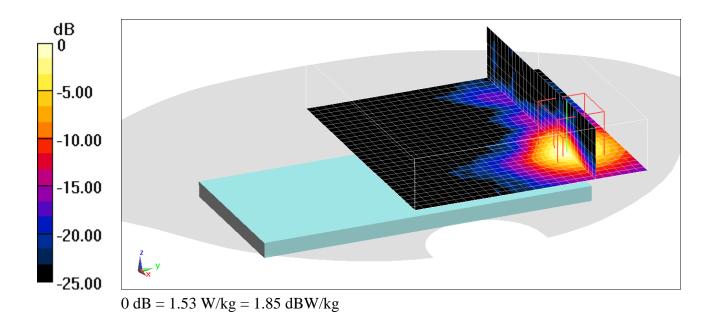
DUT: ZNFL455DL; Type: Portable Handset; Serial: 00293


Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body; Medium parameters used: f = 5180 MHz; $\sigma = 5.37$ S/m; $\varepsilon_r = 47.354$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

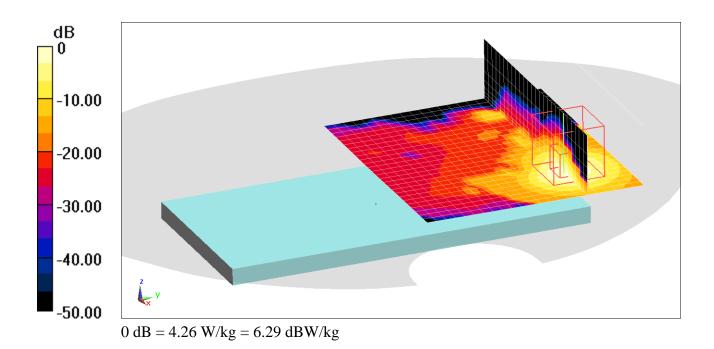
Test Date: 12-01-2019; Ambient Temp: 22.9°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5180 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11a, UNII-1, 20 MHz Bandwidth, Body SAR, Ch 36, 6 Mbps, Back Side

Zoom Scan (31x28x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 0.6120 V/m; Power Drift = 0.063 dB Peak SAR (extrapolated) = 0.02 W/kg SAR(1 g) = 0.681 W/kg

DUT: ZNFL455DL; Type: Portable Handset; Serial: 00293


Mode: IEEE 802.11a, UNII-2A, 20 MHz Bandwidth, Body SAR, Ch 56, 6 Mbps, Back Side, Scaling Factor: 1.062

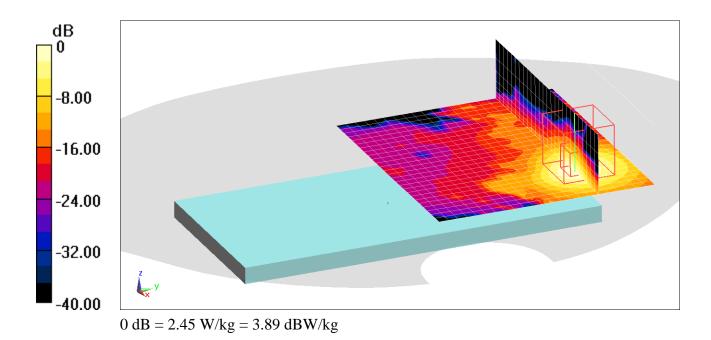
Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5280 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body; Medium parameters used: f = 5280 MHz; $\sigma = 5.503$ S/m; $\varepsilon_r = 47.181$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Mode: Bluetooth, Body SAR, Ch 78, 1 Mbps, Back Side, Scaling Factor: 1.448

Communication System: UID 0, Bluetooth; Frequency: 2480 MHz; Duty Cycle: 1.302 Medium: 2450 Body; Medium parameters used (interpolated): f = 2480 MHz; $\sigma = 2.08$ S/m; $\epsilon r = 51.18$; $\rho = 1000$ kg/m3 Phantom section: Flat Section; Space: 1.0 cm

Multi Band Result: SAR (1 g) = 1.19 W/kg

DUT: ZNFL455DL; Type: Portable Handset; Serial: 00293


Mode: IEEE 802.11a, UNII-1, 20 MHz Bandwidth, Body SAR, Ch 36, 6 Mbps, Back Side, Scaling Factor: 1.036

Communication System: UID 0, 802.11a 5.2-5.8 GHz Band; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body; Medium parameters used: f = 5180 MHz; $\sigma = 5.503$ S/m; $\varepsilon_r = 47.181$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

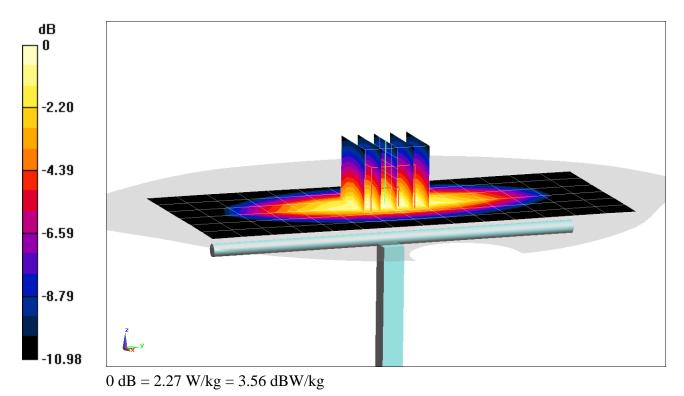
Mode: Bluetooth, Body SAR, Ch 78, 1 Mbps, Back Side, Scaling Factor: 1.448

Communication System: UID 0, Bluetooth; Frequency: 2480 MHz; Duty Cycle: 1.302 Medium: 2450 Body; Medium parameters used (interpolated): f = 2480 MHz; $\sigma = 2.08$ S/m; $\epsilon r = 51.18$; $\rho = 1000$ kg/m3 Phantom section: Flat Section; Space: 1.0 cm

Multi Band Result: SAR (1 g) = 0.737 W/kg

APPENDIX B: SAR DIPOLE VERIFICATION PLOTS

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1003


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 750 Head Medium parameters used:} \\ \mbox{f} = 750 \mbox{ MHz; } \sigma = 0.896 \mbox{ S/m; } \epsilon_r = 41.721; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 11-20-2019; Ambient Temp: 21.8°C; Tissue Temp: 21.5°C

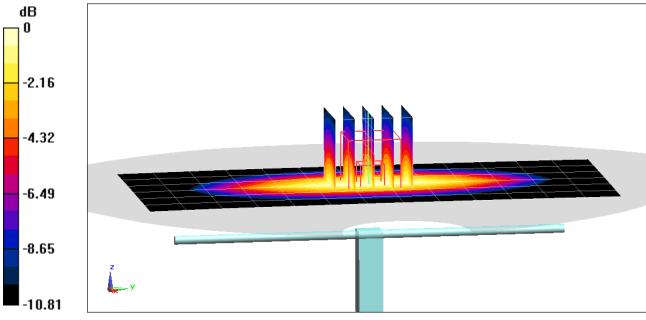
Probe: EX3DV4 - SN7409; ConvF(9.96, 9.96, 9.96) @ 750 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.66 W/kg SAR(1 g) = 1.64 W/kg Deviation(1 g) = -0.97%

B1

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head; Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.899 \mbox{ S/m; } \epsilon_r = 40.431; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 11-11-2019; Ambient Temp: 20.5°C; Tissue Temp: 20.5°C

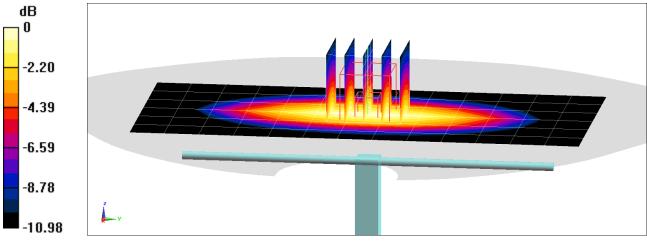
Probe: EX3DV4 - SN7551; ConvF(9.88, 9.88, 9.88) @ 835 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.97 W/kg SAR(1 g) = 1.96 W/kg; Deviation(1 g) = 4.03%

0 dB = 2.63 W/kg = 4.20 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.918 \mbox{ S/m; } \epsilon_r = 41.382; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 11-14-2019; Ambient Temp: 22.1°C; Tissue Temp: 21.3°C

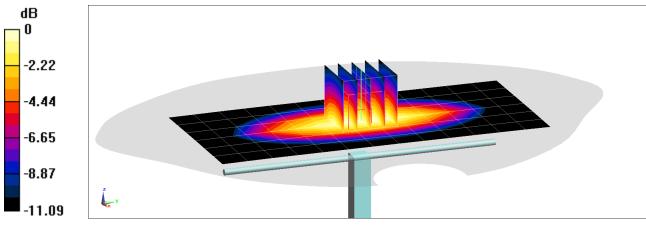
Probe: EX3DV4 - SN7417; ConvF(10.07, 10.07, 10.07) @ 835 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.88 W/kg SAR(1 g) = 1.88 W/kg Deviation(1 g) = -1.98%

0 dB = 2.54 W/kg = 4.05 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Head; Medium parameters used:} \\ \mbox{f} = 835 \mbox{ MHz; } \sigma = 0.915 \mbox{ S/m; } \epsilon_r = 40.751; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 11-20-2019; Ambient Temp: 24.3°C; Tissue Temp: 21.8°C

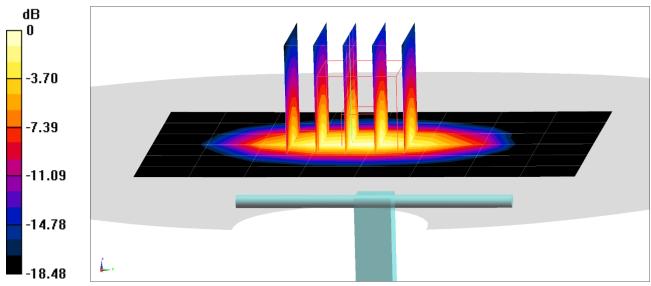
Probe: EX3DV4 - SN7551; ConvF(9.88, 9.88, 9.88) @ 835 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.07 W/kg SAR(1 g) = 2 W/kg Deviation(1 g) = 6.16%

0 dB = 2.70 W/kg = 4.31 dBW/kg

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: f = 1750 MHz; $\sigma = 1.401$ S/m; $\epsilon_r = 41.488$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-04-2019; Ambient Temp: 22.0°C; Tissue Temp: 21.3°C

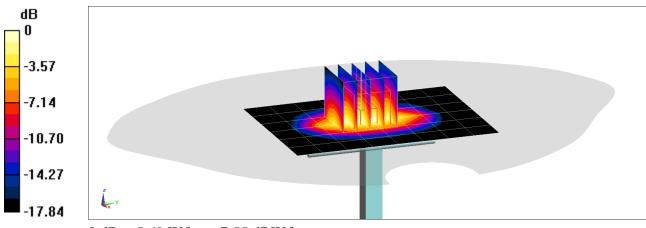
Probe: EX3DV4 - SN3914; ConvF(8.16, 8.16, 8.16) @ 1750 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: Twin-SAM V5.0 Front 30; Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.41 W/kg SAR(1 g) = 3.9 W/kg Deviation(1 g) = 7.73%

0 dB = 6.08 W/kg = 7.84 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1150


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used: f = 1750 MHz; $\sigma = 1.341$ S/m; $\epsilon_r = 38.987$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-20-2019; Ambient Temp: 24.3°C; Tissue Temp: 21.8°C

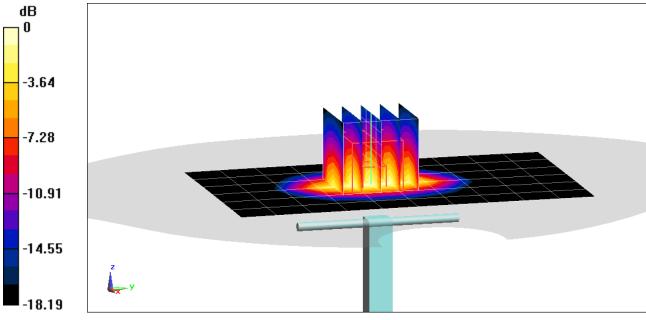
Probe: EX3DV4 - SN7551; ConvF(8.34, 8.34, 8.34) @ 1750 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.89 W/kg SAR(1 g) = 3.67 W/kg Deviation(1 g) = 0.55%

0 dB = 5.69 W/kg = 7.55 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: f = 1900 MHz; $\sigma = 1.441$ S/m; $\epsilon_r = 40.308$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-13-2019; Ambient Temp: 22.0°C; Tissue Temp: 20.6°C

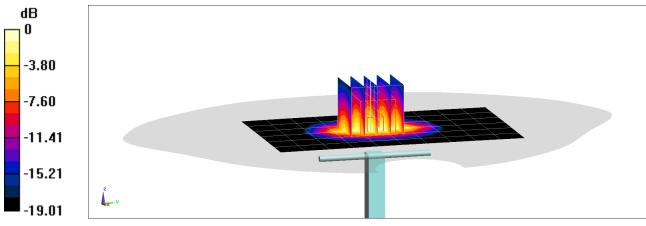
Probe: EX3DV4 - SN7551; ConvF(8.05, 8.05, 8.05) @ 1900 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.94 W/kg SAR(1 g) = 4.17 W/kg Deviation(1 g) = 6.65%

0 dB = 6.61 W/kg = 8.20 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: f = 1900 MHz; $\sigma = 1.446$ S/m; $\epsilon_r = 39.709$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-18-2019; Ambient Temp: 22.8°C; Tissue Temp: 21.5°C

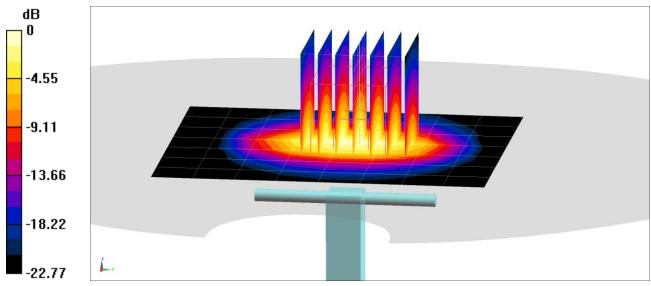
Probe: EX3DV4 - SN7551; ConvF(8.05, 8.05, 8.05) @ 1900 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0 (30deg probe tilt); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 8.21 W/kg SAR(1 g) = 4.25 W/kg Deviation(1 g) = 6.78%

0 dB = 6.75 W/kg = 8.29 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.866$ S/m; $\epsilon_r = 38.982$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-11-2019; Ambient Temp: 21.3°C; Tissue Temp: 19.2°C

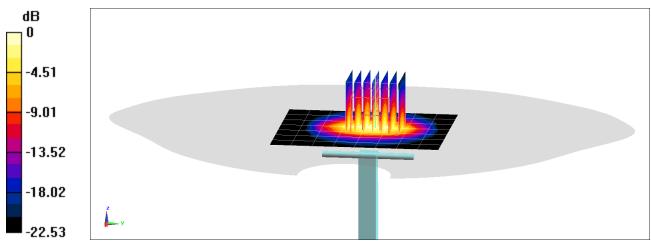
Probe: EX3DV4 - SN7417; ConvF(7.46, 7.46, 7.46) @ 2450 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.0 W/kg SAR(1 g) = 5.29 W/kg Deviation(1 g) = 1.15%

0 dB = 8.78 W/kg = 9.43 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.824$ S/m; $\epsilon_r = 37.768$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-18-2019; Ambient Temp: 21.4°C; Tissue Temp: 21.2°C

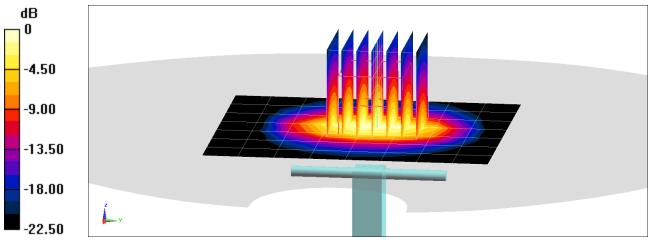
Probe: EX3DV4 - SN7417; ConvF(7.46, 7.46, 7.46) @ 2450 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.3 W/kg Deviation(1 g) = 1.34%

0 dB = 8.93 W/kg = 9.51 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.856$ S/m; $\epsilon_r = 37.417$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-21-2019; Ambient Temp: 21.6°C; Tissue Temp: 23.7°C

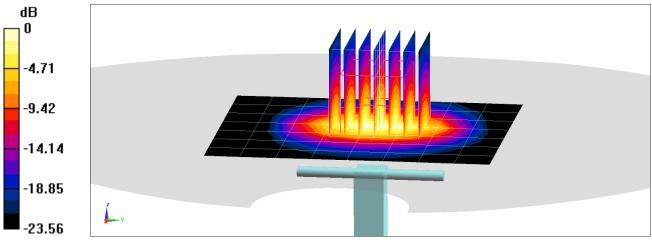
Probe: EX3DV4 - SN7417; ConvF(7.46, 7.46, 7.46) @ 2450 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.8 W/kg SAR(1 g) = 5.22 W/kg Deviation(1 g) = -0.19%

0 dB = 8.76 W/kg = 9.43 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2600 \text{ MHz}; \sigma = 1.941 \text{ S/m}; \epsilon_r = 37.536; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-18-2019; Ambient Temp: 21.4°C; Tissue Temp: 21.2°C

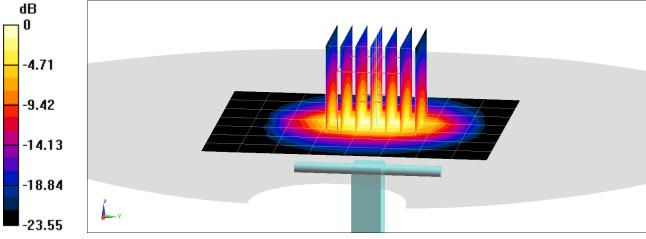
Probe: EX3DV4 - SN7417; ConvF(7.17, 7.17, 7.17) @ 2600 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.7 W/kg SAR(1 g) = 5.88 W/kg Deviation(1 g) = 1.20%

0 dB = 10.1 W/kg = 10.04 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2600 \text{ MHz}; \sigma = 1.973 \text{ S/m}; \epsilon_r = 37.168; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-21-2019; Ambient Temp: 21.6°C; Tissue Temp: 23.7°C

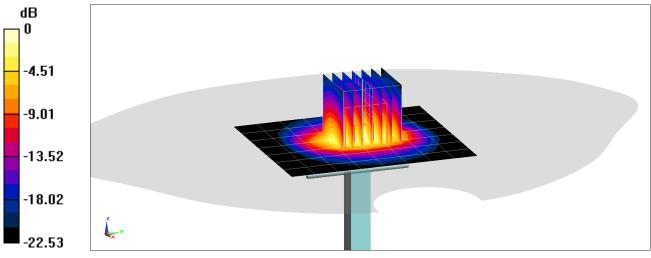
Probe: EX3DV4 - SN7417; ConvF(7.17, 7.17, 7.17) @ 2600 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.6 W/kg SAR(1 g) = 5.84 W/kg Deviation(1 g) = 0.52%

0 dB = 10.0 W/kg = 10.00 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: f = 2450 MHz; $\sigma = 1.854$ S/m; $\epsilon_r = 39.003$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-05-2019; Ambient Temp: 22.7°C; Tissue Temp: 20.8°C

Probe: EX3DV4 - SN7417; ConvF(7.46, 7.46, 7.46) @ 2450 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019 Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

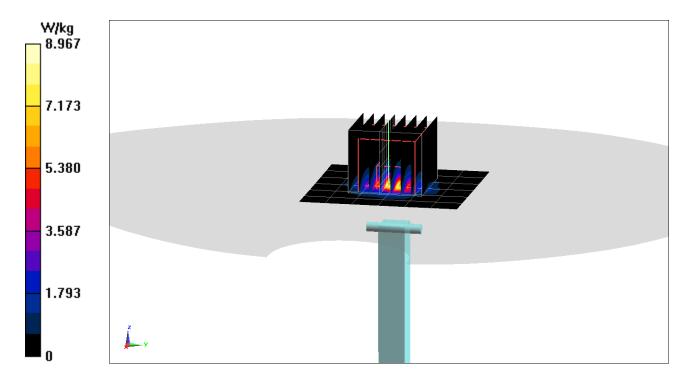
2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.9 W/kg SAR(1 g) = 5.29 W/kg Deviation(1 g) = 1.15%

0 dB = 8.84 W/kg = 9.46 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head Medium parameters used: f = 5250 MHz; $\sigma = 4.726$ S/m; $\varepsilon_r = 35.896$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 11-10-2019; Ambient Temp: 21.0°C; Tissue Temp: 20.1°C

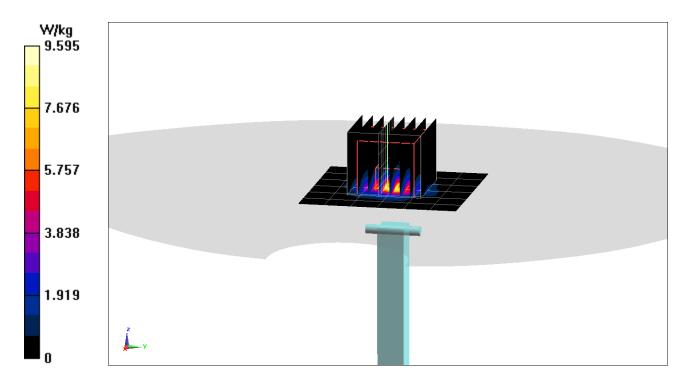
Probe: EX3DV4 - SN7406; ConvF(5.54, 5.54, 5.54) @ 5250 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/8/2019 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 15.5 W/kg SAR(1 g) = 3.86 W/kg

Deviation(1 g) = -5.04%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head Medium parameters used: f = 5600 MHz; $\sigma = 5.133$ S/m; $\varepsilon_r = 35.238$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-10-2019; Ambient Temp: 21.0°C; Tissue Temp: 20.1°C

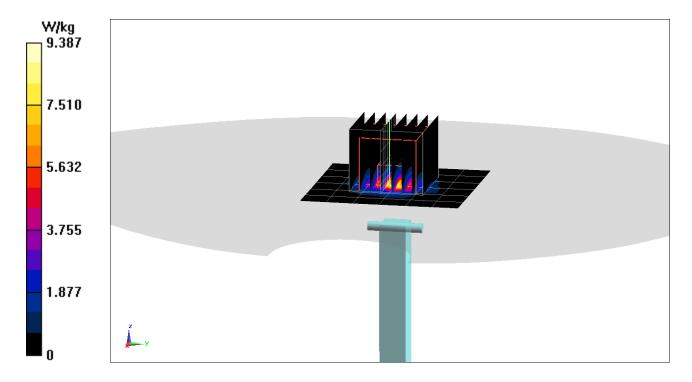
Probe: EX3DV4 - SN7406; ConvF(4.94, 4.94, 4.94) @ 5600 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/8/2019 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.7 W/kg SAR(1 g) = 4.02 W/kg Deviation(1 g) = -6.18%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head Medium parameters used: f = 5750 MHz; $\sigma = 5.309$ S/m; $\varepsilon_r = 34.961$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 11-10-2019; Ambient Temp: 21.0°C; Tissue Temp: 20.1°C

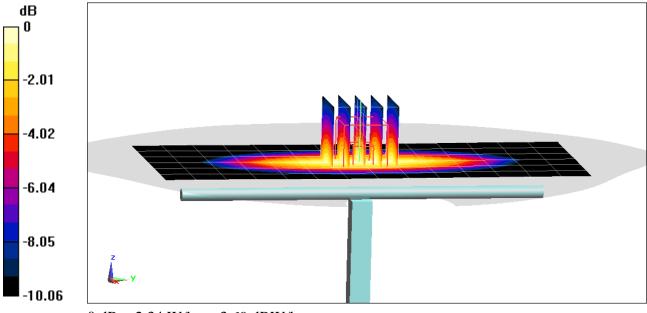
Probe: EX3DV4 - SN7406; ConvF(5.23, 5.23, 5.23) @ 5750 MHz; Calibrated: 5/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 5/8/2019 Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 3.83 W/kg

Deviation(1 g) = -4.96%

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 700 Body Medium parameters used:} \\ \mbox{f} = 750 \mbox{ MHz; } \sigma = 0.977 \mbox{ S/m; } \epsilon_r = 57.111; \mbox{ρ} = 1000 \mbox{ kg/m}^3 \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 11-06-2019; Ambient Temp: 22.2°C; Tissue Temp: 23.5°C

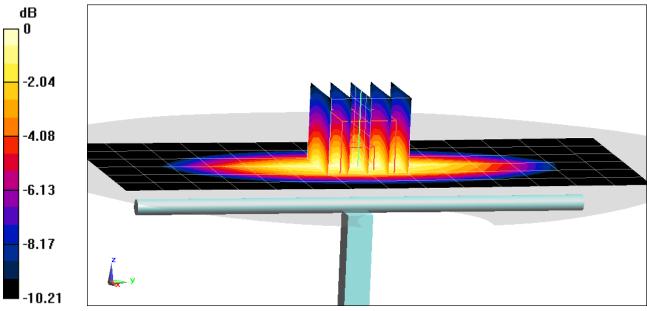
Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 750 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 2.62 W/kg SAR(1 g) = 1.77 W/kg Deviation(1 g) = 4.98%

0 dB = 2.34 W/kg = 3.69 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 700 Body Medium parameters used:} \\ f = 750 \mbox{ MHz; } \sigma = 0.99 \mbox{ S/m; } \epsilon_r = 57.195; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 11-12-2019; Ambient Temp: 22.6°C; Tissue Temp: 24.4°C

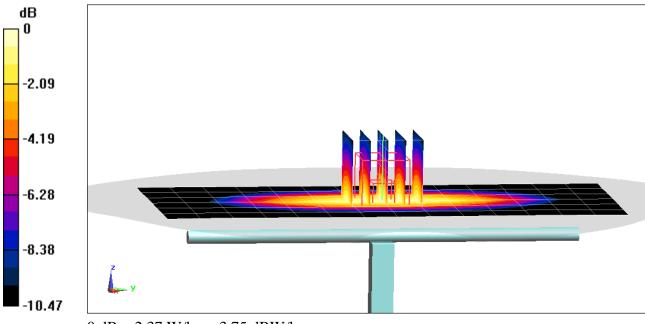
Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 750 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.71 W/kg SAR(1 g) = 1.82 W/kg Deviation(1 g) = 7.95%

0 dB = 2.42 W/kg = 3.84 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161


Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 700 Body Medium parameters used: f = 750 MHz; $\sigma = 0.972$ S/m; $\varepsilon_r = 53.864$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 12-10-2019; Ambient Temp:24.6°C; Tissue Temp: 21.9°C

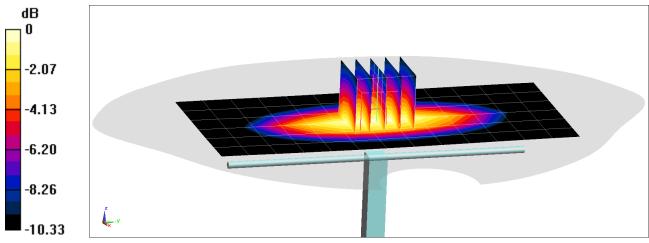
Probe: EX3DV4 - SN7410; ConvF(10.01, 10.01, 10.01) @ 750 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0 (left 20); Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 2.67 W/kg SAR(1 g) = 1.77 W/kg Deviation(1 g) = 4.98%

0 dB = 2.37 W/kg = 3.75 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132


 $\begin{array}{l} \mbox{Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 \\ \mbox{Medium: 835 Body; Medium parameters used:} \\ f = 835 \mbox{MHz; } \sigma = 0.978 \mbox{ S/m; } \epsilon_r = 55.48; \mbox{$\rho = 1000 \mbox{ kg/m}^3$} \\ \mbox{Phantom section: Flat Section; Space: 1.5 cm} \end{array}$

Test Date: 11-11-2019; Ambient Temp: 21.2°C; Tissue Temp: 20.4°C

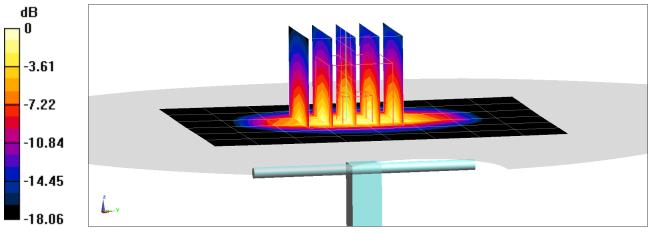
Probe: EX3DV4 - SN7357; ConvF(9.95, 9.95, 9.95) @ 835 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Twin-SAM V4.0 (30); Type: QD 000 P40 CC; Serial: 1167 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 3.12 W/kg SAR(1 g) = 2.08 W/kg Deviation(1 g) = 7.55%

0 dB = 2.76 W/kg = 4.41 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: f = 1750 MHz; $\sigma = 1.484$ S/m; $\epsilon_r = 52.283$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-06-2019; Ambient Temp: 22.3°C; Tissue Temp: 20.8°C

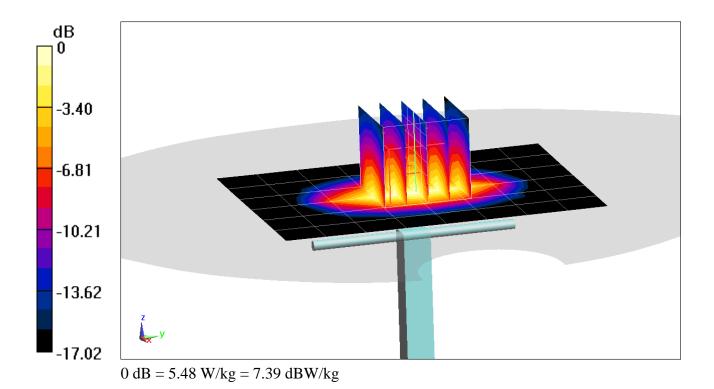
Probe: EX3DV4 - SN7409; ConvF(7.85, 7.85, 7.85) @ 1750 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.73 W/kg SAR(1 g) = 4.02 W/kg Deviation(1 g) = 6.63%

0 dB = 6.30 W/kg = 7.99 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: f = 1750 MHz; $\sigma = 1.492$ S/m; $\varepsilon_r = 52.924$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

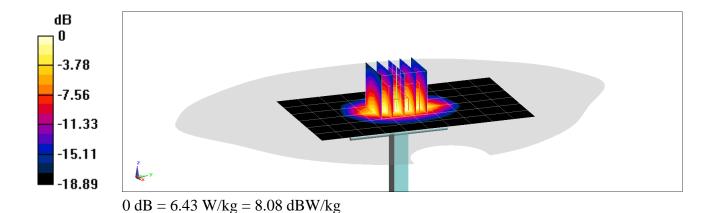
Test Date: 11-20-2019; Ambient Temp: 20.6°C; Tissue Temp: 20.0°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1750 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.58 W/kg SAR(1 g) = 3.55 W/kg Deviation(1 g) = -5.84%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: f = 1900 MHz; $\sigma = 1.556$ S/m; $\epsilon_r = 52.221$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

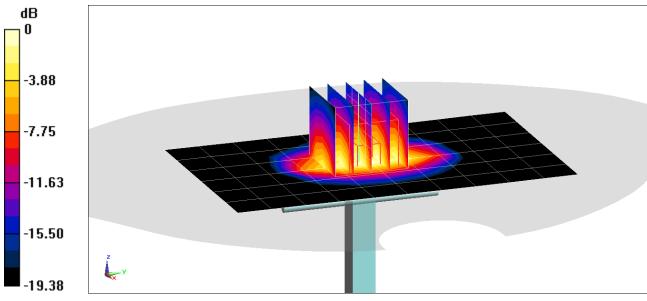
Test Date: 11-04-2019; Ambient Temp: 22.3°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7488; ConvF(8.37, 8.37, 8.37) @ 1900 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.70 W/kg SAR(1 g) = 4.19 W/kg Deviation(1 g) = 7.16%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \sigma = 1.575 \text{ S/m}; \epsilon_r = 51.741; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-13-2019; Ambient Temp: 22.7°C; Tissue Temp: 22.3°C

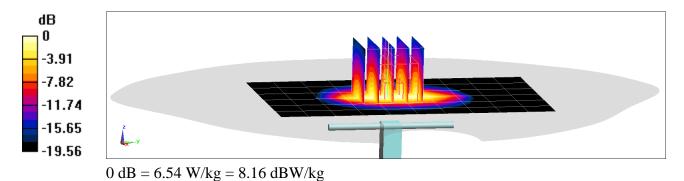
Probe: EX3DV4 - SN7488; ConvF(8.37, 8.37, 8.37) @ 1900 MHz; Calibrated: 1/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/15/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1800 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.79 W/kg SAR(1 g) = 4.1 W/kg; SAR(10 g) = 2.08 W/kg Deviation(1 g) = 4.06%; Deviation(10 g) = 0.48%

0 dB = 6.42 W/kg = 8.08 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.576$ S/m; $\epsilon_r = 51.663$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

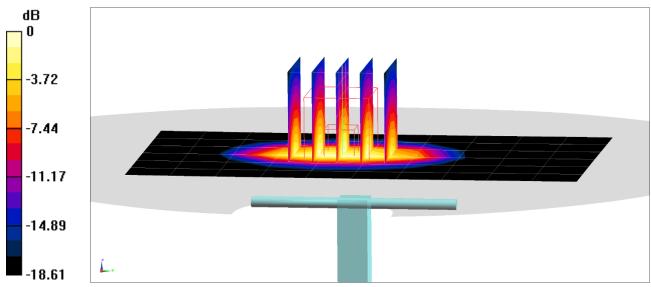
Test Date: 11-13-2019; Ambient Temp: 22.4°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN3914; ConvF(7.6, 7.6, 7.6) @ 1900 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: Twin-SAM V5.0 Left 30; Type: QD 000 P40 CD; Serial: 1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 8.02 W/kg SAR(1 g) = 4.23 W/kg Deviation(1 g) = 7.36%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149


Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: f = 1900 MHz; $\sigma = 1.564$ S/m; $\epsilon_r = 51.052$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-18-2019; Ambient Temp: 22.4°C; Tissue Temp: 21.3°C

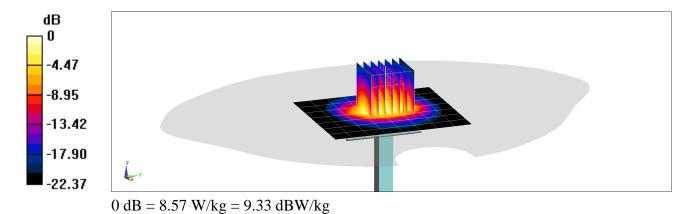
Probe: EX3DV4 - SN3914; ConvF(7.6, 7.6, 7.6) @ 1900 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019 Phantom: Twin-SAM V5.0 Front 30; Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.98 W/kg SAR(1 g) = 4.24 W/kg; SAR(10 g) = 2.18 W/kg Deviation(1 g) = 7.61%; Deviation(10 g) = 5.31%

0 dB = 6.39 W/kg = 8.06 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: f = 2450 MHz; $\sigma = 2.047$ S/m; $\varepsilon_r = 52.353$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-04-2019; Ambient Temp: 22.5°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2450 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.7 W/kg SAR(1 g) = 5.15 W/kg Deviation(1 g) = 0.78%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ S/m; $\epsilon_r = 52.022$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

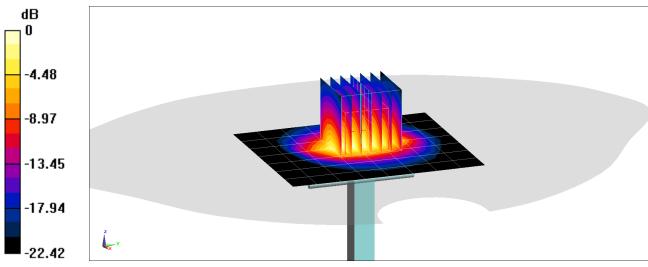
Test Date: 11-14-2019; Ambient Temp: 22.3°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2450 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.8 W/kg SAR(1 g) = 5.16 W/kg Deviation(1 g) = 0.98%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: f = 2450 MHz; $\sigma = 2.046$ S/m; $\varepsilon_r = 52.262$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-18-2019; Ambient Temp: 22.3°C; Tissue Temp: 21.8°C

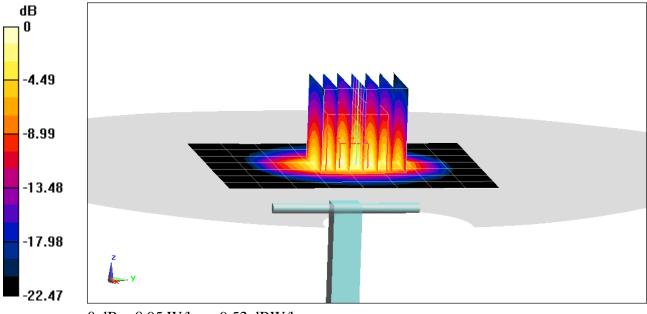
Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2450 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.7 W/kg SAR(1 g) = 5.11 W/kg; SAR(10 g) = 2.34 W/kg Deviation(1 g) = 0.00%; Deviation(10 g) = -3.31%

0 dB = 8.57 W/kg = 9.33 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.006$ S/m; $\varepsilon_r = 52.405$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-18-2019; Ambient Temp: 23.0°C; Tissue Temp: 21.0°C

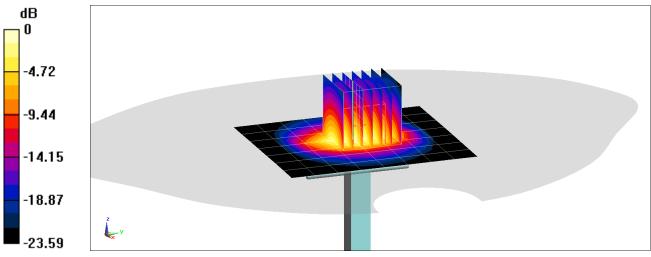
Probe: EX3DV4 - SN7410; ConvF(7.44, 7.44, 7.44) @ 2450 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.41 W/kg Deviation(1 g) = 6.50%

0 dB = 8.95 W/kg = 9.52 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: f = 2450 MHz; $\sigma = 2.037$ S/m; $\epsilon_r = 51.308$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 12-03-2019; Ambient Temp: 23.1°C; Tissue Temp: 21.9°C

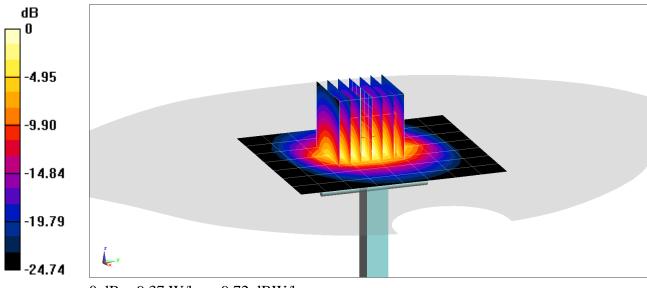
Probe: EX3DV4 - SN7308; ConvF(7.46, 7.46, 7.46) @ 2450 MHz; Calibrated: 8/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/14/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.5 W/kg SAR(1 g) = 5.43 W/kg Deviation(1 g) = 6.68%

0 dB = 9.15 W/kg = 9.61 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: f = 2600 MHz; $\sigma = 2.22$ S/m; $\varepsilon_r = 51.611$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-14-2019; Ambient Temp: 22.3°C; Tissue Temp: 22.0°C

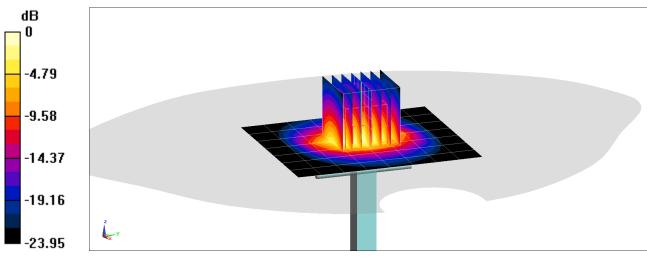
Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2600 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.0 W/kg SAR(1 g) = 5.43 W/kg Deviation(1 g) = -0.91%

0 dB = 9.37 W/kg = 9.72 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2600 \text{ MHz}; \sigma = 2.225 \text{ S/m}; \epsilon_r = 51.83; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-18-2019; Ambient Temp: 22.3°C; Tissue Temp: 21.8°C

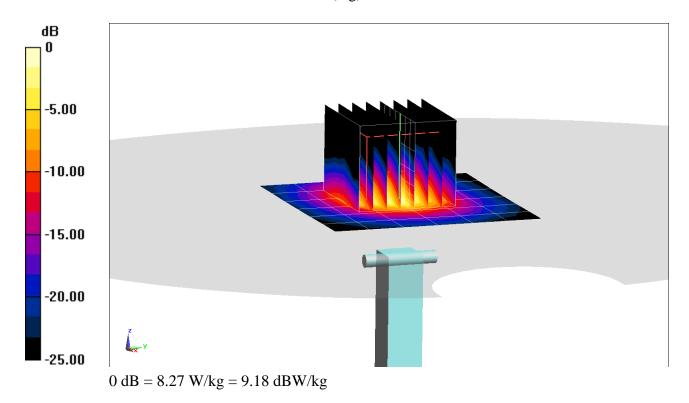
Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2600 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.1 W/kg SAR(1 g) = 5.49 W/kg; SAR(10 g) = 2.42 W/kg Deviation(1 g) = 0.18%; Deviation(10 g) = -2.02%

0 dB = 9.51 W/kg = 9.78 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5250 MHz; $\sigma = 5.281$ S/m; $\epsilon_r = 48.029$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

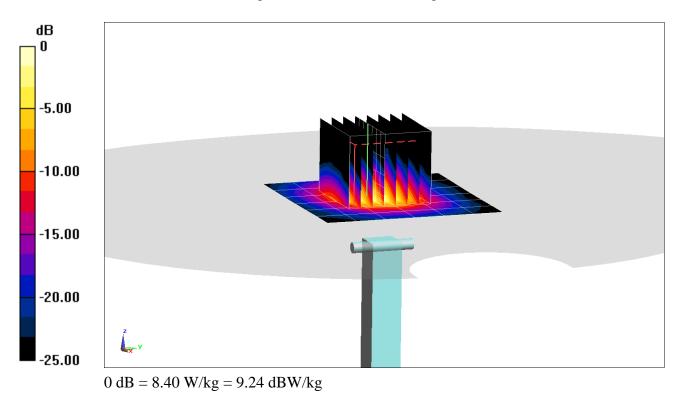
Test Date: 11-12-2019; Ambient Temp: 22.7°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5250 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 14.9 W/kg SAR(1 g) = 3.52 W/kg Deviation(1 g) = -6.88%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5250 MHz; $\sigma = 5.472$ S/m; $\varepsilon_r = 48.395$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

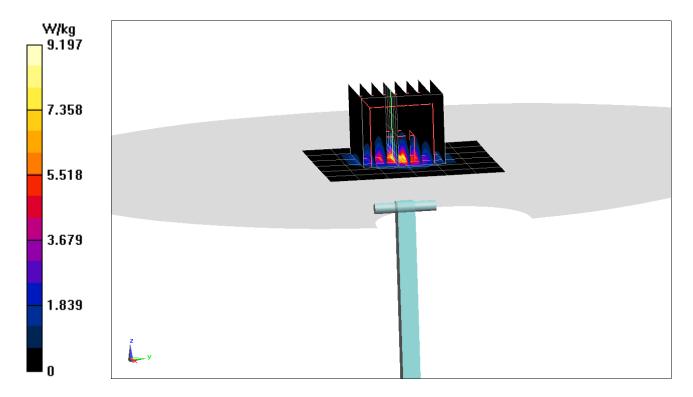
Test Date: 11-26-2019; Ambient Temp: 23.5°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5250 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 14.4 W/kg SAR(1 g) = 3.51 W/kg; SAR(10 g) = 0.979 W/kg Deviation(1 g) = -7.14%; Deviation(10 g) = -7.64%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191


Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used (interpolated): f = 5250 MHz; $\sigma = 5.459$ S/m; $\varepsilon_r = 47.207$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

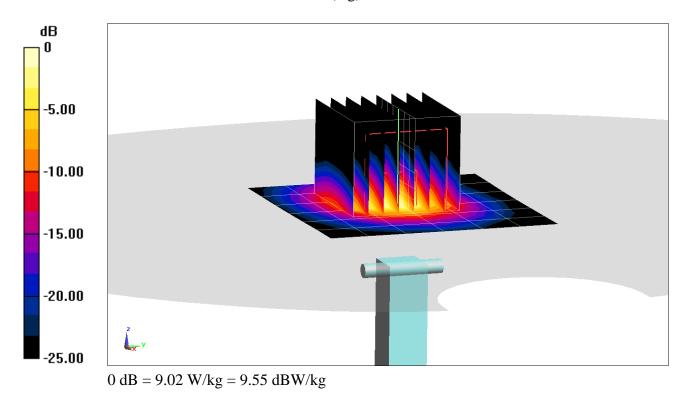
Test Date: 12-01-2019; Ambient Temp: 22.9°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5250 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 23.64 V/m; Power Drift = 0.51 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 3.84 W/kg Deviation(1 g) = -0.26%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5600 MHz; $\sigma = 5.741$ S/m; $\epsilon_r = 47.578$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-12-2019; Ambient Temp: 22.7°C; Tissue Temp: 21.9°C

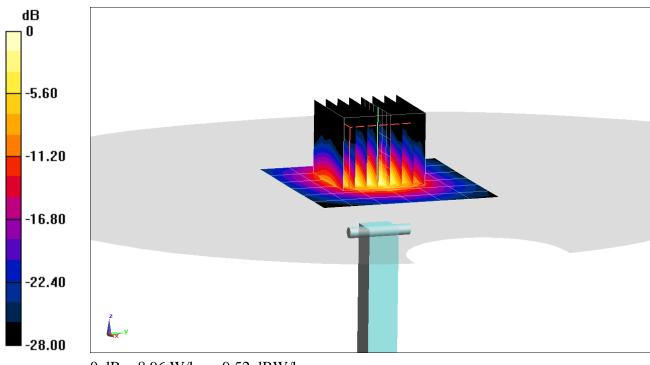
Probe: EX3DV4 - SN7409; ConvF(4.22, 4.22, 4.22) @ 5600 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 3.68 W/kg Deviation(1 g) = -6.24%

B38

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: $|f = 5600 \text{ MHz}; \sigma = 5.939 \text{ S/m}; \epsilon_r = 47.82; \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-26-2019; Ambient Temp: 23.5°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7409; ConvF(4.22, 4.22, 4.22) @ 5600 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 3.78 W/kg; SAR(10 g) = 1.05 W/kg Deviation(1 g) = -3.69%; Deviation(10 g) = -4.55%

 $0 \ dB = 8.96 \ W/kg = 9.52 \ dBW/kg$

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5750 MHz; $\sigma = 5.923$ S/m; $\epsilon_r = 47.313$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

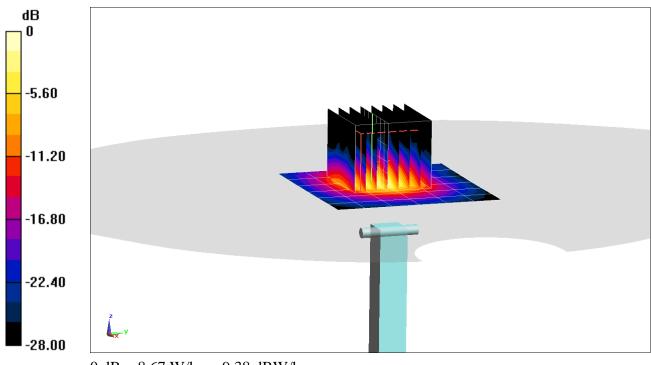
Test Date: 11-12-2019; Ambient Temp: 22.7°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7409; ConvF(4.23, 4.23, 4.23) @ 5750 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 3.56 W/kg Deviation(1 g) = -6.19%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237


Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5750 MHz; $\sigma = 6.15$ S/m; $\varepsilon_r = 47.573$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-26-2019; Ambient Temp: 23.5°C; Tissue Temp: 21.6°C

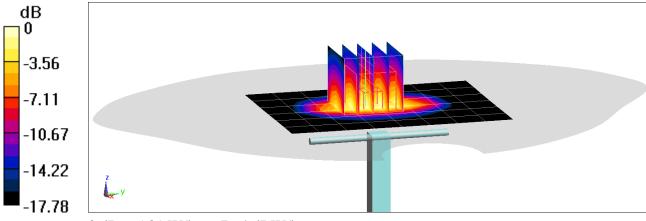
Probe: EX3DV4 - SN7409; ConvF(4.23, 4.23, 4.23) @ 5750 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 3.57 W/kg; SAR(10 g) = 0.992 W/kg Deviation(1 g) = -5.93%; Deviation(10 g) = -6.42%

0 dB = 8.67 W/kg = 9.38 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: f = 1750 MHz; $\sigma = 1.505$ S/m; $\epsilon_r = 51.413$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-11-2019; Ambient Temp: 21.8°C; Tissue Temp: 21.0°C

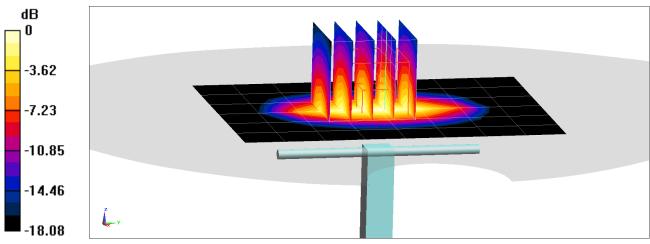
Probe: EX3DV4 - SN7409; ConvF(7.85, 7.85, 7.85) @ 1750 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmReference Value = 49.23 V/m; Power Drift = 0.23 dB Peak SAR (extrapolated) = 7.00 W/kg SAR(10 g) = 1.99 W/kg Deviation(10 g) = 0.51%

0 dB = 5.81 W/kg = 7.64 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148


Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: f = 1750 MHz; $\sigma = 1.536$ S/m; $\varepsilon_r = 52.596$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 11-22-2019; Ambient Temp: 21.8°C; Tissue Temp: 20.1°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1750 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.47 W/kg SAR(10 g) = 2.13 W/kg Deviation(10 g) = 7.58%

0 dB = 6.17 W/kg = 7.90 dBW/kg

APPENDIX C: SAR TISSUE SPECIFICATIONS

	FCC ID: ZNFL455DL		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C
	11/04/19 - 12/10/2019	Portable Handset			Page 1 of 4
© 201	9 PCTEST Engineering Laboratory, I	nc.			REV 21.4 M 09/11/2019

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ɛ' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp\left[-j\omega r(\mu_0\varepsilon_r^{'}\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures

Description: Aqueous solution with surfactants and inhibitors

Declarable, or hazardous compon	ents:	
CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Additional information:		

For the wording of the listed risk phrases refer to section 16.

Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is withheld as a trade secret.

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

	FCC ID: ZNFL455DL		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX C
	11/04/19 - 12/10/2019	Portable Handset			Page 2 of 4
© 201	9 PCTEST Engineering Laboratory, I	nc.			REV 21.4 M 09/11/2019

Schmid & Partner Engineering AG S peag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Body Tissue Simulating Liquid (MBBL600-6000V6)
Product No.	SL AAM U16 BC (Batch: 181029-1)
Manufacturer	SPEAG

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters Target parameters as defined in the KDB 865664 compliance standard.

Ambient Condi	ion 22°C ; 30% humidity	
TSL Temperate	ire 22°C	
Test Date	30-Oct-18	
Operator	CL	
Additional Info	ormation	
TSL Density	No.	
TSL Heat-capa		

Results

	Measu	ured	and the second	Targe	et	Diff.to Targ	get [%]							
f [MHz]	e'	e"	sigma	eps	sigma		∆-sigma	15.0		5 5	Street of the	124		
800	55.1	21.3	0.95	55.3	0.97	-0.4	-2.1	10.0		200			1	
825	55.1	20.8	0.96	55.2	0.98	-0.3	-2.0							
835	55.1	20.6	0.96	55.1	0.99	0.0	-2.5	* 5.0						
850	55.1	20.4	0.96	55.2	0.99	-0.1	-3.0	-5.0	-		1.08 27			22
900	55.0	19.7	0.98	55.0	1.05	0.0	-6.7	i i i i i i i i i i i i i i i i i i i					T	-
1400	54.2	15.6	1.22	54.1	1.28	0.2	-4.7	a [₩] -5.0						
1450	54.1	15.4	1.24	54.0	1.30	0.2	-4.6	a -10.0			1000			
1500	54.1	15.3	1.27	53.9	1.33	0.3	-4.5	100.000						
1550	54.0	15.1	1.30	53.9	1.36	0.2	-4.4	-15.0	1500	2500	3500	4500	550	0
1600	53.9	15.0	1.33	53.8	1.39	0.2	-4.3				ancy MHz			
1625	53.9	14.9	1.35	53.8	1.41	0.3	-4.3							
1640	53.9	14.9	1.36	53.7	1.42	0.3	-4.2	15.0						
1650	53.8	14.9	1.36	53.7	1.43	0.2	-4.9	15.0						
1700	53.8	14.8	1.40	53.6	1.46	0.4	-4.1	10.0		and the second		- () () ()		-
1750	53.7	14.7	1.43	53.4	1.49	0.5	-4.0	× 5.0						
1800	53.7	14.6	1.46	53.3	1.52	0.8	-3.9	wity	[1				1
1010	53.7													
1810	50.1	14.6	1.47	53.3	1.52	0.8	-3.3	월 0.0					/	
1810 1825	53.7	14.6 14.6	1.47 1.48	53.3 53.3	1.52 1.52	0.8 0.8	-3.3 -2.6		لم	1		/	/	
363646	Sec. Sec.		2988			22222	2003	0.0 - Coudic	لہ	/		/	/	A REAL
1825	53.7	14.6	1.48	53.3	1.52	0.8	-2.6	n ond	لہ	/	_	/		
1825 1850	53.7 53.6	14.6 14.5	1.48 1.50	53.3 53.3	1.52 1.52	0.8 0.6	-2.6 -1.3	-10.0	لہ	/	-	/		
1825 1850 1900	53.7 53.6 53.5	14.6 14.5 14.5	1.48 1.50 1.53	53.3 53.3 53.3	1.52 1.52 1.52	0.8 0.6 0.4	-2.6 -1.3 0.7	-10.0 -15.0 500	لمر 1500	2500	3500	4500	5500	
1825 1850 1900 1950	53.7 53.6 53.5 53.5	14.6 14.5 14.5 14.5	1.48 1.50 1.53 1.57	53.3 53.3 53.3 53.3	1.52 1.52 1.52 1.52	0.8 0.6 0.4 0.4	-2.6 -1.3 0.7 3.3	-10.0	لمر 1500	2500 Frequen	3500 Icy MHz	4500	5500)
1825 1850 1900 1950 2000	53.7 53.6 53.5 53.5 53.4	14.6 14.5 14.5 14.5 14.4	1.48 1.50 1.53 1.57 1.60	53.3 53.3 53.3 53.3 53.3	1.52 1.52 1.52 1.52 1.52	0.8 0.6 0.4 0.4 0.2	-2.6 -1.3 0.7 3.3 5.3	-10.0	لمر 1500		3500 Icy MHz	4500	5500)
1825 1850 1900 2000 2050 2100 2150	53.7 53.6 53.5 53.5 53.4 53.4 53.4 53.3 53.3	14.6 14.5 14.5 14.5 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64	53.3 53.3 53.3 53.3 53.3 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.52 1.57	0.8 0.6 0.4 0.4 0.2 0.3	-2.6 -1.3 0.7 3.3 5.3 4.5	-10.0	1500		3500 Icy MHz	4500	5500)
1825 1850 1900 2000 2050 2100 2150 2200	53.7 53.6 53.5 53.5 53.4 53.4 53.4 53.3 53.3 53.2	14.6 14.5 14.5 14.5 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72 1.76	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71	0.8 0.6 0.4 0.2 0.3 0.2 0.4 0.3	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9	-10.0 -15.0 500 3500 51.1	15.5	Frequen	3500 Icy MHz 51.3	3.31	-0.4	
1825 1850 1900 2000 2050 2100 2150 2200 2250	53.7 53.6 53.5 53.4 53.4 53.4 53.3 53.3 53.2 53.2	14.6 14.5 14.5 14.5 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71 1.76	0.8 0.6 0.4 0.2 0.3 0.2 0.4	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8	-10.0 -15.0 500		Frequen	icy MHz			-8
1825 1850 1900 2000 2050 2100 2150 2200	53.7 53.6 53.5 53.5 53.4 53.4 53.4 53.3 53.3 53.2	14.6 14.5 14.5 14.5 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72 1.76	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71	0.8 0.6 0.4 0.2 0.3 0.2 0.4 0.3	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9	-10.0 -15.0 500 3500 51.1	15.5	Frequen	51.3	3.31	-0.4	-8 -8
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350	53.7 53.6 53.5 53.5 53.4 53.4 53.3 53.3 53.2 53.1 53.1 53.1 53.0	14.6 14.5 14.5 14.4 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.60 1.64 1.68 1.72 1.76 1.81 1.85 1.89	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71 1.76 1.81 1.85	0.8 0.6 0.4 0.2 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2 0.4 0.3	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8 2.2 2.2	-10.0 -15.0 500 3500 51.1 3700 50.8	15.5 15.7	3.02 3.24	51.3 51.1	3.31 3.55	-0.4 -0.5	-8 -8
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300	53.7 53.6 53.5 53.5 53.4 53.4 53.3 53.3 53.3 53.2 53.1 53.1	14.6 14.5 14.5 14.4 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72 1.76 1.81 1.85	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.1 53.0 53.0 53.0 52.9	1.52 1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71 1.76 1.81	0.8 0.6 0.4 0.2 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2 0.4	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8 2.2	-10.0 -15.0 500 3500 51.1 3700 50.8 5200 48.1	15.5 15.7 18.2	3.02 3.24 5.27	51.3 51.1 49.0	3.31 3.55 5.30	-0.4 -0.5 -1.8	-8 -8 -0 -0
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350	53.7 53.6 53.5 53.5 53.4 53.4 53.3 53.3 53.2 53.1 53.1 53.1 53.0	14.6 14.5 14.5 14.4 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.60 1.64 1.68 1.72 1.76 1.81 1.85 1.89	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71 1.76 1.81 1.85	0.8 0.6 0.4 0.2 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2 0.4 0.3	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8 2.2 2.2	-10.0 -15.0 500 3500 51.1 3700 50.8 5200 48.1 5250 48.0	15.5 15.7 18.2 18.3	3.02 3.24 5.27 5.34	51.3 51.1 49.0 49.0	3.31 3.55 5.30 5.36	-0.4 -0.5 -1.8 -1.9	-8 -8 -(-(
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500	53.7 53.6 53.5 53.4 53.4 53.3 53.3 53.2 53.1 53.1 53.0 52.9 52.9 52.8	14.6 14.5 14.5 14.4 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.57 1.60 1.64 1.68 1.72 1.76 1.81 1.85 1.89 1.94 1.94 2.03	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71 1.76 1.81 1.85 1.90 1.95 2.02	0.8 0.6 0.4 0.2 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8 2.2 2.2 2.2 2.1	-10.0 -15.0 500 3500 51.1 3700 50.8 5200 48.1 5250 48.0 5300 47.9	15.5 15.7 18.2 18.3 18.4	3.02 3.24 5.27 5.34 5.41	51.3 51.1 49.0 48.9	3.31 3.55 5.30 5.36 5.42	-0.4 -0.5 -1.8 -1.9 -2.0	-8 -8 -0 -0 -0 1
1825 1850 1900 2000 2100 2150 2200 2250 2300 2350 2400 2450	53.7 53.6 53.5 53.4 53.4 53.3 53.3 53.2 53.1 53.1 53.0 52.9 52.9	14.6 14.5 14.5 14.4 14.4 14.4 14.4 14.4 14.4	1.48 1.50 1.53 1.57 1.60 1.64 1.68 1.72 1.76 1.81 1.85 1.89 1.94 1.98	53.3 53.3 53.3 53.3 53.2 53.2 53.2 53.2	1.52 1.52 1.52 1.52 1.57 1.62 1.66 1.71 1.76 1.81 1.85 1.90 1.95	0.8 0.6 0.4 0.2 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2 0.4 0.3 0.2 0.4	-2.6 -1.3 0.7 3.3 5.3 4.5 3.7 3.6 2.9 2.8 2.2 2.2 2.2 2.1 1.5	-10.0 -15.0 -500 -15.0 -500 -500 -500 -500 -500 -500 -5250 -48.0 -5250 -48.0 -5250 -48.0 -5250 -48.0 -5250 -47.5	15.5 15.7 18.2 18.3 18.4 18.6	3.02 3.24 5.27 5.34 5.41 5.70	51.3 51.1 49.0 48.9 48.6	3.31 3.55 5.30 5.36 5.42 5.65	-0.4 -0.5 -1.8 -1.9 -2.0 -2.2	8- 8- 0- 0- 0

TSL Dielectric Parameters

©

Figure C-2 600 – 5800 MHz Body Tissue Equivalent Matter

	FCC ID: ZNFL455DL	PCTEST	SAR EVALUATION REPORT	LG	Approved by:
	FCC ID. ZINFL455DL	V SHORIDARE CAROCATORY, INC.	SAR EVALUATION REPORT		Quality Manager
	Test Dates:	DUT Type:			APPENDIX C
	11/04/19 – 12/10/2019	Portable Handset			Page 3 of 4
20 [.]	9 PCTEST Engineering Laboratory, I	nc.			REV 21.4 M 09/11/2019

Schmid & Partner Engineering AG	S	p	е	а	g	
Zeughausstrasse 43, 8004 Zurich, Switzerland						

Zeughausstrasse 43, 8004 Zurich, Switzeriand Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Item Name	Head Tissue Simulating Liquid (HBBL600-10000V6)
Product No.	SL AAH U16 BC (Batch: 181031-2)
Manufacturer	SPEAG

Measurement Method TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Ambient Conditi	on 22°C ; 30% humidity	
TSL Temperatur		
Test Date	31-Oct-18	
Operator	CL	
Additional Info	rmation	
TSL Density		
TSL Heat-capac	ity	

Results

	Meas	ured	1. Sector	Targe	et	Diff.to Targ	jet [%]	15.4							
f [MHz]	e'	e"	sigma	eps	sigma	∆-eps	∆-sigma	15.0				122		13182	
800	43.8	20.5	0.91	41.7	0.90	5.1	1.4	10.0	0				al al		
825	43.8	20.1	0.92	41.6	0.91	5.3	1.5	2º 5.0		-					
835	43.8	19.9	0.93	41.5	0.91	5.4	2.0	U.O.				-			
850	43.7	19.7	0.93	41.5	0.92	5.3	1.5	E					/		
900	43.5	18.9	0.95	41.5	0.97	4.8	-2.1							-	-
1400	42.5	15.0	1.17	40.6	1.18	4.7	-0.8	Å 0-10.0)						
1450	42.5	14.8	1.19	40.5	1.20	4.9	-0.8	-15.0)	14		1 mili		2012	
1600	42.2	14.3	1.27	40.3	1.28	4.7	-1.1	1.1.1	500 15	00 2500		500 5500 Incy MHz	6500 7500	0 8500 9	500
1625	42.2	14.2	1.29	40.3	1.30	4.8	-0.7		_		Troque	andy miniz			-
1640	42.2	14.2	1.30	40.3	1.31	4.8	-0.5	15.0		23.45	1363	122123		TRIS R	
1650	42.1	14.2	1.30	40.2	1.31	4.6	-1.0	10.0				1.000			-
1700	42.1	14.0	1.33	40.2	1.34	4.8	-0.9	Å 5.0	-	٨					1
1750	42.0	13.9	1.36	40.1	1.37	4.8	-0.8	0.0 rctiv		$\boldsymbol{\Lambda}$		1	-	-	
1800	41.9	13.9	1.39	40.0	1.40	4.7	-0.7	0.0 0.0 0.0 0.0 0.0	p	- /		/			
1810	41.9	13.8	1.40	40.0	1.40	4.7	0.0								
1010	41.0														
1825	41.9	13.8	1.41	40.0	1.40	4.7	0.7	a10.0		1.1.17	1			-	
				40.0 40.0	1.40 1.40	4.7 4.5	20000	-15.0							
1825	41.9	13.8	1.41				0.7	-15.0	500 150	0 2500	3500 45 Freque	00 5500 (ancy MHz	6500 7500	8500 9	500
1825 1850	41.9 41.8	13.8 13.8	1.41 1.42	40.0	1.40	4.5	0.7 1.4	-15.0	500 150	0 2500	3500 45 Freque	00 5500 e ancy MHz 36.0	6500 7500 4.66	8500 9	
1825 1850 1900	41.9 41.8 41.8	13.8 13.8 13.7	1.41 1.42 1.45	40.0 40.0	1.40 1.40	4.5 4.5	0.7 1.4 3.6	-15.0	_		Freque	ency MHz	4.66	0.9	-1
1825 1850 1900 1950	41.9 41.8 41.8 41.7	13.8 13.8 13.7 13.7	1.41 1.42 1.45 1.48	40.0 40.0 40.0	1.40 1.40 1.40	4.5 4.5 4.3	0.7 1.4 3.6 5.7	-15.0 5200	36.3	15.8	4:57	36.0		0.9 0.8	-1 -1
1825 1850 1900 1950 2000	41.9 41.8 41.8 41.7 41.6	13.8 13.8 13.7 13.7 13.6	1.41 1.42 1.45 1.48 1.51	40.0 40.0 40.0 40.0	1.40 1.40 1.40 1.40	4.5 4.5 4.3 4.0	0.7 1.4 3.6 5.7 7.9	-15.0 5200 5250	36.3 36.2	15.8 15.9	4.57 4.63	36.0 35.9	4.66 4.71 4.76	0.9 0.8 0.7	-1 -1 -1
1825 1850 1900 1950 2000 2050	41.9 41.8 41.8 41.7 41.6 41.6	13.8 13.8 13.7 13.7 13.6 13.6	1.41 1.42 1.45 1.48 1.51 1.55	40.0 40.0 40.0 39.9	1.40 1.40 1.40 1.40 1.44	4.5 4.5 4.3 4.0 4.2	0.7 1.4 3.6 5.7 7.9 7.3	-15.0 5200 5250 5300	36.3 36.2 36.1	15.8 15.9 15.9	4.57 4.63 4.69	36.0 35.9 35.9	4.66 4.71	0.9 0.8 0.7 0.3	-1 -1 -1 -0
1825 1850 1900 1950 2000 2050 2100	41.9 41.8 41.8 41.7 41.6 41.6 41.5	13.8 13.8 13.7 13.7 13.6 13.6 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58	40.0 40.0 40.0 39.9 39.8	1.40 1.40 1.40 1.40 1.44 1.49	4.5 4.3 4.0 4.2 4.2	0.7 1.4 3.6 5.7 7.9 7.3 6.1	-15.0 5200 5250 5300 5500	36.3 36.2 36.1 35.8	15.8 15.9 15.9 16.1	4.57 4.63 4.69 4.92	36.0 35.9 35.9 35.6	4.66 4.71 4.76 4.96	0.9 0.8 0.7	-1 -1 -1 -0. -0.
1825 1850 1900 1950 2000 2050 2100 2150	41.9 41.8 41.8 41.7 41.6 41.6 41.5 41.4	13.8 13.7 13.7 13.6 13.6 13.5 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58 1.62	40.0 40.0 40.0 39.9 39.8 39.7	1.40 1.40 1.40 1.40 1.40 1.41 1.49 1.53	4.5 4.3 4.0 4.2 4.2 4.2 4.2	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7	-15.0 5200 5250 5300 5500 5600	36.3 36.2 36.1 35.8 35.6	15.8 15.9 15.9 16.1 16.2	4.57 4.63 4.69 4.92 5.04	36.0 35.9 35.9 35.6 35.5	4.66 4.71 4.76 4.96 5.07	0.9 0.8 0.7 0.3 0.1	-1 -1 -1 -0 -0. -0.
1825 1850 1900 1950 2000 2050 2100 2150 2200	41.9 41.8 41.8 41.7 41.6 41.6 41.5 41.4 41.4	13.8 13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65	40.0 40.0 40.0 39.9 39.8 39.7 39.6	1.40 1.40 1.40 1.44 1.49 1.53 1.58	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6	-15.0 5200 5250 5300 5500 5600 5700	36.3 36.2 36.1 35.8 35.6 35.4	15.8 15.9 15.9 16.1 16.2 16.2	Freque 4.57 4.63 4.69 4.92 5.04 5.15	36.0 35.9 35.9 35.6 35.5 35.4	4.66 4.71 4.76 4.96 5.07 5.17	0.9 0.8 0.7 0.3 0.1 0.0	-1 -1 -0 -0 -0
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.4 41.3	13.8 13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.48 1.51 1.55 1.58 1.62 1.65 1.69	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6	1.40 1.40 1.40 1.40 1.40 1.41 1.42 1.43 1.53 1.58 1.62	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2	-15.0 5200 5250 5300 5500 5600 5700 5800	36.3 36.2 36.1 35.8 35.6 35.4 35.2	15.8 15.9 15.9 16.1 16.2 16.2 16.3	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27	36.0 35.9 35.9 35.6 35.5 35.4 35.3	4.66 4.71 4.76 4.96 5.07 5.17 5.27	0.9 0.8 0.7 0.3 0.1 0.0 -0.2	-1 -1 -0 -0. -0. 0.
1825 1850 1900 2000 2050 2100 2150 2200 2250 2250	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.4 41.3 41.2	13.8 13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.51 1.55 1.58 1.62 1.65 1.69 1.72	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5	1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2	-15.0 5200 5250 5300 5500 5500 5600 5700 5800 6000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5	4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50	36.0 35.9 35.6 35.5 35.4 35.3 35.1	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6	-1 -1 -0 -0. -0. 0. 0.
1825 1850 1900 2000 2050 2100 2150 2200 2250 2300 2350	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1	13.8 13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4	1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9	-15.0 5200 5250 5300 5500 5600 5700 5800 6000 6500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12	ancy MHz 36.0 35.9 35.6 35.5 35.4 35.3 35.1 34.5	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48 6.07	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4	-1 -1 -0 -0. -0. 0. 0. 0. 1.
1825 1850 1950 2050 2100 2150 2200 2250 2300 2350 2400	41.9 41.8 41.7 41.6 41.6 41.6 41.5 41.4 41.4 41.3 41.2 41.1 41.1	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.48 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.76 1.80 1.84	40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3	1.40 1.40 1.40 1.40 1.41 1.49 1.53 1.58 1.62 1.67 1.71 1.76	4.5 4.3 4.0 4.2 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.4 4.6	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5	-15.0 5200 5250 5300 5500 5600 5700 6000 6500 7000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 33.1	15.8 15.9 16.1 16.2 16.3 16.5 16.9	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74	ancy MHz 36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48 6.07 6.65	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3	-1. -1. -0. -0. 0.9 0.9 1.3 1.0
1825 1850 1900 2000 2050 2100 2100 2150 2200 2250 2300 2350 2350 2400	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1 41.1 41.1	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.51 1.55 1.58 1.65 1.65 1.69 1.72 1.76 1.80 1.88	40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3 39.2	1.40 1.40 1.40 1.40 1.41 1.42 1.53 1.53 1.58 1.62 1.67 1.71 1.76	4.5 4.3 4.0 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.6 4.6	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.2	-15.0 5200 5250 5300 5500 5500 5500 5700 5800 6000 6500 7000 7500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2	15.8 15.9 16.1 16.2 16.3 16.5 16.9 17.3 17.6	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36	ancy MHz 36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65 7.24	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2	-1 -1 -0 -0. -0. -0. 0. 0. 1.1 1.1 1.1
1825 1850 1900 1950 2000 2100 2150 2250 2350 2450 2250	41.9 41.8 41.7 41.6 41.7 41.6 41.5 41.4 41.4 41.3 41.2 41.1 41.1 41.0 40.9	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.45 1.51 1.55 1.58 1.62 1.65 1.62 1.63 1.64 1.65 1.69 1.72 1.76 1.84 1.84 1.88 1.92	40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3 39.2 39.2	1.40 1.40 1.40 1.40 1.41 1.42 1.43 1.53 1.53 1.58 1.62 1.67 1.71 1.76 1.80 1.85	4.5 4.3 4.0 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.6 4.6 4.6 4.5	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.2 2.2 1.4	-15.0 5200 5250 5300 5500 5500 5700 5800 6000 6500 7000 7500 8000	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2 31.4	15.8 15.9 15.9 16.1 16.2 16.2 16.3 16.5 16.9 17.3 17.6 17.9	Freque 4.57 4.63 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36 7.97	ancy MHz 36.0 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3 32.7	4.66 4.71 4.76 5.07 5.17 5.27 5.48 6.07 6.65 7.24 7.84	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2 -4.1	500 -1. -1. -0. -0. -0. 0.3 0.3 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
1825 1850 1900 1950 2000 2050 2100 2150 2350 24500 2550	41.9 41.8 41.7 41.6 41.6 41.5 41.4 41.4 41.4 41.3 41.2 41.1 41.1 41.0 40.9 40.8	13.8 13.7 13.7 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	1.41 1.42 1.43 1.44 1.51 1.55 1.58 1.62 1.65 1.69 1.72 1.80 1.84 1.84 1.84 1.84 1.92 1.93	40.0 40.0 40.0 39.9 39.8 39.7 39.6 39.6 39.5 39.4 39.3 39.2 39.2 39.2	1.40 1.40 1.40 1.40 1.44 1.49 1.53 1.58 1.62 1.67 1.71 1.76 1.80 1.85 1.91	4.5 4.3 4.0 4.2 4.2 4.2 4.4 4.4 4.4 4.4 4.4 4.6 4.6 4.5 4.4	0.7 1.4 3.6 5.7 7.9 7.3 6.1 5.7 4.6 4.2 3.2 2.9 2.5 2.2 2.9 2.5 2.2 1.4 0.6	-15.0 5200 5300 5500 5500 5500 5500 6000 6500 7000 7500 8000 8500	36.3 36.2 36.1 35.8 35.6 35.4 35.2 34.9 34.0 33.1 32.2 31.4 30.5	15.8 15.9 15.9 16.1 16.2 16.3 16.5 16.9 17.3 17.6 17.9 18.2	Freque 4.57 4.63 4.69 4.92 5.04 5.15 5.27 5.50 6.12 6.74 7.36 7.97 8.59	36.0 35.9 35.9 35.6 35.5 35.4 35.3 35.1 34.5 33.9 33.3 32.7 32.1	4.66 4.71 4.76 4.96 5.07 5.17 5.27 5.48 6.07 6.65 7.24 7.84 8.45	0.9 0.8 0.7 0.3 0.1 0.0 -0.2 -0.6 -1.4 -2.3 -3.2 -4.1 -5.0	-1. -1. -0. -0. -0. 0.9 1.3 1.6 1.5 1.6

TSL Dielectric Parameters

Figure C-3 600 – 5800 MHz Head Tissue Equivalent Matter

		A PCTEST			Approved by:
	FCC ID: ZNFL455DL	SNOTHERENES CAROFATERY, INC.	SAR EVALUATION REPORT	🕒 LG	Quality Manager
	Test Dates:	DUT Type:			APPENDIX C
	11/04/19 – 12/10/2019	Portable Handset			Page 4 of 4
© 20 [.]	9 PCTEST Engineering Laboratory, I	nc.			REV 21.4 M 09/11/2019

APPENDIX D: SAR SYSTEM VALIDATION

	FCC ID: ZNFL455DL		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D
	11/04/19 - 12/10/2019	Portable Handset			Page 1 of 3
© 201	9 PCTEST Engineering Laboratory, I	nc.			REV 21.4 M 09/11/2019

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR System Validation Summary – 1g													
SAR	Freq.		Probe			Cond.	Perm.	CW	VALIDATION	MOD.	VALIDATIO	N	
System	(MHz)	Date	SN	Probe C	al Point	(σ)	renn. (εr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
G	750	9/20/2019	7409	750	Head	0.881	42.582	PASS	PASS	PASS	N/A	N/A	N/A
Р	835	10/1/2019	7551	835	Head	0.918	41.180	PASS	PASS	PASS	GMSK	PASS	N/A
E	835	9/20/2019	7417	835	Head	0.912	43.450	PASS	PASS	PASS	GMSK	PASS	N/A
D	1750	5/24/2019	3914	1750	Head	1.366	41.075	PASS	PASS	PASS	N/A	N/A	N/A
Р	1750	10/2/2019	7551	1750	Head	1.346	39.450	PASS	PASS	PASS	N/A	N/A	N/A
Р	1900	10/2/2019	7551	1900	Head	1.444	39.260	PASS	PASS	PASS	GMSK	PASS	N/A
E	2450	9/5/2019	7417	2450	Head	1.855	39.542	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
E	2600	9/5/2019	7417	2600	Head	1.979	39.302	PASS	PASS	PASS	TDD	PASS	N/A
Н	5250	12/7/2019	7406	5250	Head	4.709	35.885	PASS	PASS	PASS	OFDM	N/A	PASS
Н	5600	12/7/2019	7406	5600	Head	5.120	35.211	PASS	PASS	PASS	OFDM	N/A	PASS
Н	5750	12/7/2019	7406	5750	Head	5.309	34.961	PASS	PASS	PASS	OFDM	N/A	PASS
L	750	8/20/2019	7410	750	Body	0.941	54.921	PASS	PASS	PASS	N/A	N/A	N/A
I	835	10/8/2019	7357	835	Body	0.957	54.363	PASS	PASS	PASS	GMSK	PASS	N/A
G	1750	7/11/2019	7409	1750	Body	1.445	53.920	PASS	PASS	PASS	N/A	N/A	N/A
I	1750	5/21/2019	7357	1750	Body	1.442	55.384	PASS	PASS	PASS	N/A	N/A	N/A
J	1900	10/7/2019	7488	1900	Body	1.555	51.080	PASS	PASS	PASS	GMSK	PASS	N/A
D	1900	9/16/2019	3914	1900	Body	1.566	53.504	PASS	PASS	PASS	GMSK	PASS	N/A
К	2450	9/6/2019	7547	2450	Body	1.996	51.898	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
L	2450	8/15/2019	7410	2450	Body	2.018	52.505	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
М	2450	10/10/2019	7308	2450	Body	1.962	51.230	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2600	9/5/2019	7547	2600	Body	2.716	52.040	PASS	PASS	PASS	TDD	PASS	N/A
G	5250	10/4/2019	7409	5250	Body	5.223	47.070	PASS	PASS	PASS	OFDM	N/A	PASS
G	5600	10/7/2019	7409	5600	Body	5.884	47.080	PASS	PASS	PASS	OFDM	N/A	PASS
G	5750	10/7/2019	7409	5750	Body	6.111	46.780	PASS	PASS	PASS	OFDM	N/A	PASS

Table D-1 SAR System Validation Summary – 1g

FCC ID: ZNFL455DL		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D
11/04/19 - 12/10/2019	Portable Handset			Page 2 of 3
© 2019 PCTEST Engineering Laborat	ory, Inc.			REV 21.4 M 09/11/2019

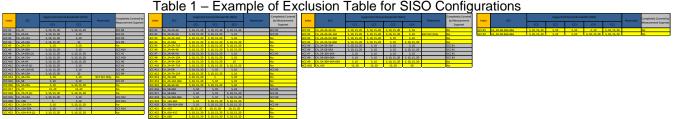
						Stenn v	andan	on Summa	iy – iog					
								CI	V VALIDATION	١	MOD.	VALIDAT	ON	
SAR System	Freq. (MHz)	Date	Probe SN	Probe C	Cal Point		Perm. (ɛr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTO R	PAR	
G	1750	7/11/2019	7409	1750	Body	1.445	53.920	PASS	PASS	PASS	N/A	N/A	N/A	
I	1750	5/21/2019	7357	1750	Body	1.442	55.384	PASS	PASS	PASS	N/A	N/A	N/A	
J	1900	10/7/2019	7488	1900	Body	1.555	51.080	PASS	PASS	PASS	GMSK	PASS	N/A	
D	1900	9/16/2019	3914	1900	Body	1.566	53.504	PASS	PASS	PASS	GMSK	PASS	N/A	
к	2450	9/6/2019	7547	2450	Body	1.996	51.898	PASS	PASS	PASS	OFDM/TDD	PASS	PASS	
к	2600	9/5/2019	7547	2600	Body	2.716	52.040	PASS	PASS	PASS	TDD	PASS	N/A	
G	5250	10/4/2019	7409	5250	Body	5.223	47.070	PASS	PASS	PASS	OFDM	N/A	PASS	
G	5600	10/7/2019	7409	5600	Body	5.884	47.080	PASS	PASS	PASS	OFDM	N/A	PASS	
G	5750	10/7/2019	7409	5750	Body	6.111	46.780	PASS	PASS	PASS	OFDM	N/A	PASS	

Table D-2SAR System Validation Summary – 10g

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

	FCC ID: ZNFL455DL		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX D
	11/04/19 - 12/10/2019	Portable Handset			Page 3 of 3
© 201	9 PCTEST Engineering Laboratory, I	nc.			REV 21.4 M 09/11/2019

APPENDIX F: DOWNLINK LTE CA RF CONDUCTED POWERS


		CTEST			Reviewed by:
	FCC ID: ZNFL455DL	SREWLINE CAREATONY, INC.	SAR EVALUATION REPORT	🕒 LG	Quality Manager
	Test Dates:	DUT Type:			APPENDIX F
	11/04/19 – 12/10/2019	Portable Handset			Page 1 of 4
© 201	PCTEST Engineering Laboratory, Inc.				REV 21.3 M
					02/15/2019

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA_2A-2A-4A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement. .
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive. All bands required for SAR testing per FCC KDB procedures were considered. Based on the measured maximum powers below, no additional SAR tests were required for DLCA SAR configurations.

General PCC and SCC configuration selection procedure

	FCC ID: ZNFL455DL	CTEST	SAR EVALUATION REPORT	🕒 LG	Reviewed by:
		ARGINEERING CARDENTIALY, INC.			Quality Manager
	Test Dates:	DUT Type:			APPENDIX F
	11/04/19 – 12/10/2019	Portable Handset			Page 2 of 4
© 201	9 PCTEST Engineering Laboratory, Inc.	•			REV 21.3 M
					02/15/2019

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KDB 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

Figure 1 **DL CA Power Measurement Setup**

1.3 **Downlink Carrier Aggregation RF Conducted Powers**

LTE Band 71 as PCC 1.3.1

Table 1 **Maximum Output Powers**

					PCC				SCC			Power			
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset		PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_2A-71A	LTE B71	5	133147	665.5	QPSK	1	12	68611	619.5	LTE B2	20	900	1960	24.27	24.69
CA_4A-71A	LTE B71	5	133147	665.5	QPSK	1	12	68611	619.5	LTE B4	20	2175	2132.5	24.38	24.69
CA_66A-71A	LTE B71	5	133147	665.5	QPSK	1	12	68611	619.5	LTE B66	20	66786	2145	24.41	24.69

1.3.2 LTE Band 12 as PCC

Table 2 **Maximum Output Powers**

					PCC						SCC			Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_12A-66A (1)	LTE B12	5	23035	701.5	QPSK	1	12	5035	731.5	LTE B66	20	66786	2145	24.81	25.12
CA_12A-66A (2)	LTE B12	3	23025	700.5	QPSK	1	7	5025	730.5	LTE B66	20	66786	2145	25.18	25.20
CA_12B	LTE B12	5	23035	701.5	QPSK	1	12	5035	731.5	LTE B12	5	5083	736.3	25.19	25.12
CA_2A-12A (1)	LTE B12	3	23025	700.5	QPSK	1	7	5025	730.5	LTE B2	20	900	1960	24.87	25.20
CA_4A-12A (1)	LTE B12	5	23035	701.5	QPSK	1	12	5035	731.5	LTE B4	20	2175	2132.5	24.81	25.12
CA_4A-12A (2)	LTE B12	3	23025	700.5	QPSK	1	7	5025	730.5	LTE B4	20	2175	2132.5	24.92	25.20

LTE Band 13 as PCC 1.3.3

	Maximum Output Powers														
					PCC					SCC				Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_13A-66A	LTE B13	10	23230	782	QPSK	1	25	5230	751	LTE B66	20	66786	2145	24.11	24.19
CA_2A-13A	LTE B13	10	23230	782	QPSK	1	25	5230	751	LTE B2	20	900	1960	24.05	24.19
CA_4A-13A	LTE B13	10	23230	782	QPSK	1	25	5230	751	LTE B4	20	2175	2132.5	24.16	24.19

Table 3

	FCC ID: ZNFL455DL		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX F
	11/04/19 – 12/10/2019	Portable Handset			Page 3 of 4
© 201	9 PCTEST Engineering Laboratory, Inc.	•			REV 21.3 M

02/15/2019

C

1.3.4 LTE Band 26 as PCC

					Ма	ximu	m Out	put P	owers						
PCC SCC														Power	
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation		PCC UL RB Offset		PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_25A-26A	LTE B26	3	26705	815.5	QPSK	1	7	8705	860.5	LTE B25	20	8365	1962.5	25.20	25.17

Table 4

1.3.5 LTE Band 66 as PCC

	Maximum Output Powers														
					PCC					SCC			Power		
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_12A-66A (1)	LTE B66	10	132022	1715	QPSK	1	0	66486	2115	LTE B12	10	5095	737.5	24.40	24.60
CA_12A-66A (2)	LTE B66	10	132022	1715	QPSK	1	0	66486	2115	LTE B12	10	5095	737.5	24.40	24.60
CA_13A-66A	LTE B66	10	132022	1715	QPSK	1	0	66486	2115	LTE B13	10	5230	751	24.70	24.60
CA_2A-66A	LTE B66	10	132022	1715	QPSK	1	0	66486	2115	LTE B2	20	900	1960	24.34	24.60
CA_5A-66A	LTE B66	10	132022	1715	QPSK	1	0	66486	2115	LTE B5	10	2525	881.5	24.37	24.60
CA_66A-66A	LTE B66	10	132022	1715	QPSK	1	0	66486	2115	LTE B66	20	67236	2190	24.40	24.60
CA_66A-71A	LTE B66	10	132022	1715	QPSK	1	0	66486	2115	LTE B71	20	68761	634.5	24.35	24.60
CA_66B	LTE B66	10	132022	1715	QPSK	1	0	66486	2115	LTE B66	10	66585	2124.9	24.37	24.60
CA_66C	LTE B66	10	132022	1715	QPSK	1	0	66486	2115	LTE B66	20	66630	2129.4	24.39	24.60

Table 5

1.3.6 LTE Band 25 as PCC

Table 6 **Maximum Output Powers**

		PCC							SCC			Power			
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation		PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_25A-25A (1)	LTE B25	20	26365	1882.5	QPSK	1	50	8365	1962.5	LTE B25	20	8140	1940	24.41	24.70
CA_25A-26A	LTE B25	20	26365	1882.5	QPSK	1	50	8365	1962.5	LTE B26	15	8865	876.5	24.48	24.70

1.3.7 LTE Band 41 as PCC

Table 7 **Maximum Output Powers**

		PCC						SCC				Power			
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset	PCC (DL) Ch.	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_41A-41A (1)	LTE B41	10	40620	2593	QPSK	1	25	40620	2593	LTE B41	20	39750	2506	24.41	24.70
CA_41C (1)	LTE B41	10	40620	2593	QPSK	1	25	40620	2593	LTE B41	20	40764	2607.4	24.47	24.70

1.3.8 LTE Band 41 PC2 as PCC

	Maximum Output Powers														
	PCC							SCC				Power			
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Channel	PCC (UL) Freq. [MHz]	Modulation	PCC UL# RB	PCC UL RB Offset		PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Ch.	SCC (DL) Freq. [MHz]	LTE Tx.Power with DL CA Enabled (dBm)	LTE Single Carrier Tx Power (dBm)
CA_41A-41A (1)	LTE B41 PC2	20	40185	2549.5	QPSK	1	50	40185	2549.5	LTE B41 PC2	20	41490	2680	27.11	27.00
CA_41C (1)	LTE B41 PC2	20	40185	2549.5	QPSK	1	50	40185	2549.5	LTE B41 PC2	20	40383	2569.3	27.09	27.00

Table 8	
Maximum Output Powers	_

	FCC ID: ZNFL455DL		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
	Test Dates:	DUT Type:			APPENDIX F
	11/04/19 – 12/10/2019	Portable Handset			Page 4 of 4
© 201	9 PCTEST Engineering Laboratory, Inc.				REV 21.3 M

02/15/2019

C

APPENDIX G: POWER REDUCTION VERIFICATION

FCC ID: ZNFL455DL		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G
11/04/19 – 12/10/2019	Portable Handset			Page 1 of 3
© 2019 PCTEST Engineering Laboratory, Inc.				REV 20.05 M

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

G.1 Power Verification Procedure

The power verification was performed according to the following procedure:

- 1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered.
- 2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
- 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

G.2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

- 1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom.
- 2. The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
- 3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table G-2 for more details).
- 4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

FCC ID: ZNFL455DL		SAR EVALUATION REPORT	🕒 LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G
11/04/19 – 12/10/2019	Portable Handset			Page 2 of 3
© 2019 PCTEST Engineering Laboratory, Inc.				REV 20.05 M

G.3 Main Antenna Verification Summary

100			Sima
		Conducted F	Power (dBm)
Mechanism(s)	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)
Grip	PCS CDMA	24.10	22.10
Grip	UMTS 1750	24.62	23.00
Grip	UMTS 1900	24.58	23.00
Grip	LTE FDD Band 66	24.55	22.37
Grip	LTE FDD Band 4	24.61	22.45
Grip	LTE FDD Band 25	24.47	22.65
Grip	LTE FDD Band 2	24.54	22.62
Grip	LTE TDD Band 41 (PC3)	24.67	22.01
Grip	Grip LTE TDD Band 41 (PC2)		24.43

 Table G-1

 Power Measurement Verification for Main Antenna

Table G-2Distance Measurement Verification for Main Antenna

Mechanism(s)	Test Condition	Band	Distance Meas	urements (mm)	Minimum Distance per
wechanism(s)	Test condition	Ballu	Moving Toward	Moving Away	Manufacturer (mm)
Grip	Body - Back Side	Mid	7	9	3
Grip	Body - Back Side	High	7	9	3

*Note: Mid band refers to: CDMA BC1, UMTS B2/4, LTE 25/66; High band refers to: LTE 41

G.4 WIFI Verification Summary

Power Measurement Verification WIFI Conducted Power (dBm) Mechanism(s) Mode/Band Mechanism #1 Un-triggered (Max) (Reduced) Held-to-Ear 802.11b 19.55 15.61 Held-to-Ear 802.11g 17.75 15.84 Held-to-Ear 802.11a 15.97 14.00 Held-to-Ear 802.11n (5GHz, 20MHz BW) 15.49 13.53 Held-to-Ear 802.11ac (20MHz BW) 15.50 13.48 Reviewed by: <u> PCTEST</u> 🕞 LG FCC ID: ZNFL455DL SAR EVALUATION REPORT Quality Manager Test Dates: DUT Type: APPENDIX G Page 3 of 3 11/04/19 - 12/10/2019 Portable Handset

© 2019 PCTEST Engineering Laboratory, Inc.

Table G-3
Power Measurement Verification WII

APPENDIX H: PROBE CALIBRATION

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test

Certificate No: D5GHzV2-1191_Sep19

۰.

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:1	191	
Calibration procedure(s)	QA CAL-22.v4 Calibration Proce	dure for SAR Validation Sources be	otween 3-6 GHz BN Q126 / 2019
Calibration date:	September 17, 20	019	
	•	onal standards, which realize the physical units o robability are given on the following pages and ar	
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 \pm 3)°C an	nd humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 3503	25-Mar-19 (No. EX3-3503_Mar19)	Mar-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	And
Approved by:	Katja Pokovic	Technical Manager	alle
T 111	ka manadara di seria		Issued: September 18, 2019
This calibration certificate shall not	be reproduced except in	full without written approval of the laboratory.	

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured; SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ± 6 %	4.53 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	144 A.S. 100 A.S.	

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.33 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.4 ± 6 %	5.03 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

, je renermig ponenie	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.44 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.9 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.11 W/kg

normalized to 1W

20.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

SAR for nominal Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.51 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.16 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.2 ± 6 %	5.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	······
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.19 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	1 1 1 1	

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.75 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	·
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	45.9 ± 6 %	6.26 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR for nominal Body TSL parameters

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.66 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.0 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.12 W/kg

normalized to 1W

21.0 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	53.5 Ω - 6.2 jΩ
Return Loss	- 23.2 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.4 Ω - 4.3 jΩ
Return Loss	- 22.8 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	59.1 Ω + 1.9 jΩ
Return Loss	- 21.4 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.9 Ω - 8.6 jΩ
Return Loss	- 21.3 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	53.2 Ω - 4.1 jΩ
Return Loss	- 26.0 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	58.1 Ω - 4.2 ϳΩ
Return Loss	- 21.4 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	60.3 Ω + 2.3 jΩ
Return Loss	- 20.4 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	57.5 Ω + 2.3 jΩ
Return Loss	- 22.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.202 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions (f=5200 MHz)

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
1 man.om		

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.4 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.8 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	······································
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 100 mW input power	2.36 W/kg

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.4 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.6W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	5.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.1 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	1.78 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	17.8 W/kg ± 19.9 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions (f=5800 MHz)

easurement conditions (i=coos ii	···-/	
DASY system configuration, as far as not g	iven on page 1 and 3.	
Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	100 mW input power	8.18 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	81.7 W/kg ± 20.3 % (k=2)	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition		
SAR measured	100 mW input power	2.33 W/kg	

normalized to 1W

normalized to 1W

23.3 W/kg ± 19.9 % (k=2)

23.6 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR for nominal Head TSL parameters

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.56 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.5 W/kg ± 20.3 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg

SAR result with SAM Head (Neck)

SAR for nominal Head TSL parameters

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.9 W/kg ± 20.3 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition		
SAR measured	100 mW input power	5.60 W/kg	
SAR for nominal Head TSL parameters	normalized to 1W	55.9 W/kg ± 20.3 % (k=2)	

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	1.92 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.1 W/kg ± 19.9 % (k=2)

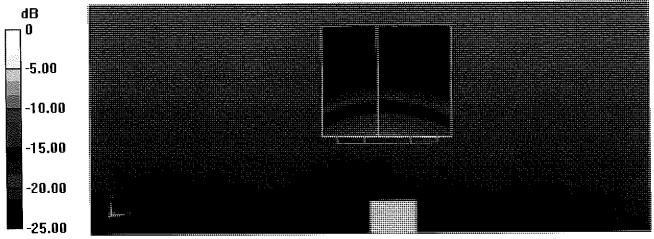
DASY5 Validation Report for Head TSL

Date: 13.09.2019

Test Laboratory: SPEAG, Zurich, Switzerland

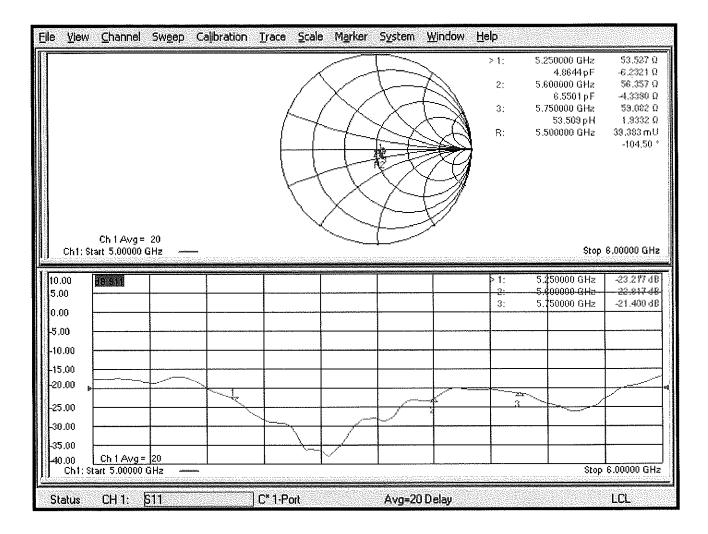
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.53 S/m; ϵ_r = 35.1; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.88 S/m; ϵ_r = 34.6; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.03 S/m; ϵ_r = 34.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.4, 5.4, 5.4) @ 5250 MHz, ConvF(4.95, 4.95, 4.95) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.95 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 28.0 W/kg SAR(1 g) = 8.13 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 18.2 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.89 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 8.33 W/kg; SAR(10 g) = 2.36 W/kg Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.20 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 16.09.2019

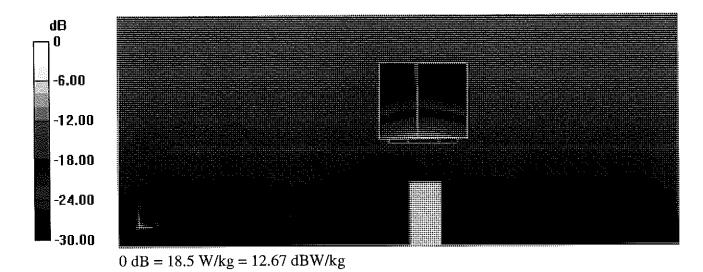
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.44$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5250 MHz; $\sigma = 5.51$ S/m; $\varepsilon_r = 46.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.98$ S/m; $\varepsilon_r = 46.2$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.19$ S/m; $\varepsilon_r = 46$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.26$ S/m; $\varepsilon_r = 45.9$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 6.26$ S/m; $\varepsilon_r = 45.9$; $\rho = 1000$ kg/m³

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.14, 5.14, 5.14) @ 5200 MHz, ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.74, 4.74, 4.74) @ 5600 MHz, ConvF(4.62, 4.62, 4.62) @ 5750 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.78 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 28.7 W/kg SAR(1 g) = 7.55 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.09 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.16 W/kg Maximum value of SAR (measured) = 18.1 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.19 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 34.3 W/kg SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 19.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.80 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 35.1 W/kg SAR(1 g) = 7.75 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 18.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.13 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Impedance Measurement Plot for Body TSL

<u>File Vie</u> v	v <u>C</u> hannel Sw <u>e</u> ep	Calibration	<u>Trace Scale Marker</u>	System <u>W</u> in	ndow <u>H</u> eip		
	*********				1;	5.200000 GHz	50,932 Ω
				$T \rightarrow \lambda$	2:	3.5474pF 5.250000 GHz	-8.6279 Ω 53.213 Ω
			-/X	イエ		7.4556 pF	-4.0661 Ω
			$- h/ \lambda$		- 34 3:	5.600000 GHz 6.7035 pF	58.125 Ω -4.2397 Ω
			17-4-	X	A 4	5,750000 GHz	60.292 Ω
			[]		>5:	64.987 pH 5.800008 GHz	2.3479 0 57.493 0
				1-57		5.800008 GH2 64.232 pH	2,3408 Ω
				~~ 7-	A		
			$ \land \checkmark $	$\sqrt{-1}$	//		
			\sim	\int	/		
	Ch 1 Avg = 20		and the second s	F			
Ch1:	Start 5.00000 GHz 🐭	2010.000		-		Stop	6.00000 GHz
1					1:	5. ≵ 00000 GH≥	-21.344 dB
5.00							25.981-48
0.00					3:	5.600000 GHz	-21.443 dB
				1	4:	5.750000 GHz	-20.383 d8
-5.00					4: 25:	5.750000 GHz 5 300000 GHz_	-20.383 dB -22 732 dB
-5.00							
-10.00							
					2.5	5300000 GHz_	
-10.00 -15.00 -20.00	Pr				2.5		
-10.00 -15.00 -20.00 -25.00	Be				2.5°	5300000 GHz_	
-10.00 -15.00 -20.00 -25.00 -30.00	Be				2.5°	5300000 GHz_	
-10.00 -15.00 -20.00 -25.00 -30.00 -35.00	P → → → → → → → → → → → → → → → → → → →				2.5°	5300000 GHz_	
-10.00 -15.00 -20.00 -25.00 -30.00 -35.00 -40.00	Ch 1 Avg = 20 Start 5.00000 GHz -				2.5°	5 \$00000 GH2	

DASY5 Validation Report for SAM Head

Date: 17.09.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1191

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.55 S/m; ϵ_r = 36.2; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.28 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.64, 5.64, 5.64) @ 5200 MHz, ConvF(4.96, 4.96, 4.96) @ 5800 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: SAM Head
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

SAM/Head/Top - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm Reference Value = 74.84 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.5 W/kg SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.34 W/kg Maximum value of SAR (measured) = 18.5 W/kg

SAM/Head/Top - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm Reference Value = 70.45 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 20.2 W/kg

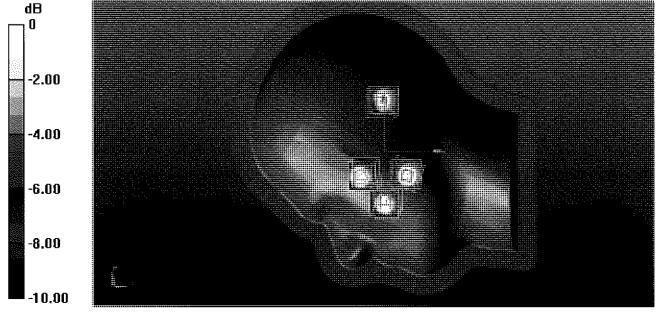
SAM/Head/Mouth - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.86 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 29.3 W/kg SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.36 W/kg Maximum value of SAR (measured) = 19.8 W/kg

SAM/Head/Mouth - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.46 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 34.0 W/kg SAR(1 g) = 8.56 W/kg; SAR(10 g) = 2.37 W/kg

Maximum value of SAR (measured) = 21.3 W/kg

SAM/Head/Neck - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.71 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.36 W/kgMaximum value of SAR (measured) = 19.2 W/kg


SAM/Head/Neck - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm Reference Value = 71.62 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 20.2 W/kg

SAM/Head/Ear - 5200/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 57.89 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 5.11 W/kg; SAR(10 g) = 1.78 W/kg Maximum value of SAR (measured) = 11.4 W/kg

SAM/Head/Ear - 5800/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.22 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 21.0 W/kg SAR(1 g) = 5.6 W/kg; SAR(10 g) = 1.92 W/kg Maximum value of SAR (measured) = 13.4 W/kg

0 dB = 11.4 W/kg = 10.57 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S С S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.; SCS 0108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

. .

. .

PC Test Client

Certificate No: D5GHzV2-1237_Aug18

CALIBRATION CERTIFICATE

Object	D5GHzV2 - SN:12	237	· · ·	
	QA CAL-22.v3 Calibration procee	lure for dipole validation kits betw	reen 3-6 GHz 🕅	BNV 08/09/20
Calibration date:	August 10, 2018	· · · · · · · · · · · · · · · · · · ·		BN 08/09/20
The measurements and the uncerts	ainties with confidence pr	onal standards, which realize the physical units obability are given on the following pages and	l are part of the certifica	te.
All calibrations have been conducts Calibration Equipment used (M&TE		y facility: environment temperature (22 ± 3)°C	and numiony < 70%.	
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibr	ation
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19	
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19	
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19	ļ
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19	
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19	
Reference Probe EX3DV4	SN: 3503	30-Dec-17 (No. EX3-3503_Dec17)	Dec-18	
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18	
Secondary Standards	10 #	Check Date (in house)	Scheduled Chec	k İ
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (In house check Oct-16)	in house check:	Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check:	Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check:	Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check:	Oct-18
Network Analyzer Agilent E8358A		31-Mar-14 (in house check Oct-17)	in house check:	Oct-19
Calibrated by:	Name Manu Seitz	Function Laboratory Technician	Signature	5
Approved by:	Katja Pokovic	Technical Manager	T OU	Ţ_
		n full without written approval of the laboratory	Issued: August 1	7, 2018

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	4.61 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.1 ±6 %	4.98 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.7 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.46 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.9 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.91 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	78.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.3	5.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.16 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.65 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	47.5 Ω - 3.5 jΩ
Return Loss	- 27.0 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	50.1 Ω + 4.7 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	52.7 Ω + 0.8 jΩ
Return Loss	- 31.2 dB

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	46.5 Ω - 1.3 jΩ
Return Loss	- 28.2 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	53.1 Ω + 6.2 jΩ
Return Loss	- 23.5 dB

Antenna Parameters with Body TSL at 5750 MHz

Impedance, transformed to feed point	53.6 Ω + 2.1 jΩ
Return Loss	- 27.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction) 1,195 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufac	tured by	SPEAG
Manufac	tured on	May 04, 2015

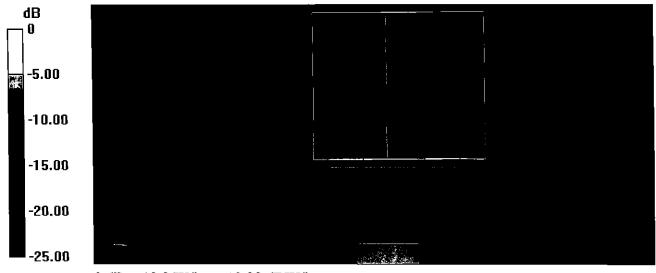
DASY5 Validation Report for Head TSL

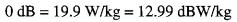
Date: 10.08.2018

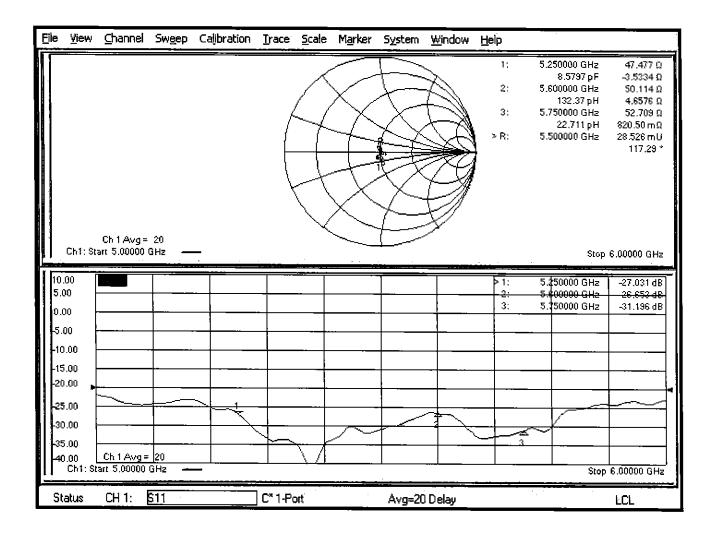
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.61 S/m; ϵ_r = 35.6; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.98 S/m; ϵ_r = 35.1; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.14 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:


- Probe: EX3DV4 SN3503; ConvF(5.51, 5.51, 5.51) @ 5250 MHz, ConvF(5.05, 5.05, 5.05) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.17 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.36 W/kg Maximum value of SAR (measured) = 18.4 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.53 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 32.4 W/kg SAR(1 g) = 8.6 W/kg; SAR(10 g) = 2.46 W/kg Maximum value of SAR (measured) = 20.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.04 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 19.9 W/kg

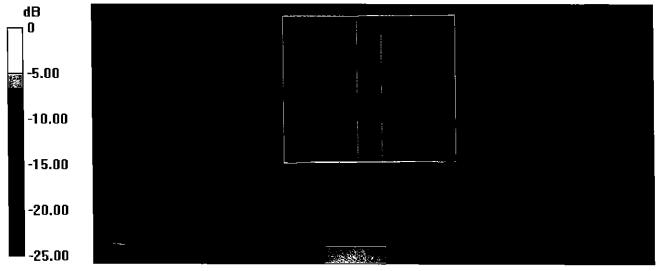
DASY5 Validation Report for Body TSL

Date: 10.08.2018

Test Laboratory: SPEAG, Zurich, Switzerland

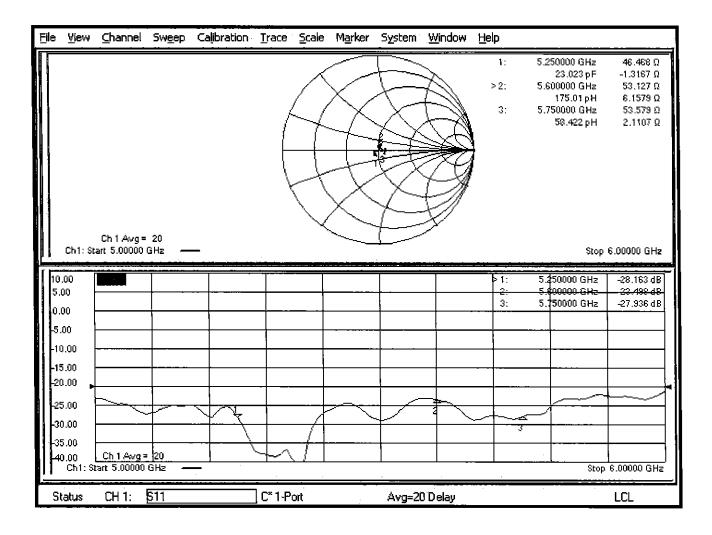
DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1237

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 5.49 S/m; ϵ_r = 46.9; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.96 S/m; ϵ_r = 46.3; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 6.16 S/m; ϵ_r = 46; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.65, 4.65, 4.65) @ 5600 MHz, ConvF(4.57, 4.57, 4.57) @ 5750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601 (5GHz); Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.22 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 17.3 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.51 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 32.1 W/kg SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.91 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.14 W/kg Maximum value of SAR (measured) = 18.0 W/kg

0 dB = 18.0 W/kg = 12.55 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D5GHzV2 - SN: 1237

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

08/09/2019

Extended Calibration date:

Description:

SAR Validation Dipole at 5GHz

Calibration Equipment used:

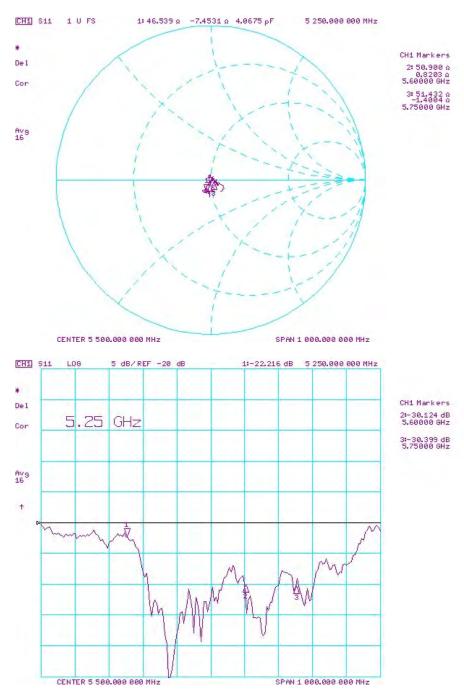
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	10/2/2018	Annual	10/2/2019	US39170118
Agilent	N5182A	MXG Vector Signal Generator	6/27/2019	Annual	6/27/2020	US46240505
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	343972
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1207470
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1339007
Control Company	4040	Temperature / Humidity Monitor	2/28/2018	Biennial	2/28/2020	150761911
Control Company	4352	Ultra Long Stem Thermometer	2/28/2018	Biennial	2/28/2020	170330160
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	7417
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/13/2019	Annual	2/13/2020	665
SPEAG	EX3DV4	SAR Probe	7/15/2019	Annual	7/15/2020	7547
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1323
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

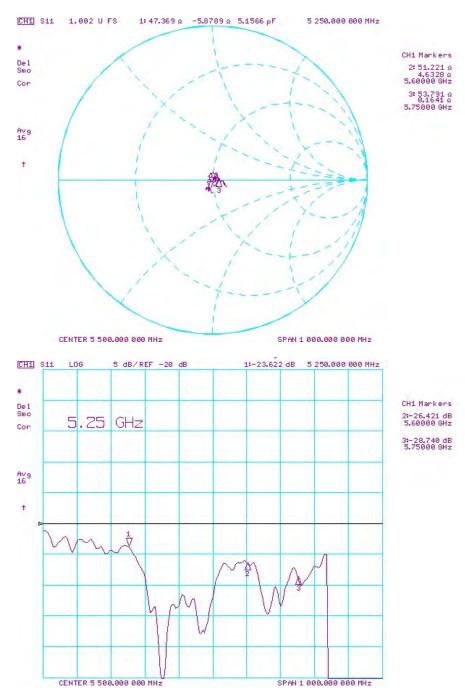
Object:	Date Issued:	Daga 1 of 1
D5GHzV2 – SN: 1237	08/09/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)		Measured Head SAR (1g) W/kg @ 17.0 dBm		Certificate SAR Target Head (10g) W/kg @ 17.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5250	8/10/2018	8/9/2019	1.195	4.065	3.81	-6.27%	1.18	1.09	-7.23%	47.5	46.5	1	-3.5	-7.5	4	-27	-22.2	17.70%	PASS
5600	8/10/2018	8/9/2019	1.195	4.285	4.06	-5.25%	1.23	1.15	-6.12%	50.1	50.9	0.8	4.7	0.8	3.9	-26.7	-30.1	-12.80%	PASS
5750	8/10/2018	8/9/2019	1.195	4.03	3.8	-5.71%	1.16	1.07	-7.36%	52.7	51.4	1.3	0.8	-1.4	2.2	-31.2	-30.4	2.60%	PASS
Frequency (MHz)	Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 17.0 dBm	Measured Body SAR (1g) W/kg @ 17.0 dBm	Deviation 1g (%)	Certificate SAR Target Body (10g) W/kg @ 17.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5250	8/10/2018	8/9/2019	1.195	3.78	3.52	-6.88%	1.06	0.981	-7.45%	46.5	47.4	0.9	-1.3	-5.9	4.6	-28.2	-23.6	16.20%	PASS
5600	8/10/2018	8/9/2019	1.195	3.925	3.81	-2.93%	1.1	1.05	-4.55%	53.1	51.2	1.9	6.2	4.6	1.6	-23.5	-26.4	-12.40%	PASS
5750	8/10/2018	8/9/2019	1.195	3.795	3.58	-5.67%	1.06	1	-5.66%	53.6	53.8	0.2	2.1	0.2	1.9	-27.9	-28.7	-3.00%	PASS

Object:	Date Issued:	Daga 2 of 4
D5GHzV2 – SN: 1237	08/09/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dere 2 of 4
D5GHzV2 – SN: 1237	08/09/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Deris 4 of 4
D5GHzV2 – SN: 1237	08/09/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG ...Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura - Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: D750V3-1003_Jan18

S

С

S

CALIBRATION	CERTIFICATE

Object	D750V3 - SN:1003						
alibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz							
Calibration date:	oundary 10, 2010						
This callbration certificate documents and the unce	ents the traceability to nat rtainties with confidence p	ional standards, which realize the physical un probability are given on the following pages an	d are part of the certificate				
		ry facility: environment temperature (22 \pm 3)°(02106/2010				
Calibration Equipment used (M&T							
Primary Slandards	ID#	Cal Date (Certificate No.)	Scheduled Calibration				
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)					
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18 Apr-18				
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18				
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18				
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18				
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18				
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18				
Secondary Standards	ID #	Check Date (in house)	Scheduled Check				
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18				
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18				
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	in house check: Oct-18				
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oci-18				
Nelwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18				
	Name	Function	Signature				
Calibrated by:	Ləlf Klysner	Laboratory Technician	Seaf The				
Approved by:	Katja Pokovic	Technical Manager	helly				
This calibration certificate shall no	l be reproduced except in	full without written approval of the laboratory	Issued: January 15, 2018				

ept in full without written approval of the laboratory.

Certificate No: D750V3-1003_Jan18

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero dl taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured
not applicable of not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

_

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.9 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.10 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.28 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.42 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.58 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.43 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.71 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω - 2.1 jΩ
Return Loss	- 27.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω - 6.2 jΩ
Return Loss	- 24.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.043 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 21, 2009

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom

SAM Head Phantom

For usage with cSAR3DV2-R/L

_ ._ _ . _

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	7.94 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.33 W/kg
SAR for nominal Head TSL parameters		

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.22 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.52 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.06 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.38 W/kg

SAR result with SAM Head (Ear)

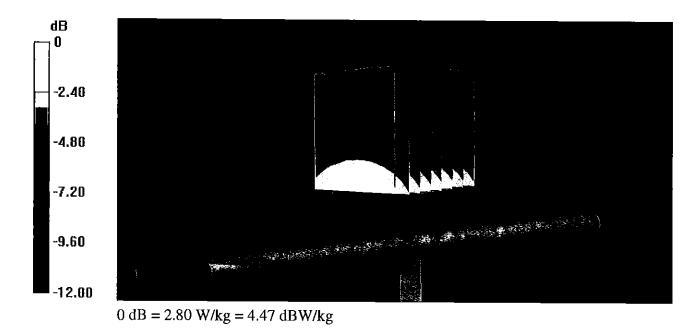
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.70 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head ISL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.15 W/kg

DASY5 Validation Report for Head TSL

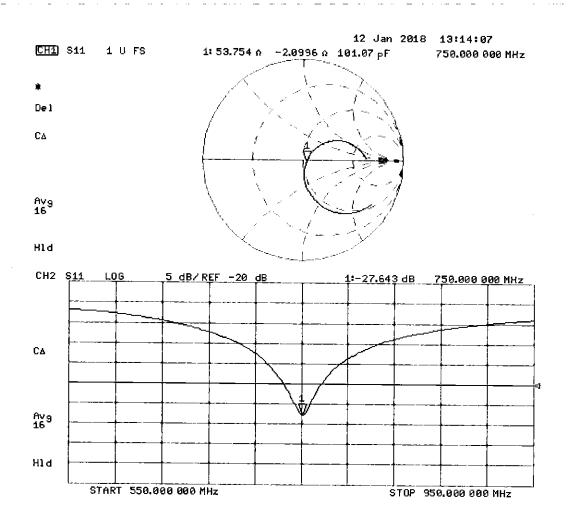
Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\epsilon_r = 40.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 59.11 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.15 W/kg SAR(1 g) = 2.1 W/kg; SAR(10 g) = 1.37 W/kg Maximum value of SAR (measured) = 2.80 W/kg

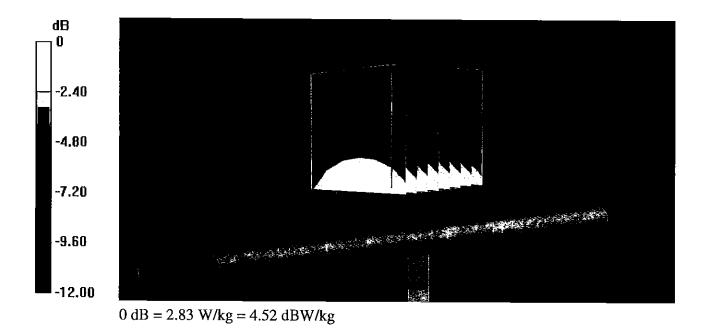
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

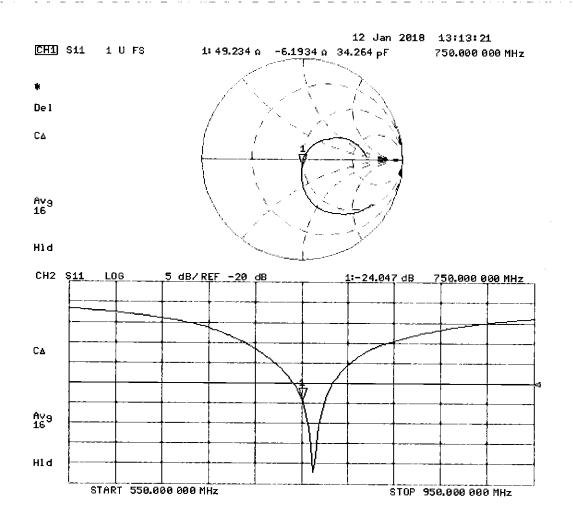
Date: 12.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\epsilon_r = 55$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.19, 10.19, 10.19); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x8x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.31 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.43 W/kg Maximum value of SAR (measured) = 2.83 W/kg

Impedance Measurement Plot for Body TSL

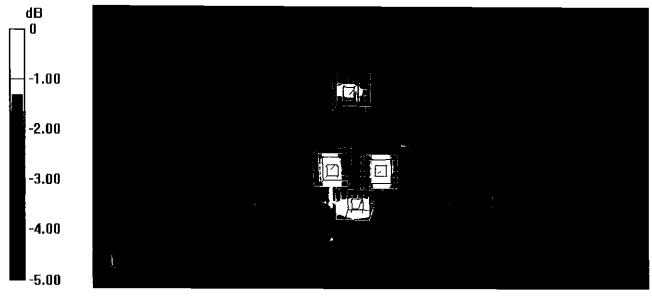
Date: 15.01.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1003

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9$ S/m; $\varepsilon_r = 44.2$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22); Calibrated: 30.12.2017;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.79 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.89 W/kg SAR(1 g) = 1.98 W/kg; SAR(10 g) = 1.33 W/kg Maximum value of SAR (measured) = 2.58 W/kg

SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.85 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 2.94 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.62 W/kg

SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.29 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 2.78 W/kg SAR(1 g) = 2.01 W/kg; SAR(10 g) = 1.38 W/kg Maximum value of SAR (measured) = 2.56 W/kg

SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.01 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.31 W/kg SAR(1 g) = 1.67 W/kg; SAR(10 g) = 1.15 W/kg Maximum value of SAR (measured) = 2.11 W/kg

0 dB = 2.58 W/kg = 4.12 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D750V3 - SN: 1003

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

1/15/2019

Extension Calibration date:

Description:

SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

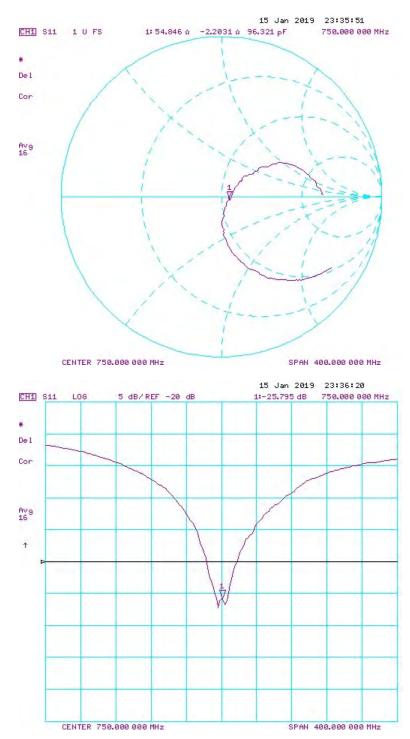
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer		Annual	2/8/2019	US39170122
Agilent	N5182A	MXG Vector Signal Generator	4/18/2018	Annual	4/18/2019	MY47420800
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1207364
Anritsu	MA2411B	Pulse Power Sensor	3/2/2018	Annual	3/2/2019	1339018
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./Clock/Humidity Monitor	3/31/2017	Biennial	3/31/2019	170232394
Control Company	4352	Ultra Long Stem Thermometer	5/2/2017	Biennial	5/2/2019	170330156
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	DAE4	Dasy Data Acquisition Electronics	10/3/2018	Annual	10/3/2019	1558
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091
SPEAG	EX3DV4	SAR Probe	8/23/2018	Annual	8/23/2019	7308
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409

Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

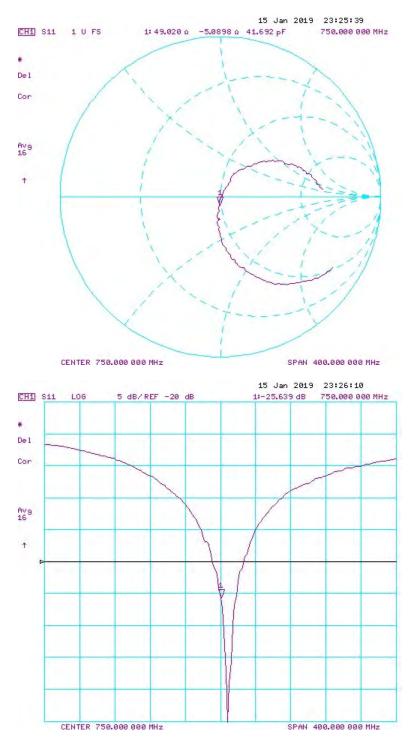
Object:	Date Issued:	Page 1 of 4
D750V3 – SN: 1003	01/15/2019	Fage 1 01 4

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Measured Head SAR (1g) W/kg @ 23.0 dBm		Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	(40-) 10/0-0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
1/15/2018	1/15/2019	1.043	1.656	1.75	5.68%	1.08	1.15	6.09%	53.8	54.8	1	-2.1	-2.2	0.1	-27.6	-25.8	6.50%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm			(10a) W/ka	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
1/15/2018	1/15/2019	1.043	1.716	1.84	7.23%	1.14	1.23	7.71%	49.2	49	0.2	-6.2	-5.1	1.1	-24	-25.6	-6.80%	PASS

Object:	Date Issued:	Page 2 of 4
D750V3 – SN: 1003	01/15/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dage 2 of 4
D750V3 – SN: 1003	01/15/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4	
D750V3 – SN: 1003	01/15/2019	Page 4 of 4	

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.:	SCS 0108

Certificate No: D750V3-1161_Oct18

S

С

PC Test Client

Dbject	D750V3 - SN:11(51	
Calibration procedure(s)	QA CAL-05 v10		
	Calibration proce	dure for dipole validation kits abo	we 700 MHz
Calibration date:	October 19, 2018	1	BN $\sqrt{\frac{8}{10-30-20}}$ its of measurements (SI). BN $\sqrt{\frac{20-20}{20}}$ d are part of the certificate. $10-20-2$
		Carlos Addina an ann an Sannan	10-30-2018
		onal standards, which realize the physical uni	its of measurements (SI). BN^{\vee}
he measurements and the uncerta	ainties with confidence p	robability are given on the following pages an	d are part of the certificate. 10^{-20}
All calibrations have been conducte	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)°(
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cai Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
	011. 7040		
	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
DAE4		04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house)	Oct-19 Scheduled Check
DAE4 Secondary Standards Power meter EPM-442A	SN: 601	Check Date (in house) 07-Oct-15 (in house check Oct-18)	
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 601 ID # SN: GB37480704 SN: US37292783	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: US37292783 SN: MY41092317 SN: 100972 SN: 100972 SN: US41080477	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by:	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Manu Seitz	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function Laboratory Technician	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditat

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

·····		
DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	51 MF 24 54	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.03 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.32 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.43 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.55 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.6 Ω - 1.9 jΩ	
Return Loss	- 25.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.6 Ω - 4.2 jΩ	
Return Loss	- 27.6 dB	

General Antenna Parameters and Design

Liectical Delay (one direction)	Electrical Delay (one direction)	1.032 ns
---------------------------------	----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

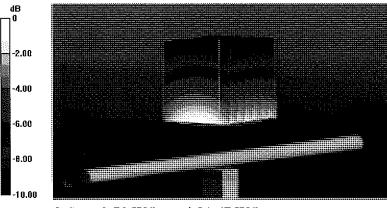
Manufactured by	SPEAG
Manufactured on	November 19, 2015

DASY5 Validation Report for Head TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89$ S/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.22, 10.22, 10.22) @ 750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 58.51 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.04 W/kg SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1.32 W/kg Maximum value of SAR (measured) = 2.70 W/kg

0 dB = 2.70 W/kg = 4.31 dBW/kg

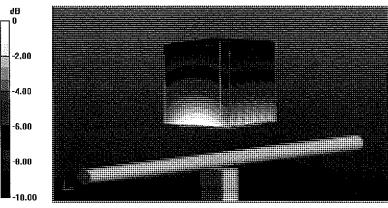
Ch1: Start 550.000 MHz Stop 950.000 MHz 10.00 10.00 5.00 1 0.00 1 5.00 1 10.00 1 5.00 1 10.00 1 5.00 1 10.00 1 5.00 1 10.00 1 10.00 1 10.00 1 10.00 1 10.00 1 10.00 1 10.00 1 10.00 1 10.00 1 10.00 1 25.00 1 25.00 1 30.00 1 35.00 1 40.00 Ch 1 Avg = 20 Ch1: Start 550.000 MHz Stop 950.000 MHz	Elle <u>V</u> iew <u>Channel</u> Sw <u>e</u> ep Ca <u>l</u> i Ch 1 Avg = 20	bration Trace Scale Mark	1: 750.000000	30 pF -1.9896 Ω
5.00 7.1.730000000000000000000000000000000000				Stop 950.000 MHz
	5.00 0.00 -5.00 -10.00 -15.00 -20.00 -25.00 -35.00 -40.00 Ch 1 Avg = 20		> 1: 750.00000	

DASY5 Validation Report for Body TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161


Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.96$ S/m; $\epsilon_r = 55.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.19, 10.19, 10.19) @ 750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 57.57 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.18 W/kg SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (measured) = 2.83 W/kg

0 dB = 2.83 W/kg = 4.52 dBW/kg

Impedance Measurement Plot for Body TSL

	ajibration <u>Trace</u> <u>Scale</u> <u>Mark</u>	er System Window Help 1: 750,000000 MH 51,109 g 2: 50,000000 MH	oF -4.1521 Ω
Ch 1 Avg = 20 Ch1: Start 550,000 MHz			8top 950.000 MHz
10.00 10.00 5.00		> 1: 750.00000 MH	12 -27.595 dB

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA

Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object

D750V3 – SN:1161

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: October 18, 2019

Description: S/

SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	4/24/2019	Annual	4/24/2020	7357
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1407

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

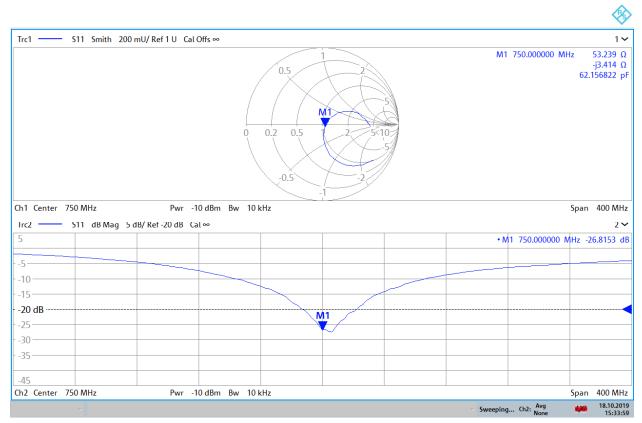
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Dogo 1 of 4
D750V3 – SN:1161	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

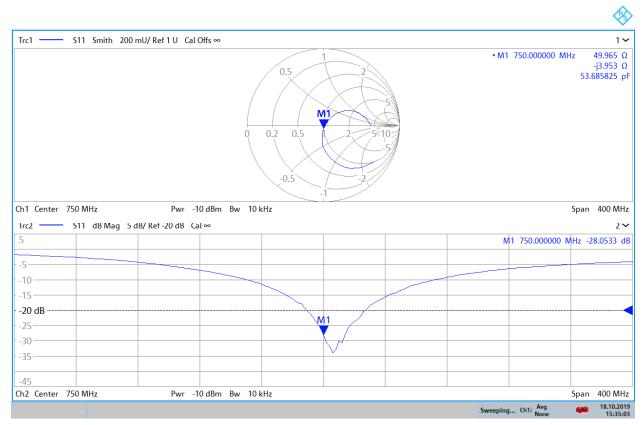
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Head SAR (1g)	(0/)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	(40-) 10/0-0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/19/2018	10/18/2019	1.032	1.61	1.64	2.12%	1.05	1.08	2.66%	55.6	53.2	2.4	-1.9	-3.4	1.5	-25	-26.8	-7.30%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0		(0/)	Certificate SAR Target Body (10g) W/kg @ 23.0	(40-) M///- @	Deviation 10g (%)		Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
			dBm	dDin		dBm	20.0 0.0111											

Object:	Date Issued:	Page 2 of 4
D750V3 – SN:1161	10/18/2019	Page 2 of 4


Impedance & Return-Loss Measurement Plot for Head TSL

15:34:00 18.10.2019

Object:	Date Issued:	Page 3 of 4
D750V3 – SN:1161	10/18/2019	Fage 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

15:35:04 18.10.2019

Object:	Date Issued:	Dago 4 of 4
D750V3 – SN:1161	10/18/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test Certificate No: D835V2-4d047 Mar19

CALIBRATION CERTIFICATE

Object	D835V2 - SN:4d0	047					
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Source	s between 0.7-3 GHz				
			gN ~				
Calibration date:	March 13, 2019		BN~ 04-12-2019				
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.							
Calibration Equipment used (M&TE	critical for calibration)						
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration				
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19				
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19				
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19				
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19				
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19				
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec18)	Dec-19				
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19				
Secondary Standards	ID #	Check Date (in house)	Scheduled Check				
Power meter E4419B	SN: GB39512475	07-Oct-15 (in house check Feb-19)	In house check: Oct-20				
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20				
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20				
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20				
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19				
	Name	Function	Signature				
Calibrated by:	Manu Seitz	Laboratory Technician	- Ale				
Approved by:	Katja Pokovic	Technical Manager	- Cliff				
This calibration cortificate shall not	he reproduced except in	full without written approval of the Jahoraton	Issued: March 13, 2019				

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

· · · · · · · · · · · · · · · · · · ·		
DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	····
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.42 W/kg ± 17.0 % (k=2)
		· · · ·
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.47 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.27 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 2.6 jΩ
Return Loss	- 30.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8 Ω - 6.1 jΩ
Return Loss	- 22.9 dB

General Antenna Parameters and Design

/ (one direction)	1.387 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

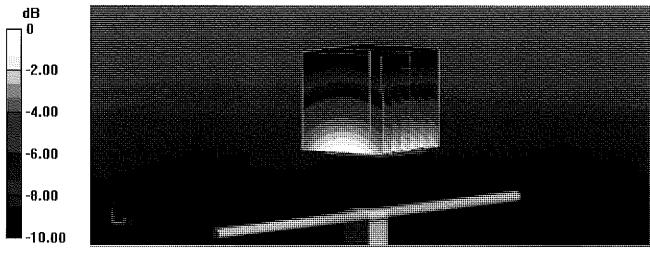
nufactured by	SPEAG
---------------	-------

DASY5 Validation Report for Head TSL

Date: 13.03.2019

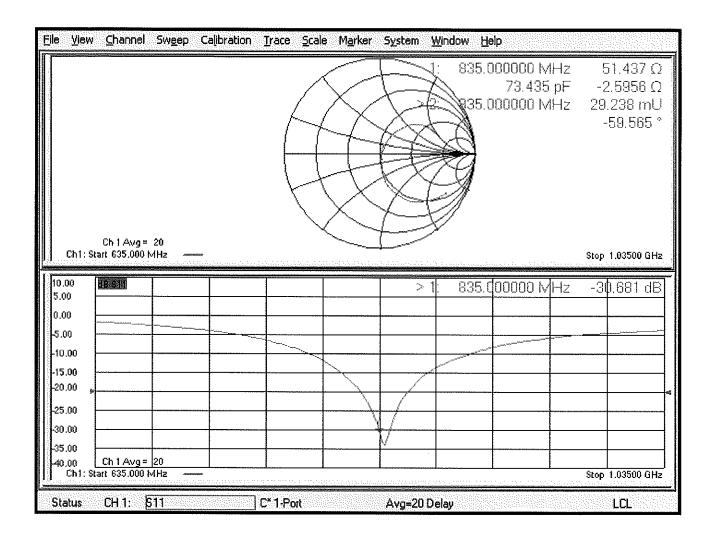
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.91 S/m; ϵ_r = 41.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 62.48 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg

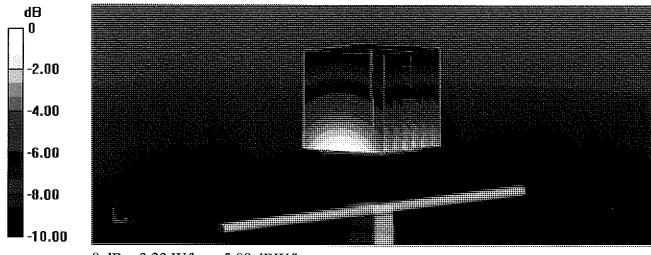
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.03.2019

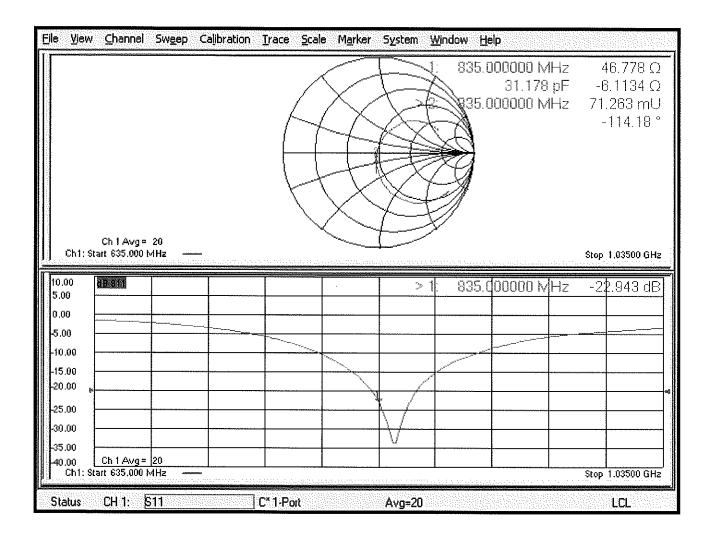
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.01$ S/m; $\varepsilon_r = 54.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.15, 10.15, 10.15) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 60.49 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.58 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.23 W/kg

0 dB = 3.23 W/kg = 5.09 dBW/kg

Impedance Measurement Plot for Body TSL

Calibration Laboratory of

PC Test

Client

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-4d132_Jan19

CALIBRATION CERTIFICATE

Object	D835V2 - SN:4d	132 (1997) (19	(addited a state on a second
	an an ann an		BN V 02/06/2019
Calibration procedure(s)	QA CAL-05.v11		
	Calibration Proce	dure for SAR Validation Sources	s between 0.7-3 GHz
Calibration date:	January 22, 2019		
This calibration certificate documer	nts the traceability to nati	ional standards, which realize the physical ur	nits of measurements (SI).
The measurements and the uncerte	aintles with confidence p	robability are given on the following pages ar	nd are part of the certificate.
All calibrations have been conducte	ed in the closed laborato	ry facility: environment temperature (22 \pm 3)°	C and humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
	1		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec18)	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
	l		
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Al	E a all	
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Solth
			ayng
Approved by:	Katja Pokovic	Technical Manager	and the second
rippiorod bj.			El 45
			Issued: January 22, 2019
This calibration certificate shall not	be reproduced except in	n full without written approval of the laboratory	<i>y</i> .
		··	

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.3 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.59 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head ⊤SL	condition	

SAR averaged over 10 cm° (10 g) of head SL	condition	
SAR measured	250 mW input power	1,58 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.23 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	0.99 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.67 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.35 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 3.6 jΩ
Return Loss	- 28.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω - 6.2 jΩ
Return Loss	- 23.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom

SAM Head Phantom

For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.38 W/kg ± 17.5 % (k=2)
	······································	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.5 7 W/kg

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.4 7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.86 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.65 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.58 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.42 W/kg ± 17.5 % (k=2)
	1	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	

SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.38 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.06 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.36 W/kg

normalized to 1W

5.42 W/kg ± 16.9 % (k=2)

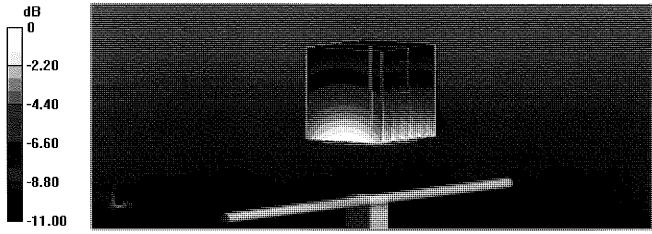
SAR for nominal Head TSL parameters

DASY5 Validation Report for Head TSL

Date: 17.01.2019

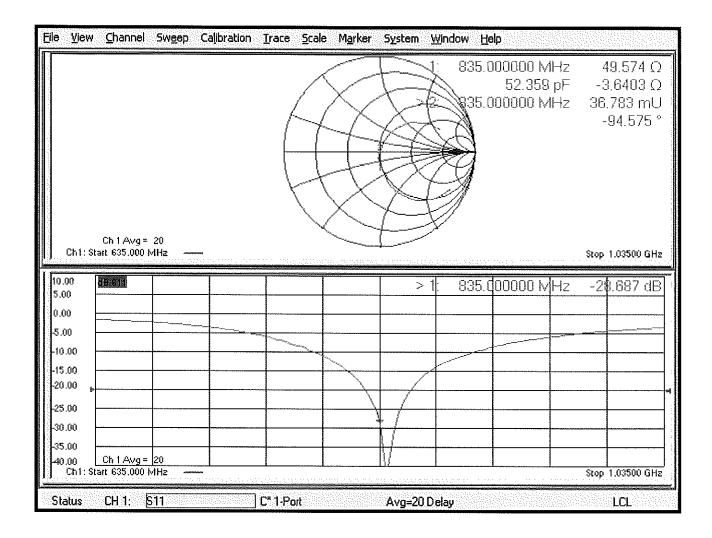
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 41.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 34.24 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.73 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.28 W/kg

0 dB = 3.28 W/kg = 5.16 dBW/kg

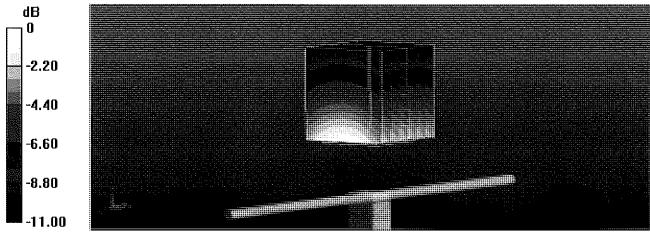
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 17.01.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132


Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99$ S/m; $\varepsilon_r = 54.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.15, 10.15, 10.15) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 63.32 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 3.64 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.26 W/kg

0 dB = 3.26 W/kg = 5.13 dBW/kg

Impedance Measurement Plot for Body TSL

DASY5 Validation Report for SAM Head

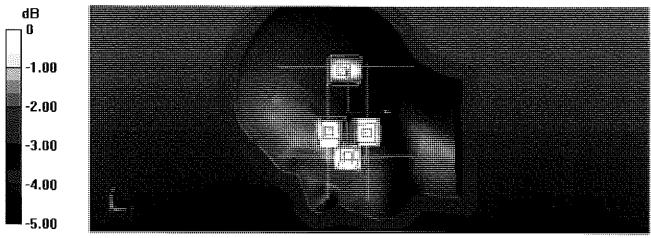
Date: 22.01.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d132

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 44.4$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: SAM Head
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

SAM/Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.32 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.51 W/kg SAR(1 g) = 2.35 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAR (measured) = 3.12 W/kg

SAM/Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.25 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.67 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.65 W/kg Maximum value of SAR (measured) = 3.24 W/kg

SAM/Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.69 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.43 W/kg SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 3.08 W/kg

SAM/Head/Ear/Zoom Scan (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.79 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 2.94 W/kg SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1.36 W/kg Maximum value of SAR (measured) = 2.62 W/kg

0 dB = 2.62 W/kg = 4.18 dBW/kg

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Certificate No: D1750V2-1148_May19

PC Test Client

CALIBRATION CERTIFICATE

Object	D1750V2 - SN:1*	148	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	dure for SAR Validation Sources	between 0.7-3 GHz BN ^V 05 ⁻²³⁻²⁰ 0
Calibration date:	May 15, 2019		05-23-20
The measurements and the uncerta	ainties with confidence p ed in the closed laborator	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 ± 3)°C	d are part of the certificate.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec18)	Dec-19
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seef Align
Approved by:	Katja Pokovic	Technical Manager	fll
This calibration certificate shall not	he reproduced except in	full without written approval of the laboratory	lssued: May 15, 2019

Calibration Laboratory of

Cleaser

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

¥	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.35 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.8 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 0.2 jΩ
Return Loss	- 37.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω - 0.5 jΩ
Return Loss	- 31.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.222 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.9 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.3 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.8 W/kg ± 17.5 % (k=2)
	· · · · · · · · · · · · · · · · · · ·	
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	5.04 W/kg

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.6 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.9 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	7.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	28.7 W/kg ± 17.5 % (k=2)

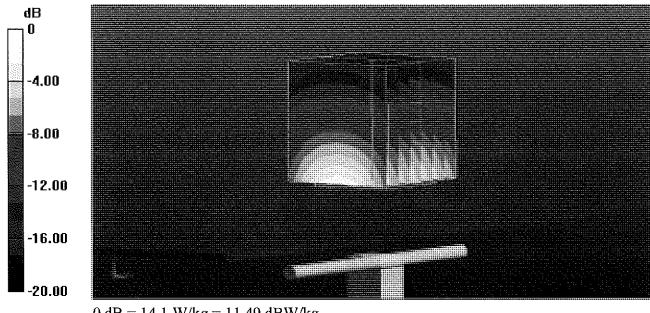
SAR averaged over 10 cm 3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	3.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	16.0 W/kg ± 16.9 % (k=2)

DASY5 Validation Report for Head TSL

Date: 08.05.2019

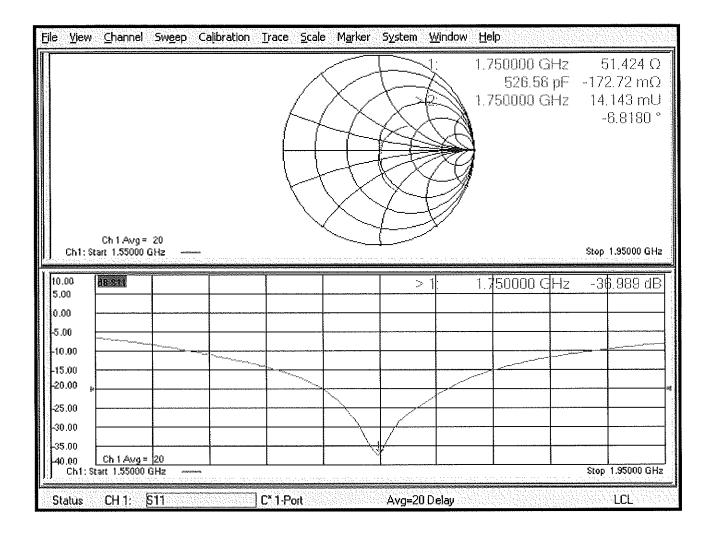
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.34$ S/m; $\epsilon_r = 40$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.59, 8.59, 8.59) @ 1750 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.8 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.13 W/kg; SAR(10 g) = 4.83 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

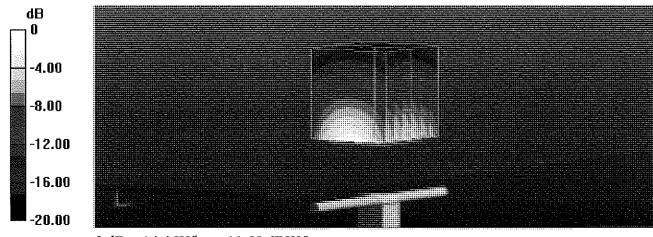
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

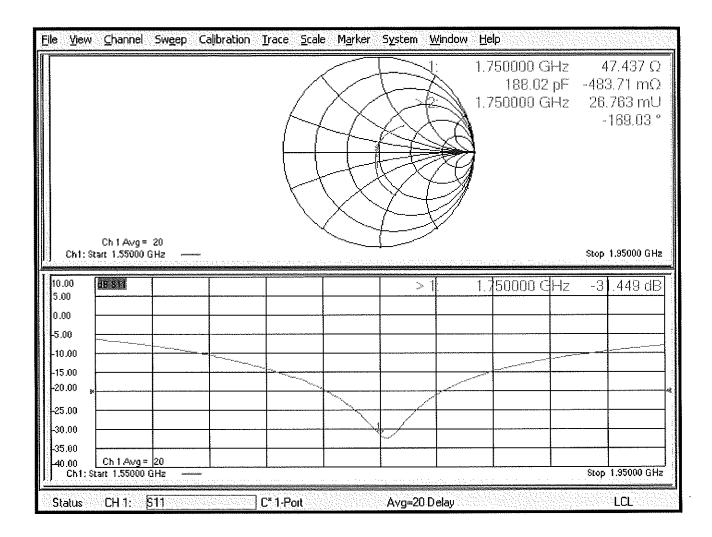
Date: 08.05.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.47 S/m; ϵ_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.43, 8.43, 8.43) @ 1750 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 103.1 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.35 W/kg; SAR(10 g) = 4.93 W/kg Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

DASY5 Validation Report for SAM Head

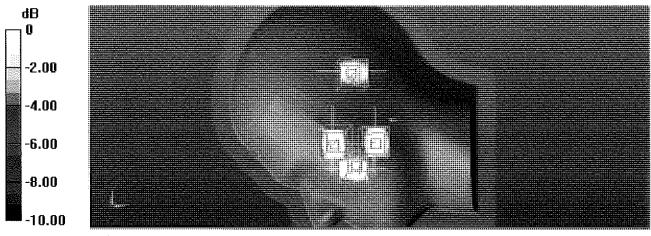
Date: 15.05.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.37 S/m; ϵ_r = 42.1; ρ = 1000 kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.59, 8.59, 8.59) @ 1750 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: SAM Head
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 107.2 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.38 W/kg; SAR(10 g) = 5.04 W/kg Maximum value of SAR (measured) = 14.2 W/kg

SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 16.5 W/kg SAR(1 g) = 9.34 W/kg; SAR(10 g) = 5.04 W/kg Maximum value of SAR (measured) = 13.9 W/kg

SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.3 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 15.5 W/kg SAR(1 g) = 9.06 W/kg; SAR(10 g) = 4.95 W/kg Maximum value of SAR (measured) = 13.1 W/kg

SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.82 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 12.0 W/kg SAR(1 g) = 7.11 W/kg; SAR(10 g) = 3.98 W/kg Maximum value of SAR (measured) = 10.2 W/kg

0 dB = 10.2 W/kg = 10.09 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

PC Test

Certificate No: D1750V2-1150_Oct18

Accreditation No.: SCS 0108

CALIBRAT	ON CERTIFICATE	

Object	D1750V2 SN.11	50	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits above.	700 MHz
Calibration date:	October 22, 2018		10/30/2018 10/30/2018 BNV 10-20-2019
	•	onal standards, which realize the physical units of robability are given on the following pages and are	measurements (51).
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 ± 3)°C and	3 humidity < 70%.
Calibration Equipment used (M&TE	critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	M.WELET
Approved by:	Katja Pokovic	Technical Manager	<u>CCUS</u>
This calibration certificate shall not	be reproduced except in	n full without written approval of the laboratory.	Issued: October 22, 2018

Certificate No: D1750V2-1150_Oct18

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

- S Service suisse d'étalonnage С
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole ٠ positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. ٠ No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature Permittivity		Conductivity	
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1.33 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.2 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity 1.49 mho/m	
Nominal Body TSL parameters	22.0 °C	53.4		
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.46 mho/m ± 6 %	
Body TSL temperature change during test	< 0.5 °C			

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.04 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	36.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.82 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.9 Ω - 0.4 jΩ
Return Loss	- 40.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.6 Ω - 0.1 jΩ
Return Loss	- 29.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.217 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

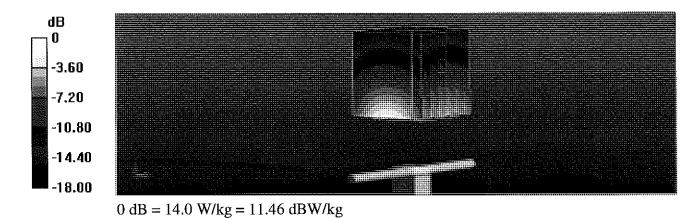
Manufactured by	SPEAG
Manufactured on	April 10, 2015

DASY5 Validation Report for Head TSL

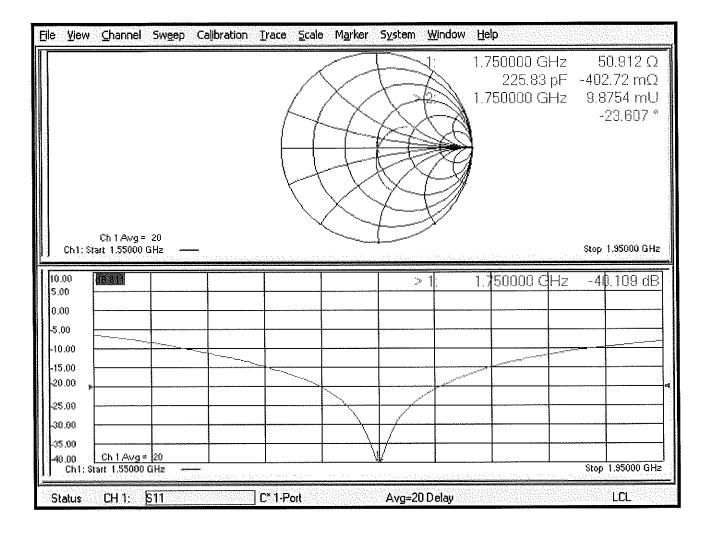
Date: 22.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.33$ S/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electromics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 108.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.76 W/kg Maximum value of SAR (measured) = 14.0 W/kg

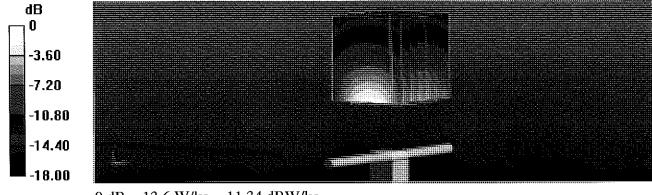
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 22.10.2018

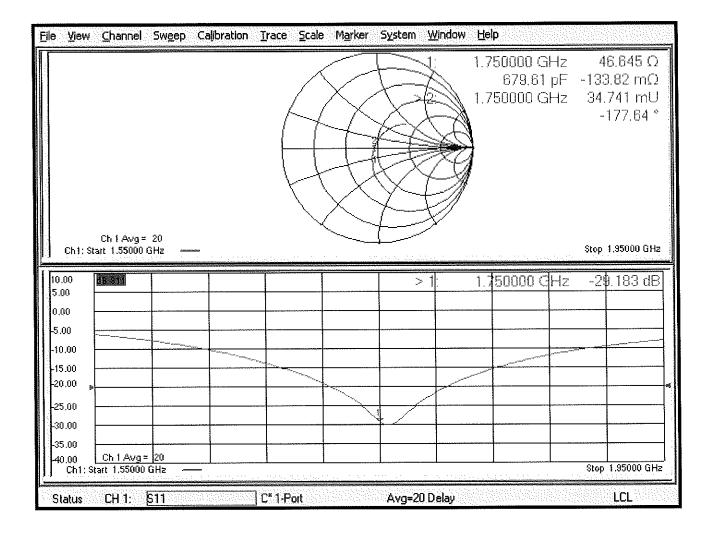
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1150


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.46 S/m; ϵ_r = 53.5; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 102.1 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 16.0 W/kg SAR(1 g) = 9.04 W/kg; SAR(10 g) = 4.82 W/kg Maximum value of SAR (measured) = 13.6 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1750V2 - SN:1150

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

October 18, 2019

Extended Calibration date:

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	8/16/2019	Annual	8/16/2020	7308
SPEAG	EX3DV4	SAR Probe	4/24/2019	Annual	4/24/2020	7357
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1407
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/14/2019	Annual	8/14/2020	1450

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

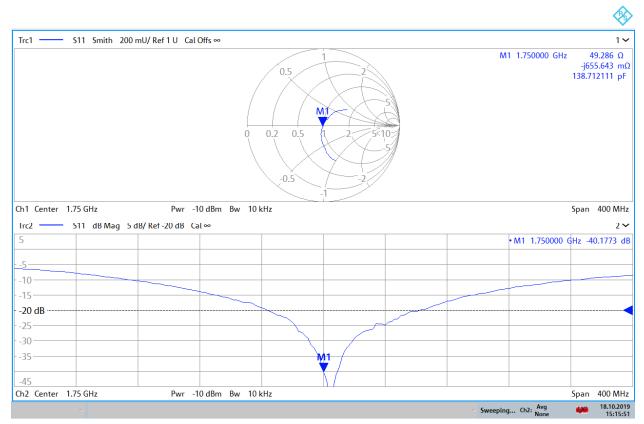
Measurement Uncertainty = $\pm 23\%$ (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	ROK

Object:	Date Issued:	Dogo 1 of 4
D1750V2 – SN:1150	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

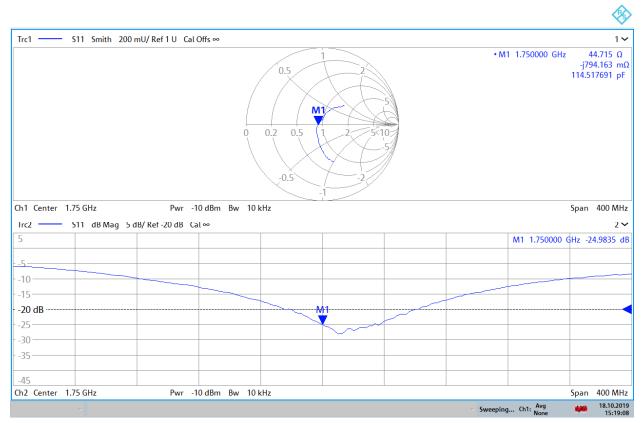
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Head SAR (1g)	(0/)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(40-) 10/0-0	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/22/2018	10/18/2019	1.217	3.65	3.8	4.11%	1.92	2	4.17%	50.9	49.3	1.6	0.4	-0.7	1.1	-40.1	-40.2	-0.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm		Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/22/2018	10/18/2019	1.217	3.66	3.82	4.37%	1.94	2.02	4.12%	46.6	44.7	1.9	-0.1	-0.8	0.7	-29.2	-25	14.40%	PASS

Object:	Date Issued:	Page 2 of 4
D1750V2 - SN:1150	10/18/2019	Faye 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

15:15:52 18.10.2019

Object:	Date Issued:	Page 3 of 4
D1750V2 – SN:1150	10/18/2019	raye 5 01 4

Impedance & Return-Loss Measurement Plot for Body TSL

15:19:09 18.10.2019

Object:	Date Issued:	Daga 4 of 4
D1750V2 – SN:1150	10/18/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client PC Test

Client PC Test			No: D1765V2-1008_May18
SALEIDINAMUON	DERITICAT	2	
Object	D1765V2-SN:1	008	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	edure for dipole validation kits at	BN 20Ve 700 MHz 7/16/2018 BN 05/2012
Calibration date:	May 23, 2018		BN 9 05 (2012
This calibration certificate docum The measurements and the unce	ents the traceability to nat rtainties with confidence p	tional standards, which realize the physical u probability are given on the following pages a	inits of measurements (SI).
		bry facility: environment temperature (22 \pm 3)	
Calibration Equipment used (M&	TE critical for calibration)		
rimary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
eference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
eference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
AE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
econdary Standards	ID #	Check Date (in house)	Scheduled Check
ower meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Ocl-16)	In house check: Oct-18
ower sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
ower sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
F generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
etwork Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
. n		Function	Signature
alibrated by:	Manu:Seitz	Laboratory Technician	Fef-
pproved by:	Katja Pokovic	Technical Manager	2 min
			L'AG

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	······
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.71 W/kg
o/a mouodicu		in r tonig

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.92 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.9 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.7 Ω - 6.5 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.3 Ω - 6.0 jΩ
Return Loss	- 20.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.210 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2005

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

Phantom SAM Head Phantom For usage with cSAR3DV	2-R/L
---	-------

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.4 W/kg ± 17.5 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.95 W/kg

SAR result with SAM Head (Mouth)

Condition	
250 mW input power	9.47 W/kg
normalized to 1W	38.2 W/kg ± 17.5 % (k=2)
	250 mW input power

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.4 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.4 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

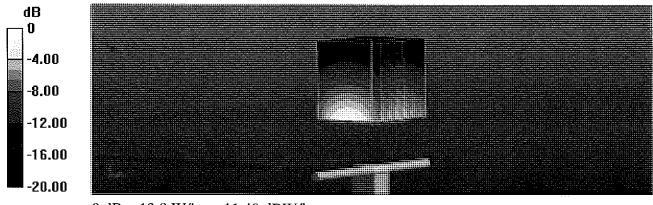
SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition			
SAR measured	250 mW input power	7.12 W/kg		
SAR for nominal Head TSL parameters	normalized to 1W	28.7 W/kg ± 17.5 % (k=2)		
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition			
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	4.01 W/kg		

DASY5 Validation Report for Head TSL

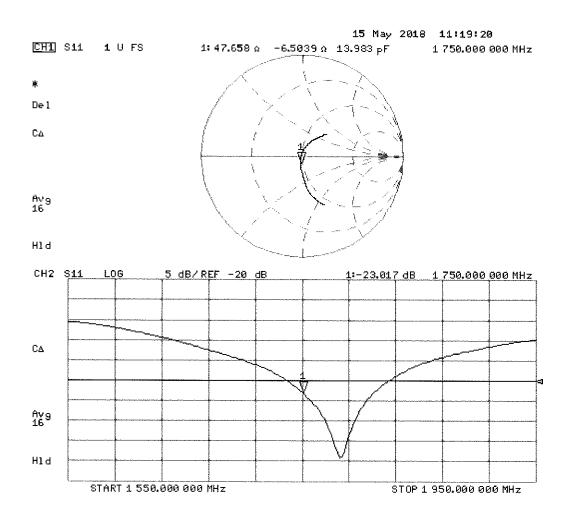
Date: 15.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008


Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.34 S/m; ϵ _r = 39; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

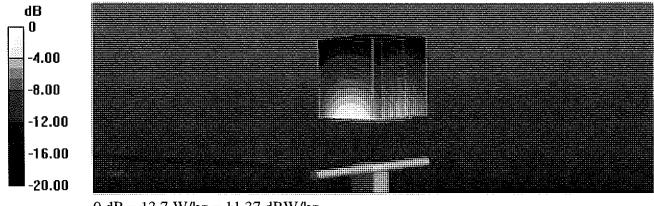
Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 106.6 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 8.94 W/kg; SAR(10 g) = 4.71 W/kg Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

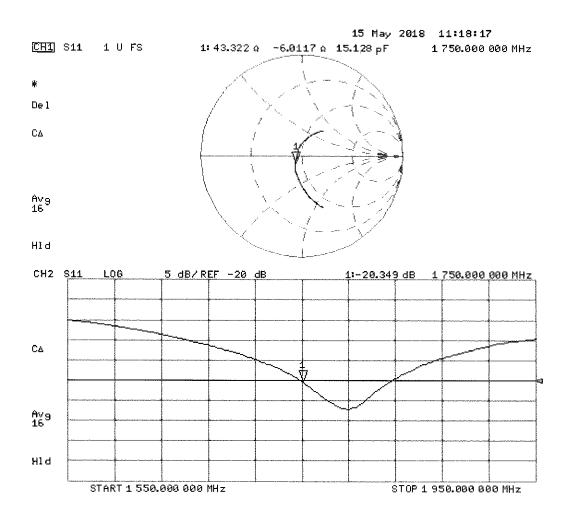
DASY5 Validation Report for Body TSL

Date: 15.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland


DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; σ = 1.46 S/m; ϵ_r = 53.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)


DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.35, 8.35, 8.35) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm Reference Value = 102.4 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 16.1 W/kg SAR(1 g) = 9.21 W/kg; SAR(10 g) = 4.92 W/kg Maximum value of SAR (measured) = 13.7 W/kg

0 dB = 13.7 W/kg = 11.37 dBW/kg

DASY5 Validation Report for SAM Head

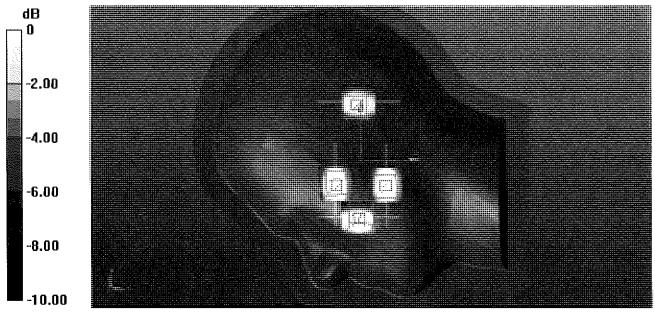
Date: 23.05.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1765 MHz; Type: D1765V2; Serial: D1765V2 - SN:1008

Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.37$ S/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.5, 8.5, 8.5) @ 1750 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: SAM Head
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

SAM/Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.8 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 16.4 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 4.95 W/kg Maximum value of SAR (measured) = 13.9 W/kg

SAM/Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 104.2 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.6 W/kg SAR(1 g) = 9.47 W/kg; SAR(10 g) = 5.06 W/kg Maximum value of SAR (measured) = 13.7 W/kg

SAM/Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.7 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 15.8 W/kg SAR(1 g) = 9.26 W/kg; SAR(10 g) = 5.02 W/kg Maximum value of SAR (measured) = 13.8 W/kg

SAM/Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 90.46 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 7.12 W/kg; SAR(10 g) = 4.01 W/kg Maximum value of SAR (measured) = 10.3 W/kg

0 dB = 10.3 W/kg = 10.13 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1765V2 - SN: 1008

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extension Calibration date: 5/17/2019

Description:

SAR Validation Dipole at 1750 MHz.

Calibration Equipment used:

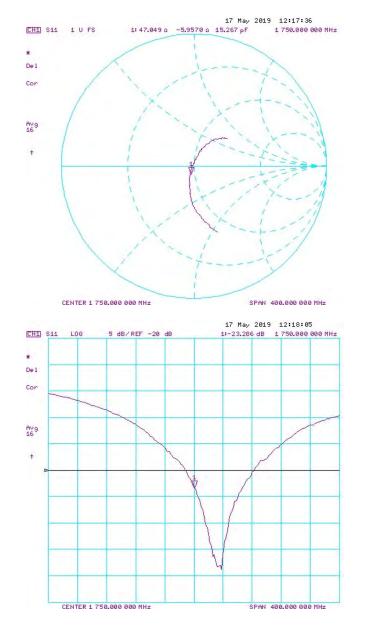
Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	8753ES	S-Parameter Network Analyzer	3/11/2019	Annual	3/11/2020	US39170122
Agilent	N5182A	MXG Vector Signal Generator	11/28/2018	Annual	11/28/2019	MY47420603
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Anritsu	MA2411B	Pulse Power Sensor	11/20/2018	Annual	11/20/2019	1027293
Anritsu	MA2411B	Pulse Power Sensor	10/30/2018	Annual	10/30/2019	1126066
Anritsu	ML2495A	Power Meter	10/21/2018	Annual	10/21/2019	941001
Control Company	4040	Therm./ Clock/ Humidity Monitor	10/9/2018	Biennial	10/9/2020	181647811
Control Company	4352	Ultra Long Stem Thermometer	6/6/2018	Biennial	6/6/2020	181334678
Keysight	772D	Dual Directional Coupler	CBT	N/A	CBT	MY52180215
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	6/4/2018	Annual	6/4/2019	MY53401181
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Seekonk	NC-100	Torque Wrench	7/11/2018	Annual	7/11/2019	N/A
SPEAG	EX3DV4	SAR Probe	6/25/2018	Annual	6/25/2019	7409
SPEAG	DAE4	Dasy Data Acquisition Electronics	6/18/2018	Annual	6/18/2019	1334
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272
SPEAG	DAK-3.5	Dielectric Assessment Kit	9/11/2018	Annual	9/11/2019	1091

Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Test Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

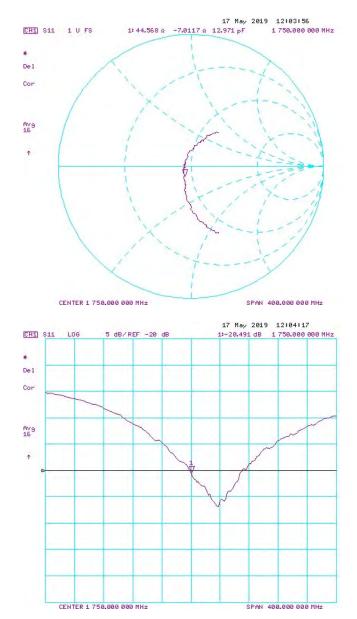
Object:	Date Issued:	Page 1 of 4
D1765V2 – SN: 1008	05/17/2019	Fage 1014

DIPOLE CALIBRATION EXTENSION


Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:

- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:


Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
5/23/2019	5/17/2019	1.21	3.62	3.63	0.28%	1.9	1.92	1.05%	47.7	47	0.7	-6.5	-6	0.5	-23	-23.3	-1.20%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(9()	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	(10a) W/ka @	Deviation 10g (%)		Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
5/23/2019	5/17/2019	1.21	3.74	3.95	5.61%	1.99	2.08	4.52%	43.3	44.6	1.3	-6	-7	1	-20.3	-20.5	-0.90%	PASS

Object:	Date Issued:	Dogo 2 of 4
D1765V2 – SN: 1008	05/17/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

Object:	Date Issued:	Dago 2 of 4
D1765V2 – SN: 1008	05/17/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

Object:	Date Issued:	Page 4 of 4
D1765V2 – SN: 1008	05/17/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: S	SCS 01	08
----------------------	--------	-----------

Certificate No: D1900V2-5d080_Oct18

Client PC Test

	D1900V2 - SN:50	1080	
alibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	
			$BN^{1/2}$ 10-30-2018 $BN^{1/2}$ ts of measurements (SI). $10-20-2$
alibration date:	October 23, 2018		10-30-2018
he measurements and the uncerta	aintles with confidence p ed in the closed laborato	onal standards, which realize the physical uni robability are given on the following pages an ry facility: environment temperature (22 \pm 3)°C	d are part of the certificate.
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
ower sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
leference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
ype-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
eterence Probe EX3DV4		,	
	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 601	04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house)	Oct-19 Scheduled Check
AE4 secondary Standards	1		
AE4 econdary Standards /ower meter EPM-442A	1D #	Check Date (in house)	Scheduled Check
AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A	ID # SN: GB37480704	Check Date (in house) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20
AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A	ID # SN: GB37480704 SN: US37292783	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: GB37480704 SN: US37292783 SN: MY41092317	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19
AE4 econdary Standards ower meter EPM-442A ower sensor HP 8481A ower sensor HP 8481A F generator R&S SMT-06 letwork Analyzer Agilent E8358A	ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) Function	Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-19

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TO	Atomical advantation of Hannial
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end • of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed • point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	VJZ.10.2
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.8 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.18 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.62 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	39.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.6 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.5 Ω + 7.9 jΩ
Return Loss	- 21.8 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.1 Ω + 8.1 jΩ
Return Loss	- 21.5 dB

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

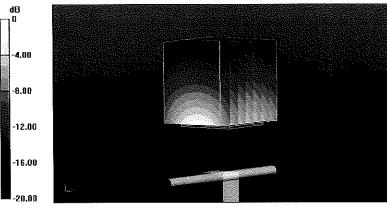
Manufactured by	SPEAG
Manufactured on	June 28, 2006

DASY5 Validation Report for Head TSL

Date: 23.10.2018

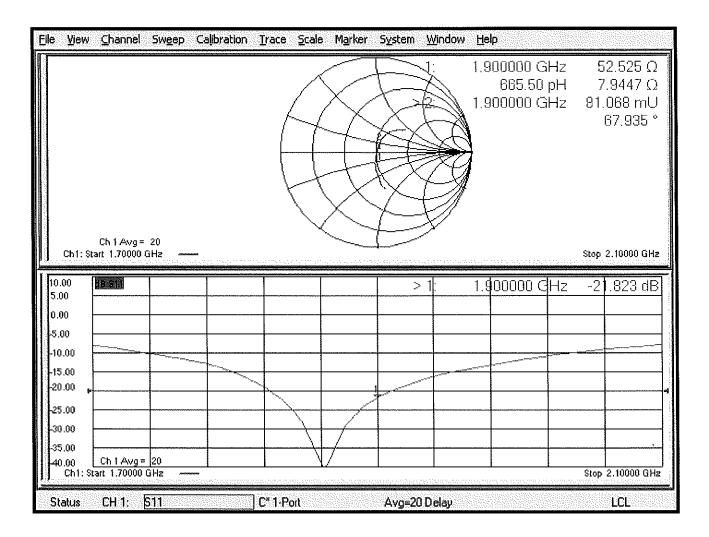
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.4$ S/m; $\varepsilon_r = 40.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 110.0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.7 W/kg SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 15.6 W/kg

0 dB = 15.6 W/kg = 11.93 dBW/kg

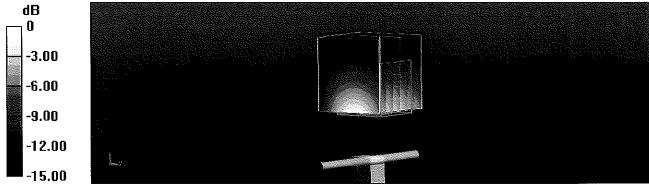
Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

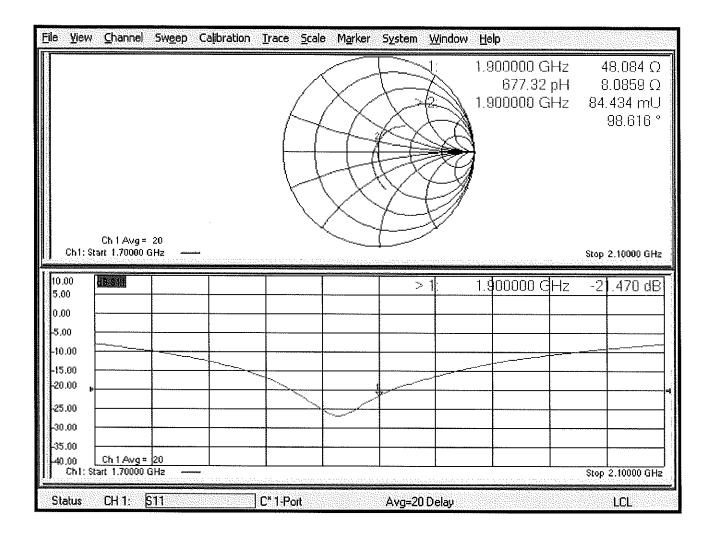
Date: 23.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d080


Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.47 S/m; ϵ_r = 52.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:


- Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15) @ 1900 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.86 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.3 W/kg SAR(1 g) = 9.62 W/kg; SAR(10 g) = 5.09 W/kg Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

PCTEST ENGINEERING LABORATORY, INC. 7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654

http://www.pctest.com

Certification of Calibration

Object

D1900V2 - SN:5d080

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

October 18, 2019

Extended Calibration date:

Description:

SAR Validation Dipole at 1900 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	2/19/2019	Annual	2/19/2020	3914
SPEAG	EX3DV4	SAR Probe	5/16/2019	Annual	5/16/2020	7406
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/8/2019	Annual	5/8/2020	859
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/14/2019	Annual	2/14/2020	1272

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

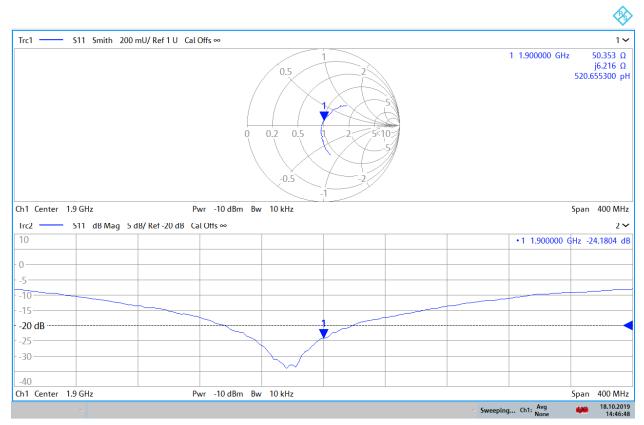
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XOK

Object:	Date Issued:	Page 1 of 4
D1900V2 – SN: 5d080	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 20.0 dBm	Measured Head SAR (1g) W/kg @ 20.0 dBm	(96)	Certificate SAR Target Head (10g) W/kg @ 20.0 dBm	Measured Head SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/23/2018	10/18/2019	1.193	3.98	4.16	4.52%	2.07	2.13	2.90%	52.5	50.4	2.1	7.9	6.2	1.7	-21.8	-24.2	-10.90%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 20.0 dBm	Measured Body SAR (1g) W/kg @ 20.0 dBm	(0/)	Certificate SAR Target Body (10g) W/kg @ 20.0 dBm	Measured Body SAR (10g) W/kg @ 20.0 dBm	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/23/2018	10/18/2019	1.193	3.92	4.21	7.40%	2.06	2.16	4.85%	48.1	46.5	1.6	8.1	6.6	1.5	-21.5	-22.2	-3.40%	PASS

Object:	Date Issued:	Dogo 2 of 4
D1900V2 – SN: 5d080	10/18/2019	Page 2 of 4

Impedance & Return-Loss Measurement Plot for Head TSL

14:46:49 18.10.2019

Object:	Date Issued:	Page 3 of 4
D1900V2 – SN: 5d080	10/18/2019	Fage 5 01 4