

FCC Test Report

FCC ID : 18811AXAP22

Equipment : 802.11ax (WiFi 6) Dual-Radio Unified Access Point

Model No. : WAX510D, NWA110AX

Multiple Listing : Refer to item 1.1.1 for more details.

Brand Name : ZYXEL

Applicant: Zyxel Communications Corporation

Address : No.2 Industry East RD. IX, Hsinchu Science Park,

Hsinchu 30075, Taiwan, R.O.C

Standard : 47 CFR FCC Part 15.247

Received Date : Dec. 18, 2019

Tested Date : Dec. 23, 2019 ~ Jan. 06, 2020

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

ong Chen // Assistant Manager 🔀 Gary Chang / Manag

Testing Laboratory 2732

Report No.: FR9D0202AC Page: 1 of 69

Report Version: Rev. 02

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	9
1.3	Test Setup Chart	9
1.4	The Equipment List	11
1.5	Test Standards	12
1.6	Deviation from Test Standard and Measurement Procedure	12
1.7	Measurement Uncertainty	12
2	TEST CONFIGURATION	13
2.1	Testing Condition	13
2.2	The Worst Test Modes and Channel Details	13
3	TRANSMITTER TEST RESULTS	14
3.1	Conducted Emissions	14
3.2	6dB and Occupied Bandwidth	19
3.3	RF Output Power	25
3.4	Power Spectral Density	28
3.5	Unwanted Emissions into Restricted Frequency Bands	34
3.6	Emissions in Non-Restricted Frequency Bands	64
4	TEST LABORATORY INFORMATION	69

Release Record

Report No.	Version	Description	Issued Date
FR9D0202AC	Rev. 01	Initial issue	Jan. 21, 2020
FR9D0202AC	Rev. 02	Revising the accessories description & FCC ID	Apr. 23, 2020

Report No.: FR9D0202AC Page: 3 of 69

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 19.532MHz 43.56 (Margin -6.44dB) - AV	Pass
15.247(d) 15.209	Radiated Emissions	[dBuV/m at 3m]: 2483.50MHz 73.85 (Margin -0.15dB) – PK	Pass
15.247(b)(3)	Maximum Output Power	Max Power [dBm]: Non-beamforming mode 23.62 Beamforming mode 20.38	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FR9D0202AC Report Version: Rev. 02

1 General Description

1.1 Information

1.1.1 Product Details

The following models are provided to this EUT.

WAX510D 802.11ax (WiFi 6) Dual-Radio Unified Access Point Difference between two modes of tware.	
	dels is
NWA110AX 802.11ax (WiFi 6) Dual-Radio NWA110AX (FAT/Cloud AP)	

The above models, model **WAX510D** was selected as a representative one for the final test and only its data was recorded in this report.

1.1.2 Specification of the Equipment under Test (EUT)

RF General Information							
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	Data Rate / MCS		
2400-2483.5	b	2412-2462	1-11 [11]	2	1-11 Mbps		
2400-2483.5	g	2412-2462	1-11 [11]	2	6-54 Mbps		
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	2	MCS 0-15		
2400-2483.5	n (HT40)	2422-2452	3-9 [7]	2	MCS 0-15		
2400-2483.5	ax (HE20)	2412-2462	1-11 [11]	2	MCS 0-11		
2400-2483.5	ax (HE40)	2422-2452	3-9 [7]	2	MCS 0-11		

Note 1: RF output power specifies that Maximum Conducted (Average) Output Power.

Note 2: Chip feature:

DSSS-DBPSK, DQPSK, CCK modulation

OFDM/OFDMA- BPSK, QPSK, 16QAM, 64QAM, 256QAM and 1024 QAM modulation.

Note 3: Operating modes of this device are listed as above table.

Note 4: 802.11ax supports beamforming function.

1.1.3 Antenna Details

Ant.	Model	Туре	Connector	Operat	ing Frequenc	cies (MHz) / A	Intenna Gain	(dBi)
No.	Model	Турс	Connector	2400~2483.5	5150~5250	5250~5350	5470~5725	5725~5850
1	AP886-V3	Dipole	IPEX		4.5	4.5	5.2	5.5
2	AP886-V3	PIFA	IPEX	0				
3	AP886-V3	Dipole	IPEX	0	4.5	4.5	5.2	5.5
4	AP886-V3	Dipole	IPEX	0	4.5	4.5	5.2	5.5

Report No.: FR9D0202AC Page: 5 of 69

Report Version: Rev. 02

1.1.4 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	12Vdc from adapter 30~57Vdc from POE
-------------------	---

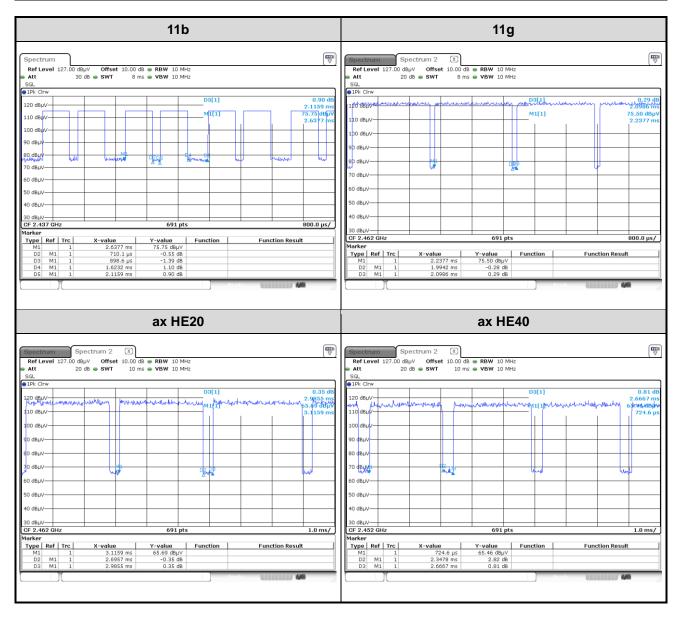
Note: The above power supply for POE is not bundled in market.

1.1.5 Accessories

	Accessories					
No.	Equipment	Description				
1	AC adapter (Only for model: NWA110AX)	Brand: APD Model: WB-18Q12R I/P: 100-240Vac, 50-60Hz, 0.6A Max O/P: 12Vdc, 1.5A Power Line: DC 1.5m non-shielded without core				

1.1.6 Channel List

Frequency	band (MHz)	2400~2483.5 802.11n HT40 / ax HE40		
802.11a / n H	T20 / ax HE20			
Channel	Frequency(MHz)	Channel	Frequency(MHz)	
1	2412	3	2422	
2	2417	4	2427	
3	2422	5	2432	
4	2427	6	2437	
5	2432	7	2442	
6	2437	8	2447	
7	2442	9	2452	
8	2447			
9	2452			
10	2457			
11	2462			


Report No.: FR9D0202AC Page: 6 of 69

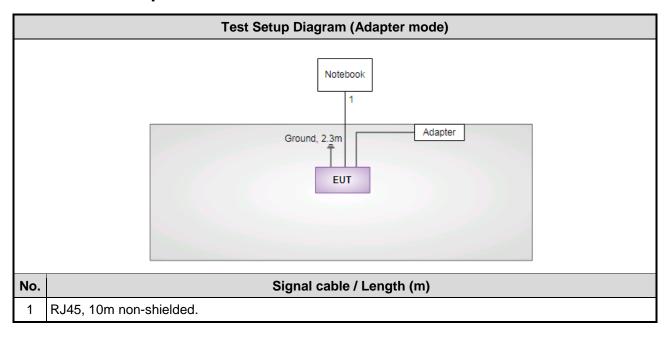
Report Version: Rev. 02

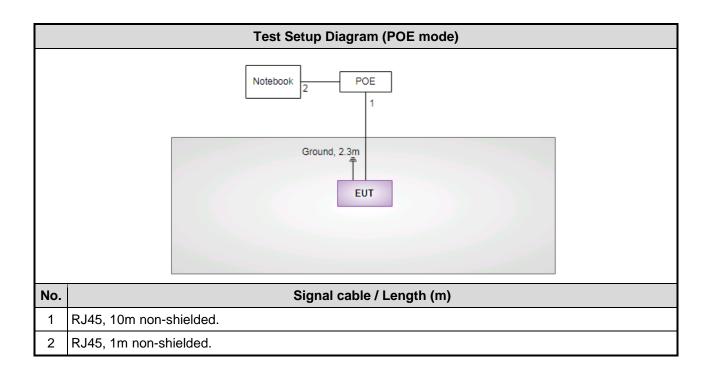
1.1.7 Test Tool and Duty Cycle

Test Tool QSPR, v5.0-00170				
	Mode	Duty cycle (%)	Duty factor (dB)	
Duty Cycle and Duty Factor	11b	67.81%	1.69	
Duty Cycle and Duty Factor	11g	95.03%	0.22	
	ax (HE20)	90.29%	0.44	
	ax (HE40)	88.04%	0.55	

Report No.: FR9D0202AC Report Version: Rev. 02 Page: 7 of 69

1.1.8 Power Index of Test Tool


Modulation Mode	Test Frequency (MHz)	Power Index
11b	2412	21
11b	2437	20
11b	2462	19.5
11g	2412	20
11g	2437	21
11g	2462	19.5
ax (HE20)	2412	17.5
ax (HE20)	2437	21
ax (HE20)	2462	15.5
ax (HE40)	2422	17
ax (HE40)	2437	17.5
ax (HE40)	2452	15


1.2 Local Support Equipment List

	Support Equipment List							
No.	Equipment	Brand	Model	FCC ID	Remarks			
1	Notebook	DELL	Latitude E5470	DoC				
2	POE Switch	ZYXEL	XS1930-12HP		Provided by applicant.			
3	Ground Cable	ICC	GC-2.3m					
4	RJ45	ICC	RJ45-10m					

1.3 Test Setup Chart

Report No.: FR9D0202AC

Page: 10 of 69

Report Version: Rev. 02

The Equipment List 1.4

Test Item	Conducted Emission	Conducted Emission					
Test Site	Conduction room 1 / (CO01-WS)					
Tested Date	Jan. 06, 2020						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Receiver	R&S	ESR3	101657	Jan. 08, 2019	Jan. 07, 2020		
LISN	R&S	ENV216	101579	Mar. 08, 2019	Mar. 07, 2020		
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Oct. 22, 2019	Oct. 21, 2020		
Measurement Software	AUDIX	e3	6.120210k	NA	NA		
Note: Calibration Interval of instruments listed above is one year.							

Test Item	Radiated Emission							
Test Site	966 chamber 3 / (03C	966 chamber 3 / (03CH03-WS)						
Tested Date	Dec. 23 ~ Dec. 31, 2019							
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until			
Spectrum Analyzer	R&S	FSV40	101499	Jan. 07, 2019	Jan. 06, 2020			
Receiver	R&S	ESR3	101657	Jan. 08, 2019	Jan. 07, 2020			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	Apr. 17, 2019	Apr. 16, 2020			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Jan. 07, 2019	Jan. 06, 2020			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 15, 2019	Nov. 14, 2020			
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 13, 2019	Nov. 12, 2020			
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 07, 2019	Oct. 06, 2020			
Preamplifier	EMC	EMC02325	980187	Aug. 14, 2019	Aug. 13, 2020			
Preamplifier	Agilent	83017A	MY53270014	Aug. 07, 2019	Aug. 06, 2020			
Preamplifier	EMC	EMC184045B	980192	Aug. 01, 2019	Jul. 31, 2020			
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Sep. 27, 2019	Sep. 26, 2020			
RF cable-8M	EMC	EMC104-SM-SM-80 00	181107	Sep. 27, 2019	Sep. 26, 2020			
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Sep. 27, 2019	Sep. 26, 2020			
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800 -001	Sep. 27, 2019	Sep. 26, 2020			
LF cable-3M	EMC	EMC8D-NM-NM-300 0	131103	Sep. 27, 2019	Sep. 26, 2020			
LF cable-13M	EMC	EMC8D-NM-NM-130 00	131104	Sep. 27, 2019	Sep. 26, 2020			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Note: Calibration Inter	val of instruments liste	d above is one year.						

Report Version: Rev. 02

Report No.: FR9D0202AC Page: 11 of 69

Test Item	RF Conducted					
Test Site	(TH01-WS)					
Tested Date	Jan. 06, 2020					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until	
Spectrum Analyzer	R&S	FSV40	101063	Apr. 17, 2019	Apr. 16, 2020	
Power Meter	Anritsu	ML2495A	1241002	Oct. 23, 2019	Oct. 22, 2020	
Power Sensor	Anritsu	MA2411B	1207366	Oct. 23, 2019	Oct. 22, 2020	
AC POWER SOURCE	APC	AFC-500W	F312060012	Dec. 02, 2019	Dec. 01, 2020	
Measurement Software	Sporton	SENSE-15247_DTS	V5.9	NA	NA	
Note: Calibration Inter	Note: Calibration Interval of instruments listed above is one year.					

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247

ANSI C63.10-2013

FCC KDB 558074 D01 15.247 Meas Guidance v05r02

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

1.6 Deviation from Test Standard and Measurement Procedure

None

1.7 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty				
Parameters Uncertainty				
Bandwidth	±34.130 Hz			
Conducted power	±0.808 dB			
Power density	±0.583 dB			
Conducted emission	±2.715 dB			
AC conducted emission	±2.92 dB			
Radiated emission ≤ 1GHz	±3.96 dB			
Radiated emission > 1GHz	±4.51 dB			

Page: 12 of 69

Report No.: FR9D0202AC

Report Version: Rev. 02

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	23°C / 69%	Akun Chung
Radiated Emissions	03CH03-WS	21-22°C / 66-67%	Roger Lu Akun Chung
RF Conducted	TH01-WS	22°C / 63%	Brad Wu

FCC Designation No.: TW0009FCC site registration No.: 207696

➤ ISED#: 10807A

➤ CAB identifier: TW2732

2.2 The Worst Test Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate (Mbps) / MCS	Test Configuration
Conducted Emissions	11b	2412	1 Mbps	1, 2
Radiated Emissions ≤1GHz	11b	2412	1 Mbps	1, 2
Maximum Output Power	11b 11g ax HE20 ax HE40	2412 / 2437 / 2462 2412 / 2437 / 2462 2412 / 2437 / 2462 2422 / 2437 / 2452	1 Mbps 6 Mbps MCS 0 MCS 0	1
Maximum Output Power	ax HE20 ax HE40	2412 / 2437 / 2462 2422 / 2437 / 2452	MCS 0 MCS 0	3
Radiated Emissions >1GHz 6dB bandwidth Power spectral density	11b 11g ax HE20 ax HE40	2412 / 2437 / 2462 2412 / 2437 / 2462 2412 / 2437 / 2462 2422 / 2437 / 2452	1 Mbps 6 Mbps MCS 0 MCS 0	1

NOTE:

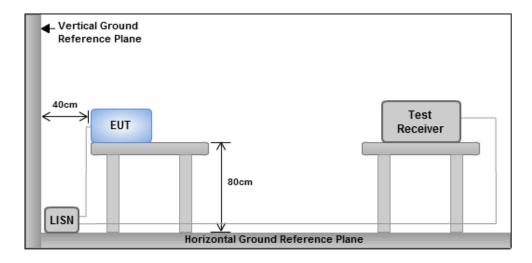
- 1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.
- 2. The EUT had been tested by following test configurations.
 - 1) Configuration 1: Adapter mode, Non-Beamforming
 - 2) Configuration 2: POE mode, Non-Beamforming
 - 3) Configuration 3: Adapter mode, Beamforming

Report No.: FR9D0202AC Page: 13 of 69

Report Version: Rev. 02

3 Transmitter Test Results

3.1 Conducted Emissions


3.1.1 Limit of Conducted Emissions

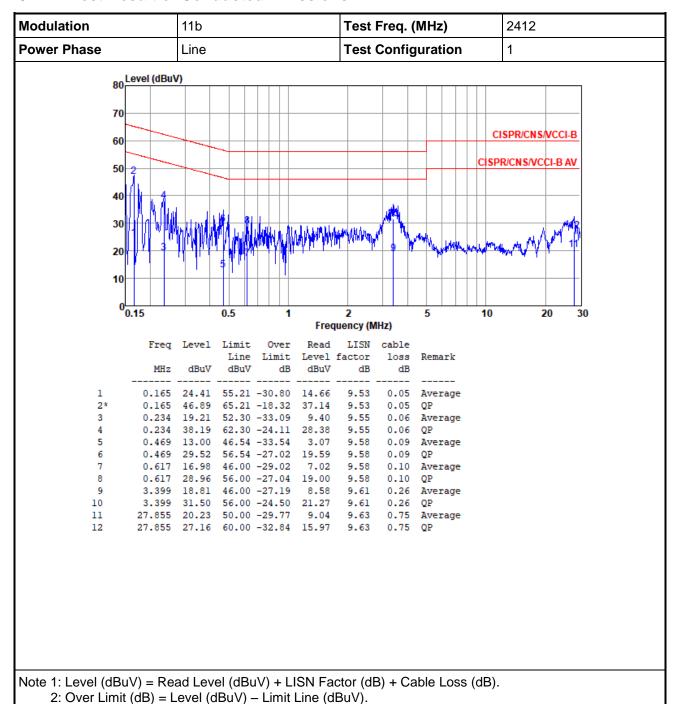
Conducted Emissions Limit					
Frequency Emission (MHz) Quasi-Peak Average					
0.15-0.5	66 - 56 *	56 - 46 *			
0.5-5	56	46			
5-30 60 50					
Note 1: * Decreases with the logarithm of the frequency.					

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

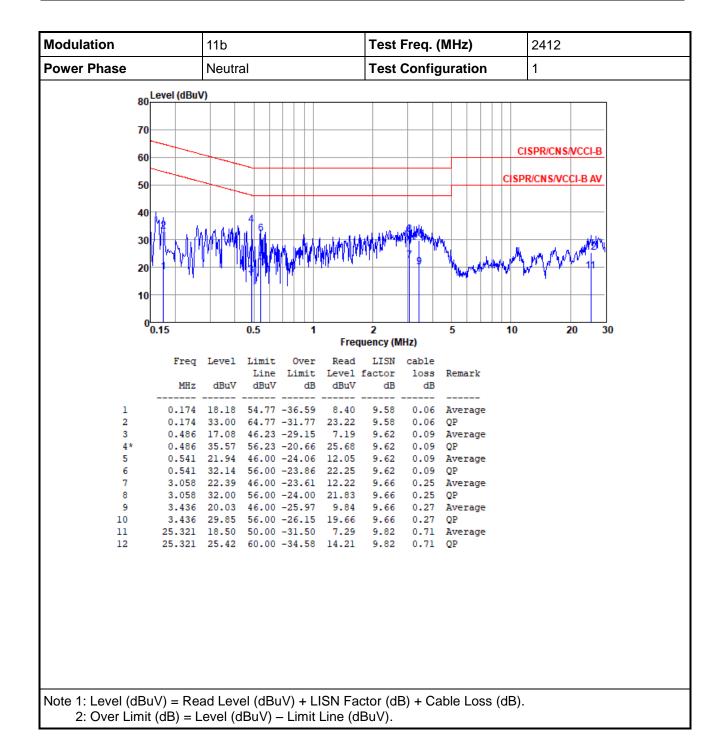
3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.


Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

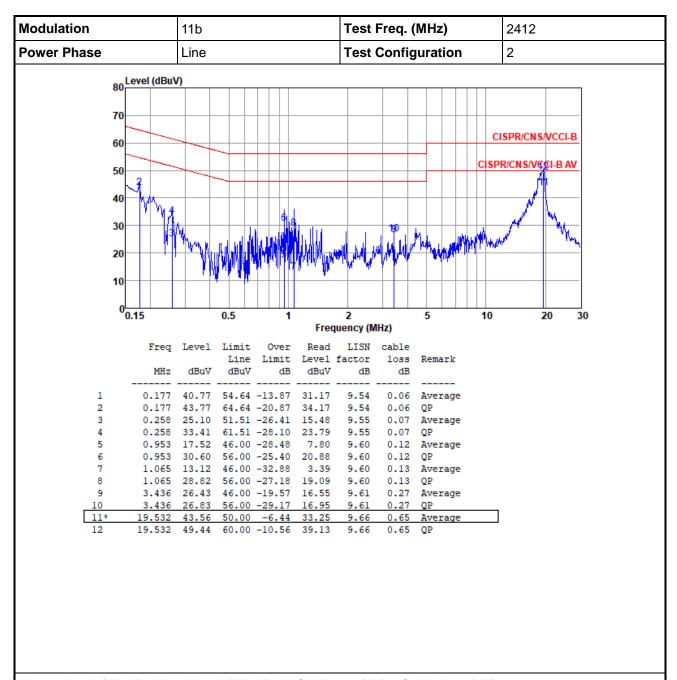
Report No.: FR9D0202AC Page: 14 of 69

Report Version: Rev. 02


3.1.4 Test Result of Conducted Emissions

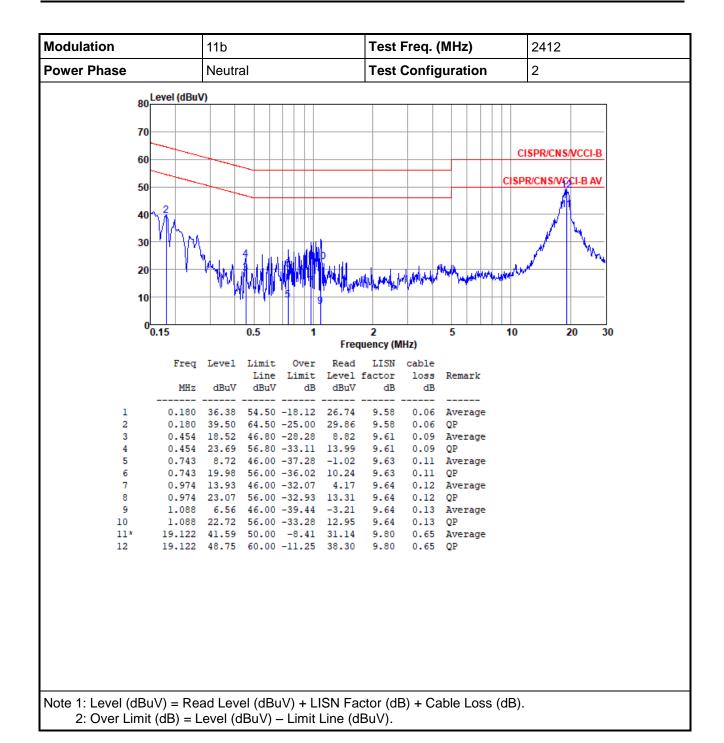
Report No.: FR9D0202AC Page: 15 of 69

Report Version: Rev. 02



Report No.: FR9D0202AC Page: 16 of 69

Report Version: Rev. 02



Note 1: Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB).

2: Over Limit (dB) = Level (dBuV) - Limit Line (dBuV).

Report Version: Rev. 02

Page: 18 of 69

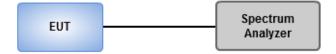
Report No.: FR9D0202AC Report Version: Rev. 02

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures


6dB Bandwidth

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- Set resolution bandwidth (RBW) = 1% ~ 5 % of OBW, Video bandwidth = 3 x RBW
- 2. Detector = Sample, Trace mode = max hold.
- 3 Sweep = auto couple, Allow the trace to stabilize.
- 4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.

3.2.3 Test Setup

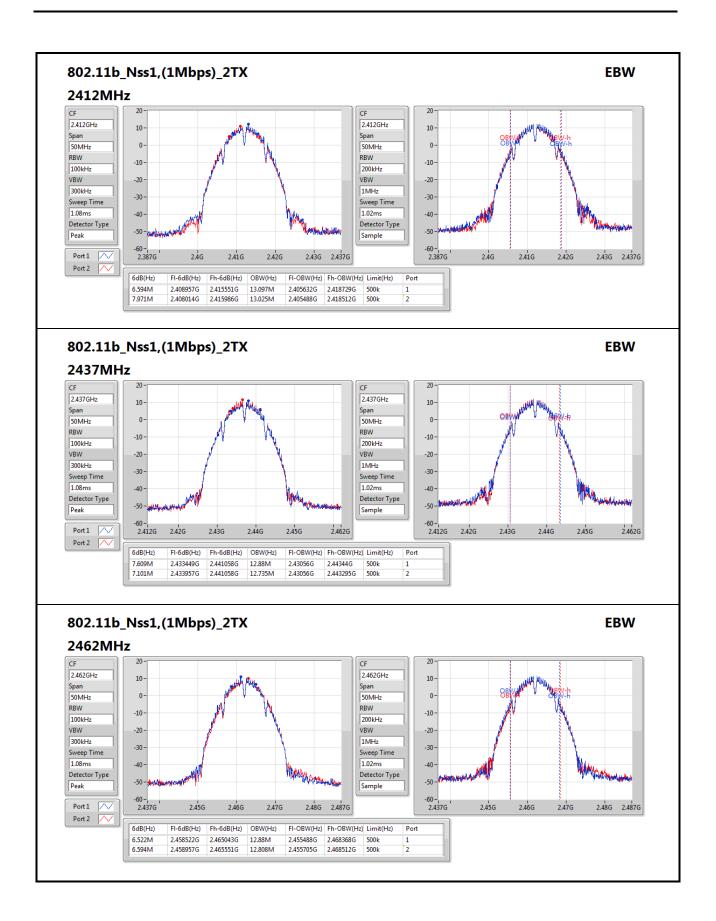
Report No.: FR9D0202AC Page: 19 of 69

3.2.4 Test Result of 6dB and Occupied Bandwidth

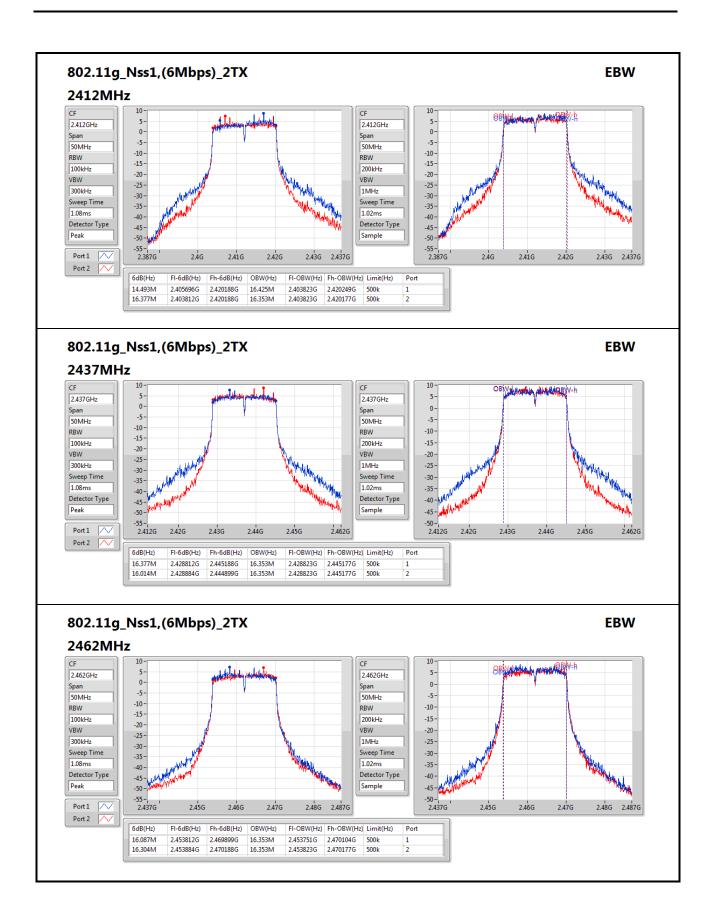
Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
802.11b_Nss1,(1Mbps)_2TX	7.971M	13.097M	13M1G1D	6.522M	12.735M
802.11g_Nss1,(6Mbps)_2TX	16.377M	16.425M	16M4D1D	14.493M	16.353M
802.11ax HEW20_Nss1,(MCS0)_2TX	18.913M	18.958M	19M0D1D	18.406M	18.813M
802.11ax HEW40_Nss1,(MCS0)_2TX	37.971M	37.916M	37M9D1D	37.101M	37.627M

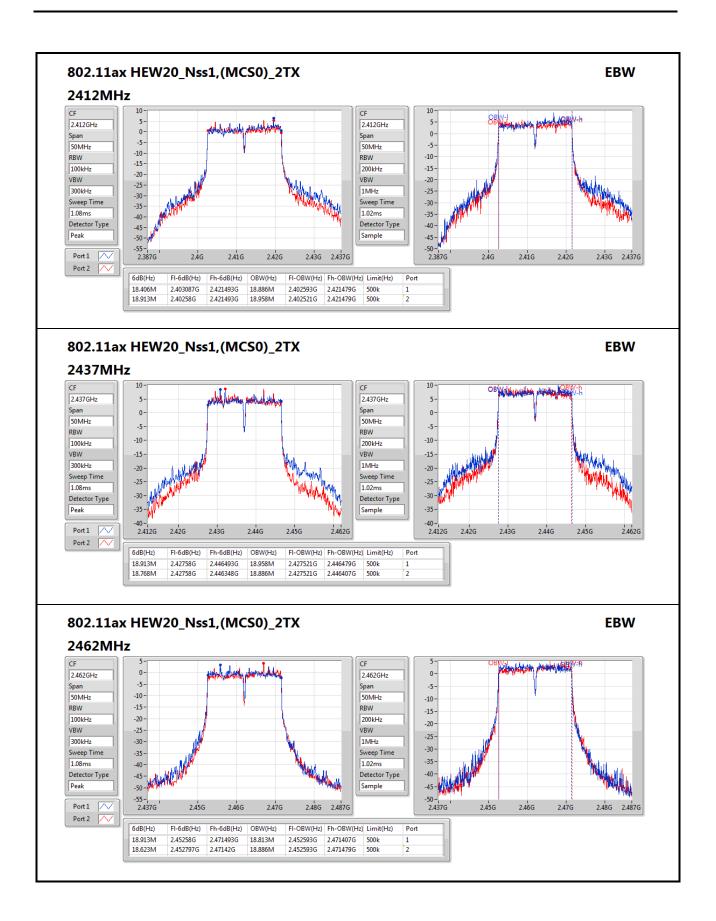
Max-N dB = Maximum 6dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 6dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth;

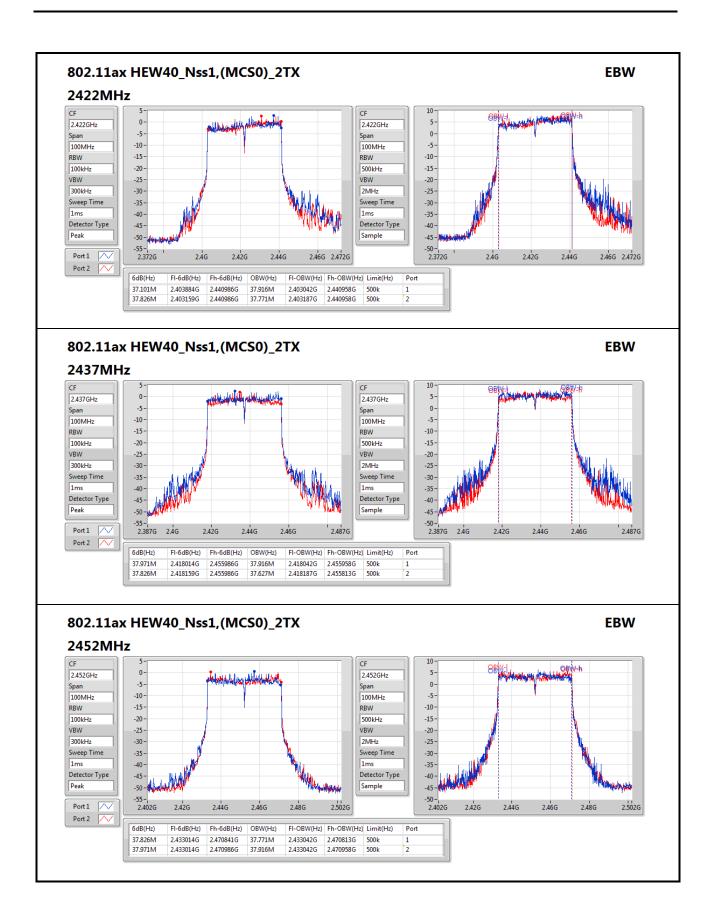

Result

Result						
Mode	Result	Limit	Port 1-N dB	Port 1-OBW	Port 2-N dB	Port 2-OBW
		(Hz)	(Hz)	(Hz)	(Hz)	(Hz)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	6.594M	13.097M	7.971M	13.025M
2437MHz	Pass	500k	7.609M	12.88M	7.101M	12.735M
2462MHz	Pass	500k	6.522M	12.88M	6.594M	12.808M
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	14.493M	16.425M	16.377M	16.353M
2437MHz	Pass	500k	16.377M	16.353M	16.014M	16.353M
2462MHz	Pass	500k	16.087M	16.353M	16.304M	16.353M
802.11ax HEW20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	500k	18.406M	18.886M	18.913M	18.958M
2437MHz	Pass	500k	18.913M	18.958M	18.768M	18.886M
2462MHz	Pass	500k	18.913M	18.813M	18.623M	18.886M
802.11ax HEW40_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2422MHz	Pass	500k	37.101M	37.916M	37.826M	37.771M
2437MHz	Pass	500k	37.971M	37.916M	37.826M	37.627M
2452MHz	Pass	500k	37.826M	37.771M	37.971M	37.916M


Port X-N dB = Port X 6dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

Report Version: Rev. 02





Page: 24 of 69

Report No.: FR9D0202AC

Report Version: Rev. 02

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Conducted power shall not exceed 1Watt.

Antenna gain <= 6dBi, no any corresponding reduction is in output power limit.

3.3.2 Test Procedures

A broadband RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.

3.3.3 Test Setup

Report No.: FR9D0202AC Page: 25 of 69

3.3.4 Test Result of Maximum Output Power

Non-beamforming mode

Summary of Conducted (Average) Output Power

Mode	Total Power	Total Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
802.11b_Nss1,(1Mbps)_2TX	23.62	0.23014
802.11g_Nss1,(6Mbps)_2TX	23.33	0.21528
802.11ax HEW20_Nss1,(MCS0)_2TX	23.39	0.21827
802.11ax HEW40_Nss1,(MCS0)_2TX	19.86	0.09683

Result

Mode	Result	DG	Port 1	Port 2	Total Power	Power Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	0.00	20.42	20.79	23.62	30.00
2437MHz	Pass	0.00	19.27	20.15	22.74	30.00
2462MHz	Pass	0.00	18.92	19.49	22.22	30.00
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	0.00	19.26	19.35	22.32	30.00
2437MHz	Pass	0.00	20.17	20.47	23.33	30.00
2462MHz	Pass	0.00	18.88	19.11	22.01	30.00
802.11ax HEW20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	0.00	17.24	17.03	20.15	30.00
2437MHz	Pass	0.00	20.28	20.47	23.39	30.00
2462MHz	Pass	0.00	15.03	15.34	18.20	30.00
802.11ax HEW40_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2422MHz	Pass	0.00	16.54	16.92	19.74	30.00
2437MHz	Pass	0.00	16.84	16.86	19.86	30.00
2452MHz	Pass	0.00	14.51	15.23	17.90	30.00

DG = Directional Gain; **Port X** = Port X output power

Report Version: Rev. 02

Report No.: FR9D0202AC Page: 26 of 69

Beamforming mode

Summary of Conducted (Average) Output Power

Mode	Total Power	Total Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	20.38	0.10914
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	16.85	0.04842

Result

Mode	Result	DG	Port 1	Port 2	Total Power	Power Limit
		(dBi)	(dBm)	(dBm)	(dBm)	(dBm)
802.11ax HEW20-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	3.01	14.23	14.02	17.14	30.00
2437MHz	Pass	3.01	17.27	17.46	20.38	30.00
2462MHz	Pass	3.01	12.02	12.33	15.19	30.00
802.11ax HEW40-BF_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2422MHz	Pass	3.01	13.53	13.91	16.73	30.00
2437MHz	Pass	3.01	13.83	13.85	16.85	30.00
2452MHz	Pass	3.01	11.5	12.22	14.89	30.00

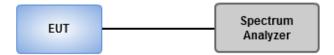
Port X = Port X output power
DG = Directional Gain = 0 + 10*log(2/1)= 3.01 dBi;

Report No.: FR9D0202AC Report Version: Rev. 02

The previous version of the test report has been cancelled and replaced by new version.

Page: 27 of 69

3.4 Power Spectral Density


3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- 1 Set the RBW = 30 kHz, VBW = 100 kHz. Detector = RMS.
- Set the sweep time to: \geq 10 (number of measurement points in sweep) x (total on/off period of the transmitted signal).
- 3 Perform the measurement over a single sweep.
- 4 Use the peak marker function to determine the maximum amplitude level.
- 5 Add 10 log (1/x), where x is the duty cycle.

3.4.3 Test Setup

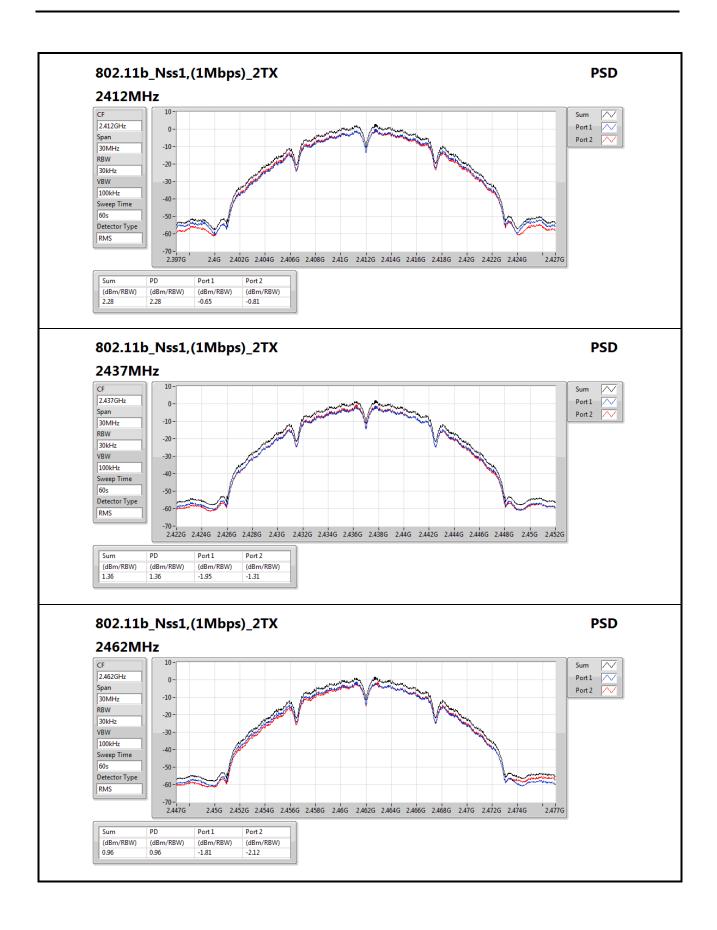
Report Version: Rev. 02

3.4.4 Test Result of Power Spectral Density

Summary

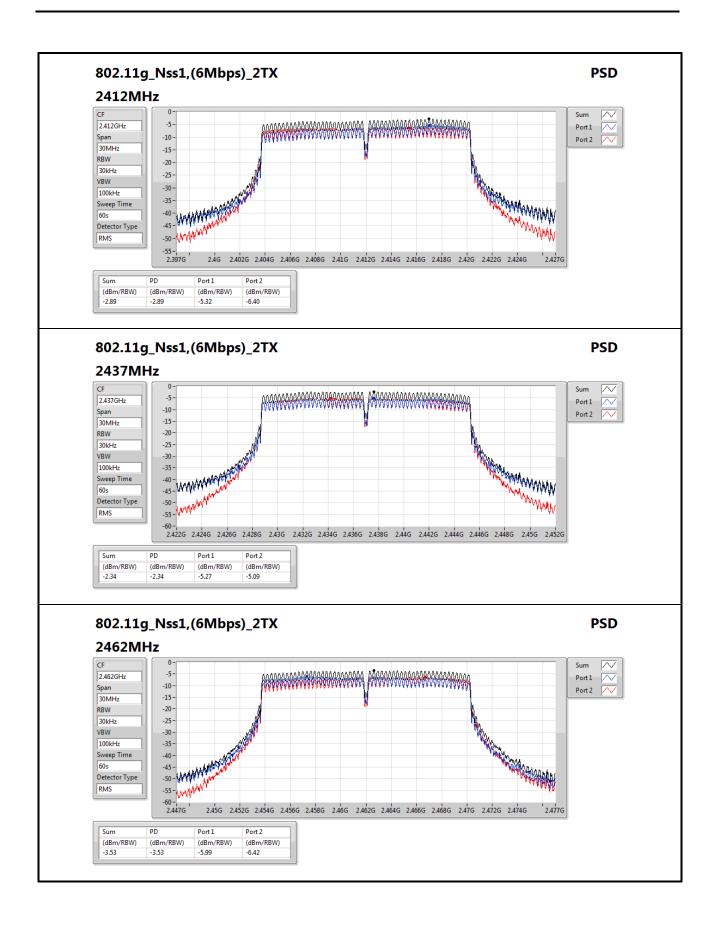
Mode	PD		
	(dBm/RBW)		
2.4-2.4835GHz	-		
802.11b_Nss1,(1Mbps)_2TX	2.28		
802.11g_Nss1,(6Mbps)_2TX	-2.34		
802.11ax HEW20_Nss1,(MCS0)_2TX	-3.48		
802.11ax HEW40_Nss1,(MCS0)_2TX	-8.98		

Result


Mode	Result	DG	Port 1	Port 2	PD	PD Limit
		(dBi)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)	(dBm/RBW)
802.11b_Nss1,(1Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	3.01	-0.65	-0.81	2.28	8.00
2437MHz	Pass	3.01	-1.95	-1.31	1.36	8.00
2462MHz	Pass	3.01	-1.81	-2.12	0.96	8.00
802.11g_Nss1,(6Mbps)_2TX	-	-	-	-	-	-
2412MHz	Pass	3.01	-5.32	-6.40	-2.89	8.00
2437MHz	Pass	3.01	-5.27	-5.09	-2.34	8.00
2462MHz	Pass	3.01	-5.99	-6.42	-3.53	8.00
802.11ax HEW20_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2412MHz	Pass	3.01	-8.51	-9.55	-6.01	8.00
2437MHz	Pass	3.01	-6.31	-6.50	-3.48	8.00
2462MHz	Pass	3.01	-11.26	-11.30	-8.27	8.00
802.11ax HEW40_Nss1,(MCS0)_2TX	-	-	-	-	-	-
2422MHz	Pass	3.01	-12.16	-11.52	-8.98	8.00
2437MHz	Pass	3.01	-11.74	-12.37	-9.58	8.00
2452MHz	Pass	3.01	-14.44	-14.06	-11.53	8.00

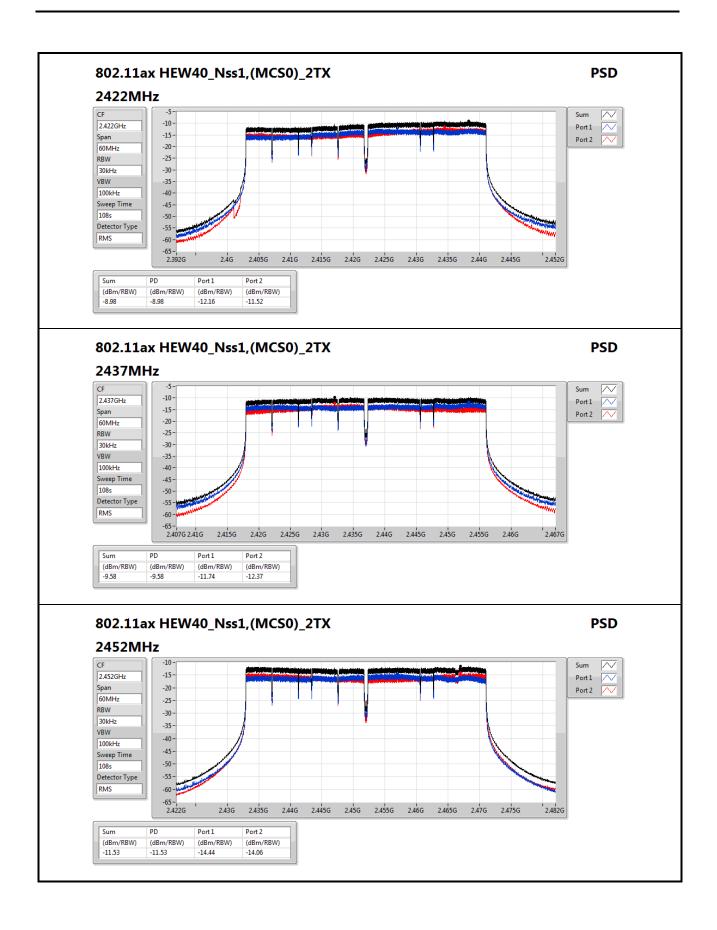
DG = Directional Gain = 0 + 10*log(2/1)= 3.01 dBi; PD = trace bin-by-bin of each transmits port summing can be performed maximum power density; Port X = Port X power density;

Report Version: Rev. 02


Report No.: FR9D0202AC Page: 29 of 69



Page: 30 of 69



Page: 32 of 69

Report No.: FR9D0202AC

Report Version: Rev. 02

Report No.: FR9D0202AC

Report Version: Rev. 02

3.5 Unwanted Emissions into Restricted Frequency Bands

3.5.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit						
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)			
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300			
0.490~1.705	24000/F(kHz)	33.8 - 23	30			
1.705~30.0	30	29	30			
30~88	100	40	3			
88~216	150	43.5	3			
216~960	200	46	3			
Above 960	500	54	3			

Note 1:

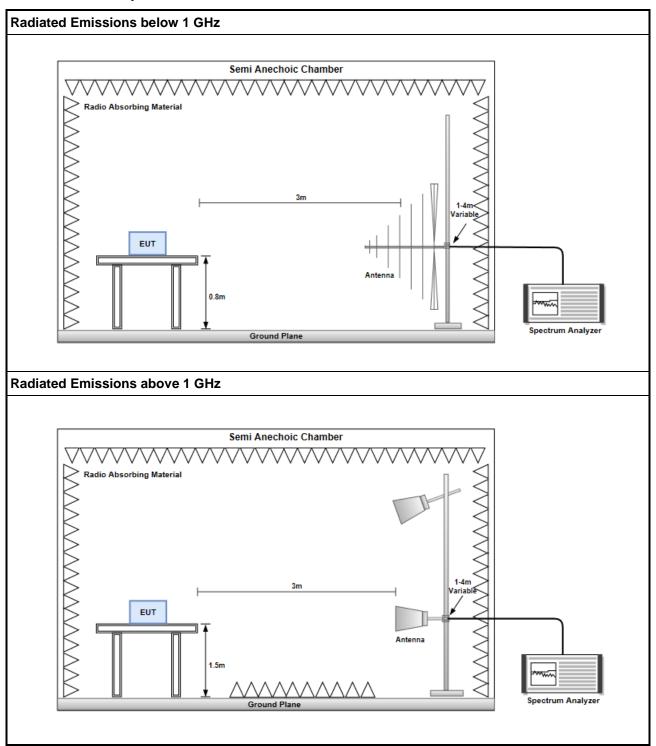
Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.5.2 Test Procedures

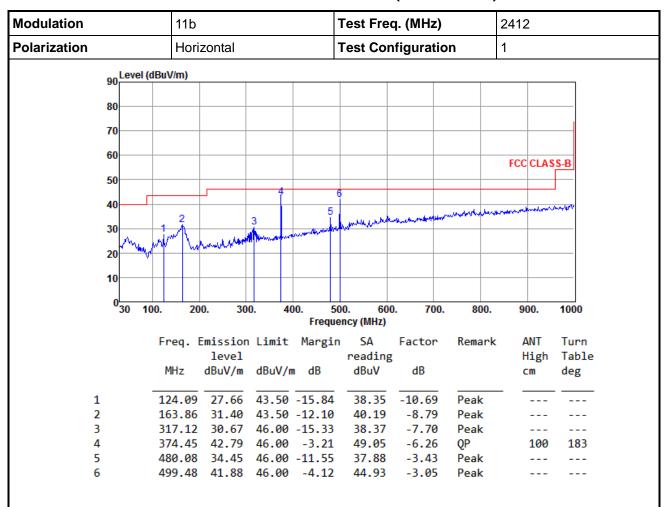
- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:


- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR9D0202AC Page: 34 of 69

Report Version: Rev. 02



3.5.3 Test Setup

3.5.4 **Transmitter Radiated Unwanted Emissions (Below 1GHz)**

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR9D0202AC

Modulation		11b			7	Test Fred	q. (MHz)		2412	2	
Polarization		Vert	Vertical			Test Configuration			1	1	
90	Level (dB	uV/m)									
80											
70											
60									FCC	CLAS	S-B
50											
40				i	6						N. A. WE
	A la	2	4			a a address and dispersions	المرجوع المرجوع المتلف وسعور	and the state of	- Agent - Agent		
30	They have	الهرام	muna	May week	A PARTY OF THE PROPERTY OF THE PARTY OF THE						
20											
10											
0											
U,	30 100	. 20	00. 300	0. 4	00. 50 Freque	0. 600 ncy (MHz)). 700.	800.	90	00.	1000
	ı	Freq.	Emission	Limit	Margin	SA	Factor	Remark	Д	NT	Turn
			level		_	reading			Н	igh	Table
		MHz	dBuV/m	dBuV/ı	n dB	dBuV	dB		C	m	deg
1	_	43.44	35.64	40.00	-4.36	44.52	-8.88	QP		100	14
2		107.60	29.61	43.50	-13.89	41.99	-12.38	Peak			
3		159.01			-15.21	36.81	-8.52	Peak			

Peak

Peak

Page: 37 of 69

-6.27

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

374.35 42.75 46.00 -3.25 49.02

499.48 40.26 46.00 -5.74 43.31 -3.05

Report No.: FR9D0202AC

5

Report Version: Rev. 02

Modulation			111	b			Test Fre	q. (MHz)		2412	
Polarization			Но	rizontal			Test Cor	nfiguratio	on	2	
	90.	Level (dBuV/m)								
	80										
	70										
	60									FCC CLAS	SS-B
	50										
	40						3				41/4
	30	10		4		5 .l.	and the same	Marshauster Mr.	and the speed	A STATE OF THE PARTY OF THE PAR	
	30	抓	James State	Jane Land	theophysical harden	- walk-white the walk of the					
	20	1									
	10	+									
	0	Щ									
	0	30 10	00.	200. 3	00. 4		00. 60 ency (MHz)	0. 700.	. 800.	900.	1000
			Freq.	Emissio	n Limit	Margir	s SA	Factor	Remark	ANT	Turn
				level			reading	•		High	Table
			MHz	dBuV/m	dBuV/ı	m dB	dBuV	dB		cm	deg
1	1		38.7	3 28.43	40.00	-11.57	37.76	-9.33	Peak		
:	2		55.2	2 27.52	40.00	-12.48	36.43	-8.91	Peak		
3	3		161.9	2 26.95	43.50	-16.55	35.66	-8.71	Peak		
	4		286.0			-17.09	37.58	-8.67	Peak		
	5		480.0			-12.30	37.13	-3.43	Peak		
	5		499.4	8 36.94	46.00	-9.06	39.99	-3.05	Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

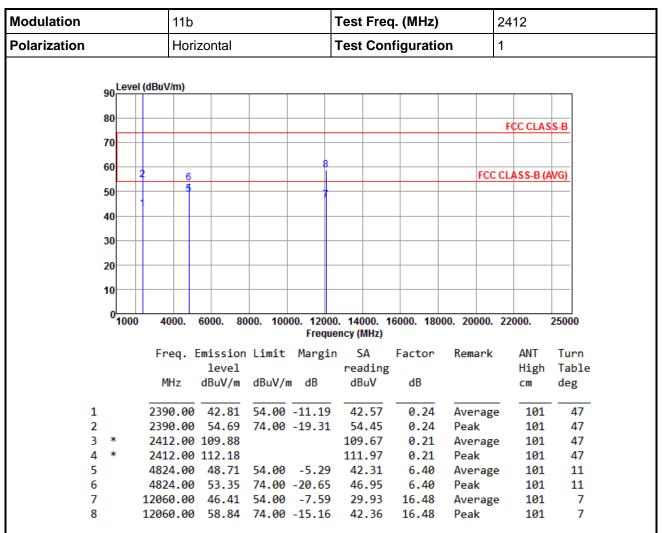
Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR9D0202AC

Page: 38 of 69 Report Version: Rev. 02

Modulation			11b				Test Fre	q. (MHz)		2412	
Polarization			Verti	cal			Test Co	nfiguration	on	2	
	on L	evel (dB	tuV/m)								
	30										
	80										
	70										
	60									FCC CLAS	S-B
	50										
	40			_							<u></u>
	40	A I					6	L. C. Market Mark	Mary Harry Makes Anna	magneyelsen	www
	30		4		5	. Jackson Brown Stranger	Andrew Combine	Australia de la constanta de l			
	20	\\ \ _\	Marked Wall	Landergharm	Make and a company						
		∭ "									
	10										
	03	0 100	. 20	0. 30		00. 5	00. 60	0. 700	. 800.	900.	1000
	J	100.	. 20	0. 30	0. 4		oo. oo ency (MHz)	0. 700	. 800.	900.	1000
			Frea. F	mission	limit	Margi		Factor	Remark	ANT	Turn
				level		110. 62.	reading		ricinal it	High	Table
			MHz	dBuV/m	dBuV/	m dB	dBuV	dB		cm	deg
		_									
	l		38.66			-5.08	44.25		QP	100	354
	<u>2</u> 3		46.85 55.22	33.95 36.97	40.00		42.59 45.88		QP Peak	100	355
	1		124.09	25.90		-17.60	36.59		Peak		
	5		374.35			-18.16					
	5		499.48	34.10		-11.90	37.15		Peak		

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR9D0202AC Report Version: Rev. 02

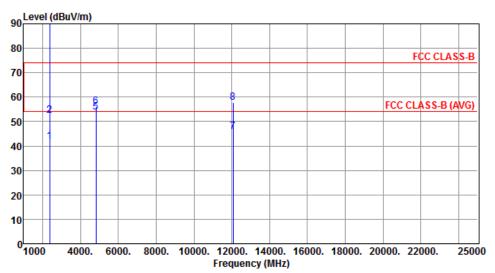
Page: 39 of 69

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11b

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

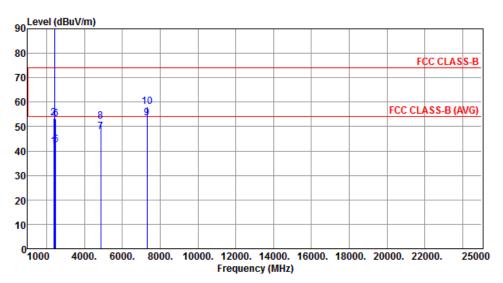
Report No.: FR9D0202AC

Report Version: Rev. 02

Modulation	11b	Test Freq. (MHz)	2412
Polarization	Vertical	Test Configuration	1

		Freq. MHz	Emission level dBuV/m	Limit dBuV/m	J	SA reading dBuV	Factor dB	Remark	ANT High cm	Turn Table deg
1		2390.00	41.76	54 00	-12.24	41.52	0.24	 Average	128	325
2		2390.00		74.00		52.09	0.24	Peak	128	325
3	*		109.08	74.00	-21.07	108.87	0.24	Average	128	325
4	*		110.57			110.36	0.21	Peak	128	325
5		4824.00		54.00	-0.36	47.24	6.40	Average	126	40
6		4824.00			-17.73	49.87	6.40	Peak	126	40
7		12060.00		54.00	-8.07	29.45	16.48	Average	100	20
8		12060.00		74.00		41.38	16.48	Peak	100	20

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

The previous version of the test report has been cancelled and replaced by new version.

Note 3:"*" is Peak / Average value of fundamental frequency

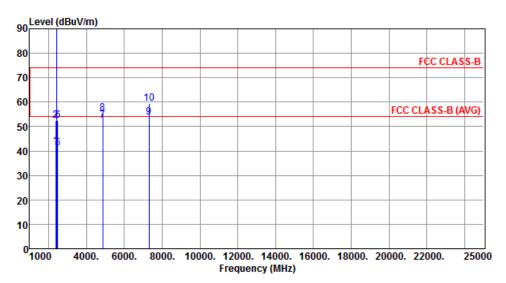
Modulation	11b	Test Freq. (MHz)	2437
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		2390.00	41.68	54.00	-12.32	41.44	0.24	Average	100	45
2		2390.00	53.45	74.00	-20.55	53.21	0.24	Peak	100	45
3	*	2437.00	108.73			108.54	0.19	Average	100	45
4	*	2437.00	110.41			110.22	0.19	Peak	101	45
5		2483.56	42.49	54.00	-11.51	42.34	0.15	Average	100	45
6		2483.56	53.00	74.00	-21.00	52.85	0.15	Peak	100	45
7		4874.00	47.85	54.00	-6.15	41.52	6.33	Average	100	10
8		4874.00	52.22	74.00	-21.78	45.89	6.33	Peak	100	10
9		7311.00	53.50	54.00	-0.50	41.84	11.66	Average	230	34
10		7311.00	58.00	74.00	-16.00	46.34	11.66	Peak	230	34

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

The previous version of the test report has been cancelled and replaced by new version.


Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AC Report Version: Rev. 02

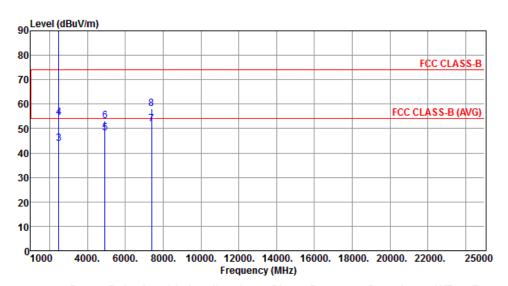
Page: 42 of 69

Modulation	11b	Test Freq. (MHz)	2437
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		2390.00	41.76	54.00	-12.24	41.52	0.24	Average	128	330
2		2390.00	52.54	74.00	-21.46	52.30	0.24	Peak	128	330
3	*	2437.00	107.88			107.69	0.19	Average	128	330
4	*	2437.00	109.85			109.66	0.19	Peak	128	330
5		2483.50	41.33	54.00	-12.67	41.18	0.15	Average	128	330
6		2483.50	52.33	74.00	-21.67	52.18	0.15	Peak	128	330
7		4874.00	52.32	54.00	-1.68	45.99	6.33	Average	117	47
8		4874.00	55.55	74.00	-18.45	49.22	6.33	Peak	117	47
9		7311.00	53.74	54.00	-0.26	42.08	11.66	Average	137	32
10		7311.00	59.52	74.00	-14.48	47.86	11.66	Peak	137	32

Page: 43 of 69

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	11b	Test Freq. (MHz)	2462
Polarization	Horizontal	Test Configuration	1

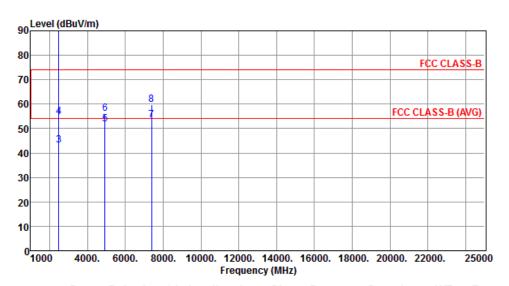
		Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
			level			reading			High	Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	2462 00	108.50			108.33	0.17	Avanaga	100	52
1								Average		
2	*	2462.00	111.03			110.86	0.17	Peak	100	52
3		2483.50	43.89	54.00	-10.11	43.74	0.15	Average	100	52
4		2483.50	54.56	74.00	-19.44	54.41	0.15	Peak	100	52
5		4924.00	48.32	54.00	-5.68	41.87	6.45	Average	100	8
6		4924.00	52.98	74.00	-21.02	46.53	6.45	Peak	100	8
7		7386.00	51.94	54.00	-2.06	40.30	11.64	Average	235	35
8		7386.00	58.25	74.00	-15.75	46.61	11.64	Peak	235	35

Page: 44 of 69

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


Note 3:"*" is Peak / Average value of fundamental frequency

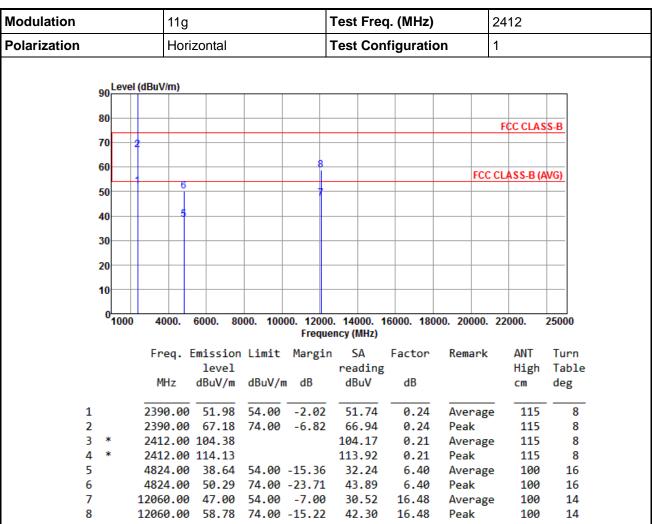
Report No.: FR9D0202AC

Report Version: Rev. 02

Modulation	11b	Test Freq. (MHz)	2462
Polarization	Vertical	Test Configuration	1

		Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
			level			reading			High	Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	2462 00	107.67			107.50	0.17	A.,	122	319
1		2402.00	107.07				0.17	Average	122	
2	*	2462.00	110.28			110.11	0.17	Peak	122	319
3		2483.50	43.32	54.00	-10.68	43.17	0.15	Average	122	319
4		2483.50	54.76	74.00	-19.24	54.61	0.15	Peak	122	319
5		4924.00	51.75	54.00	-2.25	45.30	6.45	Average	111	44
6		4924.00	56.10	74.00	-17.90	49.65	6.45	Peak	111	44
7		7386.00	53.54	54.00	-0.46	41.90	11.64	Average	129	25
8		7386.00	59.90	74.00	-14.10	48.26	11.64	Peak	129	25

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

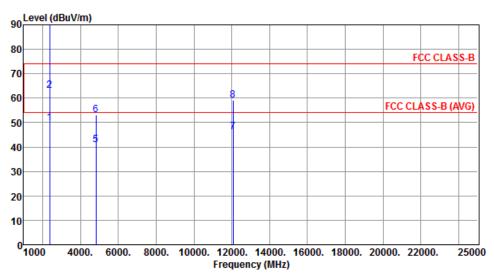
Note 3:"*" is Peak / Average value of fundamental frequency

Report Version: Rev. 02

3.5.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 11g

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

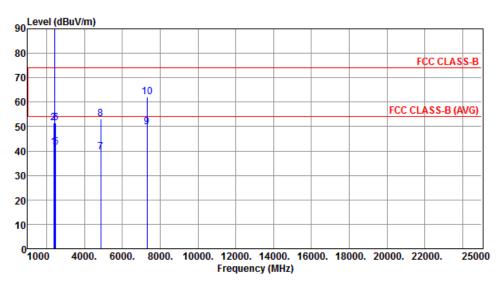
Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AC Report Version: Rev. 02 Page: 46 of 69

Modulation	11g	Test Freq. (MHz)	2412
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		CM	deg
1		2390.00	49.89	54.00	-4.11	49.65	0.24	Average	123	13
2		2390.00	62.95	74.00	-11.05	62.71	0.24	Peak	123	13
3	*	2412.00	103.75			103.54	0.21	Average	123	13
4	*	2412.00	112.74			112.53	0.21	Peak	123	13
5		4824.00	40.81	54.00	-13.19	34.41	6.40	Average	156	41
6		4824.00	53.02	74.00	-20.98	46.62	6.40	Peak	156	41
7		12060.00	46.14	54.00	-7.86	29.66	16.48	Average	100	25
8		12060.00	59.11	74.00	-14.89	42.63	16.48	Peak	100	25

*Factor includes antenna factor , cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

The previous version of the test report has been cancelled and replaced by new version.

Note 3:"*" is Peak / Average value of fundamental frequency

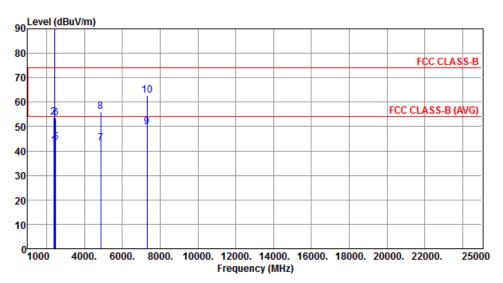
Modulation	11g	Test Freq. (MHz)	2437
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		2390.00	41.57	54.00	-12.43	41.33	0.24	Average	100	1
2		2390.00	51.63	74.00	-22.37	51.39	0.24	Peak	100	1
3	*	2437.00	104.86			104.67	0.19	Average	100	1
4	*	2437.00	114.80			114.61	0.19	Peak	100	1
5		2483.56	41.39	54.00	-12.61	41.24	0.15	Average	100	1
6		2483.56	51.55	74.00	-22.45	51.40	0.15	Peak	100	1
7		4874.00	39.54	54.00	-14.46	33.21	6.33	Average	100	15
8		4874.00	53.19	74.00	-20.81	46.86	6.33	Peak	100	15
9		7311.00	49.66	54.00	-4.34	38.00	11.66	Average	246	35
10		7311.00	62.03	74.00	-11.97	50.37	11.66	Peak	246	35

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

The previous version of the test report has been cancelled and replaced by new version.


Note 3:"*" is Peak / Average value of fundamental frequency

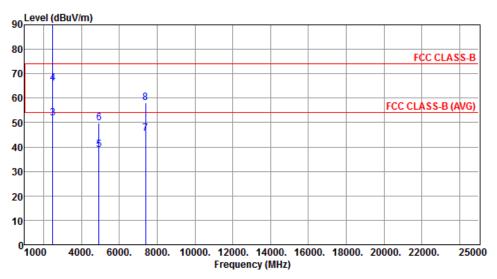
Report No.: FR9D0202AC Report Version: Rev. 02

Page: 48 of 69

Modulation	11g	Test Freq. (MHz)	2437
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		2390.00	42.09	54.00	-11.91	41.85	0.24	Average	100	19
2		2390.00	53.87	74.00	-20.13	53.63	0.24	Peak	100	19
3	*	2437.00	104.78			104.59	0.19	Average	100	19
4	*	2437.00	113.65			113.46	0.19	Peak	100	19
5		2483.50	43.67	54.00	-10.33	43.52	0.15	Average	100	19
6		2483.50	53.49	74.00	-20.51	53.34	0.15	Peak	100	19
7		4874.00	43.21	54.00	-10.79	36.88	6.33	Average	115	44
8		4874.00	56.15	74.00	-17.85	49.82	6.33	Peak	115	44
9		7311.00	49.85	54.00	-4.15	38.19	11.66	Average	169	31
10		7311.00	62.71	74.00	-11.29	51.05	11.66	Peak	169	31

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

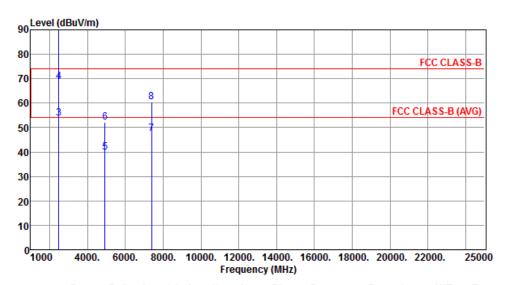
The previous version of the test report has been cancelled and replaced by new version.

Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	11g	Test Freq. (MHz)	2462
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	2462.00	104.64			104.47	0.17	Average	100	
2	*	2462.00	114.23			114.06	0.17	Peak	100	1
3		2483.50	51.88	54.00	-2.12	51.73	0.15	Average	100	47
4		2483.50	66.23	74.00	-7.77	66.08	0.15	Peak	100	47
5		4924.00	39.00	54.00	-15.00	32.55	6.45	Average	100	19
6		4924.00	49.98	74.00	-24.02	43.53	6.45	Peak	100	19
7		7386.00	45.59	54.00	-8.41	33.95	11.64	Average	237	32
8		7386.00	58.00	74.00	-16.00	46.36	11.64	Peak	237	32

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

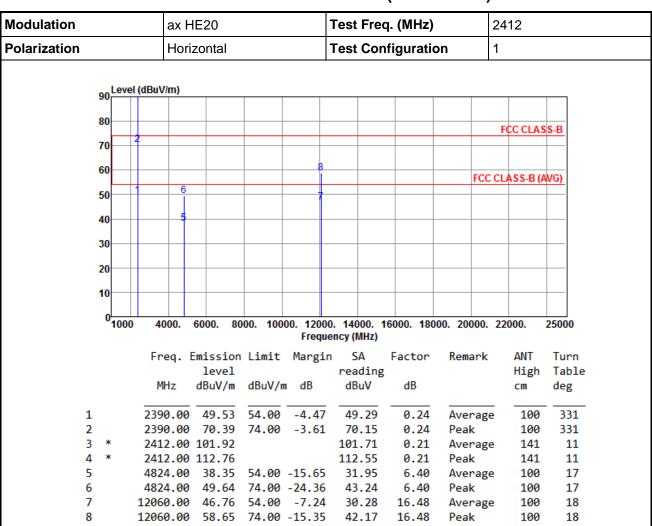
Report No.: FR9D0202AC Report Version: Rev. 02

Modulation	11g	Test Freq. (MHz)	2462
Polarization	Vertical	Test Configuration	1

		Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
			level			reading			High	Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	2462.00	104.36			104.19	0.17	Average	100	7
2	*	2462.00	113.67			113.50	0.17	Peak	100	7
3		2483.50	53.71	54.00	-0.29	53.56	0.15	Average	100	7
4		2483.50	68.71	74.00	-5.29	68.56	0.15	Peak	100	7
5		4924.00	40.00	54.00	-14.00	33.55	6.45	Average	108	42
6		4924.00	52.30	74.00	-21.70	45.85	6.45	Peak	108	42
7		7386.00	47.33	54.00	-6.67	35.69	11.64	Average	169	21
8		7386.00	60.57	74.00	-13.43	48.93	11.64	Peak	169	21

Page: 51 of 69

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

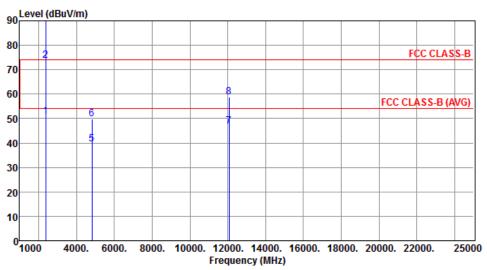

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

3.5.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for ax HE20

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

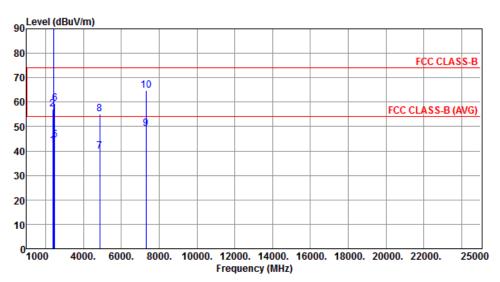
Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	ax HE20	Test Freq. (MHz)	2412
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		CM	deg
1		2390.00	50.96	54.00	-3.04	50.72	0.24	Average	129	17
2		2390.00	73.65	74.00	-0.35	73.41	0.24	Peak	129	17
3	*	2412.00	100.66			100.45	0.21	Average	129	17
4	*	2412.00	111.02			110.81	0.21	Peak	129	17
5		4824.00	39.47	54.00	-14.53	33.07	6.40	Average	100	43
6		4824.00	49.78	74.00	-24.22	43.38	6.40	Peak	100	43
7		12060.00	46.77	54.00	-7.23	30.29	16.48	Average	100	18
8		12060.00	58.81	74.00	-15.19	42.33	16.48	Peak	100	18

Page: 53 of 69

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

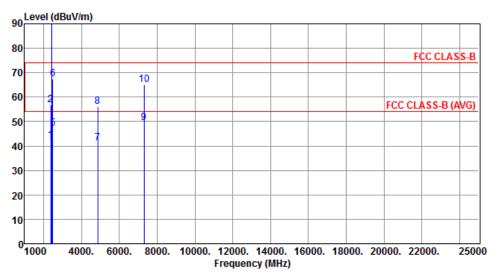
Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	ax HE20	Test Freq. (MHz)	2437
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	ı dB	dBuV	dB		cm	deg
1		2390.00	42.28	54.00	-11.72	42.04	0.24	Average	100	357
2		2390.00	57.17	74.00	-16.83	56.93	0.24	Peak	100	357
3	*	2437.00	104.27			104.08	0.19	Average	100	357
4	*	2437.00	114.86			114.67	0.19	Peak	100	357
5		2483.50	44.49	54.00	-9.51	44.34	0.15	Average	100	357
6		2483.50	59.50	74.00	-14.50	59.35	0.15	Peak	100	357
7		4874.00	39.72	54.00	-14.28	33.39	6.33	Average	100	16
8		4874.00	55.02	74.00	-18.98	48.69	6.33	Peak	100	16
9		7311.00	49.19	54.00	-4.81	37.53	11.66	Average	203	31
10		7311.00	64.90	74.00	-9.10	53.24	11.66	Peak	203	31

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).


The previous version of the test report has been cancelled and replaced by new version.

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AC Report Version: Rev. 02 Page: 54 of 69

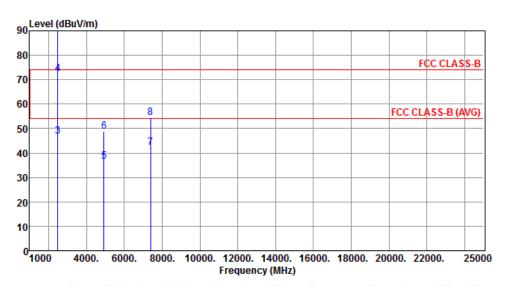
Modulation	ax HE20	Test Freq. (MHz)	2437
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/n	ı dB	dBuV	dB		cm	deg
1		2390.00	42.03	54.00	-11.97	41.79	0.24	Average	100	17
2		2390.00	56.87	74.00	-17.13	56.63	0.24	Peak	100	17
3	*	2437.00	103.91			103.72	0.19	Average	100	17
4	*	2437.00	113.48			113.29	0.19	Peak	100	17
5		2483.50	47.11	54.00	-6.89	46.96	0.15	Average	100	17
6		2483.50	67.38	74.00	-6.62	67.23	0.15	Peak	100	17
7		4874.00	41.20	54.00	-12.80	34.87	6.33	Average	100	43
8		4874.00	56.16	74.00	-17.84	49.83	6.33	Peak	100	43
9		7311.00	49.45	54.00	-4.55	37.79	11.66	Average	100	308
10		7311.00	65.24	74.00	-8.76	53.58	11.66	Peak	100	308

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

The previous version of the test report has been cancelled and replaced by new version.


Note 3:"*" is Peak / Average value of fundamental frequency

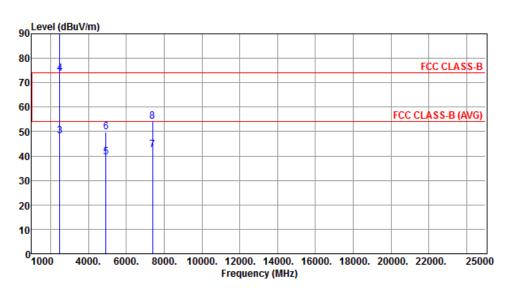
Report No.: FR9D0202AC

Page: 55 of 69

Modulation	ax HE20	Test Freq. (MHz)	2462
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
			level			reading			High	Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
		2462.00							400	
1	*	2462.00	99.42			99.25	0.17	Average	100	2
2	*	2462.00	111.89			111.72	0.17	Peak	100	2
3		2483.50	46.90	54.00	-7.10	46.75	0.15	Average	100	2
4		2483.50	72.52	74.00	-1.48	72.37	0.15	Peak	100	2
5		4924.00	36.68	54.00	-17.32	30.23	6.45	Average	100	14
6		4924.00	48.71	74.00	-25.29	42.26	6.45	Peak	100	14
7		7386.00	42.22	54.00	-11.78	30.58	11.64	Average	250	45
8		7386.00	54.30	74.00	-19.70	42.66	11.64	Peak	250	45

*Factor includes antenna factor, cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

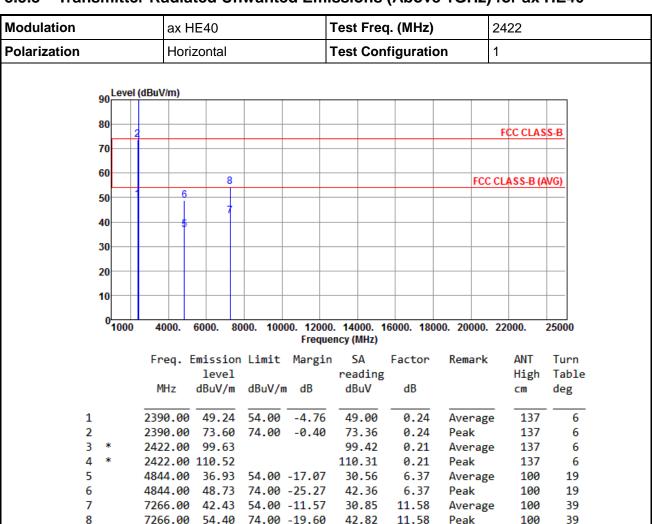
Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AC Report Version: Rev. 02

Modulation	ax HE20	Test Freq. (MHz)	2462
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table	
		MHz	dBuV/m	dBuV/n	n dB	dBuV	dB		cm	deg	
1	*	2462.00	98.04			97.87	0.17	Average	100	19	
2	*	2462.00	111.38			111.21	0.17	Peak	100	19	
3		2483.50	48.09	54.00	-5.91	47.94	0.15	Average	100	19	
4		2483.50	73.85	74.00	-0.15	73.70	0.15	Peak	100	19	
5		4924.00	39.41	54.00	-14.59	32.96	6.45	Average	100	21	
6		4924.00	49.71	74.00	-24.29	43.26	6.45	Peak	100	21	
7		7386.00	42.53	54.00	-11.47	30.89	11.64	Average	100	304	
8		7386.00	54.22	74.00	-19.78	42.58	11.64	Peak	100	304	

*Factor includes antenna factor , cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

The previous version of the test report has been cancelled and replaced by new version.

Note 3:"*" is Peak / Average value of fundamental frequency

3.5.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for ax HE40

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AC

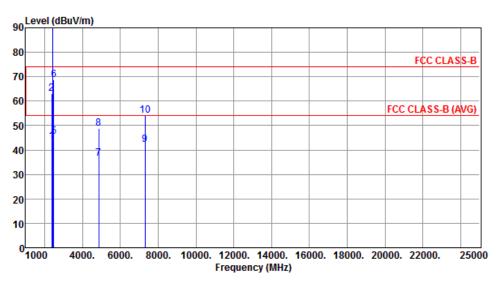
Report Version: Rev. 02

Modulation	ax HE40	Test Freq. (MHz)	2422
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		2390.00	45.83	54.00	-8.17	45.59	0.24	Average	164	13
2		2390.00	68.89	74.00	-5.11	68.65	0.24	Peak	164	13
3	*	2422.00	98.45			98.24	0.21	Average	164	13
4	*	2422.00	109.65			109.44	0.21	Peak	164	13
5		4844.00	37.62	54.00	-16.38	31.25	6.37	Average	100	24
6		4844.00	49.30	74.00	-24.70	42.93	6.37	Peak	100	24
7		7266.00	42.21	54.00	-11.79	30.63	11.58	Average	100	304
8		7266.00	54.46	74.00	-19.54	42.88	11.58	Peak	100	304

Page: 59 of 69

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

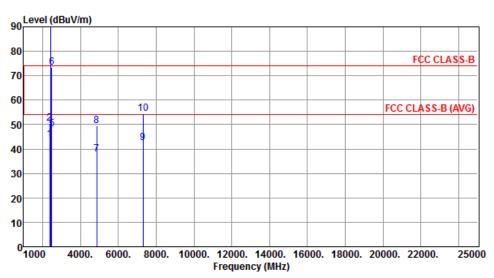
Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	ax HE40	Test Freq. (MHz)	2437
Polarization	Horizontal	Test Configuration	1

		Freq. 1	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		2390.00	43.62	54.00	-10.38	43.38	0.24	Average	139	9
2		2390.00	63.04	74.00	-10.96	62.80	0.24	Peak	139	9
3	*	2437.00	98.98			98.79	0.19	Average	139	9
4	*	2437.00	109.93			109.74	0.19	Peak	139	9
5		2483.50	45.40	54.00	-8.60	45.25	0.15	Average	139	9
6		2483.50	68.67	74.00	-5.33	68.52	0.15	Peak	139	9
7		4874.00	36.57	54.00	-17.43	30.24	6.33	Average	100	17
8		4874.00	48.69	74.00	-25.31	42.36	6.33	Peak	100	17
9		7311.00	42.21	54.00	-11.79	30.55	11.66	Average	100	38
10		7311.00	54.13	74.00	-19.87	42.47	11.66	Peak	100	38

Page: 60 of 69

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

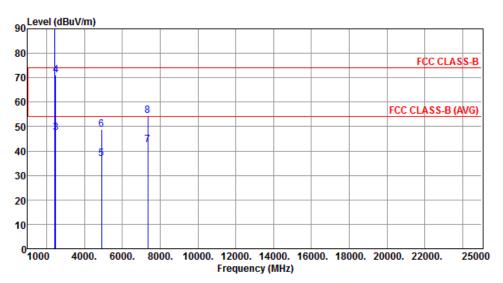
Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	ax HE40	Test Freq. (MHz)	2437
Polarization	Vertical	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		2390.00	43.67	54.00	-10.33	43.43	0.24	Average	129	16
2		2390.00	50.33	74.00	-23.67	50.09	0.24	Peak	129	16
3	*	2437.00	98.58			98.39	0.19	Average	129	16
4	*	2437.00	110.78			110.59	0.19	Peak	129	16
5		2483.50	48.28	54.00	-5.72	48.13	0.15	Average	129	16
6		2483.50	73.50	74.00	-0.50	73.35	0.15	Peak	129	16
7		4874.00	37.86	54.00	-16.14	31.53	6.33	Average	100	29
8		4874.00	49.54	74.00	-24.46	43.21	6.33	Peak	100	29
9		7311.00	42.49	54.00	-11.51	30.83	11.66	Average	100	307
10		7311.00	54.54	74.00	-19.46	42.88	11.66	Peak	100	307

Page: 61 of 69

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)


*Factor includes antenna factor, cable loss and amplifier gain

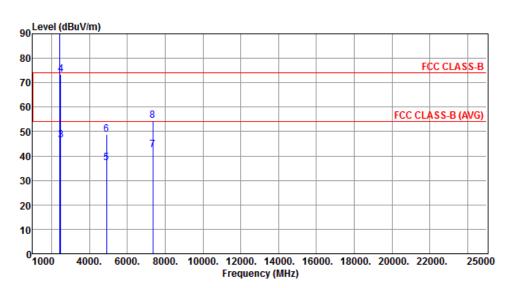
Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	ax HE40	Test Freq. (MHz)	2452
Polarization	Horizontal	Test Configuration	1

		Freq.	Emission level	Limit	Margin	SA reading	Factor	Remark	ANT High	Turn Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	2452.00	97.27			97.09	0.18	Average	100	
2	*	2452.00	110.01			109.83	0.18	Peak	100	1
3		2483.50	47.42	54.00	-6.58	47.27	0.15	Average	100	1
4		2483.50	71.06	74.00	-2.94	70.91	0.15	Peak	100	1
5		4904.00	36.73	54.00	-17.27	30.41	6.32	Average	100	14
6		4904.00	48.71	74.00	-25.29	42.39	6.32	Peak	100	14
7		7356.00	42.45	54.00	-11.55	30.74	11.71	Average	100	37
8		7356.00	54.42	74.00	-19.58	42.71	11.71	Peak	100	37

*Factor includes antenna factor , cable loss and amplifier gain


Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

The previous version of the test report has been cancelled and replaced by new version.

Note 3:"*" is Peak / Average value of fundamental frequency

Modulation	ax HE40	Test Freq. (MHz)	2452
Polarization	Vertical	Test Configuration	1

		Freq.	Emission	Limit	Margin	SA	Factor	Remark	ANT	Turn
			level			reading			High	Table
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1	*	2452.00	96.79			96.61	0.18	Average	115	19
2	*	2452.00	108.38			108.20	0.18	Peak	115	19
3		2483.50	46.47	54.00	-7.53	46.32	0.15	Average	115	19
4		2483.50	73.51	74.00	-0.49	73.36	0.15	Peak	115	19
5		4904.00	37.06	54.00	-16.94	30.74	6.32	Average	100	23
6		4904.00	48.90	74.00	-25.10	42.58	6.32	Peak	100	23
7		7356.00	42.48	54.00	-11.52	30.77	11.71	Average	100	302
8		7356.00	54.51	74.00	-19.49	42.80	11.71	Peak	100	302

*Factor includes antenna factor , cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3:"*" is Peak / Average value of fundamental frequency

Report No.: FR9D0202AC Report Version: Rev. 02

The previous version of the test report has been cancelled and replaced by new version.

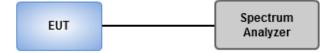
Page: 63 of 69

3.6 Emissions in Non-Restricted Frequency Bands

3.6.1 Emissions in Non-Restricted Frequency Bands Limit

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.6.2 Test Procedures

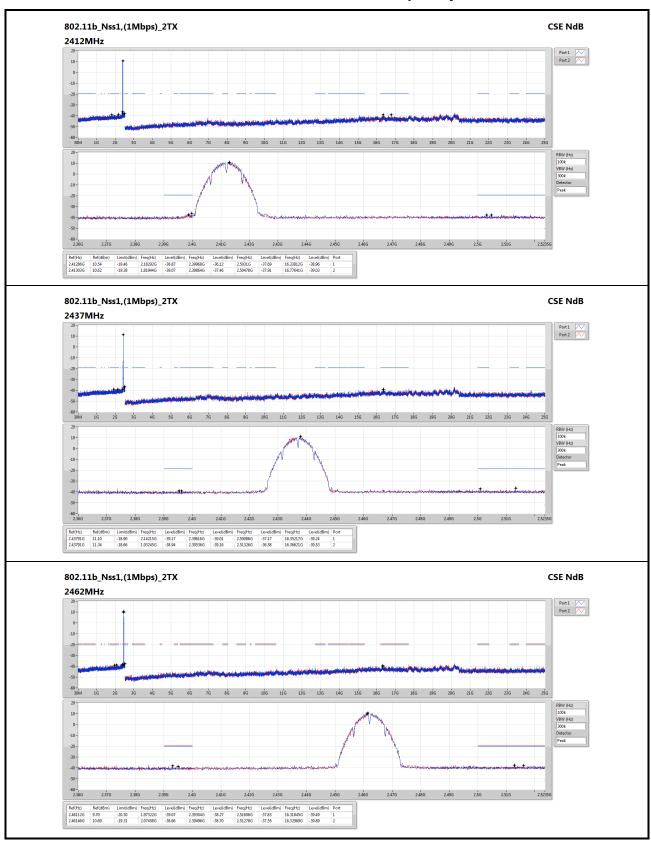

Reference level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level

Emission level measurement

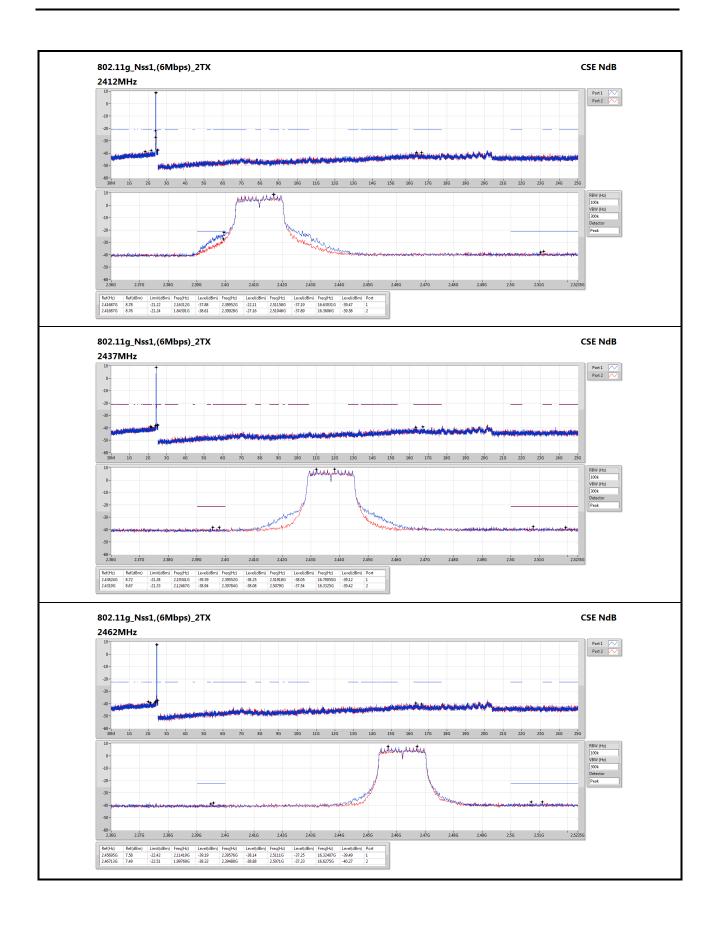
- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 25GHz
- 4. Use the peak marker function to determine the maximum amplitude level

3.6.3 Test Setup

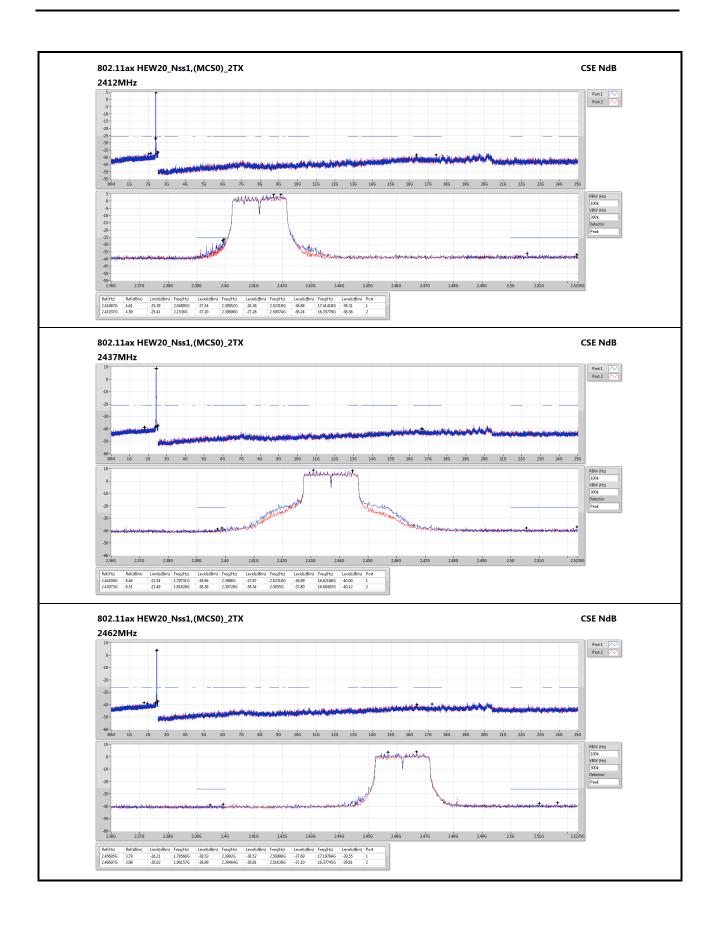


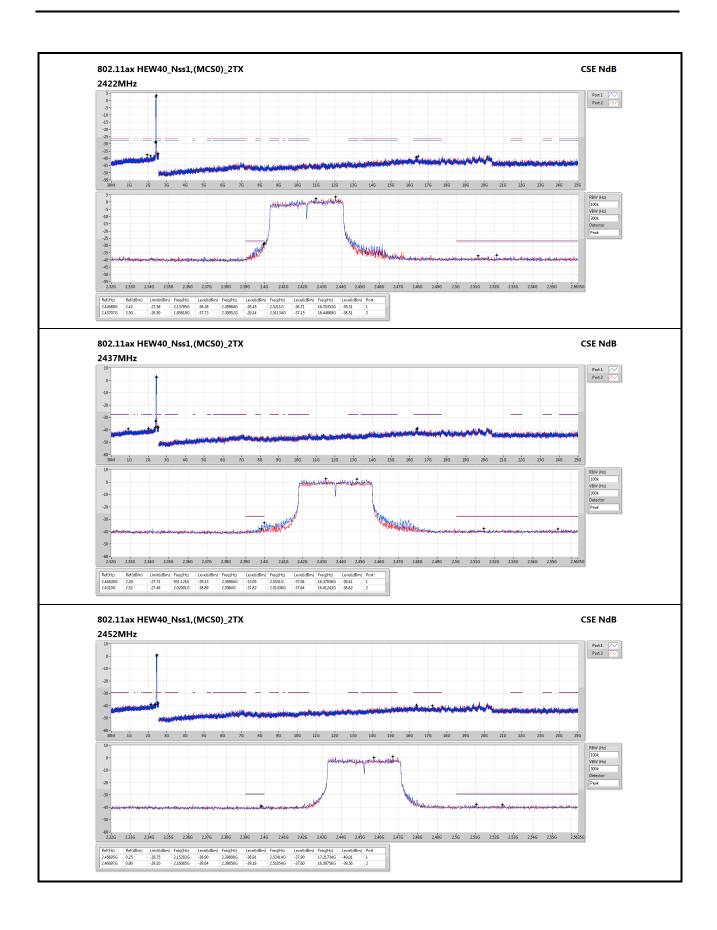
Report No.: FR9D0202AC

Page: 64 of 69



3.6.4 Unwanted Emissions into Non-Restricted Frequency Bands


Report No.: FR9D0202AC Report Version: Rev. 02


Report No.: FR9D0202AC Report Version: Rev. 02

Report No.: FR9D0202AC Report Version: Rev. 02

Report No.: FR9D0202AC Report Version: Rev. 02

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

Page: 69 of 69

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==