

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

TEST REPORT

FCC Part 22H / Part 15 Certification

Classification	:	Licensed Non-Broadcast Station Transmitter (TNB)
Manufacturing Description	:	CDMA 2000 1x WLL TELEPHONE
Manufacturer	:	UBISTAR CO.,LTD.
Model name	:	UX380
Test Device Serial No.:	:	Identification
FCC Rule Part(s)	:	§22(H), §15, §2
TX Frequency Range	:	824.70 ~ 848.31 MHz
RX Frequency Range	:	869.70 ~ 893.31 MHz
Max. RF Output Power	:	0.476W ERP CDMA (26.78dBm)
Max. SAR Measurement	:	0.841W/kg CDMA Body SAR
Emission Designators:	:	1M25F9W
Data of issue	:	November 22, 2005

This test report is issued under the authority of:

The test was supervised by:

Dong – Min JUNG, Technical Manager

Kyung-Taek LEE, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. This report must not be used by the applicant to claim product endorsement by any agency.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION'S	3
2. INFORMATION'S ABOUT TEST ITEM	4
3. TEST REPORT	
3.1 SUMMARY OF TESTS	5
3.2 DESCRIPTION OF TESTS	
3.2.1 EFFECTIVE RADIATED POWER OUTPUT	6
3.2.2 FIELD STRENGTH OF SPURIOUS RADIATION	7
3.2.3 OCCUPIED BANDWIDTH	
3.2.4 SPURIOUS EMISSION AT ANTENNA TERMINAL	9
3.2.4.1 Occupied Bandwidth Emission Limits	10
3.2.4.2 Conducted Spurious Emission	
3.2.5 FREQUENCY STABILITY	
3.2.6 CONDUCTED EMISSION	11
3.2.7 RADIATED EMISSION	13
3.3 TEST DATA	15
3.3.1 EFFECTIVE RADIATED POWER OUTPUT	17
3.3.2 FIELD STRENGTH OF SPURIOUS RADIATION	
3.3.3 FREQUENCY STABILITY	
3.3.4 CONDUCTED EMISSION	
3.3.5 RADIATED EMISSION	
3.4 CNNCLUSION	
3.5 TEST PLOTS	

APPENDIX

APPENDIX 1	TEST EQUIPMENT USED FOR TESTS		
APPENDIX 2	LABEL AND USER'S MANUAL INFORM	IATION	

1. General information's

<u>1-1 Test Performed</u>

Company name	:	LTA Co., Ltd.
Address	:	243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822
Web site	:	http://www.ltalab.com
E-mail	:	chahn@ltalab.com
Telephone	:	+82-31-323-6008
Facsimile		+82-31-323-6010
~ ~ ~ ~ ~ ~ ~		

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2006-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2007-07-13	EMC accredited Lab.
FCC	U.S.A	610755	2008-03-28	FCC filing
VCCI	JAPAN	R2133, C2307	2008-06-22	VCCI registration
IC	CANADA	IC5799	2008-04-23	IC filing

2. Information's about test item

2-1 Client

Company name	:	UBISTAR CO.,LTD.
Address	:	7F, Seongdo Building, 587-23, Sinsa-Dong, Gangnam-Gu,
Country	:	Korea
Telephone	:	+82-2-549-8402
Facsimile	:	+82-2-543-8265

2-2 Equipment Under Test (EUT)

Classification	:	Licensed Non-Broadcast Station Transmitter (TNB)		
Trade name	:	CDMA 2000 1x WLL TELEPHONE		
Model name	:	UX380		
Serial number	:	Identification		
Date of receipt	:	November 08, 2005		
EUT condition	:	Pre-production, not damaged		
Antenna type / Gain	:	Sleeve Dipole Antenna / 2dBi		
TX Frequency Range	:	824.70 ~ 848.31 MHz		
RX Frequency Range	:	869.70 ~ 893.31 MHz		
Frequency Tolerance	:	±0.00025% (2.5ppm)		
Emission Designators	:	1M25F9W		
Voltage and Current				
applied through the final	:	12.0V / 0.997A / 11.964W		
Amplifier				
Power Source	:	AC Adaptor (Normal)		
		Input: 110/220VAC, 50~60Hz / Output:12VDC/1A		
		Internal Battery (Emergency)		
		Li-Ion 2200mA		

2-3 Tested frequency

Frequency (CH)	TX (MHz)
Low (1013)	824.7
Mid (0384)	836.52
High (0777)	848.31

3. Test Report

3.1 Summary of tests

Parameter	Status			
Transmitter Requirements				
Effective Radiated Power Output	С			
Occupied Bandwidth	С			
Field Strength of Spurious Radiation	С			
Spurious Radiation at Antenna Terminal	С			
Frequency Stability	С			
Receiver Requirements				
Conducted Emission	С			
Radiated Emission	С			

<u>Note 1</u> : C=Complies	NC=Not Complies	NT=Not Tested	NA=Not Applicable
Note 2: The data in this	s test report are traceab	le to the national or	international standards.

A sample calculation:

COR. F (correction factor)= Antenna factor + Cable loss- Amp.gain- Distance correction Emission Level= meter reading + COR.F

Emission Designator:

EMISSION Designator = 1M25F9W

Calculation: 2M+2DK

CDMA BW = 1.25MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

(Measured at the 99.75% power bandwidth)

3.2 DESCRIPTION OF TESTS

3.2.1 Effective Radiated Power Output

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. For CDMA signals, an average detector is used, with RBW=VBW=3MHz, SPAN=10MHz. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

3.2.2 Radiation Spurious and Harmonic Emissions

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. The Spectrum was investigated from 30MHz to the 10th Harmonic of the fundamental. A peak detector is used. With RBW=VBW=1MHz. The value that we could measure was only reported. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

3.2.3 Occupied Bandwidth

The 99% power bandwidth was measured with a calibrated spectrum analyzer.

3.2.4 Spurious Emission at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to 10 GHz.

3.2.5 Occupied Bandwidth Emission Limits

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) Db.
- (b) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.

The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

3.2.6 Frequency Stability/Temperature Variation

The frequency stability of the transmitter is measured by:

- a) **Temperature** :The temperature is varied from -30° C to $+60^{\circ}$ C using an environmental chamber.
- b) **Primary Supply Voltage** :The primary supply voltage is varied from 85% to 115% of the voltage Normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification –The minimum frequency stability shall be +/- 0.00025% at any time during normal operation.

Specification — The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025(\pm 2.5 \text{ppm})$ of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (25°C to 27 °C to provide a reference)
- 2. The equipment is subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at -30°C(usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency to the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements is made at 10°C interval up to room temperature. At least a period of one and one half hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency were made at 10 intervals starting at -30° C up to $+60^{\circ}$ C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after applying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

NOTE : The EUT is tested down to the battery endpoint.

3.2.7 Radiated Emission

Final test was performed according to ANSI C63.4-2003 at the open field test site. There are no deviations from the standard.

The EUT was placed in a 0.8m high table along with the peripherals. The turn table was separated from the antenna distance 3meters. Cables were placed in a position to produce maximum emissions as determined by experimentation, and operation mode was selected for maximum.

The frequencies and amplitudes of maximum emission were measured at varying azimuths, antenna heights and antenna polarities. Reported are maximized emission levels.

These tests were performed at 120kHz of 6dB bandwidth.

3.2.8 Conducted Emission

The power line conducted interference measurements were performed according to ANSI C63.4-2003 in a shielded enclosure with peripherals placed on a table, 0.8m high over a metal floor. It was located more than required distance away from the shielded enclosure wall. There are no deviations from the standard.

The EUT was plugged into the LISN and the frequency range of interest scanned.

Reported are maximized emission levels.

These tests were performed at 9kHz of 6dB bandwidth.

<u>3.3 DESCRIPTION OF TESTS</u>

3.3.1 Effective Radiated Power Output

Supply Voltage: AC 120V

Modulation : CDMA

Freq. Tuned	REF. LEVEL	POL	ERP	ERP	Supplied Power
(MHz)	(dBm)	(H/V)	(W)	(dBm)	
824.70	-11.33	V	0.406	26.09	Charger
836.52	-11.01	V	0.476	26.78	Charger
848.31	-12.37	V	0.327	25.15	Charger

Note 1: Battery of this phone is for emergency back up.

Note 2: Radiated measurements at 3 meters by Substitution Method.

3.3.2 Field Strength of spurious Radiation

OPERATING FREQUENCY	:	824.7	MHz
CHANNEL	:	1013(Low)	_
MEASURED OUTPUT POWER	:	<u>26.78</u> dBm =	<u>0.476</u> W
MODULATION	:	CDMA	
DISTANCE	:	<u>3</u> meters	
LIMIT	:	$43 + 10 \log_{10} (W) =$	<u>39.78</u> dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
	ANTENNA	ANTENNA	GENERATOR		
	TERMINALS	GAIN	LEVEL		
(MHz)	(dBm)	(dBd)	(dBm)	(H/V)	(dBc)
1649.4	-44.6	6.3	-38.3	V	65.08
2474.1	-52.3	9.1	-43.2	V	69.98
3298.8	-61.2	9	-52.2	V	78.98
-	_	_	_	-	-

Note1: Radiated measurements at 3 meters by Substitution Method.

3.3.2 Field Strength of spurious Radiation

--- Continue

OPERATING FREQUENCY	:	836.52	_MHz
CHANNEL	:	0384(Mid)	-
MEASURED OUTPUT POWER	:	<u>26.78</u> dBm =	<u>0.476</u> W
MODULATION	:	CDMA	
DISTANCE	:	<u>3</u> meters	
LIMIT	:	$43 + 10 \log_{10} (W) =$	<u>39.78</u> dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
	ANTENNA	ANTENNA	GENERATOR		
	TERMINALS	GAIN	LEVEL		
(MHz)	(dBm)	(dBd)	(dBm)	(H/V)	(dBc)
1673.04	-45.4	6.3	-39.1	V	65.88
2509.56	-55.9	9.1	-46.8	V	73.58
3346.08	-59.4	9	-50.4	V	77.18
-	-	_	_	-	-

Note1: Radiated measurements at 3 meters by Substitution Method.

3.3.2 Field Strength of spurious Radiation

--- Continue

OPERATING FREQUENCY	:	848.31	_MHz
CHANNEL	:	0777(Mid)	-
MEASURED OUTPUT POWER	:	<u>26.78</u> dBm =	<u>0.476</u> W
MODULATION	:	CDMA	
DISTANCE	:	<u>3</u> meters	
LIMIT	:	$43 + 10 \log_{10} (W) =$	<u>39.78</u> dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
	ANTENNA	ANTENNA	GENERATOR		
	TERMINALS	GAIN	LEVEL		
(MHz)	(dBm)	(dBd)	(dBm)	(H/V)	(dBc)
1696.62	-47.3	6.3	-41	V	67.78
2544.93	-50.8	9.1	-41.7	V	68.48
3393.24	-54.9	9	-45.9	V	72.68
_	-	_	_	-	-

Note1: Radiated measurements at 3 meters by Substitution Method.

3.3.3 Frequency Stability

OPERATING FREQUENCY	:		836,520,04	13	Hz
CHANNEL	:		0384(Mid)		
REFERENCE VOLTAGE	:		120		VAC
DEVIATION LIMIT	:	± 0.00025	% or	2.5	ppm

VOLTAGE	POWER	TEMP FREQ		Deviation
(%)	(VAC)	(dB)	(Hz)	(%)
100%	120	+20(Ref)	836,520,043	0.000000
100%		-30	836,520,054	-0.000001
100%		-20	836,520,056	-0.000002
100%		-10	836,520,054	0.000001
100%		0	836,520,056	-0.000002
100%		+10	836,520,031	0.000001
100%		+20	+20 836,520,043 0.00	
100%		+25 836,520,033 0.		0.000001
100%		+30 836,520,031 0.		0.000001
100%		+40	836,520,073	-0.000004
100%		+50	836,520,087	-0.000005
100%		+60	836,519,927	0.000014
85%	102	+20	836,520,030	0.000002
115%	138	+20	836,520,043	0.000000
BATT.ENDPOINT	_	-	_	_

3.3.4 Conducted Emission

(SEE THE TEST PLOTS)

3.3.5 Radiated Emission

Distance: 3m

- *Note 1.* There is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit for the frequency being investigated.
- *Note 2* Measurements above 1GHz is performed using a minimum resolution bandwidth of 1MHz. The EUT was tested up to the 10GHz and no significant emission was found.

3.4 CONCLUSION

The data collected shows that the UBISTAR Fixed WLL Phone.

FCC ID: RFLUX380 complies with all the requirements of Parts 2, 15, 22 of the FCC Rules.

3.5 TEST PLOTS

Power Out

Band Edge

Occupied Bandwidth

#VBW 100 kHz

STOP 894.00 MHz SWP 20.0 msec

RL

START 869.00 MHz #RES BW 100 kHz

APPENDIX 1

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Cal. Date
1	Spectrum Analyzer	8594E	3649A03649	НР	Dec-05
2	Signal Generater	8657A	3430U02049	HP	Dec-05
3	Attenuator (3dB)	8491A	37822	HP	Dec-05
4	Attenuator (3dB)	8491A	28881	HP	Dec-05
5	EMI Test Receiver	ESVD	843748/001	R&S	Dec-05
6	LISN	KNW-407	8-1430-1	Kyoritsu	Dec-05
7	Two-Line V-Network	ESH3-Z5	893045/017	R&S	Jan-06
8	RF Amplifier	8447D	2949A02670	НР	Jan-06
9	RF Amplifier	8447D	2439A09058	HP	Jan-06
10	RF Amplifier	8449B	3008A02126	HP	Jun-07
11	Test Receiver	ESH3	894718/017	R&S	Jan-06
12	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	Feb-06
13	LogPer. Antenna	VULP 9118	9118 A 401	SCHWARZBECK	Feb-06
14	Biconical Antenna	BBA 9106	VHA 9103-2315	SCHWARZBECK	Feb-06
15	Horn Antenna	3115	00055005	ETS LINDGREN	Jun-07
16	Horn Antenna	BBHA 9120D	0499	Schwarzbeck	Jun-07
17	Dipole Antenna	VHA9103	2116	Schwarzbeck	Oct-06
18	Dipole Antenna	VHA9103	2117	Schwarzbeck	Oct-06
19	Dipole Antenna	UHA9105	2261	Schwarzbeck	Oct-06
20	Dipole Antenna	UHA9105	2262	Schwarzbeck	Oct-06
21	Spectrum Analyzer	8591E	3649A05888	HP	Feb-06
22	Spectrum Analyzer	R3272	82420423	ADVANTEST	Feb-06
23	Hygro-Thermograph	THB-36	0041557-01	ISUZU	Feb-06
24	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	Jun-06
25	RF Switch	MP59B	6200414971	ANRITSU	Jun-06
26	RF Switch	MP59B	6200438565	ANRITSU	Jun-06
27	Power Divider	11636A	6243	HP	Apr-06
28	DC Power Supply	6622A	3448A03079	HP	Apr-06
29	Attenuator (30dB)	11636A	6243	HP	Apr-06
30	Attenuator (10dB)	8491A	63196	HP	Apr-06
31	Power Meter	EPM-441A	GB32481702	HP	Apr-06
32	Power Sensor	8481A	2702A64048	HP	Apr-06
33	Audio Analyzer	8903B	3729A18901	HP	May-06
34	Modulation Analyzer	8901B	3749A05878	НР	May-06
35	TEMP & HUMIDITY Chamber	YJ-500	L05022	JinYoung Tech	-

APPENDIX 2

Label and User's Manual Information

Certification Labeling Requirements

§ 15.19 Labeling requirements.

(a) In addition to the requirements in part 2 of this chapter, a device subject to **certification**, or **verification** shall be labeled as follows:

(1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under part 73 of this chapter, land mobile operation under part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

(4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.

(5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

User's Manual Information

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B - Unintentional Radiators: **§ 15.105** Information to the user.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

--Reorient or relocate the receiving antenna.

- --Increase the separation between the equipment and receiver.
- --Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- --Consult the dealer or an experienced radio/TV technician for help.