

MPE Calculation

Applicant:	Zhejiang Lingzhu Technology Co., Ltd.	
Address:	Room 302,No 1 Building Huace Center,Xihu District, Hangzhou City,	
	Zhejiang Province,China	
FCC ID:	2BEWXSC162	
Product:	Smart Battery Doorbell	
Model No.:	SC162-WCE3, SC162-WCE3A, SC162-WCE3B, SC162-WCD3, SC162-WCB3, SC162-WCC3, SC162-WCB3A, SC162-WCC3A, SC162-WCD3A, SC162-WCB4, SC162-WCB4A, SC162-WCC4, SC162-WCC5A, SC162-WCD5, SC162-WCD5A	
Reference RF report #	709502310219-01B, 709502310219-01C, 709502310219-00D	

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure						
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)		
0.3–1.34	614	1.63	*(100)	30		
1.34–30	824/f	2.19/f	*(180/f²)	30		
30–300	27.5	0.073	0.2	30		
300–1,500	/	1	f/1500	30		
1,500–100,000	/	/	1.0	30		

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. mW/cm²);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Report No: 709502310219-01E

Calculated Data for Wi-Fi

Maximum peak output power at antenna input terminal (dBm):	24.51
Maximum peak output power at antenna input terminal (mW):	282.488
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	0.45
Maximum Antenna Gain (numeric):	1.1092
The worst case is power density at predication frequency at 20 cm (mW/cm²):	0.0623
MPE limit for general population exposure at prediction frequency (mW/cm²):	1.0

The max power density $0.0623 \text{ (mW/cm}^2\text{)} < 1 \text{ (mW/cm}^2\text{)}$

Result: Compliant

Calculated Data for BLE

Maximum peak output power at antenna input terminal (dBm):	8.08
Maximum peak output power at antenna input terminal (mW):	6.397
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	0.45
Maximum Antenna Gain (numeric):	1.1092
The worst case is power density at predication frequency at 20 cm (mW/cm²):	0.0014
MPE limit for general population exposure at prediction frequency (mW/cm²):	1.0

The max power density $0.0014 \text{ (mW/cm}^2\text{)} < 1 \text{ (mW/cm}^2\text{)}$ Result: Compliant

Report No: 709502310219-01E

Calculation method for 433.92MHz

$$EIRP = p_t \times g_t = (E \times d)^2 / 30$$

where

 $p_{\rm t}$ is the transmitter output power in watts

 g_t is the numeric gain of the transmitting antenna (dimensionless)

E is the electric field strength in V/m

d is the measurement distance in meters (m)

$ERP = EIRP / 1.64 = (E \times d)^2 / (30 \times 1.64) = (E \times d)^2 / 49.2$

For 433.92MHz.

1 01 1001021111121			
Field Strength (EMeas):	90.45(dBuV/m)=0.0333V/m		
	(f=433.92 MHz)		
Measurement distance (d):	3 (m)		
ERP (W):	0.000203W		
ERP (mW):	0.203mW		

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4 \pi R^2 = power density (in appropriate units, e.g. mW/cm²);$

PG =0.203mW (in appropriate units, e.g., mW);

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

The max power density $0.203 \text{mW}/4 \text{ m R}^2 = 4.0385*10^{-5} \text{(mW/cm}^2\text{)} < 0.28928 \text{ (mW/cm}^2\text{)}$

Result: Compliant

Simultaneous transmission of MPE test exclusion for worst case configuration

(1) Wi-Fi: the ratio is 0.0623/1 433.92MHz:the ratio is 4.0385*10⁻⁵/ 0.28928=1.3961*10⁻⁴

The sum of the MPE ratios for all simultaneous transmitting antennas (433.92+2.4G Wi-Fi): $0.0623+1.3961*10^{-4}=0.062439$

As the sum of MPE ratios for all simultaneous transmitting antennas is \leq 1.0, simultaneous transmission MPE test exclusion will be applied.

(2) BLE: the ratio is 0.0015/1 433.92MHz:the ratio is 4.0385*10⁻⁵/ 0.28928=1.3961*10⁻⁴

The sum of the MPE ratios for all simultaneous transmitting antennas: $0.0015+1.3961*10^{-4}=0.0016396$

As the sum of MPE ratios for all simultaneous transmitting antennas is \leq 1.0, simultaneous transmission MPE test exclusion will be applied.

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by: Prepared by: Tested by:

Jiaxi XU Hui TONG

Tianji XU

1-- 000F 00 00 P-1-- 000F 00 00 P-1-- 000F 00 00

EMC Project Engineer

Date: 2025-02-26 Date: 2025-02-26 Date: 2025-02-26

EMC Reviewer Engineer

EMC Test Engineer