep:	Canada 30M-1GHz		

SWEEP TABLE: "CANADA RE_30M-1G_Ver"

Page 49 of 57

RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 1GHz – 3GHz

CETECOM Inc. 411 Dixon Landing Road, Milpitas CA 95035, USA EUT / Description: AL21a Customer: BenQ Operating Mode: Idle, GSM only Antenna: V EUT: V Test operator: Mike Voltage: AC/DC Sweep: Canada 1-3GHz SWEEP TABLE: "CANADA RE_1-3G" Transducer Start Stop Detector Meas. IF Frequency Frequency Time Bandw. 1.0 GHz 3.0 GHz MaxPeak Coupled 1 MHz #326horn_AF_vert Marker: 2.711422846 GHz 48.13 dBµV/m Level [dBµV/m] 120 110 100 90 80 70 60 50 40 30 1G 1.5G 2G 2.5G 3G Frequency [Hz]

This report shall not be reproduced except in full without the written approval of: CETECOM, Inc.

Page 50 of 57

RECEIVER RADIATED EMISSIONS EUT in Idle Mode: 3GHz – 18GHz

CETECOM Inc.

411 Dixon Landing Road, Milpitas CA 95035, USA

EUT / Description:	AL21a
Customer:	BenQ
Operating Mode:	Idle, GSM only
Antenna:	V
EUT:	V
Test operator:	Mike
Voltage:	AC/DC
Sweep:	Canada 3-18GHz

SWEEP TABLE: "CANADA RE_3-18G"

	art requency	Stop Frequenc	 Detect v	or Me Ti	as. me	IF Ba	r andw		Tra	nsducer	
	0 GHz	18.0 GHz			upled		MHz		#32	6horn_AF_ver	ct
Mar	Marker: 17.114228457 GHz 40.51 dBµV/m										
Lev	vel [dBµV/m]										
80											
70											
60											
50											
40										wind the winning	
30						M	M	hum	mohun	White where the second second	
20				Mar	~~~	~~~~					
10		<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ - ~							
0											
	0 1G 2G 3G 4G 5G 6G 8G 10G 18G Frequency [Hz]										

Page 51 of 57

5.7 AC POWERLINE CONDUCTED EMISSIONS

§ 15.107/207

Measured with AC/DC power adapter Siemens model#A5BHTHN00102612 Technical specification: 15.107 / 15.207 (Revised as of August 20, 2002) Limit

* Decreases with logarithm of the frequency

ANALYZER SETTINGS: RBW = 10KHz VBW = 10KHz

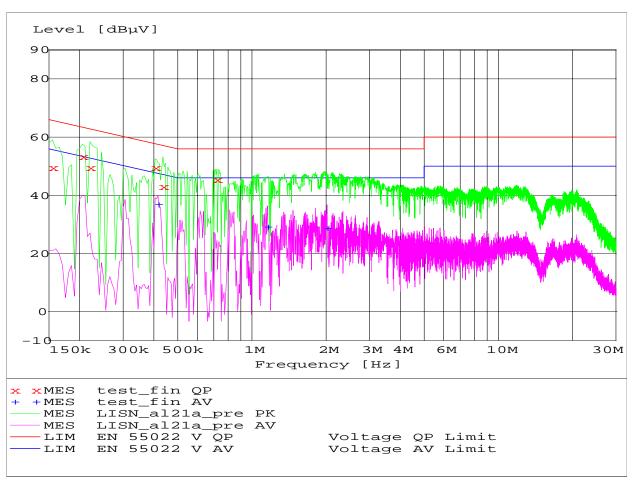
5.7.1 <u>Results EUT</u> LISN

411 Dixon Landing Road, CA 95035

AL21a
BenQ
GSM 850 TCH190
Mike
115V
EN55022
AC/DC adapter, Mod: A5BHTN00102471
4/17/2006 / 11:25:33AM

SWEEP TABLE: "EN 55022 Voltage"

Short Descri	ption:	EN	55022 Volt	age	
Start	Stop	Detector	Meas.	IF	Transducer
Frequency	Frequency		Time	Bandw.	
150.0 kHz	30.0 MHz	MaxPeak	Coupled	9 kHz	None
		Average			


SCAN TABLE: "EN 55022 Voltage"

Short Desc	ription:	55022 Vol	tage			
Start	Stop	Step	Detector	Meas.	IF	
Transducer						
Frequency	Frequency	Width		Time	Bandw.	
150.0 kHz	30.0 MHz	5.0 kHz	MaxPeak	10.0 ms	9 kHz	None
			Average			

Test Report #: EMC_BENQ0-008-06001_FCC22 Date of Report: 2006-04-17

MEASUREMENT RESULT: "test_fin QP"

4/17/2006 11:28AM							
Frequen	су	Level	Transd	Limit	Margin	Line	PE
M	IHz	dBµV	dB	dBµV	dB		
0.1550	00	49.50	0.0	66	16.2	Ν	GND
0.2050	00	53.40	0.0	63	10.0	L1	GND
0.2200	00	49.50	0.0	63	13.3	Ν	GND
0.4050	00	49.50	0.0	58	8.3	Ν	GND
0.4350	00	43.00	0.0	57	14.1	N	GND
0.7200	000	45.30	0.0	56	10.7	Ν	GND

MEASUREMENT RESULT: "test_fin AV"

:28AM					
Level	Transd	Limit	Margin	Line	PE
dBµV	dB	dBµV	dB		
36.90	0.0	48	10.7	N	GND
29.30	0.0	46	16.7	L1	GND
28.70	0.0	46	17.3	L1	GND
	Level dBµV 36.90 29.30	Level Transd dBµV dB 36.90 0.0 29.30 0.0	Level Transd Limit dBµV dB dBµV 36.90 0.0 48 29.30 0.0 46	Level Transd Limit Margin dBµV dB dBµV dB 36.90 0.0 48 10.7 29.30 0.0 46 16.7	Level Transd Limit Margin Line dBµV dB dBµV dB 36.90 0.0 48 10.7 N 29.30 0.0 46 16.7 L1

6 TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

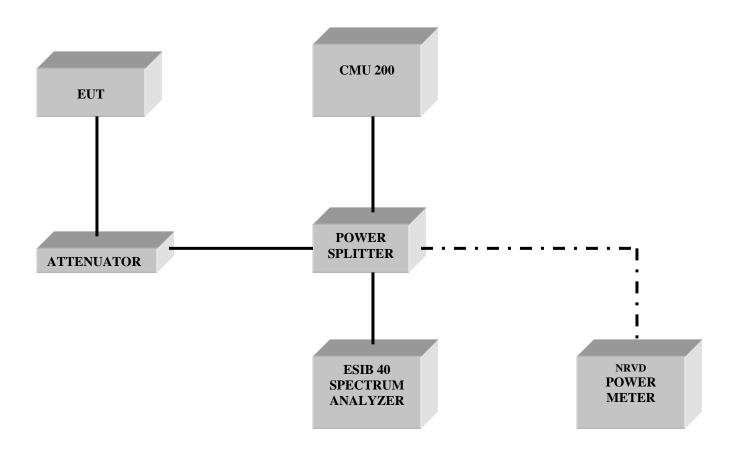
No	Instrument/Ancill	Туре	Manufacturer	Serial No.	Cal Due	Interval
	ary					
01	Spectrum Analyzer	ESIB 40	Rohde & Schwarz	100107	May 2006	1 year
02	Spectrum Analyzer	FSEM 30	Rohde & Schwarz	100017	August 2006	1 year
03	Signal Generator	SMY02	Rohde & Schwarz	836878/01 1	May 2006	1 year
04	Power-Meter	NRVD	Rohde & Schwarz	0857.8008 .02	May 2006	1 year
05	Biconilog Antenna	3141	EMCO	0005-1186	June 2006	1 year
06	Horn Antenna (1- 18GHz)	SAS-200/571	AH Systems	325	June 2006	1 year
07	Horn Antenna (18- 26.5GHz)	3160-09	ЕМСО	1240	June 2006	1 year
08	Power Splitter	11667B	Hewlett Packard	645348	n/a	n/a
09	Climatic Chamber	VT4004	Voltsch	G1115	May 2006	1 year
10	High Pass Filter	5HC2700	Trilithic Inc.	9926013	n/a	n/a
11	High Pass Filter	4HC1600	Trilithic Inc.	9922307	n/a	n/a
12	Pre-Amplifier	JS4- 00102600	Miteq	00616	May 2006	1 year
13	Power Sensor	URV5-Z2	Rohde & Schwarz	DE30807	May 2006	1 year
14	Digital Radio Comm. Tester	CMD-55	Rohde & Schwarz	847958/00 8	May 2006	1 year
15	Universal Radio Comm. Tester	CMU 200	Rohde & Schwarz	832221/06	May 2006	1 year

Page 54 of 57

7 <u>References</u>

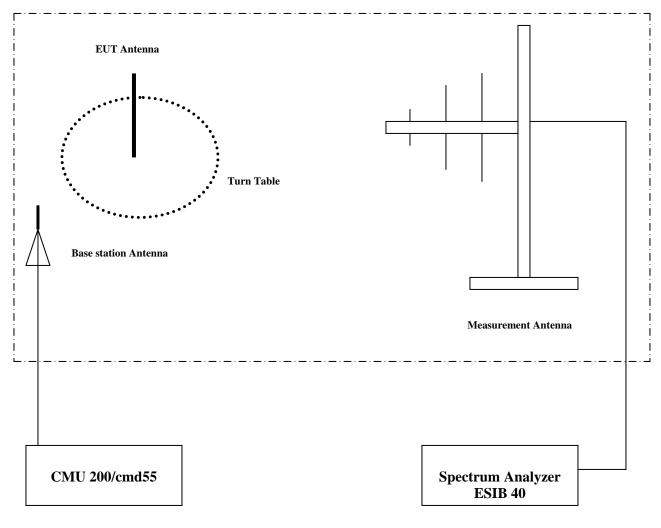
Title 47—Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION, PART 2--FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS October 1, 2001.

FCC Report and order 02-229 September 24, 2002.


Title 47—Telecommunication, CHAPTER I--FEDERAL COMMUNICATIONS COMMISSION, PART 24 PERSONAL COMMUNICATIONS SERVICES October 1, 1998.

ANSI / TIA-603-B-2003 Land Mobile FM or PM Communications Equipment Measurement and Performance Standard November 7, 2002.

Page 56 of 57


8 BLOCK DIAGRAMS Conducted Testing

Page 57 of 57

Radiated Testing

ANECHOIC CHAMBER