

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

April 15, 2025

Maztech Industries 1641 Reynolds Ave. Irvine, CA 92614 USA

Dear Craig Cronin,

Enclosed is the EMC Wireless test report for compliance testing of the Maztech Industries X4-LRF as tested to the requirements of FCC Part 15 - F (Ultra-Wideband Operation) for Intentional Radiators. This test report pertains specifically to the Ultra-Wideband radio onboard.

Thank you for using the services of Eurofins MET Labs. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours, EUROFINS MET LABS

Mancy Labucque.

Nancy LaBrecque Documentation Department

Reference: WIRA134602_UWB Rev 2

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins MET Labs.

The Nation's First Licensed Nationally Recognized Testing Laboratory

Maryland | California | Texas www.metlabs.com

Maztech Industries X4-LRF

Ultra-Wideband Test Report

for the

Maztech Industries X4-LRF

Tested under FCC Part 15 – F (Ultra-Wideband Operation) For Intentional Radiators

Bryan Taylor, Wireless Team Lead Electromagnetic Compatibility Lab

Jancy Lak

Nancy LaBrecque Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Part 15.519 under normal use and maintenance.

Matthew Hinojosa EMC Manager, Austin Electromagnetic Compatibility Lab

Maztech Industries X4-LRF

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	2/13/2025	Initial Issue.
1	03/24/2025	Customer Requested Changes.
2	04/15/2025	Customer Requested Changes.

Maztech Industries X4-LRF

4.0	
AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBµA/m	Decibels above one microamp per meter
dBµV/m	Decibels above one microvolt per meter
DC	Direct Current
Ε	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
Н	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	Hertz
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μΗ	microhenry
μ	microfarad
μs	microseconds
NEBS	Network Equipment-Building System
PRF	Pulse Repetition Frequency
RF	R adio Frequency
RMS	Root-Mean-Square
TWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane

List of Terms and Abbreviations

Maztech Industries X4-LRF

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the X4-LRF, with the requirements of FCC Part 15 - F (Ultra-Wideband Operation). Maztech Industries should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the X4-LRF, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC Part 15 - F (Ultra-Wideband Operation), in a ccordance with Maztech Industries purchase order number 1MAZ1911. All tests were conducted using measurement procedures ANSI C63.4-2014 and ANSI C63.10-2013.

FCC Reference 47 CFR Part 15.519	Description	Compliance
Title 47 of the CFR, Part 15 §15.203, 15.519(a)(2)	Antenna Requirements	Compliant
Title 47 of the CFR, Part 15 §15.519(a)(1)	Transmission Cutoff Timing	Compliant
Title 47 of the CFR, Part 15 §15.519(b)	UWB Bandwidth for Hand-Held Device	Compliant
Title 47 of the CFR, Part 15 §15.519(c)	Radiated Emissions	Compliant
Title 47 of the CFR, Part 15 §15.519(d)	Radiated Emissions in1164-1240MHz and 1559-1610 Bands	Compliant
Title 47 of the CFR, Part 15 §15.519(e)	Radiated Emissions (Peak Level) Centered on the Frequency With Highest Emissions	Compliant
Title 47 of the CFR, Part 15 §15.521(a)	UWB cannot be used for toy operation or onboard aircraft, ships, or satellites	Compliant
Title 47 of the CFR, Part 15 §15.521(b)	The antenna requirements from part 15.203 and 15.204 apply	Compliant
Title 47 of the CFR, Part 15 §15.521(c)	Emissions from digital circuitry are subject to part 15B compliance	Compliant
Title 47 of the CFR, Part 15 §15.521(d)	The limits and criteria from part 15.519 apply since this is a hand-held UWB device	Compliant
Title 47 of the CFR, Part 15 §15.521(e)	The frequency at which the highest radiated emission occurs, fM, must be contained within the UWB bandwidth	Compliant
Title 47 of the CFR, Part 15 §15.521(f)	Imaging systems may be employed only for the type of information exchange described in their specific definitions contained in part 15.503	Compliant
Title 47 of the CFR, Part 15 §15.521(g)	Peak EIRP measurements may use a resolution bandwidth other than 50MHz provided that the limit is adjusted to 20 log (RBW/50)	Compliant
Title 47 of the CFR, Part 15 §15.521(h)	The highest frequency employed in part 15.33 to determine the scan range for radiated measurements shall be the center frequency, fC	Compliant
Title 47 of the CFR, Part 15 §15.521(i)	The prohibition against Class B (damped wave) emissions does not apply to UWB devices operating under this part	Noted
Title 47 of the CFR, Part 15 §15.521(j)	Responsible parties are reminded that standards cross referenced under part 15.505 may be applicable.	Noted

Table 1. Executive Summary

Maztech Industries X4-LRF

II. Equipment Configuration

A. Overview

Eurofins MET Labs was contracted by Maztech Industries to perform testing on the X4-LRF, under Maztech Industries' purchase order number 1MAZ1911.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the X4-LRF.

Product Name:	X4 Laser Rangefinder (X4-LRF)							
Model(s) Tested:	X4-LRF							
FCCID:	2BKWD-LRF01							
	Primary Power:	1.5-4.2VDC						
	Transmitters Onboard:	Ultra-Wideband						
Equipment	Equipment Code:	UWB						
Specifications:	Peak RF Output Power (EIRP):	-14.99dBm						
	EUT Frequency Ranges:	UWB: 3.1GHz – 6GHz						
	Antenna Gain ¹ :	4.16dBi						
Analysis:	The results obtained rela	te only to the item(s) tested.						
	Temperature: 15-35° C							
Environmental Test Conditions:	Relative Humidity: 30-60%							
	Barometric Pressure: 860-1060 mbar							
Evaluated by:	Bryan Taylor and Veer Patel							
Report Date(s):	April 15, 2025							

The results obtained relate only to the item(s) tested.

 Table 2. EUT Summary Table

¹ The antenna gain information was provided by Maztech Industries at the time of testing.

Maztech Industries X4-LRF

B. References

CFR 47, Part 15, Subpart C	Federal Communication Commission, Code of Federal Regulations, Title 47, Part 15: General Rules and Regulations, Allocation, Assignment, and Use of Radio Frequencies					
ANSI C63.4:2014	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz					
ISO/IEC 17025:2017	General Requirements for the Competence of Testing and Calibration Laboratories					
ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices					

Table 3. References

Maztech Industries X4-LRF

C. Test Site

All testing was performed at Eurofins MET Labs, 13501 McCallen Pass, Austin, TX 78753. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 10 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

ISED Lab Info:

CAB Identifier: US0004 Company Number: 2043D

FCC Lab Info:

Designation Number: US1127

D. Measurement Uncertainty

Test Method	Typical Expanded Uncertainty	К	Confidence Level		
Occupied Bandwidth Measurements	±4.52 Hz	2	95%		
Conducted Power Measurements	±2.74 dB	2	95%		
Power Spectral Density Measurements	±2.74 dB	2	95%		
Conducted Spurious Emissions	±2.80 dB	2	95%		
Conducted Emissions (Mains)	±2.97 dB	2	95%		
Radiated Spurious Emissions (9kHz – 1GHz)	±2.95 dB	2	95%		
Radiated Spurious Emissions (1GHz - 40GHz)	±3.54 dB	2	95%		

Table 4. Uncertainty Calculations Summary

E. Description of Test Sample

Determines distances to items that are pointed to. It has wireless interfaces to communicate with accessories: UWB (3.1 GHz-5.8 GHz) and to communicate with smartphone for a command/control app: BLE 5.0 (2.4 GHz)

Maztech Industries X4-LRF

Figure 1. Block Diagram of Test Configuration

F. Equipment Configuration

The X4 Laser Rangefinder (X4-LRF) was set up as outlined in Figure 1 above. It was tested in a stand-alone configuration with special test code loaded onto the device to allow for transmission on low, mid, and high channels.

G. Support Equipment

The X4 Laser Rangefinder (X4-LRF) was tested in a stand-alone configuration. No support equipment was used during the evaluation.

H. Ports and Cabling Information

The X4 Laser Rangefinder (X4-LRF) was tested in a stand-alone configuration. No cables were connected during the evaluation.

I. Mode of Operation

The X4 Laser Rangefinder (X4-LRF) was tested in a stand-alone configuration with special test code loaded onto the device to allow for transmission on low, mid, and high channels.

Transmit Band	Modulation	Channel Frequencies Tested	Test Tool Power Setting
3.1GHz – 5.8GHz	UWB	3113.96MHz / 4423.68MHz /	9
3.10Hz - 3.80Hz		5775.36MHz	

J. Method of Monitoring EUT Operation

A spectrum analyzer was used to confirm proper transmitter operation.

K. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

L. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Maztech Industries upon completion of testing.

Maztech Industries X4-LRF

III. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement:	§ 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.
	The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:
	a.) Antenna must be permanently attached to the unit.
	b.) Antenna must use a unique type of connector to attach to the EUT.
	b.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.
	§ 15.519(a)(2): The use of antennas mounted on outdoor structures, e.g., antennas mounted on the outside of a building or on a telephone pole, or any fixed outdoors infrastructure is prohibited. Antennas may be mounted only on the hand held UWB device.
Results:	The EUT as tested is compliant with the criteria of $$15.203$ and $15.519(a)(2)$. The TX antenna is permanently attached to the unit and is not accessible by the end user. Additionally, the antenna used on this device is only attached to this device and not to any outdoor structures such as building or telephone poles.
Test Engineer(s):	Bryan Taylor
Test Date(s):	1/23/2025

Maztech Industries X4-LRF

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.519(a)(1)	Transmission Cutoff Timing
Test Requirements:	§ 15.519(a)(1): A UWB device operating under the provisions of this section shall transmit only when it is sending information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgment of reception must continue to be received by the UWB intentional radiator at least every 10 seconds or the UWB device must cease transmitting
Test Procedure:	The test sample was configured to communicate via normal UWB signal to an associated UWB receiver. The receiver was shut off and the transmitted signal was observed on a spectrum analyzer. Markers were placed on the captured plots indicating when the receiver was tuned off and when the transmission was observed to stop. This transmission cutoff time was recorded and compared to the 10 second limit. This measurement was performed with the receiver terminating the communication link as well as with the test sample terminating the communication link.
Test Results	The EUT was compliant with § $15.519(a)(1)$. The transmission cutoff timing was less than 10 seconds.
Test Engineer(s):	Bryan Taylor
Test Date(s):	2/11/2025

Maztech Industries X4-LRF

Spectrur	n									
Ref Leve	el -20.00 dE			BW 1 MHz						`
🔵 Att	0 (dB 👄 SWT 2	:0s V	BW 1 MHz						
SGL										
⊖1Pk Clrw	_									
						D1[1]				-29.81 dB
-30 dBm—					<u> </u>	_				801.6 ms
00 40			-		1	M1[1]			-	49.35 dBm
-40 dBm—		Comm Link	Terminated		 				1	4.0390 s
		V 1								
ulfallabar	htelefthere have a stranger the stranger of th	A Arridia			 					
	a a seconde .									
-60 dBm—					<u> </u>					
		Tra	nsmitter Sh	utoff						
-70 dBm—										
		Diamada	ant the solution	mulmuhmuhw	Alexander .		kiladia, Kia	a harrison		manthematic
-80 dBm—		A	,							
-90 dBm—										
-100 dBm-										
-100 uBiii-										
-110 dBm-										
-110 0000										
CF 4.4236	58 GHz			691	pts					2.0 s/
Marker										
	ef Trc	X-value		Y-value		Function	_	Fund	ction Result	
M1 D1 M	1 M1 1		.039 s 1.6 ms	-49.35 dB -29.81 (
		80	1.0 ms	-29,81 (
							Read	y 🔳		

Date: 11.FEB.2025 10:00:22

Transmission Cutoff Time = 801mS

Figure 2. UWB Communication Terminated by Test Sample

Maztech Industries X4-LRF

Spectr	um												
Ref Le	vel ·	-20.00 d	lBm	👄 F	BW	1 MHz							
🔵 Att		0	dB 👄 SWT 2	20s \	/BW	1 MHz							
SGL													
⊖1Pk Clr	w												
								D1	[1]				-25.34 dB
-30 dBm-									1141				105.9 ms
			Comm Link T	erminated				IYI.	1[1]			-	49.18 dBm 3.9810 s
-40 dBm-													0.9010 3
Katalara		This is a stanial	M										
intaginal punctu	fu phase	Anthrad Mari	14 6										
co do-													
-60 dBm-			Transr	nitter Shute	off								
-70 dBm-				بالم مع الم	11.1	m la m lu	Likka .	AN MARINA MI	տ	الانتها	استنابين باشتاسا	سيوا سيوا	المليلية المرابلة
-70 abm			4 1.000000000000000000000000000000000000	AL MARKELL	M	. AN MANA	M٩	MAMAR	MAN	արթ	PPPAMPA	M. N. WIM	r.a. WAWalikhika
-80 dBm-				0.00	v			00 0	·* 00	0 *	• • •	00000	- UU U -U
-90 dBm-													
-100 dBn	∩												
440 10													
-110 dBn	n												
CF 4.42	368	GHz				691	pts	;					2.0 s/
Marker													
	Ref		X-value			Y-value		Funct	ion		Func	tion Result	
M1 D1	M1	1		1.981 s 5.9 ms		-49.18 dB -25.34 c							
			10.			20,070)				
L		Л							ļ	Read	y 🔳		• ///.

Date: 11.FEB.2025 10:02:22

Transmission Cutoff Time = 105.9mS

Figure 3. UWB Communication Terminated by Receiver

Maztech Industries X4-LRF

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.519(b)	UWB Bandwidth
Test Requirements:	§ 15.519(b): The UWB bandwidth of a device operating under the provisions of this section must be contained between 3100 MHz and 10,600 MHz
Test Procedure:	The UWB signal was maximized by rotating the device on a turntable and raising/lowering an antenna and adjusting the antennas polarity for maximum received signal. A marker was placed at the peak of the UWB signal. Markers were then placed at the lower edge and upper edge of the UWB signal 10dB lower than the peak marker (searching from the outside of the signal toward the center of the signal). The delta between these markers at the 10dB down points was recorded as the UWB Bandwidth. Delta markers were used on the plots so that the UWB Bandwidth could be read directly.
Test Results	The EUT was compliant with § 15.519(b). The UWB bandwidth was entirely within the range of 3100 MHz and 10,600 MHz for low, mid, and high channels. Additionally, the UWB Bandwidth for each measured channel was greater than 500MHz.
Test Engineer(s):	Bryan Taylor
Test Date(s):	1/23/2025

Maztech Industries X4-LRF

UWB Bandwidth Test Results

Spectrun	n								
Ref Level	-10.00 dBm	Offset ().50 dB 🔵 I	RBW 1 MHz					
Att	10 dB	SWT	3 ms 😑 '	VBW 3 MHz	Mode Au	uto Swe	ер		
😑 1Pk Max					-725.	0 M	Hz		
						2[1]			-0.13 dB
-20 dBm									-725.00 MHz
-20 uBiii				M1		1[1]			-26.63 dBm
-30 dBm				moundary	mon	1		r	3.41356 GHz
-30 0011			D2r	North	many	LD3			
-40 dBm	D1 -36.630	dBm	JA .			NuR3			
			and the			Way	0		
-50 dBm		1 m	and of			2	Ny .		
00 000	1 Milly	a Jun	m				Nun 1	and the	1000
60-dem	10 Marson and	Jul .					" Whenly	multure	your do would have my
ro	No.								
-70 dBm				-	-				
-80 dBm									
-90 dBm									
-100 dBm—									
CF 3.4439	6 GHz			691	pts			1	Span 3.0 GHz
Marker									
Type Re	f Trc	X-value	e	Y-value	Func	tion		Function Re	sult
M1	1	3,413	56 GHz	-26.63 dB	m				
	03 1		.0 MHz	-0.13 (and a second sec				
D3 C)2 1	725	.0 MHz	0.13 (;/В				
						Me	asuring		44
					h.)			

Date: 23.JAN.2025 10:48:15

UWB Bandwidth = 725MHz

Figure 4. UWB Bandwidth (Low Channel)

Maztech Industries X4-LRF

Spect	rum									
Ref Le	vel -	10.00 d	Bm Offset	0.50 dB (BRBW 1 MHz					
Att		10	dB SWT	3 ms (🛢 VBW 3 MHz	Mode Aut	o Sweep			
😑 1Pk M	ах					855.3	MHz			
						D3				-0.56 dB
									1	355.30 MHz
-20 dBm					0.0.1	M1	[1]			-29.43 dBm
-30 dBn					M1	V		1	. 4	.35576 GHz
-30 UBII	1				mounderwo	and a market	6			
-40 dBn		1 .30 4	30 dBm	Dg	put -		Mp3			
-40 UBI		1 .05.4	30 dBm	werter			" Warw			
-50 dBm			undation	mur			W.	My		
Mobile			work					Why		
-60 dBm		a willow	march					huy .	donably and	AL MARKE
-00 001	i lu	-u ¹⁰						Min	n n	flune
-70 dBm	-									
7 0 0.D.I										
-80 dBm	ì									
-90 dBm	n			_						
-100 dB	.m.			_						
	1.000					5				
CF 4.5	1636	GHZ			691	pts			spa	an 3.0 GHz
Marker		1 - 1				1				
Туре	Ref		X-valu		Y-value	Functi	ion	Fund	tion Result	
M1 D2	D3	1		576 GHz 5.3 MHz	-29.43 dB 0.56 c					
D2	D3	1		5.3 MHz	-0.56 c					
			03.		0,00 0		I			
		Л					Measur	ing 🔳		

Date: 23.JAN.2025 10:55:10

UWB Bandwidth = 855.3MHz

Figure 5. UWB Bandwidth (Mid Channel)

Maztech Industries X4-LRF

-20 dBm 768.50 MHz -30 dBm -28.45 dBm -30 dBm 5.95776 GHz -40 dBm 01 -38.450 dBm -50 dBm	Spect	rum											
• 1Pk Max D3[1] 0.39 dE -20 dBm -20 dBm -28.45 0 dBm -30 dBm -28.45 dBm 5.95776 GHz -40 dBm -01 -38.450 dBm 0.00000000000000000000000000000000000	Ref Le	vel -	10.00 dBn	n Offset I	0.50 dB	🖷 RBW	1 MHz						
-20 dBm -20 dBm -20 dBm 768.50 MHz -30 dBm -22.45 dBm -28.45 dBm 5.95776 GHz -40 dBm -01 -38.450 dBm -28.45 dBm 5.95776 GHz -50 dBm -20 dBm -28.45 dBm -28.45 dBm -50 dBm -38.450 dBm -28.45 dBm -28.45 dBm -50 dBm -38.450 dBm -28.45 dBm -28.45 dBm -50 dBm -38.450 dBm -38.450 dBm -38.450 dBm -50 dBm -38.450 dBm -38.450 dBm -38.450 dBm -50 dBm -38.450 dBm -38.450 dBm -38.450 dBm -70 dBm -38.450 dBm -38.450 dBm -38.450 dBm -90 dBm -39.45 dBm -39.45 dBm -39.45 dBm -100 dBm -39.45 dBm -39.45 dBm -39.45 dBm -100 dBm -39.5776 GHz -28.45 dBm -28.45 dBm -100 dBm -39.30 GHz -768.5 MHz -0.39 dB Function Result	Att		10 di	3 SWT	12 ms	e vbw	3 MHz	Mode	Auto Swe	ер			
-20 dBm 768.50 MH: -30 dBm -28.45 dBm -40 dBm 01 -38.450 dBm -50 dBm -28.45 dBm -70 dBm -28.45 dBm -90 dBm -28.45 dBm -100 dBm -39.3 dB	😑 1Pk M	ах											
-20 dBm -28.45 dBm -30 dBm -38.450 dBm -40 dBm -1.38.450 dBm -50 dBm -28.45 dBm -68 dBm -28.45 dBm -70 dBm -28.45 dBm -90 dBm -28.45 dBm -100 dBm -28.45 dBm Type Ref Trc X-value Y-value Function Result M1 1 5.95776 GHz -28.45 dBm -0.39 dB									D3[1]				0.39 dB
-30 dBm -30 dBm 5.95776 GHz -40 dBm -10 dBm -38.450 dBm -38.450 dBm -50 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -50 dBm -50 dBm -50 dBm -90 dBm -50 dBm -50 dBm -50 dBm -100 dBm -50 dBm -50 dBm -50 dBm -100 dBm -50 dBm -50 dBm -50 dBm Type Ref Trc X-value Y-value Type Ref Trc X-value -28.45 dBm D2 D3 1 -768.5 MHz -0.39 dB												7	68.50 MHz
-30 dBm	-20 aBm						P	41	M1[1]				Contraction of the period of the second second second
0.80 dBm 0.00	- 20 dB -							No.				5.	95776 GHz
•80 dBm •90 dBm	-30 UBII					July	month	white	easo				
•80 dBm •90 dBm	40 d0e	D	1 -38,450	dBm	[Burn			MAN R3				
•80 dBm •90 dBm	-40 UBN			and the second s	w	<u> </u>			-wy	lun,			
•80 dBm •90 dBm	E0 d0m			-	N. Contraction			2		wy			
-70 dBm -80 dBm -90 dBm -90 dBm -100 dBm	-JU UBI			710	1º					Jones	, Ju		
-70 dBm -80 dBm -80 dBm -70 dBm -70 dBm -80 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm -100 dBm -90 dBm -90 dBm -90 dBm -90 dBm	anddhid		and the	how Mayoud	aur -						a non have	wellen	Sector Records
-70 dBm -<	1080 UDM	10 and a low	www.					2				was an	more contraction
-80 dBm -80 dBm -90 dBm	- 70 dem												
-90 dBm	-70 ubn												
-90 dBm													
Image: Problem state in the image:	-00 001												
Image: Problem state in the image:	00 dBm							-	_				
CF 5.93606 GHz 691 pts Span 3.0 GHz Marker Marker Span 3.0 GHz M1 1 5.95776 GHz -28.45 dBm D2 D3 1 -768.5 MHz -0.39 dB	-90 UDII												
CF 5.93606 GHz 691 pts Span 3.0 GHz Marker Marker Span 3.0 GHz M1 1 5.95776 GHz -28.45 dBm D2 D3 1 -768.5 MHz -0.39 dB	-100 dB							<					
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 5.95776 GHz -28.45 dBm D2 D3 1 -768.5 MHz -0.39 dB	100 00												
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 5.95776 GHz -28.45 dBm D2 D3 1 -768.5 MHz -0.39 dB		2		2				8					
Type Ref Trc X-value Y-value Function Function Result M1 1 5.95776 GHz -28.45 dBm D2 D3 1 -768.5 MHz -0.39 dB	CF 5.9	3606	GHz				691	pts				Spa	n 3.0 GHz
M1 1 5.95776 GHz -28.45 dBm D2 D3 1 -768.5 MHz -0.39 dB	Marker												
D2 D3 1 -768.5 MHz -0.39 dB	Туре	Ref	Trc	X-valu	e	Y-	value	- Fu	nction		Func	tion Result	
					and the second second	-2							
	D3	D2	1	768	3.5 MHz		0.39 (1B					
Measuring 📲 🚧 🚧									Me	asuring.			i //

Date: 23.JAN.2025 10:57:24

UWB Bandwidth = 768.5MHz

Figure 6. UWB Bandwidth (High Channel)

Maztech Industries X4-LRF

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.519(c) Radiated Emissions

Test Requirements: §15.519(c): radiated emissions at or below 960 MHz from a device operating under the provisions of this section shall not exceed the emission levels in § 15.209. The radiated emissions above 960 MHz from a device operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of 1 MHz:

Frequency (MHz)	§ 15.209(a),Radiated Emission Limits (dBμV) @ 3m
30 - 88	40.0
88 - 216	43.5
216 - 960	46.0
Above 960	54.0

Figure 7. Radiated Field Strength Emissions Limits from FCC Part 15.209 (a)

Frequency (MHz)	§ 15.519(c),Radiated Emission Limits (dBm)	§ 15.519(c),Radiated Emission Limits (dBuV/m @ 3m)	§ 15.519(c),Radiated Emission Limits (dBuV/m @ 1m)
960 - 1610	-75.3	20.0	29.54
1610 - 1990	-63.3	32.0	41.54
1990 - 3100	-61.3	34.0	43.54
3100 - 10,600	-41.3	54.0	63.54
Above 10,600	-61.3	34.0	43.54

Figure 8. Radiated Field Strength Emissions Limits from FCC Part 15.519 (c)

Maztech Industries X4-LRF	UWB Test Report FCC Part 15 – F (Ultra-Wideband Operation)
Test Procedures:	The radiated emission methodology referenced in ANSI C63.10: 2013 was utilized in order to a ssess the unwanted emissions. The test sample was placed on an 80cm high table (for emissions below 1GHz) and on a 150cm high table (for emissions above 1GHz). The test sample was rotated 360 degrees and examined in three orthogonal axis during the test.
	For measurements below 30MHz a magnetic field loop was utilized at a distance of 3m away. The magnetic loop remained fixed at 1m height and the test was performed with the loop positioned in a co-axial (0 degrees) and co-planar (90 degrees) position. Radiated measurements below 30MHz were performed in a semi-anechoic chamber that has been correlated to an open area site. Emissions were compared to the limits from 15.209.
	Measurements from $30MHz - 960MHz$ were performed with a Hybrid BiLog type antenna positioned 10m from the test sample. This antenna was moved from 1 to 4m in height and in vertical and horizontal polarities. Emissions were compared to the limits from 15.209.
	Measurements from 960MHz – 18GHz were performed with a horn antenna positioned 1m away from the test sample. This antenna was moved from 1 to 4m in height and in vertical and horizontal polarities. Emissions were measured in terms of field strength (dBuV/m) and then extra polated to a distance of 3m using a n inverse distance correction factor of 20 dB / decade. It was then converted to power terms (in dBm) for comparison to the limits in part 15.519(c). The formula from ANSI C63.10 Section 10.3.9 (formula 34) was used to convert from field strength to power terms:
	EIRP (dBm) = E (dB μ V/m) - 95.3
	Measurements from 18GHz to 40GHz were performed with a horn antenna positioned 0.5m from the test sample as well as via a prescan using conducted methods with the test sample connected directly to a spectrum analyzer. Any emissions detected from the test sample above the measurement noise floor were then measured at 1m distance using the same methodology as was used from 960MHz – 18GHz. Where no actual emissions were detected a plot of the measurement noise floor is submitted in the results.
Test Software:	TILE Version 7.4.2.5 (Manufactured by ETS Lindgren) and ELEKTRA Version 4.61 (Manufactured by Rohde&Schwarz) was utilized to perform these measurements.
Test Results:	The EUT was compliant with the radiated emission limits from rule part 15.209 (below 960MHz) and 15.519(c) (above 960MHz).
Test Engineer(s):	Bryan Taylor and Veer Patel
Test Date(s):	1/13/2025 - 1/27/2025

Maztech Industries X4-LRF

Radiated Emissions Test Results

Frequency [MHz]	Peak Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Result
0.015	58.32	124.36	66.04	16.61	V	336.4	1	0.200	Pass
0.018	62.35	122.73	60.37	15.31	Н	137.1	1	0.200	Pass
0.488	46.02	93.84	47.83	11.32	V	205.8	1	9.000	Pass
0.677	42.35	71.00	28.65	11.45	Н	133.8	1	9.000	Pass
10.001	25.38	69.50	44.12	10.83	V	91.3	1	9.000	Pass
25.013	24.45	69.50	45.05	9.71	Н	130.7	1	9.000	Pass

Figure 9. Worst Case Field Strength Below 30MHz (Valid for low, mid, and high channels)

Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Result
116.580	6.41	33.07	26.66	-6.64	Н	352.9	3.91	120.000	Pass
123.870	6.59	33.07	26.48	-6.17	V	135.2	1.26	120.000	Pass
126.720	6.83	33.07	26.24	-6.25	Н	165.9	3.54	120.000	Pass
273.660	7.06	35.57	28.51	-5.92	V	270.4	2.32	120.000	Pass
553.140	13.82	35.57	21.75	0.31	Н	360.3	1.76	120.000	Pass
612.150	14.00	35.57	21.57	1.26	Н	175.8	1.65	120.000	Pass

Figure 10. Worst Case Field Strength 30MHz – 960MHz (Low channel)

Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Result
37.860	7.18	29.55	22.37	-5.94	Н	209.6	2.97	120.000	Pass
115.800	5.28	33.07	27.79	-7.50	V	174.6	3.07	120.000	Pass
127.290	6.90	33.07	26.17	-6.28	Н	142	1.92	120.000	Pass
133.620	6.06	33.07	27.01	-6.71	V	220.2	2.91	120.000	Pass
277.620	9.47	35.57	26.10	-5.92	Н	195.7	3.54	120.000	Pass
597.270	14.15	35.57	21.42	0.53	Н	347.5	1.08	120.000	Pass

Figure 11. Worst Case Field Strength 30MHz – 960MHz (Mid channel)

Frequency [MHz]	QPK Level [dBµV/m]	QPK Limit [dBµV/m]	QPK Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	Meas. BW [kHz]	Result
37.530	7.36	29.55	22.19	-5.69	Н	278.9	1.47	120.000	Pass
111.930	5.38	33.07	27.69	-7.64	V	48.9	3.65	120.000	Pass
124.170	6.55	33.07	26.52	-6.16	V	218.7	3.32	120.000	Pass
127.110	6.88	33.07	26.19	-6.26	Н	68.4	3.64	120.000	Pass
584.310	21.66	35.57	13.91	0.97	V	69	1.04	120.000	Pass
612.390	14.39	35.57	21.18	1.26	Н	352.8	1.21	120.000	Pass

Figure 12. Worst Case Field Strength 30MHz – 960MHz (High channel)

Frequency (GHz)	Polarity (V/H)	Amplitude (dBm)	Limit (dBm)	Margin (dB)	RBW	Result
1.347	V	-79.19	-75.3	3.89	1MHz	Pass
3.390	V	-63.88	-41.3	22.58	1MHz	Pass
12.418	V	-68.91	-61.3	7.61	1MHz	Pass
16.755	V	-66.18	-61.3	4.88	1MHz	Pass
1.884	Н	-67.57	-63.3	4.27	1MHz	Pass
3.225	Н	-61.66	-41.3	20.36	1MHz	Pass
12.515	Н	-69.14	-61.3	7.84	1MHz	Pass
16.753	Н	-66.12	-61.3	4.82	1MHz	Pass

Figure 13. Worst Case Spurious Emissions 960MHz – 40GHz (Low Channel)

Frequency (GHz)	Polarity (V/H)	Amplitude (dBm)	Limit (dBm)	Margin (dB)	RBW	Result
1.348	V	-79.73	-75.3	4.43	1MHz	Pass
4.545	V	-59.29	-41.3	17.99	1MHz	Pass
12.418	V	-68.69	-61.3	7.39	1MHz	Pass
17.295	V	-67.12	-61.3	5.82	1MHz	Pass
1.443	Н	-79.63	-75.3	4.33	1MHz	Pass
4.467	Н	-54.63	-41.3	13.33	1MHz	Pass
14.356	Н	-67.93	-61.3	6.63	1MHz	Pass
16.773	Н	-66.37	-61.3	5.07	1MHz	Pass

Figure 14. Worst Case Spurious Emissions 960MHz – 40GHz (Mid Channel)

Frequency (GHz)	Polarity (V/H)	Amplitude (dBm)	Limit (dBm)	Margin (dB)	RBW	Result
1.963	V	-75.92	-63.3	12.62	1.963	Pass
5.808	V	-58.37	-41.3	17.07	5.808	Pass
12.418	V	-69.03	-61.3	7.73	12.418	Pass
17.253	V	-65.77	-61.3	4.47	17.253	Pass
1.441	Н	-79.89	-75.3	4.59	1.441	Pass
5.923	Н	-58.69	-41.3	17.39	5.923	Pass
14.355	Н	-68.10	-61.3	6.80	14.355	Pass
16.910	Н	-66.34	-61.3	5.04	16.910	Pass

Figure 15. Worst Case Spurious Emissions 960MHz – 40GHz (High Channel)

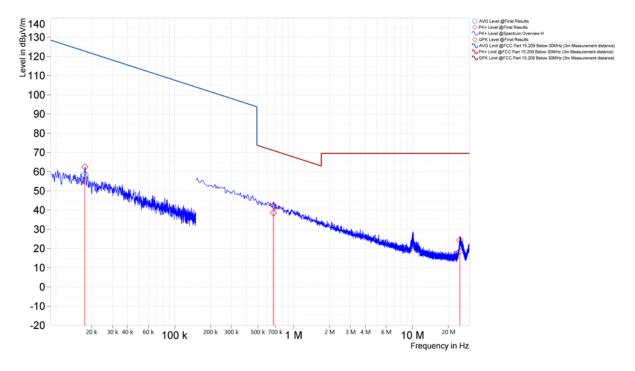


Figure 16. Radiated Emissions 9kHz – 30MHz (Coplanar Loop)

Figure 17. Radiated Emissions 9kHz – 30MHz (Coaxial Loop)

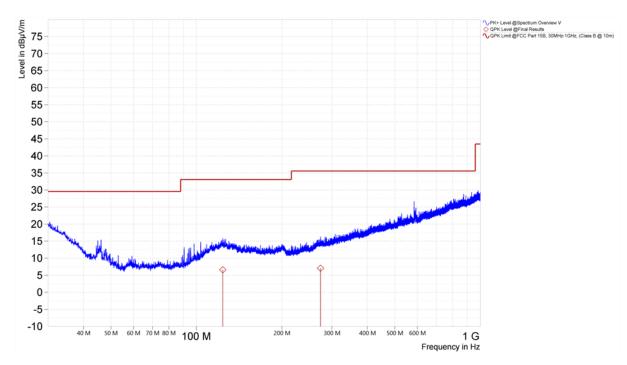


Figure 18. Radiated Emissions 30MHz-1GHz (Vertical, Low Channel)

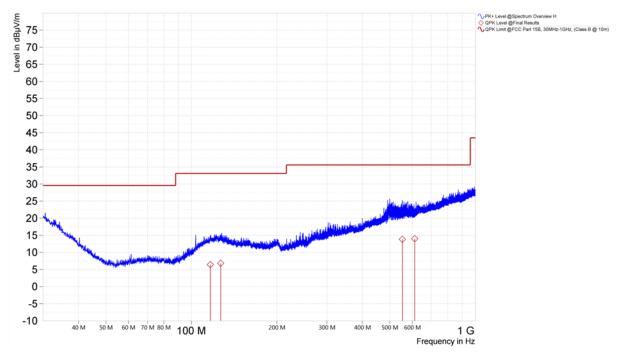


Figure 19. Radiated Emissions 30MHz-1GHz (Horizontal, Low Channel)

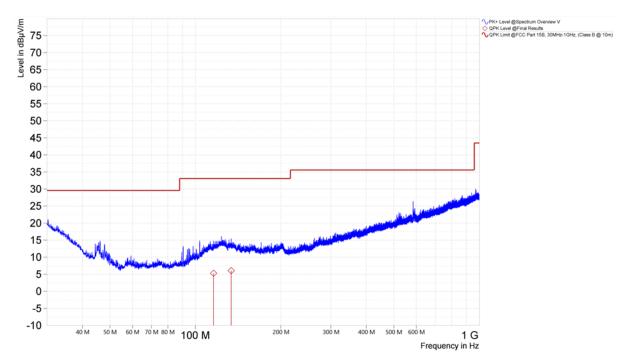


Figure 20. Radiated Emissions 30MHz-1GHz (Vertical, Mid Channel)

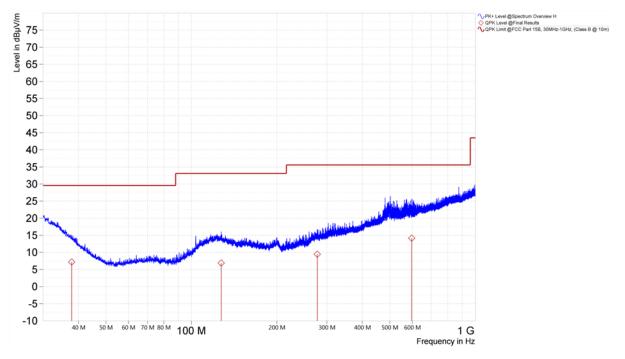


Figure 21. Radiated Emissions 30MHz-1GHz (Horizontal, Mid Channel)

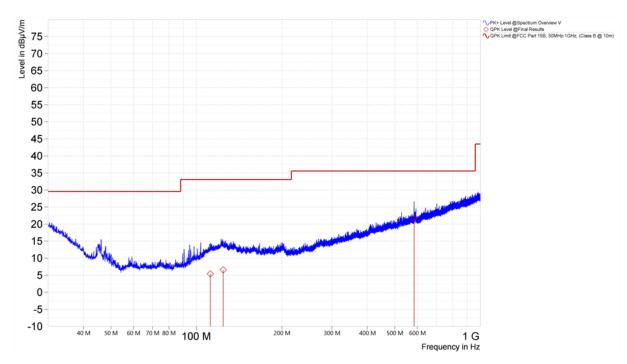


Figure 22. Radiated Emissions 30MHz-1GHz (Vertical, High Channel)

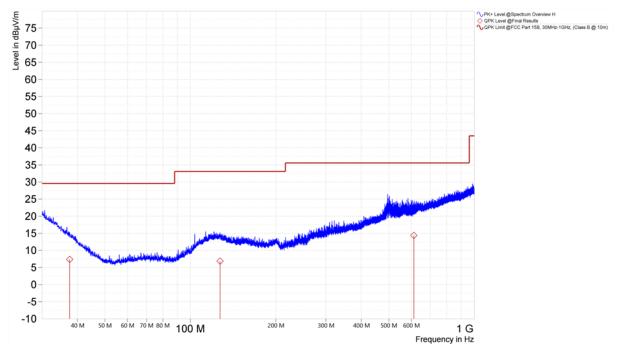


Figure 23. Radiated Emissions 30MHz-1GHz (Horizontal, High Channel)

MultiView	Receive	r 🗙 Sp	ectrum	×					
		Meas Time 100) ms Step TD S	can Automatic			_		
 Att Input 	0 dB 1 AC	Notch PS	Off Widebar On Preamp	nd Off			Freq	uency 14.0	805000 GHz
TDF Input1 "Radit 2 Scan	tatedSpurious	1G to 18G"							●1Rm Max
60 dBµV/m									
50 dBµV/m									
	M1								M2
40 dBµV/m	M		()		ي العرب الحد	M3-	mar. M	moreling	hiter
-30MBUV/m RADIATED SPUBIOUS	3-15.519C (960)	1 TO 40G)	ym Mulm	mount		www.w		N	· ·
20 dBµV/m									
10 dBµV/m									
0 dBµ∨/m									
-10 dBµV/m									
10 0001711									
-20 dBµV/m									
Start 960.0 MH	Iz			Rar	ge 1				Stop 18.0 GHz
3 Marker Table				1					
Wnd Scan	Type M1	Ref	1 Trc		X-valu 3.39	GHz		Y-valu 40.96 dBµ	V/m
Scan Scan	M2 M3		1		16.7555 12.418			38.66 dBµ 35.93 dBµ	IV/m IV/m
Scan	M4		1		1.347			25.65 dBµ	V/m
					- Measuring		2025-01 14:38	I-24 Att 3:30 •	Meas BW

02:38:31 PM 01/24/2025

Figure 24. Radiated Emissions 960MHz – 18GHz (Vertical, Low Channel)

									- 🗞
MultiView	Receiver	× Sp	ectrum	×					
Meas BW (CIS Att Input TDF Input1 "Radita	0 dB 1 AC	Meas Time 100 Notch P S G to 186") ms Step TD S Off Widebar On Preamp	can Automatic Id Off			Frec	quency 13.30	005000 GHz
2 Scan					1				●1Rm Max
60 dBµV/m									
50 dBµV/m									
40 dBμ∇/0	M1								M2
	<u>/ </u>		mapping	montering	mmmmm	mummertu	mound	mound	hours
m l	15.519C (960M	TO 40G)							
⁽ 20 dBµV/m									
10 dBµV/m									
0 dBµV/m									
-10 dBµV/m									
-20 dBµV/m									
				Par	nge 1				
Start 960.0 MHz	Z								Stop 18.0 GHz
3 Marker Table Wnd	Туре	Ref	Trc	1	V usl	10		Y-value	
Scan	M1 M2	I KEI	1		X-valu 3.225 16.7535	GHz		43.18 dBµ 38.72 dBµ	V/m
Scan Scan Scan	M3 M4		1		12.515	GHz		35.7 dBµ 37.27 dBµ	V/m
	~		-			ig	2025-01 14:42	1-24 Att	Meas BW

02:42:56 PM 01/24/2025

Figure 25. Radiated Emissions 960MHz – 18GHz (Horizontal, Low Channel)

MultiView	Receiver	X Sp	ectrum	×					
Meas BW (CI: Att		Meas Time 10		can Automatic			F		
TDF Input1 "Radit	1 AC	PS	On Preamp	Off			Freq	uency 18.00	000000 GHz
2 Scan	tateuspunous i	G 10 18G		1	1	1			●1Rm View
60 dBµV/m									
50 dBµV/m		M1							
40 dBµV/m	/	1 mg				МЗ			M2
			In rolada	mum	mmun	have have have	Manna	manne	hallow
-30 MBUV/m RADIATED SRURIOUS	8 15.519C (960M	TO 40G)	A MANA A MANA				V. V.		
20 dBµV/m									
10 dBµV/m									
O dBµV/m───									
-10 dBµV/m									
-20 dBµV/m									
20 000 10/10									
Start 960.0 MH				Rar	ge 1				Stop 18.0 GHz
3 Marker Table									
Wnd Scan	Type M1	Ref	Trc		X-value 4.5455 (GHz		۲-value 45.55 dBp	
Scan	M2 M3		1 1		17.2955	GHz		37.72 dBµ 36.15 dBµ	√/ m
Scan	M3 M4		1		1.348			25.11 dBµ	V/m
					- Measuring		2025-01 14:25	24 Att i:53 •	Meas BW

02:25:53 PM 01/24/2025

									
MultiView	Receiver	× Sp	ectrum	×					•
Meas BW (CIS Att Input TDF Input1 "Radit	0 dB 1 AC	Meas Time 100 Notch PS .G to 18G"	-	can Automatic			Frec	juency 16.98	305000 GHz
2 Scan									●1Rm Max
60 dBµV/m									
		M1							
50 dBµV/m		X							
40 dByV/m	/	+					<u>M3</u>		M2
					MANN M. A	mannan	my man M	marchand	hundrende
30 KPAIV/m RADIATED SPURIOUS		To 100) Monte	efor Anthrope	mum	w	manner.	. N www.	W · · · · · · ·	-
RADIATED SPURIOUS	~15.519C (960M	10 40G)	Ì						
20 dBµV/m									
10 dBµV/m									
0 dBµV/m									
-10 dBµV/m									
-20 dBµV/m									
Start 960.0 MH	7			Ran	ge i				Stop 18.0 GHz
3 Marker Table									110 1010 012
Wnd	Туре	Ref	Trc		X-valu	le		Y-value	
Scan	M1		1	1	4.4675	GHz		50.21 dBu	V/m
Scan	M2		1		16.7735 14.356	GHZ		38.47 dBu	// m
Scan Scan	M3 M4		1		14.356			36.91 dBµ 25.21 dBµ	7/111 7/m
	1 + 1 - 4		1				- 2025-01		Meas BW
					 Measurin 	g	2025-01 14:33	3:36 O	

02:33:36 PM 01/24/2025

Figure 27. Radiated Emissions 960MHz – 18GHz (Horizontal, Mid Channel)

Maztech Industries X4-LRF

									
MultiView	Receiver	× Spe	ectrum	×					•
Meas BW (CISF Att Input TDF Input1 "Radita	0 dB 1 AC	PS	ms Step TD S Off Widebar On Preamp	can Automatic Id Off			Frec	quency 14.08	305000 GHz
2 Scan							1		●1Rm Max
60 dBµV/m									
50 dBµV/m									
40 dBµV/m								. 0	M2
-30MHUV/M	15.519C (960M	TO 40G)	mmulmulm	munum	mann	monter	M. www.ww	www.www.	
20 dBµV/m									
10 dBµV/m									
0 dBµV/m									
-10 dBµV/m									
-20 dBµV/m									
Start 960.0 MHz				Ran	ge 1				Stop 18.0 GHz
3 Marker Table Wnd	Туре	Ref	Trc		X-value	2		Y-value	
Scan Scan Scan Scan Scan	M1 M2 M3 M4		1 1 1 1		3.39 (16.7555 (12.418 (1.347 (GHZ GHZ GHZ		40.96 dBµ 38.66 dBµ 35.93 dBµ 25.65 dBµ	//m //m //m
Justan	1414		1				2025-0	1-24 Att	Meas BW

02:38:31 PM 01/24/2025

Figure 28. Radiated Emissions 960MHz – 18GHz (Vertical, High Channel)

MultiView	Receiver	× Sp	ectrum	×					
Meas BW (CIS Att Input TDF Input1 "Radite	0 dB 1 AC	Meas Time 100 Notch PS		Ccan Automatic			Frec	quency 13.3	005000 GHz
2 Scan				T	T	1	I	T	⊜1Rm Max
60 dBµ∀/m									
50 dBµV/m	M1								
40 dBµ⊽∰	-In-					M3 M3	La na ata	mun ran hi	M2 Murhal
	15.519C (960M	TO 40G)	- Munda	when the water	and marked when the	www.www		M M.	
⁷ 20 dBµV/m 10 dBµV/m									
0 dBµV/m									
-10 dBµV/m									
-20 dBµV/m									
Start 960.0 MH:	Z			Rar	ge 1				Stop 18.0 GHz
3 Marker Table									
Wnd Scan Scan Scan Scan	Type M1 M2 M3	Ref	1 1 1		X-value 3.225 (16.7535 (12.515 (GHZ GHZ		Y-value 43.18 dBµ 38.72 dBµ 35.7 dBµ	V/m V/m
Scan	M4		î		1.8845			37.27 dBµ	V/m
					- Measuring		2025-01 14:42	1-24 Att 2:55 •	Meas BW

02:42:56 PM 01/24/2025

Figure 29. Radiated Emissions 960MHz – 18GHz (Horizontal, High Channel)

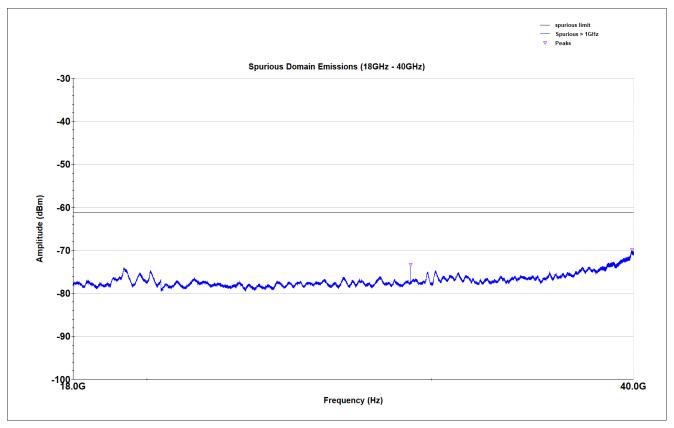


Figure 30. Radiated Emissions 18GHz – 40GHz (Low Channel)

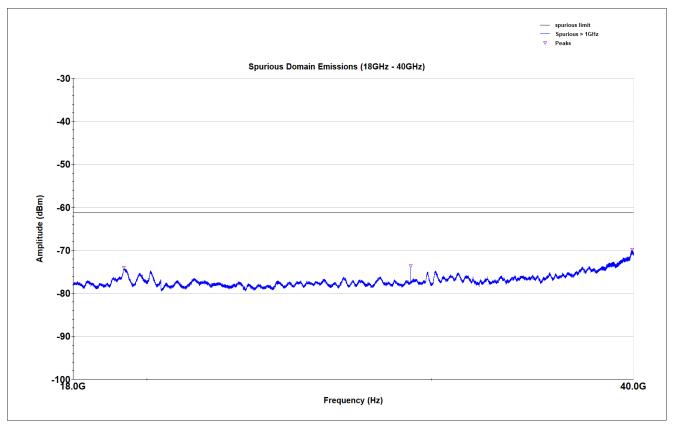


Figure 31. Radiated Emissions 18GHz – 40GHz (Mid Channel)

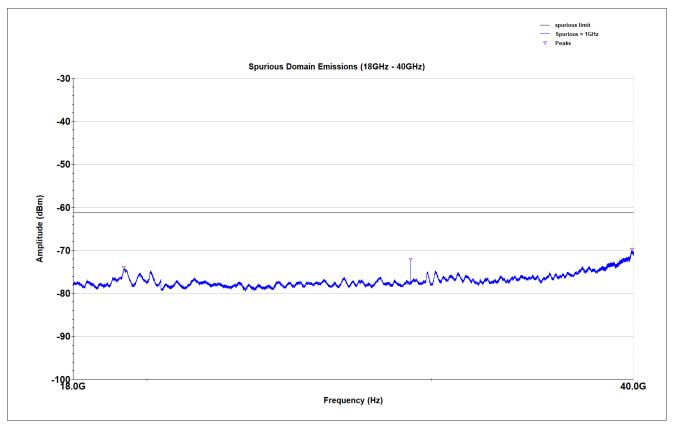


Figure 32. Radiated Emissions 18GHz – 40GHz (High Channel)

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.519(d) Emissions in the 1164-1240MHz and 1559-1610MHz Bands

Test Requirements: §15.519(d): In addition to the radiated emission limits specified in the table in paragraph (c) of this section, UWB transmitters operating under the provisions of this section shall not exceed the following average limits when measured using a resolution bandwidth of no less than 1 kHz

Frequency (MHz)	EIRP in dBm
1160 - 1240	-85.3
1559 - 1610	-85.3

Figure 33. Radiated Field Strength Emissions Limits from FCC Part 15.209 (a)

Test Procedure: Measurements in the 1164-1240MHz and 1559-1610MHz bands were performed using the same methodology as was used for the 15.519(c) spurious emission measurements. Per ANSI C63.10 section 10.3.10 a resolution bandwidth of 30kHz was used on the measurement instrument with RMS detection.

The analyzer settings are shown in the following table:

RBW:	30kHz	Detector:	RMS	Reference Level:	-50dBm
VBW:	100kHz	Sweep Time:	Auto	Internal Attenuation:	0dB

Figure 34. Analyzer Settings During Measurement

Test Software:TILE Version 7.4.2.5 (Manufactured by ETS Lindgren) was utilized to perform these
measurements.Test Results:The EUT was compliant with the peak power spectral density limits of § 15.519 (d).Test Engineer:Bryan Taylor and Veer PatelTest Date:1/13/2025 – 1/27/2025

Maztech Industries X4-LRF

UWB Test Report FCC Part 15 – F (Ultra-Wideband Operation)

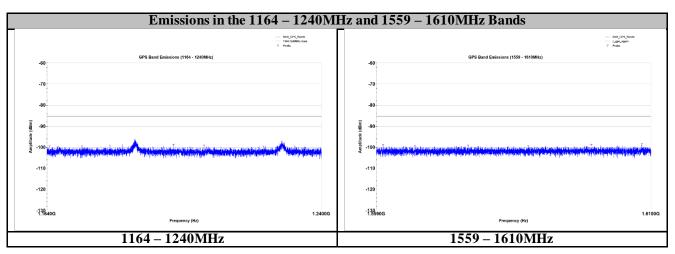


Figure 35. Emissions in the 1164 – 1240MHz and 1559 – 1610MHz Bands (Low Channel)

Tested Band	Frequency (MHz)	Amplitude (dBm)	Limit (dBm)	Margin (dB)	RBW	Result
	1164.722	-99.303	-85.3	14.003	30kHz	Pass
	1173.477	-99.54	-85.3	14.24	30kHz	Pass
1164MHz – 1240MHz	1181.092	-99.319	-85.3	14.019	30kHz	Pass
	1187.849	-96.462	-85.3	11.162	30kHz	Pass
	1198.451	-98.873	-85.3	13.573	30kHz	Pass
	1206.955	-99.186	-85.3	13.886	30kHz	Pass
	1223.592	-99.614	-85.3	14.314	30kHz	Pass
	1228.76	-97.335	-85.3	12.035	30kHz	Pass
	1560.219	-99.007	-85.3	13.707	30kHz	Pass
	1566.053	-99.451	-85.3	14.151	30kHz	Pass
	1575.881	-99.215	-85.3	13.915	30kHz	Pass
1559MHz – 1610MHz	1587.035	-99.39	-85.3	14.09	30kHz	Pass
	1598.8	-98.876	-85.3	13.576	30kHz	Pass
	1608.297	-98.483	-85.3	13.183	30kHz	Pass

Figure 36. Emissions in the 1164 – 1240MHz and 1559 – 1610MHz Bands (Low Channel)

Maztech Industries X4-LRF

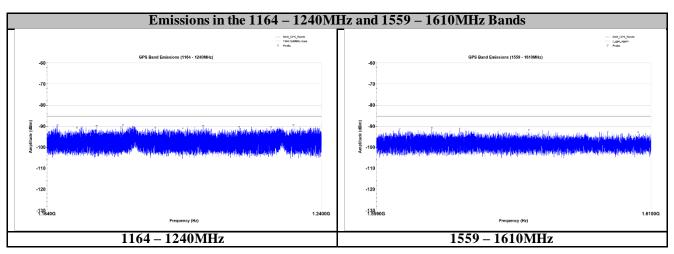


Figure 37. Emissions in the 1164 – 1240MHz and 1559 – 1610MHz Bands (Mid Channel)

Tested Band	Frequency (MHz)	Amplitude (dBm)	Limit (dBm)	Margin (dB)	RBW	Result
	1166.865	-89.503	-85.3	4.203	30kHz	Pass
	1172.109	-90.774	-85.3	5.474	30kHz	Pass
	1177.414	-89.942	-85.3	4.642	30kHz	Pass
	1184.543	-89.58	-85.3	4.28	30kHz	Pass
1164MHz – 1240MHz	1193.435	-90.816	-85.3	5.516	30kHz	Pass
	1200.989	-91.106	-85.3	5.806	30kHz	Pass
	1206.651	-89.929	-85.3	4.629	30kHz	Pass
	1216.767	-90.328	-85.3	5.028	30kHz	Pass
	1225.644	-90.42	-85.3	5.12	30kHz	Pass
	1231.99	-89.57	-85.3	4.27	30kHz	Pass
	1559	-95.675	-85.3	10.375	30kHz	Pass
	1563.269	-91.218	-85.3	5.918	30kHz	Pass
	1569.149	-91.001	-85.3	5.701	30kHz	Pass
1550MH7 - 1610MH7	1574.28	-91.032	-85.3	5.732	30kHz	Pass
1559MHz – 1610MHz	1581.374	-92.712	-85.3	7.412	30kHz	Pass
	1587.116	-91.87	-85.3	6.57	30kHz	Pass
	1601.86	-92.514	-85.3	7.214	30kHz	Pass
	1607.593	-93.012	-85.3	7.712	30kHz	Pass

Figure 38. Emissions in the 1164 – 1240MHz and 1559 – 1610MHz Bands (Mid Channel)

Maztech Industries X4-LRF

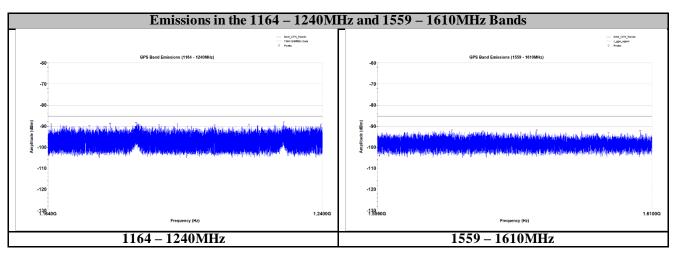


Figure 39. Emissions in the 1164 – 1240MHz and 1559 – 1610MHz Bands (High Channel)

Tested Band	Frequency (MHz)	Amplitude (dBm)	Limit (dBm)	Margin (dB)	RBW	Result
1164MHz – 1240MHz	1164.874	-88.983	-85.3	3.683	30kHz	Pass
	1175.149	-90.088	-85.3	4.788	30kHz	Pass
	1180.811	-88.898	-85.3	3.598	30kHz	Pass
	1187.925	-88.498	-85.3	3.198	30kHz	Pass
	1194.24	-89.565	-85.3	4.265	30kHz	Pass
	1199.272	-88.949	-85.3	3.649	30kHz	Pass
	1209.608	-89.698	-85.3	4.398	30kHz	Pass
	1219.168	-89.322	-85.3	4.022	30kHz	Pass
	1228.98	-88.075	-85.3	2.775	30kHz	Pass
	1239.521	-89.263	-85.3	3.963	30kHz	Pass
1559MHz – 1610MHz	1559	-93.995	-85.3	8.695	30kHz	Pass
	1572.673	-91.895	-85.3	6.595	30kHz	Pass
	1578.39	-92.577	-85.3	7.277	30kHz	Pass
	1588.401	-92.083	-85.3	6.783	30kHz	Pass
	1596.781	-92.746	-85.3	7.446	30kHz	Pass
	1601.825	-93.172	-85.3	7.872	30kHz	Pass
	1607.792	-92.409	-85.3	7.109	30kHz	Pass

Figure 40. Emissions in the 1164 – 1240MHz and 1559 – 1610MHz Bands (High Channel)

Maztech Industries X4-LRF

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.519(e) Peak EIRP

- **Test Requirement: 15.519(e)** There is a limit on the peak level of the emissions contained within a 50 MHz bandwidth centered on the frequency at which the highest radiated emission occurs, fM. That limit is 0 dBm EIRP. It is acceptable to employ a different resolution bandwidth, and a correspondingly different peak emission limit, following the procedures described in § 15.521.
- **Test Procedure:** The radiated emission methodology referenced in ANSI C63.10: 2013 was utilized in order to assess peak EIRP of the UWB device. The test sample was placed on an 150cm high table and was rotated 360 degrees and examined in three orthogonal axis during the test. A horn antenna was positioned 3m away and was scanned from 1-4 meters in height in vertical and horizontal polarities. The measurement instrument used was configured for peak detection using a 50MHz resolution bandwidth. The worst case field strength contained within a 50MHz bandwidth centered on the frequency at which the highest emission occurred was recorded (in dBuV/m). The field strength measurement was then converted to power terms (in dBm) for comparison to the 0dBm limit in part 15.519(e). The formula from ANSI C63.10 Section 10.3.9 (formula 34) was used to convert from field strength to power terms:

EIRP (dBm) = E (dB μ V/m) - 95.3

- **Test Results:** The EUT was compliant with the peak EIRP limit from **§15.519(e)**.
- **Test Engineer:** Bryan Taylor and Veer Patel

Test Date: 1/24/2025

Transmit Channel	Frequency (GHz)	Polarity (V/H)	Amplitude (dBuV/m)	Amplitude (dBm)	Limit (dBm)	Margin (dB)	RBW	Result
Low	3.1139	V	76.85	-18.45	0	18.45	50MHz	Pass
Low	3.1139	H	78.79	-16.51	0	16.51	50MHz	Pass
Mid	4.4286	V	75.97	-19.33	0	19.33	50MHz	Pass
Mid	4.4286	Н	79.10	-16.20	0	16.20	50MHz	Pass
High	5.7753	V	77.66	-17.64	0	17.64	50MHz	Pass
High	5.7753	Н	78.18	-17.12	0	17.12	50MHz	Pass

Figure 41. Peak EIRP Measurements

Maztech Industries X4-LRF

UWB Test Report FCC Part 15 – F (Ultra-Wideband Operation)

Figure 42. Peak EIRP Power Plots

Maztech Industries X4-LRF

IV. Test Equipment

Maztech Industries X4-LRF

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2017.

Asset #	Description	Manufacturer	Model	Last Cal Date	Cal Due Date
1A1250	Receiver	Rohde & Schwarz	ESW44	04/08/2024	04/08/2025
1A1234	FSV Signal Analyzer	Rohde & Schwarz	FSV 40	1/23/2023	02/23/2025
1A1176	Active Loop Antenna (9KHz-30MHz)	ETS-Lindgren	6502	8/22/2024	8/22/2026
1A1147	Bi-Log Antenna	Suno Sciences Corp	JB3	04/06/2023	04/06/2025
1A1047	Horn Antenna (1GHz – 18GHz)	ETS - Lindgren	3117	06/26/2024	06/26/2025
1A1161	Horn Antenna (18GHz – 40GHz)	ETS Lindgren	3116C	08/01/2024	08/01/2026
1A1088	Preamplifier	Rohde & Schwarz	TS-PR1	See Note	
1A1044	Generator	Com-Power	CG-520	See Note	
1A1073	Multi Device Controller	ETS	2090	See Note	
1A1074	System Controller	Panasonic	WV-CU101	See Note	
1A1080	Multi-Device	ETS	2090	See Note	
1A1180	Preamplifier	Miteq	AMF-7D- 01001800-22- 10P	See Note	

Table 6. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

Maztech Industries X4-LRF

End of Report