

0659

FCC Radio Test Report

FCC ID: CJ6PYT0XPC

: BTL-FCCP-3-2103T163 Report No. : Notebook Computer Equipment

Model Name : dynabook E10-S, SATELLITE PRO E10-S, dynabook E10W-S,

SATELLITE PRO E10W-S

Brand Name : dynabook : Dynabook Inc. Applicant

Address : 6-15, Toyosu 5-chome, Koto-ku, Tokyo 135-8505, Japan

Radio Function : WLAN 2.4 GHz

FCC Rule Part(s) : FCC Part15, Subpart C (15.247)

Measurement Procedure(s)

: ANSI C63.10-2013

Date of Receipt

: 2021/3/30

Date of Test : 2021/3/30 ~ 2021/4/21

Issued Date : 2021/4/26

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Approved by

Scott Hsu , Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2103T163 Page 2 of 83 Report Version: R00

CONTENTS REVISON HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 1.2 7 1.3 TEST ENVIRONMENT CONDITIONS 7 1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING 8 1.5 DUTY CYCLE 9 **GENERAL INFORMATION** 2 10 2.1 **DESCRIPTION OF EUT** 10 2.2 **TEST MODES** 11 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 12 2.4 SUPPORT UNITS 12 3 AC POWER LINE CONDUCTED EMISSIONS TEST 13 13 3.1 LIMIT 3.2 **TEST PROCEDURE** 13 3.3 **DEVIATION FROM TEST STANDARD** 13 3.4 TEST SETUP 14 14 3.5 **TEST RESULT** 4 RADIATED EMISSIONS TEST 15 4.1 LIMIT 15 4.2 TEST PROCEDURE 16 **DEVIATION FROM TEST STANDARD** 4.3 16 **TEST SETUP** 4.4 16 4.5 **EUT OPERATING CONDITIONS** 17 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 18 4.7 TEST RESULT – ABOVE 1 GHZ 18 5 **BANDWIDTH TEST** 19 5.1 LIMIT 19 5.2 **TEST PROCEDURE** 19 **DEVIATION FROM TEST STANDARD** 19 5.3 5.4 **TEST SETUP** 19 5.5 **EUT OPERATING CONDITIONS** 19 **TEST RESULT** 5.6 19 **OUTPUT POWER TEST** 6 20 LIMIT 20 6.1 **TEST PROCEDURE** 20 6.2 6.3 **DEVIATION FROM TEST STANDARD** 20 6.4 **TEST SETUP** 20 **EUT OPERATING CONDITIONS** 6.5 20 6.6 **TEST RESULT** 20 7 POWER SPECTRAL DENSITY 21 7.1 LIMIT 21 7.2 TEST PROCEDURE 21 7.3 **DEVIATION FROM TEST STANDARD** 21 7.4 **TEST SETUP** 21 7.5 **EUT OPERATING CONDITIONS** 21 7.6 TEST RESULT 21 8 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST 22

8.1	LIMIT		22
8.2	TEST	PROCEDURE	22
8.3	DEVIA	ATION FROM TEST STANDARD	22
8.4	TEST	SETUP	22
8.5	EUT C	PERATING CONDITIONS	22
8.6	TEST	RESULT	22
9	LIST OF	MEASURING EQUIPMENTS	23
10	EUT TES	ST PHOTO	25
11	EUT PHO	DTOS	25
APPEND	IX A	AC POWER LINE CONDUCTED EMISSIONS	26
APPEND	IX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	31
APPEND	IX C	RADIATED EMISSIONS - ABOVE 1 GHZ	34
APPEND	IX D	BANDWIDTH	67
APPEND	IX E	OUTPUT POWER	72
APPEND	IX F	POWER SPECTRAL DENSITY	74
APPEND	IX G	ANTENNA CONDUCTED SPURIOUS EMISSIONS	79

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-3-2103T163	R00	Original Report.	2021/4/26

Project No.: 2103T163 Page 5 of 83 Report Version: R00

SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

FCC Part 15, Subpart C (15.247)							
Standard(s) Section	Description	Test Result	Judgement	Remark			
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass				
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C	Pass				
15.247(a)	Bandwidth	APPENDIX D	Pass				
15.247(b)	Output Power	APPENDIX E	Pass				
15.247(e)	Power Spectral Density	APPENDIX F	Pass				
15.247(d)	Antenna conducted Spurious Emission	APPENDIX G	Pass				
15.203	Antenna Requirement		Pass				

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

Project No.: 2103T163 Page 6 of 83 Report Version: R00

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

 $oxed{\boxtimes}$ C05 $oxed{\Box}$ CB08 $oxed{\Box}$ CB11 $oxed{\boxtimes}$ CB15 $oxed{\Box}$ CB16

⋈ SR05

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 \mathbf{U}_{cisor} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB15	1 GHz ~ 6 GHz	5.21
CB15	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

C. Conducted test:

Test Item	U,(dB)
Bandwidth	1.13
Output power	1.06
Power Spectral Density	1.20
Conducted Spurious emissions	1.14
Conducted Band edges	1.13

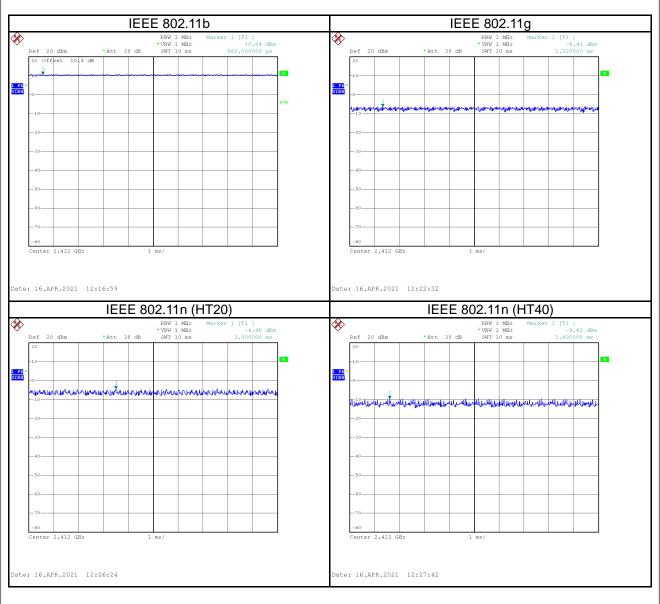
NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	24 °C, 62 %	AC 120V	William Wei
Radiated emissions below 1 GHz	22 °C, 61 %	AC 120V	Hunter Chiang
Radiated emissions above 1 GHz	22 °C, 61 %	AC 120V	Hunter Chiang
Bandwidth	25.1 °C, 54 %	AC 120V	Connor Xie
Output Power	21.2 °C, 52 %	AC 120V	Connor Xie
Power Spectral Density	21.2 °C, 52 %	AC 120V	Connor Xie
Antenna conducted Spurious Emission	21.2 °C, 52 %	AC 120V	Connor Xie

1.4 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING


Test Software		Realtek MP v0.00	001.12.20161226	
Mode	2412 MHz	2437 MHz	2462 MHz	Data Rate
IEEE 802.11b	42	41	40	1 Mbps
IEEE 802.11g	41	41	40	6 Mbps
IEEE 802.11n (HT20)	44	43	42	MCS 0
Mode	2422 MHz	2437 MHz	2452 MHz	Data Rate
IEEE 802.11n (HT40)	43	44	44	MCS 0

1.5 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Iviode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
IEEE 802.11b	1.000	1	1.000	1.000	100.00%	0.00
IEEE 802.11g	1.000	1	1.000	1.000	100.00%	0.00
IEEE 802.11n (HT20)	1.000	1	1.000	1.000	100.00%	0.00
IEEE 802.11n (HT40)	1.000	1	1.000	1.000	100.00%	0.00

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Notebook Computer
Model Name	dynabook E10-S, SATELLITE PRO E10-S, dynabook E10W-S, SATELLITE PRO E10W-S
Brand Name	dynabook
Model Difference	Different model distribute to different area.
Power Source	(1) DC Voltage supplied from AC/DC adapter. (2) Battery supplied.
Power Rating	(1) I/P: 100-240V~50 / 60Hz, 1.5A, O/P:19V==2.1A, 39.9W (2) I/P: DC 7.6V, 6000mAh, 45.6Wh
Products Covered	1 * Power Adapter: BSY / BSY065T1902102D 1 * Battery: 4588105-2S
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2412 MHz ~ 2462 MHz
Modulation Technology	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM
Transfer Rate	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 150 Mbps
Output Power Max.	IEEE 802.11b: 19.20 dBm (0.0832 W) IEEE 802.11g: 21.67 dBm (0.1469 W) IEEE 802.11n (HT20): 21.89 dBm (0.1545 W) IEEE 802.11n (HT40): 22.08 dBm (0.1614 W)
Test Model	dynabook E10-S
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

(2) Channel List:

(Z) Chamile Lieu	(2) 0116.11101									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)					
01	2412	05	2432	09	2452					
02	2417	06	2437	10	2457					
03	2422	07	2442	11	2462					
04	2427	08	2447							

(3) Table for Filed Antenna:

Antenna	Manufacture	Antenna Part Number	Туре	Connector	Frequency (MHz)	Gain (dBi)
					2400-2500	1.95
Main	SLEing	SLEingB222060295	PIFA	MHF Plug(IV)	5150-5250	1.64
					5725-5850	1.48
					2400-2500	1.79
Aux	SLEing	SLEingB222070515	PIFA	MHF Plug(IV)	5150-5250	1.63
					5725-5850	1.96

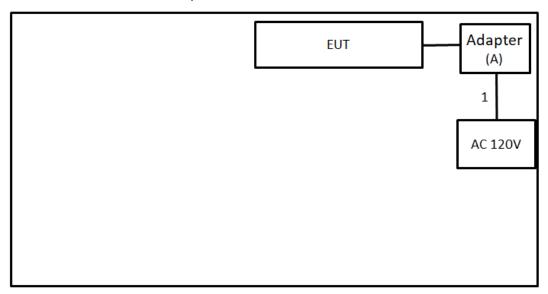
NOTE: The EUT only support SISO mode.

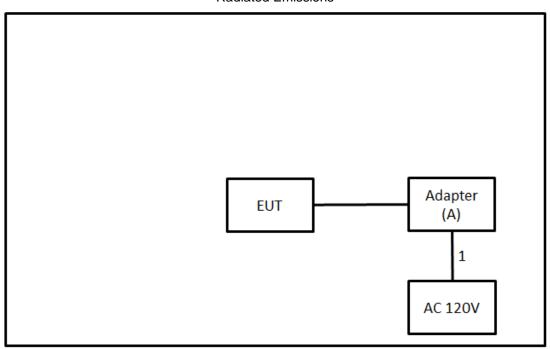
Project No.: 2103T163 Page 10 of 83 Report Version: R00

2.2 **TEST MODES**

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	TX Mode_IEEE 802.11b	01	-
	TX Mode_IEEE 802.11b		
	TX Mode_IEEE 802.11g	01/11	Bandedge
Transmitter Radiated Emissions	TX Mode_IEEE 802.11n (HT20)		
(above 1GHz)	TX Mode_IEEE 802.11b		
	TX Mode_IEEE 802.11g	01/06/11	Harmonic
	TX Mode_IEEE 802.11n (HT20)		
Bandwidth &	TX Mode_IEEE 802.11b		
Power Spectral Density &	TX Mode_IEEE 802.11g	01/06/11	-
Antenna conducted Spurious Emission	TX Mode_IEEE 802.11n (HT20)		
	TX Mode_IEEE 802.11b		
Output Power	TX Mode_IEEE 802.11g	01/06/11 -	
	TX Mode_IEEE 802.11n (HT20)		

NOTE:


- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.
 (3) There were no emissions found below 30 MHz within 20 dB of the limit.


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Adapter	BSY	BYS065T1902102 D	N/A	Supplied by test requester

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1.8m	Power Cord	Supplied by test requester

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBμV)
(MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56 *	56 - 46 *
0.50 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	=	-18.33

The following table is the setting of the receiver.

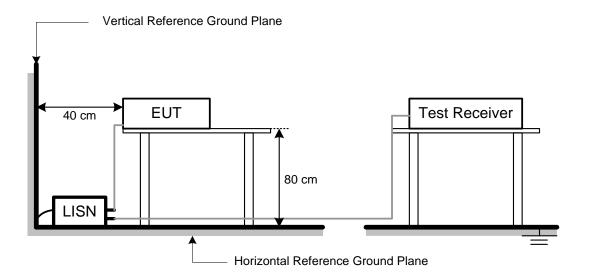
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


3.3 DEVIATION FROM TEST STANDARD

No deviation.

Project No.: 2103T163 Page 13 of 83 Report Version: R00

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency	Radiated Emissions (dBuV/m)		Measurement Distance (meters)	
(MHz) Peak		Average	(meters)	
Above 1000	74	54	3	

NOTE:

- (1) The limit for radiated test was performed according to FCC Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

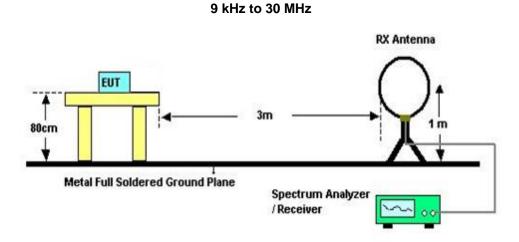
Reading Level		Correct Factor		Measurement Value
19.11	+	2.11	=	21.22

Measurement Value		Limit Value		Margin Level
21.22	-	54	=	-32.78

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

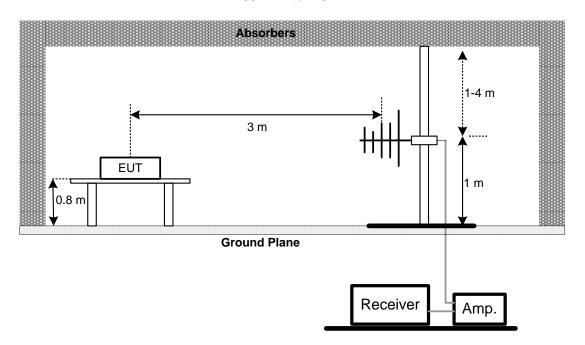
Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

Project No.: 2103T163 Page 15 of 83 Report Version: R00

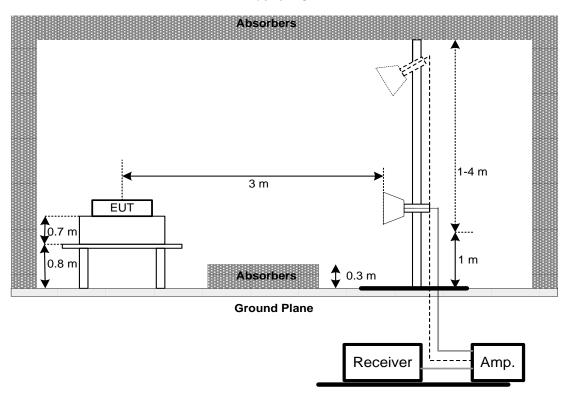

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD


No deviation.

4.4 TEST SETUP



30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

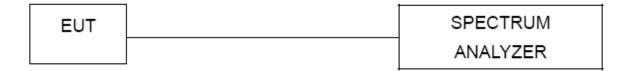
	R	eport No.: BTL-FCCP-3-2103T163
4.6	TEST RESULT – 30 MHZ TO 1 GHZ	
Plea	se refer to the APPENDIX B.	
4.7	TEST RESULT – ABOVE 1 GHZ	
Plea	se refer to the APPENDIX C.	
TON	E:	
	(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output terms.	le. st.

Project No.: 2103T163 Page 18 of 83 Report Version: R00

5 BANDWIDTH TEST

5.1 LIMIT

FCC Part15, Subpart C (15.247)				
Section Test Item Limit				
15.247(a)	6 dB Bandwidth	500 kHz		


5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULT

Please refer to the APPENDIX D.

6 OUTPUT POWER TEST

6.1 LIMIT

FCC Part15, Subpart C (15.247)				
Section Test Item Limit				
15.247(b)	Maximum Output Power	1 Watt or 30dBm		

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.
- Subclause 11.9.1.1 of ANSI C63.10 is applied. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
 The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and

6.3 DEVIATION FROM TEST STANDARD

shall use a fast-responding diode detector.

No deviation.

6.4 TEST SETUP

EUT	Power Meter
	1 0 11 01 11 10 10 1

6.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULT

Please refer to the APPENDIX E.

7 POWER SPECTRAL DENSITY

7.1 LIMIT

FCC Part15, Subpart C (15.247)				
Section	Limit			
15.247(e)	Power Spectral Density	8 dBm (in any 3 kHz)		

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 3 kHz, VBW = 10 kHz, Sweep time = Auto.

7.3 DEVIATION FROM TEST STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

7.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULT

Please refer to the APPENDIX F.

8 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST

8.1 LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 100 kHz, VBW=300 kHz, Sweep time = Auto.
- c. Offset = antenna gain + cable loss.

8.3 DEVIATION FROM TEST STANDARD

No deviation.

8.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

8.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

8.6 TEST RESULT

Please refer to the APPENDIX G.

9 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101050	2020/6/11	2021/6/10
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2020/6/8	2021/6/7
3	EMI Test Receiver	R&S	ESCI	100080	2020/6/15	2021/6/14
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

	Radiated Emissions						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Preamplifier	EMCI	EMC02325B	980217	2021/4/8	2022/4/7	
2	Preamplifier	EMCI	EMC012645B	980267	2021/4/8	2022/4/7	
3	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2021/4/8	2022/4/7	
4	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7	
5	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7	
6	MXE EMI Receiver	Agilent	N9038A	MY554200087	2020/6/10	2021/6/9	
7	Signal Analyzer	Agilent	N9010A	MY56480554	2020/8/25	2021/8/24	
8	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2020/6/12	2021/6/11	
9	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2020/7/9	2021/7/8	
10	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2020/7/24	2021/7/23	
11	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2020/7/24	2021/7/23	
12	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A	

	Bandwidth					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14

			Output Power			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14
2	Power Meter	Anritsu	ML2487A	6K00004714	2020/9/3	2021/9/2
3	Power Sensor	Anritsu	MA2491A	034138	2020/9/3	2021/9/2

Project No.: 2103T163 Page 23 of 83 Report Version: R00

Power Spectral Density											
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14					

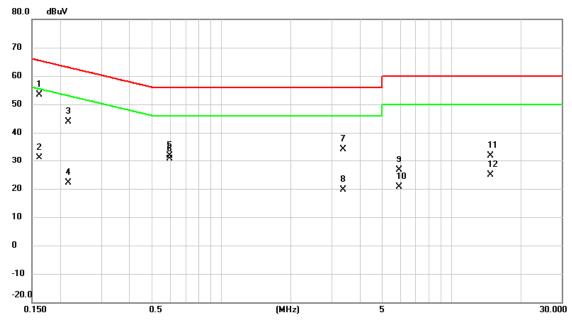
	Antenna conducted Spurious Emission										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until					
1	Spectrum Analyzer	R&S	FSP 40	100129	2020/6/15	2021/6/14					

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.

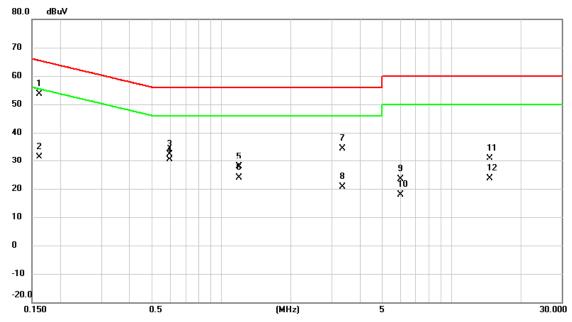
Project No.: 2103T163 Page 24 of 83 Report Version: R00

10 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2103T163-FCCP-1 (APPENDIX-TEST PHOTOS).
11 EUT PHOTOS
Please refer to document Appendix No.: EP-2103T163-1 (APPENDIX-EUT PHOTOS).
Thouse refer to deciment Appendix 146 En 21661 166 1 (All 1 ENDIX EGT 1116166).


Project No.: 2103T163 Page 25 of 83 Report Version: R00

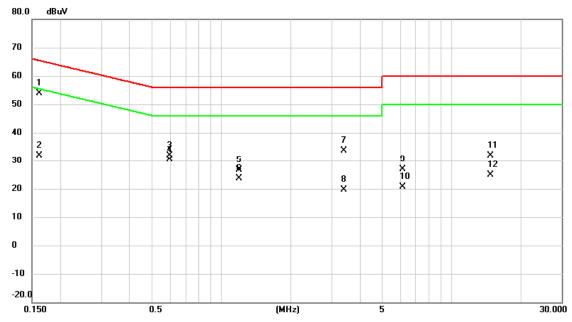
APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2103T163 Page 26 of 83 Report Version: R00


Test Mode	Normal	Tested Date	2021/4/23
Test Frequency	-	Phase	Line

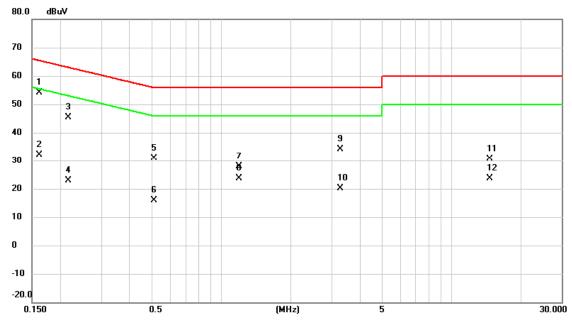
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.1613	43.80	9.68	53.48	65.40	-11.92	QP	
2	0.1613	21.40	9.68	31.08	55.40	-24.32	AVG	
3	0.2153	34.10	9.67	43.77	63.00	-19.23	QP	
4	0.2153	12.51	9.67	22.18	53.00	-30.82	AVG	
5	0.5977	22.31	9.68	31.99	56.00	-24.01	QP	
6	0.5977	20.84	9.68	30.52	46.00	-15.48	AVG	
7	3.3608	24.43	9.77	34.20	56.00	-21.80	QP	
8	3.3608	9.80	9.77	19.57	46.00	-26.43	AVG	
9	5.9123	16.80	9.84	26.64	60.00	-33.36	QP	
10	5.9123	10.69	9.84	20.53	50.00	-29.47	AVG	
11	14.7683	21.88	9.94	31.82	60.00	-28.18	QP	
12	14.7683	14.91	9.94	24.85	50.00	-25.15	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


Test Mode	Normal	Tested Date	2021/4/23
Test Frequency	-	Phase	Neutral

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.1613	44.04	9.68	53.72	65.40	-11.68	QP	
2	0.1613	21.68	9.68	31.36	55.40	-24.04	AVG	
3	0.5955	22.73	9.68	32.41	56.00	-23.59	QP	
4	0.5955	20.75	9.68	30.43	46.00	-15.57	AVG	
5	1.1940	18.15	9.70	27.85	56.00	-28.15	QP	
6	1.1940	14.08	9.70	23.78	46.00	-22.22	AVG	
7	3.3450	24.66	9.77	34.43	56.00	-21.57	QP	
8	3.3450	10.90	9.77	20.67	46.00	-25.33	AVG	
9	6.0248	13.54	9.84	23.38	60.00	-36.62	QP	
10	6.0248	7.94	9.84	17.78	50.00	-32.22	AVG	
11	14.6670	20.83	9.94	30.77	60.00	-29.23	QP	
12	14.6670	13.64	9.94	23.58	50.00	-26.42	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


Test Mode	Idle	Tested Date	2021/4/23
Test Frequency	-	Phase	Line

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.1613	44.29	9.68	53.97	65.40	-11.43	QP	
2	0.1613	22.24	9.68	31.92	55.40	-23.48	AVG	
3	0.5977	22.30	9.68	31.98	56.00	-24.02	QP	
4	0.5977	20.80	9.68	30.48	46.00	-15.52	AVG	
5	1.1940	17.05	9.70	26.75	56.00	-29.25	QP	
6	1.1940	13.81	9.70	23.51	46.00	-22.49	AVG	
7	3.3900	23.89	9.77	33.66	56.00	-22.34	QP	
8	3.3900	9.87	9.77	19.64	46.00	-26.36	AVG	
9	6.1395	17.12	9.85	26.97	60.00	-33.03	QР	
10	6.1395	10.66	9.85	20.51	50.00	-29.49	AVG	
11	14.7345	21.82	9.94	31.76	60.00	-28.24	QР	
12	14.7345	14.85	9.94	24.79	50.00	-25.21	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2021/4/23
Test Frequency	-	Phase	Neutral

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.1613	44.51	9.68	54.19	65.40	-11.21	QP	
2	0.1613	22.50	9.68	32.18	55.40	-23.22	AVG	
3	0.2153	35.78	9.67	45.45	63.00	-17.55	QP	
4	0.2153	13.21	9.67	22.88	53.00	-30.12	AVG	
5	0.5100	21.11	9.68	30.79	56.00	-25.21	QP	
6	0.5100	6.16	9.68	15.84	46.00	-30.16	AVG	
7	1.1940	18.30	9.70	28.00	56.00	-28.00	QP	
8	1.1940	14.01	9.70	23.71	46.00	-22.29	AVG	
9	3.2820	24.38	9.77	34.15	56.00	-21.85	QP	
10	3.2820	10.36	9.77	20.13	46.00	-25.87	AVG	
11	14.6558	20.78	9.94	30.72	60.00	-29.28	QP	
12	14.6558	13.65	9.94	23.59	50.00	-26.41	AVG	

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Project No.: 2103T163 Report Version: R00 Page 30 of 83

APPENDIX B	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2103T163 Page 31 of 83 Report Version: R00

	_	Test Mo	ode		IEEE	802.11b			٦	Test Date		202	1/4/14	
	Tes	st Frequ	uency			2MHz			Р	olarizatio	n	Ve	rtical	
		Temp)		2	2°C				Hum.		6	1%	
80.0	dB	uV/m												7
70														
60														-
50														
40									4		5 X	6 ×		
30	1 X	2 X		X X										
20														
10														
0.0														
).000	127.00				418.00	515.		612.		9.00 806	.00	1000.00	МН
No	0.	Mk.	Freq.		ading evel	Correct Facto		easure- ment	•	Limit	Over			
			MHz	dE	₿uV	dB	d	BuV/m	(dBuV/m	dB	Detector	Comm	ent
1			44.8410) 38	3.08	-8.25		29.83		40.00	-10.17	QP		
2	2		109.216	7 36	3.88	-11.53	3	25.35		43.50	-18.15	peak		
3	3		299.336	7 35	.75	-7.38		28.37		46.00	-17.63	peak		
4		*	599.099	0 39	.77	-0.65		39.12		46.00	-6.88	peak		
5	5		733.605	7 33	3.49	1.56		35.05		46.00	-10.95	peak		
6	3		871.475	0 31	.72	3.73		35.45		46.00	-10.55	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	IEEE	802.11b		Test Date		202	1/4/14	
Tes	st Frequ	iency	241	2MHz		Polarizatio	n	Hori	zontal	
	Temp)	2	2°C		Hum.		6	1%	
80.0 dB	BuV/m									7
70										
60										
50										
40	*	2			4 *	5		6		
30		2 X	×							
20										
10 —— 0.0										
30.000	127.00	224.00	321.00	418.00	515.00 6	12.00 709	3.00 806	i. 00	1000.00	_ мн:
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comme	ent
1	*	86.1953	47.64	-14.01	33.63	40.00	-6.37	peak		
2		187.6896	40.21	-10.40	29.81	43.50	-13.69	peak		
3		322.8753	35.68	-6.81	28.87	46.00	-17.13	peak		
4		558.5530	35.90	-1.60	34.30	46.00	-11.70	peak		
5		597.9996	39.27	-0.67	38.60	46.00	-7.40	peak		
6		895.2722	35.38	4.07	39.45	46.00	-6.55	peak		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2103T163 Page 34 of 83 Report Version: R00

	Te	est Mo	de		IEEE	802.11b				Test Da	te	2021/4/13			
	Test	Frequ				2MHz			Ρ	olarizat	ion		zontal		
		Temp)		2	2°C				Hum.		6	1%		
130.0	dBu\	V/m												_	
120															
110							i	_							
100							- / 5	3						-	
90							\perp	\perp						-	
80							_	-						-	
70														-	
60 <u> </u>						1	ν	V	1				5		
50	الوطاعياني	****	A STANSON AND A STANSON AND AND AND AND AND AND AND AND AND AN	Karagadh	your retail	*2\./ X			,	Andrew Professor	and the second	Carlette Warner of Wheel	haramhaliste 6	N -1	
40													×		
30 _														-	
20														-	
10.0															
		2332.0			2372.00	2392.00	2412		243			72.00	2512.00	МН	
No.	•	Mk.	Freq.	ŀ	Reading Level	Correct Facto		easure ment)-	Limit	Over				
			MHz		dBuV	dB	d	BuV/m		dBuV/n	n dB	Detector	Comm	ent	
1			2386.43	3	28.84	30.77	7	59.61		74.00	-14.39	peak			
2	2		2386.43	3	20.78	30.77	7	51.55		54.00	-2.45	AVG			
3		Χ	2412.00	0	76.22	30.88	3 1	107.10		74.00	33.10	peak	NoLimi		
4		*	2412.00	0	72.69	30.88	3 1	03.57		54.00	49.57	AVG	NoLin	nit	
5			2504.84	0	26.92	31.25	5 ;	58.17		74.00	-15.83	peak			
6			2504.84	_	13.16	31.25		44.41		54.00	-9.59	AVG			

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

		est M				802.1					Test D					21/4/13		
	Test		quency				2MH	Z			Р	olariz)			rizontal	
		Tem	ıp			2	2°C					Hur	n.				61%	
130.0 T	dBu	V/m																_
120																		
10																		
									į									
00									/3	1								
90									1	\rightarrow								
30										\								_
70																		\dashv
60	X X	,			Adam to the state of the state			hall			John Mary	م المعاديد عالم	le. 11ke			5 Www.www.		1.4
50	Part of the Contract of the Co	AND - Market	the state of the s	Act, to be selected	- Capia de la ciliana de	A CONTRACTOR OF THE PERSON AND	"MANAGEMENT	W				Perdudis., 141	la vitriana	The state of the	encharde.		Also Market Market	WQW.
40																X		
	2 X																	
30																		
20																		\dashv
10.0																		
		2382.		102.00	2422		2442		2462			2.00		2.00	2522	2.00	2562.0	00 MI
No).	Mk.	FI	eq.	Rea Le			rrect ctor		easu ment		Lim	π	Ove	er			
			М	Hz	dB			dB		3uV/		dBu√	//m	dE	3	Detecto	r Comi	ment
1			2366	3.327	26.	29	30).70	Ę	6.99)	74.0	00	-17.	01			
2			2366	3.327	4.()2	30).70	(34.72	2	54.0	00	-19.28		AVG		
3		Χ		2.000	71.03			.08	102.			74.0		28.11		peak	NoL	
4		*		2.000	67.			.08	8 98.51 54		54.0		44.5		AVG	NoL	imit	
5				.440	26.			.35		57.89		74.0		-16.		peak		
6			2529	.440	14.	86	31	.35	4	16.21		54.0	00	-7.7	79	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo			802.11g		Test Date			1/4/13
	Test Frequ			I2MHz		Polarization	n		zontal
	Temp)	2	2°C		Hum.		6	1%
130.0	dBuV/m								
120									
110									
10					/ may harm				
00					1 1				
10					* \				
io				-++	- \				
·o									
					Yny				
i0 -			the proportion of the other of	**************************************		MA		Markey Markey	5
io 🛗	Market Chert Property	the windshire windship owners	Hampithan bearing the first the of	2		* Motoring of Physics (no.	Tenderly by by the block of the	Marine Telephone Telephone	6
				×					×
10 -									
:0									
20									
0.0	200 2000	2000000	0070.00	2000 00	2440.00	100.00	-0.00		
	.000 2332.0 Mk.			2392.00		132.00 245 Limit		2.00	2512.00 Mi
No.	IVIK.	Freq.	Reading Level	Correct Factor	Measure- ment	LIIIIII	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2389.047		30.78	58.34	74.00	-15.66	peak	Common
2		2389.047		30.78	45.90	54.00	-8.10	AVG	
3	Х	2412.000		30.88	105.12	74.00	31.12	peak	NoLimit
4	*	2412.000		30.88	95.76	54.00	41.76	AVG	NoLimit
5		2505.693		31.26	57.38	74.00	-16.62	peak	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

1	Test Mo	de	IEEE	802.11g		Test Date		2021	1/4/13
Tes	t Frequ	iency		2MHz		Polarizatio	า	Hori	zontal
	Temp		2	2°C		Hum.		6	1%
130.0 dB	uV/m								
120									
10					3				
00					yrand yran				
10					*				
"									
80									
70 <u> </u>									
a									
	┍╠┈╬┉╇	la de la caractería de la compansión de la	valdys, i a Palasylladay,	drawater whorly	14	Mondayor	a Machille Land Maria radia	المراجع والمرافعة المرافعة المرافعة	Person March Looked
50 *****	tide stationalia	att ander der sedtem edine te	11170 7 10 110	ч п т		, , ,	4	E	;
ю	2							,	·
:0	X								
50									
20									
10.0									
	2382.0		2422.00	2442.00				2.00	2562.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2385.067	25.72	30.77	56.49	74.00	-17.51	peak	Common
2		2385.067	3.77	30.77	34.54	54.00	-19.46	AVG	
3	Χ	2462.000	72.27	31.08	103.35	74.00	29.35	peak	NoLimit
4	*	2462.000	62.83	31.08	93.91	54.00	39.91	AVG	NoLimit
5		2543.580	26.72	31.41	58.13	74.00	-15.87	peak	
6		2543.580	13.97	31.41	45.38	54.00	-8.62	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	T	est M	lod	е		IEE	E802	.11n	(HT2	0)		٦	Test D	ate			202	1/4/13	
	Test	Fred		ncy				2MF	lz			Р	olariza	ation				izontal	
		Tem	р				2	2°C					Hum	٦.			6	61%	
130.0	dBu	V/m		1					1										_
120 -																			4
110										- 3									
100										,									
90											<u> </u>								4
80											\								-
70									alla			m/m							_
60 <u> </u>								W. 1	\/Wint			ulla/	A .				5	bolyman de Milagae	_
50 🛱	a palpagon	, tanaka karanta	ميطياهم	رجي الماركية	at the said of the said	Manus	A PARTITION OF THE PART	2 X					Vinya la	- April II	والمبحث المحادث تسيعوا	M. Prophylan	Maralda Pa 6	hodhysen, schiller	Vr.
40																	×		-
30																			_
20																			-
10.0	2.000	2332	00	2352		2372		2392	2.00	2412		2432	2.00	245	2.00	472.00	.	2512.00	
No.		Mk.	.00	Freq			ding		orrect		easure		Limi		Over	472.00		2312.00	MH
140.		IVIIX.		1 104	•		vel		actor		ment	,	L		Over				
				MHz	<u>'</u>	dB	ωV		dB		BuV/n) (dBuV/	/m	dB	D	etector	Comm	ent
1				2389.3	87	30	.07	3	0.78	(60.85		74.0	0	-13.15	5	peak		
2				2389.3	87		.78	3	0.78	4	47.56		54.0	0	-6.44		AVG		
3		Χ		2412.0		75	.04	3	0.88	1	05.92		74.0		31.92		peak	NoLir	
4		*		2412.0	000	65	.69	3	0.88	(96.57		54.0	0	42.57		AVG	NoLir	mit
5				2490.5	33	25	.84	3	1.19		57.03		74.0	0	-16.97	7	peak		
6				2490.5	33	13	.25	3	1.19	-	44.44		54.0	Λ <u> </u>	-9.56		AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	IEEE802	.11n (HT20)	Test Date		202	1/4/13
Ī	Test Frequ	iency		2MHz		Polarizatio	n		zontal
	Temp)	2	2°C		Hum.		6	1%
130.0	dBuV/m								
120									
110					3				
100 —					and the same				
90					*				
80									
70									
60	1 X			JAN MANAGER	<u> </u>	CAN MANAGEMENT OF THE PARTY.		5 Japan Harring Marie Marie	A b contra dist
50		a Americana - Incidental	Politica Provide Level and Trades (Mades)	account .			and a real feature - Justilians	e Pubmistribusing analy	A CONTRACTOR OF THE CONTRACTOR
40	2 X								
30									
20 —									
10.0 2362.	.000 2382.0	0 2402.00	2422.00	2442.00	2462.00 24	182.00 250	02.00 252	2.00	2562.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2372.627	25.84	30.72	56.56	74.00	-17.44	peak	
2		2372.627	3.69	30.72	34.41	54.00	-19.59	AVG	
3	Χ	2462.000	73.05	31.08	104.13	74.00	30.13	peak	NoLimit
4	*	2462.000	63.51	31.08	94.59	54.00	40.59	AVG	NoLimit
5		2530.213	26.71	31.36	58.07	74.00	-15.93	peak	
6		2530.213	14.96	31.36	46.32	54.00	-7.68	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

T	est Mo	de		.11n (HT40		Test Date			1/4/13
Tes	t Frequ	iency		22MHz		Polarizatio	n		zontal
	Temp		2	2°C		Hum.		6	1%
30.0 dB	uV/m								
20									
20									
10									
00					× × × × × × × × × × × × × × × × × × ×				
					Mary Mary				
D					\uparrow				
o									
<u> </u>									
D									
o				1 × 1					5
a anathurit	And a grade of the	Lythe Inglied was to see that	White the former of the American	Leady Harry	, MA	world Marke Strick Markett	Comment of the Second	area al visitational de	Apple and work
0 4/4//4//				X					
0									6
, L									×
0									
0.0									
	2262.00		2342.00	2382.00	2422.00 24			2.00	2622.00 MI
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
		B 41 1	Level	Factor	ment	ID 1//	ID	D ()	
4		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2388.880	28.73	30.78	59.51	74.00	-14.49 -7.12	peak	
3	Х	2388.880 2422.000	16.10 71.10	30.78 30.91	46.88 102.01	54.00 74.00	28.01	AVG	NoLimit
4	*	2422.000	61.63	30.91	92.54	54.00	38.54	peak AVG	NoLimit
5		2614.773	25.96	31.71	57.67	74.00	-16.33	peak	NOLIIIII
6		2614.773	2.95	31.71	34.66	54.00	-19.34	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

٦	est Mod	de	IEEE802	.11n (HT40	0)	Test Date		2021	1/4/13
Tes	t Freque	ency	245	2MHz		Polarizatio	n	Horiz	zontal
	Temp		2	2°C		Hum.		6	1%
130.0 dB	uV/m								
120									
120									
10									
00					3 X				
00					What was				
0 -					1				
:0									
′0 						5 X			
io					pre	νŽ.			
	make a like to	mility property and a second principal selection	- Market	HARANTHAND		5 Mayenterry	المعارض	many many	llmandmappappame
20 Wood House	,	100				×			
40 			2						
30			×						
20									
20									
10.0									
2252.00	2292.00	2332.00	2372.00	2412.00	2452.00 2	192.00 25	32.00 257	2.00	2652.00 M
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over		
			Level	Factor	ment				
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2373.987	25.87	30.72	56.59	74.00	-17.41	peak	
2		2373.987	4.00	30.72	34.72	54.00	-19.28	AVG	
3	X *	2452.000	70.89	31.04	101.93	74.00	27.93	peak	NoLimit
4	*	2452.000	61.59	31.04	92.63	54.00	38.63	AVG	NoLimit
5 6		2487.947	33.64	31.18	64.82	74.00	-9.18 -4.53	peak AVG	
		2487.947	18.29	31.18	49.47	54.00	7 6.0		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

T	est Mo	de	IEEE	802.11b		Test Da	ite	202 ⁻	1/4/13
Tes	t Frequ	iency	241	2MHz		Polarizat	tion	Ve	rtical
	Temp		2	2°C		Hum.		6	1%
130.0 dBu	ıV/m								
120									
10									
10									
00									
0									
80									
·o 🗀									
:0									
0		*							
o									
:0									
20									
0.0									
1000.000	3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00	18850.00 21	400.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure	- Limit	Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dDu\//s	n dB	Detector	Comment
								Detector	Comment
1		4824.000	60.80	-9.96	50.84	74.00	-23.16	peak	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo t Frequ				802.11b 12MHz		Test Date Polarization			1/4/13 zontal
163	Temp				22°C		Hum.	ווע		1%
30.0 dBu	<u>, 10111Þ</u> 1V/m				-2 0		i idiii.			1 70
20										
10										
10										
00										
o										
)										
)										
)		2								
)		2 2								
, 📙										
,										
D										
o 📖										
0.0										
1000.000	3550 O	0 6100.	nn	8650.00	11200.00	13750.00	16300.00 18	3850.00 21 4	00.00	26500.00 MH
No.	Mk.	Freq.		Reading	Correct	Measure-		Over		20000.00 1-11
110.	IVIIV.	1 104.		Level	Factor	ment	Liitiik	0.101		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.1	50	63.42	-9.96	53.46	74.00	-20.54	peak	
2	*	4824.1	50	61.67	-9.96	51.71	54.00	-2.29	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			802.11b		Test Date			1/4/13
Te	st Frequ			7MHz		Polarizatio	n		tical
130.0 dl	Temp)	2	2°C		Hum.		6	1%
130.0 at	SUV/M								
20									
20									
10									
00									
0									
:0									
o 💳									
.									
0 —									
0		ţ							
o		ž X							
0									
:0									
0.0									
1000.00	00 3550.0		8650.00	11200.00			B50.00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure	- Limit	Over		
		N 41 1—	Level	Factor	ment	مال. ۱۱/۰۰۰	٩D	Detector	Camamasist
1		MHz	dBuV	dB	dBuV/m		dB	Detector	Comment
2	*	4874.000 4874.000	55.96 50.96	-9.79 -9.79	46.17 41.17	74.00 54.00	-27.83 -12.83	peak AVG	
_		40/4.000	JU.90	-9.79	41.17	54.00	-12.03	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			802.11b		Test Date			1/4/13
Ie	st Frequ			37MHz 2°C		Polarizatio Hum.	n		zontal 1%
30.0 d	Temp			2 0		num.		0	1%
30.0 0	DUTTIII								
20									
10									
00									
, L									
0									
o 🗀									
`									
0		8							
0		×							
o 📙									
0									
0.0									
	00 3550.0		8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4874.000	58.33	-9.79	48.54	74.00	-25.46	peak	Commone
2	*	4874.000	53.79	-9.79	44.00	54.00	-10.00	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	de			802.11b		Test Date			1/4/13
Tes	st Frequ				62MHz		Polarizatio	n		rtical
	Temp			2	22°C		Hum.		6	1%
30.0 dB	luV/m									
20										
10										
00										
10										
:0										
70 <u> </u>										
so										
io 🗀		_								
ıo		1 ½ X								
:0										
20										
0.0										
	0 3550.0	0 6100.	.00	8650.00	11200.00	13750.00	16300.00 18	850.00 21 4	00.00	26500.00 MH
No.	Mk.	Freq.	ı	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.0		54.26	-9.62	44.64	74.00	-29.36	peak	
2	*	4924.0	00	49.25	-9.62	39.63	54.00	-14.37	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Te	Test Mo			802.11b 2MHz		Test Date Polarization			1/4/13 zontal
	Temp			2°C		Hum.	•••		1%
130.0 d	BuV/m								
120									
110									
100									
30									
30									
70									
50									
50									
10		1 X X							
80									
20 10.0									
	00 3550.0	0 6100.00	8650.00	11200.00	13750.00	16300.00 188	B50.00 214	00.00	26500.00 MH:
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4924.000	55.37	-9.62	45.75	74.00	-28.25	peak	
2	*	4924.000	51.22	-9.62	41.60	54.00	-12.40	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo					2.11g				est Da				1/4/13
Tes	t Frequ			2	412N					larizat	ion			rtical
	Temp)			22°0)				Hum.			6	1%
130.0 dB	ıV/m													
120														
20														
10														
00														
0														
:0														
o <u> </u>														
0														
io														
10		1 X												
,,		2 X												
:0		^												
20														
10.0														
1000.000	3550.0	0 6100	.00	8650.00	11	200.00	13750	0.00 1	6300	.00 1	18850.0	D 214	00.00	26500.00 MH
No.	Mk.	Freq		Readin	g (Correct	Me	asure-		Limit	(Over		
				Level		Factor	n	nent						
		MHz		dBuV		dB		uV/m		BuV/m		dB	Detector	Comment
1		4824.0		53.29		-9.96		3.33		74.00		80.67	peak	
2	*	4824.0	00	43.45		-9.96	3	3.49		54.00	-2	20.51	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Te	Test Mo			802.11g 12MHz		Test Date Polarizatio			1/4/13 zontal
- 10	Temp			22°C		Hum.			1%
130.0 d	BuV/m					1101111			1 70
120									
110									
100									
90									
80									
70									
60									
50		X X							
10 30		2 X							
20									
0.0									
	00 3550.0 Mk.			11200.00	13750.00 Measure-		850.00 214 Over	00.00	26500.00 MH
No.	IVIK.	Freq.	Reading Level	Correct Factor	ment	- LIIIII(Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.000	57.52	-9.96	47.56	74.00	-26.44	peak	
2	*	4824.000) 44.84	-9.96	34.88	54.00	-19.12	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

-	Test Mo	ode		IE	EE	802.11g			٦	Test Dat	te		202	1/4/13
Tes	st Frequ	uency			243	7MHz			Р	olarizati	ion			rtical
	Temp)			2	2°C				Hum.			6	1%
30.0 dB	uV/m					1								
20														
110														
00														
30														
80														
70														
50														
50		1 X												
10		2												
30		X												
20														
10.0	0. 0550.0	0 0100		0050.0		11000.00	107	-0.00	100	20.00	10050.00	21.4	00.00	20500 00 1411
No.	0 3550.0 Mk.	00 6100 Freq		8650.0		11200.00 Correct		o.oo easure-		00.00 1 Limit	18850.00 O\		00.00	26500.00 MH
INU.	IVIK.	FIEQ	•	Readi Leve		Factor		easure. ment	-	LIIIII	O(/CI		
		MHz	<u>-</u>	dBu\		dB		BuV/m		dBuV/m	n d	В	Detector	Comment
1		4874.0		53.8		-9.79		44.01		74.00	-29		peak	
2	*	4874.0	000	42.4	3	-9.79	,	32.64		54.00	-21	.36	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	nde		IF	FFF	802.11g	1				Test Da	ate			202	1/4/13
	st Frequ					7MHz	,			F	Polariza					zontal
	Temp				2	2°C					Hum	١.			6	1%
130.0 dl	3uV/m															
120																
10																
100																
90																
30																
5U																
'O																
io																
50																
10		1 X														
10		2 X														
30		Χ														
20																
10.0																
	00 3550.0			8650.0		11200.0		13750			300.00		0.00	2140	0.00	26500.00 MH
No.	Mk.	Freq		Read Lev		Corre Facto			asure nent	9-	Limit	t	Ove	er		
		MHz	<u>'</u>	dBu		dB			BuV/m	1	dBuV/	m	dB	}	Detector	Comment
1		4874.0		52.6		-9.7	9		2.86		74.00		-31.′	14	peak	
2	*	4874.0	000	42.5	6	-9.7	9	3	2.77		54.00)	-21.2	23	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo			l		802.1					Test D					1/4/13
les		uency				2MH	<u>Z</u>				Polariza)			rtical
30.0 dBu	Tem _l V/m)			2	2°C					Hun	า.			6	1%
30.0 abu	1¥7M															
20																
10																
00																
0																
·																
0																
0																
o 📖																
" <u> </u>																
0		1														
o		1 X														
		2 X														
0																
0																
0.0																
1000.000	3550.0	00 6100	0.00	8650	.00	1120).00	1375	0.00	16	300.00	188	50.00	2140	0.00	26500.00 M
No.	Mk.	Fred	.	Read			rect		easur		Limi	t	Ove	er		•
				Lev			ctor		ment		ID 11	,			5	
		MHz		dB			IB oo		BuV/r		dBuV		dE		Detector	Comment
1	*	4924.0		53.			.62		13.86		74.0		-30.		peak	
2	^	4924.0	JUU	42.	73	-9	.62	,	33.11		54.0	U	-20.	89	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			IE		802.1					Test D					1/4/13
Те	st Frequ					2MHz	<u>'</u>			F	Polariza					zontal
	Temp)			2	2°C					Hum	۱.			6	1%
130.0 di	BuV/m															
120																
110																
100																
30 -																
BO																
70																
so <u> </u>																
50																
10 L		1 X														
30		2 X														
20																
10.0																
	00 3550.0			8650.0		11200		1375			00.00		50.00	2140	0.00	26500.00 MH
No.	Mk.	Freq	•	Read Lev			rect ctor		easure ment	9-	Limit	t	Ove	er		
		MHz		dBu		d			3uV/n	า	dBuV/	m	dB		Detector	Comment
1		4924.0		52.9		-9.	62		13.30		74.00		-30.7		peak	
2	*	4924.0	00	42.3	34	-9.	62	3	32.72		54.00)	-21.2	28	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo	de	IEEE	E802.	11n (HT20	0)		Test Da	ate		202	1/4/13
Tes	t Frequ	iency			2MHz			Polariza	ation			tical
	Temp			22	2°C			Hum	١.		6	1%
130.0 dB	uV/m											
120												
10												
00												
0												
:0												
. —												
0												
0		1 X										
10												
:0		2 X										
20												
0.0												
	3550.0				11200.00	13750.0		300.00	18850.0		00.00	26500.00 MH
No.	Mk.	Freq.	Read Lev		Correct Factor		sure- ent	Limit	t	Over		
		MHz	dB		dB		ıV/m	dBuV/	m	dB	Detector	Comment
1		4824.00			-9.96		.02	74.00		28.98	peak	2 0
2	*	4824.00	0 44.	10	-9.96	34	.14	54.00) -	19.86	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

7	Test Mo	de		IFFF802	.11n (HT20))	Test Date		202	1/4/13
	t Frequ				2MHz	,,	Polarizatio			zontal
	Temp			2	2°C		Hum.		6	1%
130.0 dB	uV/m									
120										
10										
00										
10										
30										
70										
50										
50		1								
10		1 X 2								
80		×								
20										
10.0	2550.0	0 0100	00	0050.00	11200.00	10750.00	1000000 100	DE0.00 01.4	00.00	20500 00 1111
No.	3550.0 Mk.	0 6100. Freq.		8650.00 Reading	11200.00 Correct	13750.00 Measure-		850.00 21 4 Over	00.00	26500.00 MH
INU.	IVIK.	rieq.		Level	Factor	ment	LIIIII	Ovei		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4824.0		54.83	-9.96	44.87	74.00	-29.13	peak	
2	*	4824.0	00	45.84	-9.96	35.88	54.00	-18.12	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

7	est Mo	de	IEE	E802.	11n (HT2	0)		To	est Da	ate		202	1/4/13
Tes	t Frequ	ency		243	7MHz			Ро	larizat	tion			rtical
	Temp			2	2°C				Hum.			6	1%
130.0 dB	ıV/m												
120													
10													
00													
no													
10													
0													
:0													
50													
		1 X											
10		2											
30		X											
20													
10.0													
1000.000	3550.00	0 6100.0	0 8650	.00	11200.00	1375	0.00	1630	0.00	18850.	00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Rea		Correct		asure-	•	Limit		Over		
			Le		Factor		ment						
		MHz	dB		dB		BuV/m		lBuV/r		dB	Detector	Comment
1		4874.000			-9.79		3.36		74.00		30.64	peak	
2	*	4874.000) 42.	.69	-9.79	3	32.90		54.00	-	21.10	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Т	est Mo	de	IEEE80	2.11n (HT20	0)	Test Da	ate	202	1/4/13
	t Frequ			137MHz		Polariza			zontal
	Temp			22°C		Hum		6	1%
130.0 dB	uV/m								
120									
10									
00									
o									
_									
0									
0									
0									
0									
		1 X							
ν		2 X							
0		^							
20									
0.0									
1000.000	3550.0	0 6100.0	0 8650.00	11200.00	13750.00	16300.00		400.00	26500.00 MH
No.	Mk.	Freq.	Reading		Measure	- Limit	Over		
		MHz	Level dBuV	Factor dB	ment dBuV/m	dBuV/ı	m dB	Detector	Comment
1		4874.00		-9.79	43.48	74.00		peak	Comment
2	*	4874.00		-9.79	32.88	54.00		AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

٦	est Mo	de	IEEE	802.1	11n (HT20))		Test Da	ate		202	1/4/13
Tes	t Frequ	ency			2MHz	,		Polariza	tion		Vei	rtical
	Temp	1		22	2°C			Hum	١.		6	1%
130.0 dB	uV/m											
120												
10												
00												
0												
80												
0 -												
:0												
50												
10		X X										
		2 X										
30		^										
20												
10.0												
1000.000	3550.0	0 6100.0	0 8650.0	00	11200.00	13750.00	16	300.00	18850.0	0 214	00.00	26500.00 MH
No.	Mk.	Freq.	Read		Correct	Measu		Limit	t (Over		
		MHz	Leve dBu		Factor dB	men dBuV		dBuV/ı	m	dB	Detector	Comment
1		4924.00			-9.62	43.8		74.00		30.17	peak	Commont
2	*	4924.00			-9.62	32.7		54.00		21.26	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

7	est Mo	da	I IEE	E802	11n (HT2)))		7	Test Da	ato.		202	1/4/13
	t Frequ		<u> </u>		2MHz	.0)			olarizat				zontal
100	Temp				2°C			•	Hum.				1%
130.0 dB	ıV/m												
120													
110													
00													
10													
30													
то													
50													
50		1											
10		1 X											
80		2 X											
20													
10.0													
1000.000		0 6100.0	0 8650	0.00	11200.00	1375	0.00	1630		18850.	00 214	00.00	26500.00 MH
No.	Mk.	Freq.		iding evel	Correct Factor		easure ment	-	Limit		Over		
		MHz		BuV	dB		BuV/m	(dBuV/r	n	dB	Detector	Comment
1		4924.00		.30	-9.62		13.68		74.00		30.32	peak	
2	*	4924.00	0 42	.55	-9.62	3	32.93		54.00		21.07	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

7	est Mo	de	IEEE	802.	11n (HT4	0)		T	est Da	ate		202	1/4/13
Tes	t Frequ	ency			2MHz			Po	olariza	tion			rtical
	Temp			22	2°C				Hum.			6	1%
130.0 dB	ıV/m												
120													
10													
00													
o													
:0													
。													
0													
50		1											
10 <u> </u>		*											
:0		2 X											
20													
1000 000	3550.00	0 6100.0	0 8650.	nn	11200.00	13750	n nn ·	1020	0.00	18850	1 00 214	00.00	26500.00 MH
No.	Mk.	Freq.	Read		Correct		asure-		Limit		Over	.00.00	20300.00 MI
140.	14117.	1 104.	Le		Factor		nent				O V C I		
		MHz	dBı		dB		BuV/m	(dBuV/r	m	dB	Detector	Comment
1		4844.00	52.	79	-9.89		2.90		74.00		-31.10	peak	
2	*	4844.00) 42.	34	-9.89	3	2.45		54.00)	-21.55	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo		IEE		.11n (HT4	0)			t Date				1/4/13
Tes	st Frequ				2MHz				rizatio	on			zontal
	Temp)		2	2°C			F	lum.			6	1%
130.0 dB	luV/m												
120													
110													
100													
90													
30													
70													
50													
50		1 ×											
40													
30		2 X											
20													
10.0													
	0 3550.0				11200.00	13750		16300.0		8850.00		00.00	26500.00 MH
No.	Mk.	Freq.		iding vel	Correct Factor		asure- nent	· L	imit	Ov	er		
		MHz		BuV	dB		uV/m	dB	uV/m	dl	3	Detector	Comment
1		4844.00	0 55	.29	-9.89	4	5.40	7	4.00	-28	.60	peak	
2	*	4844.00	0 43	.03	-9.89	3:	3.14	54	4.00	-20	.86	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	ode		IEEE802	.11n (HT40	0)	Test Date		202	1/4/13
Te	st Frequ	uency		243	7MHz	,	Polarizatio	n		rtical
	Temp)		2	2°C		Hum.		6	1%
130.0 dB	luV/m									
120										
110										
10										
100										
90										
30										
70										
50										
50		1								
10		1 X								
30		2 X								
20										
10.0	0.0550			2052.00	11000.00	10750.00	10000 00 100	250.00	20.00	
	0 3550.0			8650.00	11200.00				00.00	26500.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4874.0	00	53.58	-9.79	43.79	74.00	-30.21	peak	
2	*	4874.0	00	42.67	-9.79	32.88	54.00	-21.12	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo		IE		.11n (HT4	0)		Test Da			1/4/13
Te	st Frequ				37MHz			Polarizat			izontal
	Temp)		2	2°C			Hum.		6	61%
130.0 dE	BuV/m										
120											
110											
100											
90											
во											
70											
50 —											
50											
10		X X									
30		2 X									
20											
10.0											
	00 3550.0			50.00	11200.00	13750.00			18850.00	21400.00	26500.00 MH
No.	Mk.	Freq.		ading evel	Correct Factor	Meas mei		Limit	Ov	er	
		MHz		BuV	dB	dBu∖		dBuV/r	n dE	B Detector	Comment
1		4874.00	0 5	3.66	-9.79	43.8	37	74.00	-30.		
2	*	4874.00	0 4	2.74	-9.79	32.9	95	54.00	-21.	05 AVG	

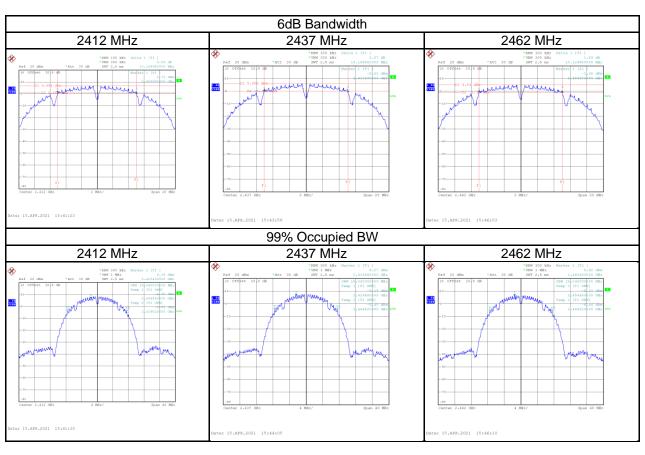
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

-	Test Mo	ode	IEE	E802	.11n (HT4	-0)		Т	est Dat	e		202	1/4/13
Tes	st Frequ	uency		245	52MHz	,		Po	olarizati	on			rtical
	Temp)		2	2°C				Hum.			6	1%
130.0 dB	uV/m												
120													
110													
00													
30													
30													
70													
50													
50													
40 L		X X											
30		2 X											
20													
10.0 1000.00	0 3550.0	0 6100.	00 865	0.00	11200.00	1375	0.00	1630	0.00 1	8850.00	2140	00.00	26500.00 MH
No.	Mk.	Freq.	Rea	ading	Correct	Me	easure-		Limit	Ov			
				evel	Factor		ment						
		MHz		3uV	dB		3uV/m	C	dBuV/m			Detector	Comment
1		4904.00		3.30	-9.69		13.61		74.00	-30		peak	
2	*	4904.00	00 42	2.25	-9.69	3	32.56		54.00	-21	.44	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

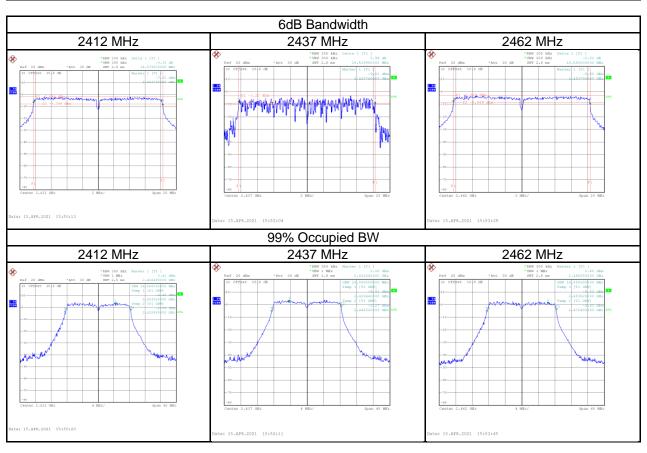
-	Test Mo	ode		IEEE802	.11n (HT40	D)	Test Date		202	1/4/13
Tes	st Frequ	uency			52MHz	/	Polarizatio	n	Hori	zontal
	Temp)		2	2°C		Hum.		6	1%
30.0 dB	uV/m									
120										
10										
00										
10										
80										
о 🗀										
io										
50		1 X								
ю		2								
30		X								
20										
1000.00	0 3550.0	00 6100.	nn	8650.00	11200.00	13750.00	16300.00 18	850.00 21 4	00.00	26500.00 MH
No.	Mk.	Freq.		Reading	Correct	Measure-		Over	00.00	20300.00 MI
140.	IVIII.	1 104.		Level	Factor	ment	Liiiit	0 101		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4904.0		54.22	-9.69	44.53	74.00	-29.47	peak	
2	*	4904.0	00	42.28	-9.69	32.59	54.00	-21.41	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

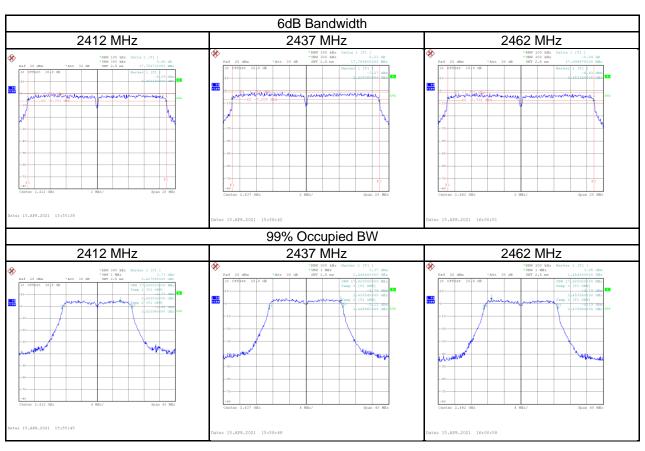

Report No.: BTL-FCCP-3-2103T163 APPENDIX D BANDWIDTH

Project No.: 2103T163 Page 67 of 83 Report Version: R00

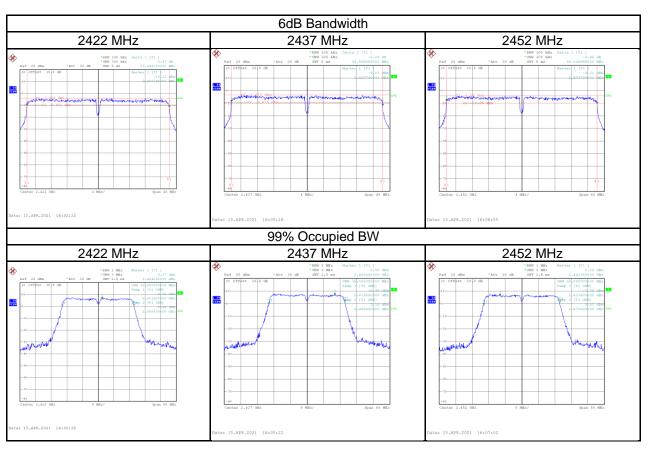
Test Mode	IEEE 802.11b
-----------	--------------

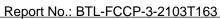

Test Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2412	10.16	15.04	≥ 500	Pass
2437	10.17	15.04	≥ 500	Pass
2462	10.13	15.04	≥ 500	Pass

Test Mode IEEE 802.11g


Test Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2412	16.58	16.88	≥ 500	Pass
2437	16.52	16.88	≥ 500	Pass
2462	16.58	16.88	≥ 500	Pass

Test Mode IEEE 802.11n (HT20)


Test Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2412	17.76	17.92	≥ 500	Pass
2437	17.79	17.92	≥ 500	Pass
2462	17.70	17.92	≥ 500	Pass



Test Mode IEEE 802.11n (HT40)

Test Frequency (MHz)	6 dB Bandwidth (MHz)	99 % Occupied Bandwidth (MHz)	Minimum 6 dB Bandwidth Limit (kHz)	Result
2422	36.45	36.80	≥ 500	Pass
2437	36.57	36.80	≥ 500	Pass
2452	36.55	36.80	≥ 500	Pass

APPENDIX E	OUTPUT POWER

Project No.: 2103T163 Page 72 of 83 Report Version: R00

2462

Test Mode

21.08

IEEE 802.11n (HT20)

Report No.: BTL-FCCP-3-2103T163

Test Mode	IEEE 802.11b		Tested Date	2021/4/12		
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Limit (dBm)	Limit (W)	Result	
2412	19.20	0.0832	30.00	1.0000	Complies	
2437	19.20	0.0832	30.00	1.0000	Complies	
2462	18.67	0.0736	30.00	1.0000	Complies	
				•		
Test Mode	IEEE 802.11g		Т	Tested Date	2021/4/12	

	•				
	·	·		·	·
Frequency	Conducted Power	Conducted Power (W)	Limit	Limit	Result
(MHz)	(dBm)	Conducted Fower (VV)	(dBm)	(W)	Result
2412	21.63	0.1455	30.00	1.0000	Complies
2437	21.67	0.1469	30.00	1.0000	Complies

30.00

1.0000

Tested Date

Complies

2021/4/12

0.1282

Frequency	Conducted Power	O 1 1 - D (14)	Limit	Limit	Result
(MHz)	(dBm)	Conducted Power (W)	(dBm)	(W)	Resuit
2412	21.89	0.1545	30.00	1.0000	Complies
2437	21.32	0.1355	30.00	1.0000	Complies
2462	20.90	0.1230	30.00	1.0000	Complies

Test Mode	IEEE 802.11n (HT40)		Te	sted Date	2021/4/12	
Frequency	Conducted Power		l imit	Limit		

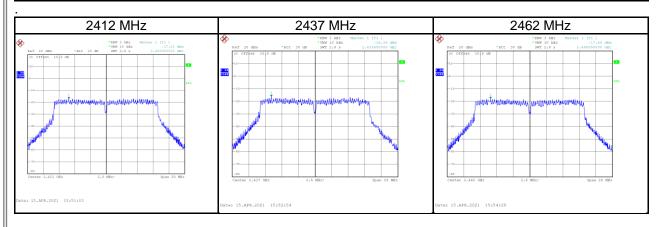
Frequency	Conducted Power	Conducted Dower (M)	Limit	Limit	Dogult
(MHz)	(dBm)	Conducted Power (W)	(dBm)	(W)	Result
2422	21.65	0.1462	30.00	1.0000	Complies
2437	22.08	0.1614	30.00	1.0000	Complies
2452	22.06	0.1607	30.00	1.0000	Complies

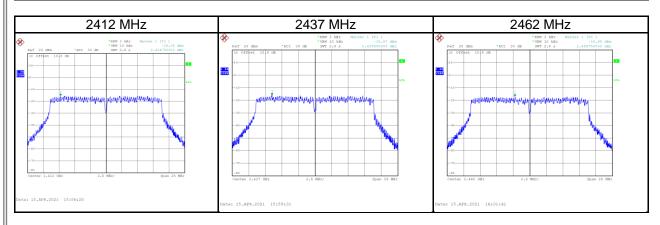
Project No.: 2103T163 Page 73 of 83 Report Version: R00

APPENDIX F	POWER SPECTRAL DENSITY	

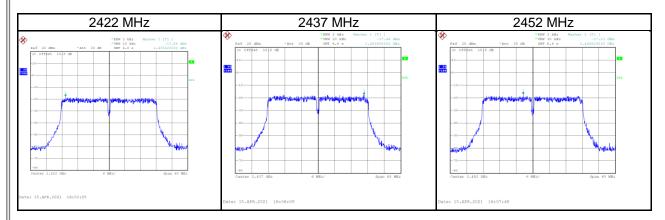
Project No.: 2103T163 Page 74 of 83 Report Version: R00

Test Mode IEEE 802.11b


Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-13.80	8.00	Pass
2437	-14.65	8.00	Pass
2462	-15.51	8.00	Pass

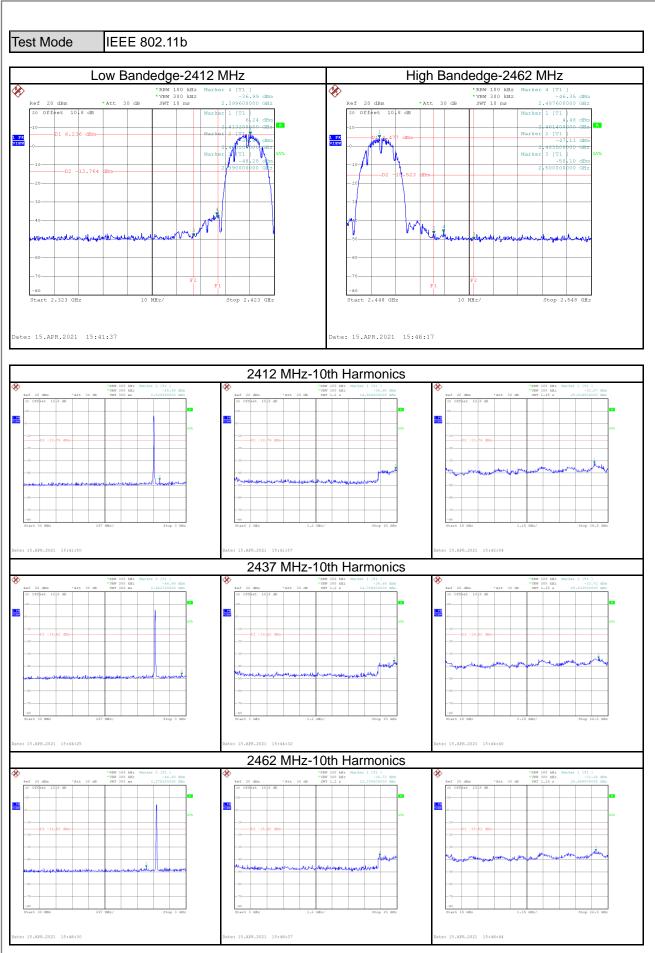

Test Mode	IEEE 802.11g
163t Mode	ILLE 002.119

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-17.02	8.00	Pass
2437	-16.38	8.00	Pass
2462	-17.84	8.00	Pass


Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2412	-15.26	8.00	Pass
2437	-15.87	8.00	Pass
2462	-16.95	8.00	Pass

Test Mode IEEE 802.11n (HT40)

Test Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Maximum Limit (dBm/3kHz)	Result
2422	-17.54	8.00	Pass
2437	-17.46	8.00	Pass
2452	-17.23	8.00	Pass



APPENDIX G	ANTENNA CONDUCTED SPURIOUS EMISSIONS

Project No.: 2103T163 Page 79 of 83 Report Version: R00

