FCC SAR Test Report **APPLICANT**: Qualcomm Atheros, Inc. **EQUIPMENT** : 802.11a/b/g/n/ac + BT 4.1 M.2 2230 Type Card **BRAND NAME**: Qualcomm Atheros, Inc. MODEL NAME : QCNFA364A FCC ID : PPD-QCNFA364AH **STANDARD** : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** IEEE 1528-2013 The product was installed into Portable Notebook/Tablet Computer (Brand Name DELL, Model Name: P29S) during test. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full. Reviewed by: Eric Huang / Manager Cole huan' Approved by: Jones Tsai / Manager **Report No. : FA782332** ## SPORTON INTERNATIONAL INC. No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.) Page 1 of 41 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PPD-QCNFA364AH Issued Date: Oct. 13, 2017 Form version.: 170509 ## **Table of Contents** | 1. Statement of Compliance | | |---|-----| | 2. Administration Data | | | 3. Guidance Applied | | | 4. Equipment Under Test (EUT) Information | | | 4.1 General Information | | | 5. RF Exposure Limits | | | 5.1 Uncontrolled Environment | | | 5.2 Controlled Environment | | | 6. Specific Absorption Rate (SAR) | | | 6.1 Introduction | 9 | | 6.2 SAR Definition | | | 7. System Description and Setup | | | 7.1 E-Field Probe | .11 | | 7.2 Data Acquisition Electronics (DAE) | .11 | | 7.3 Phantom | | | 7.4 Device Holder | | | 8. Measurement Procedures | | | 8.1 Spatial Peak SAR Evaluation | | | 8.2 Power Reference Measurement | | | 8.3 Area Scan | | | 8.4 Zoom Scan | | | 8.5 Volume Scan Procedures | | | 8.6 Power Drift Monitoring | | | 9. Test Equipment List | | | 10. System Verification | | | 10.1 Tissue Simulating Liquids | | | 10.2 Tissue Verification | | | 10.3 System Performance Check Results | .20 | | 11. RF Exposure Positions | | | 11.1 SAR Testing for Tablet | | | 12. Conducted RF Output Power (Unit: dBm) | | | 13. Antenna Location | | | 14. SAR Test Results | | | 14.1 Body SAR | | | 15. Simultaneous Transmission Analysis | | | 15.1 Body Exposure Conditions | | | 16. Uncertainty Assessment | | | 17. References | .41 | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos | | Issued Date : Oct. 13, 2017 Form version. : 170509 ## **Revision History** | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------|---------------| | FA782332 | Rev. 01 | Initial issue of report | Oct. 13, 2017 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PPD-QCNFA364AH **Report No. : FA782332** ## 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **Qualcomm Atheros**, **Inc.**, **802.11a/b/g/n/ac + BT 4.1 M.2 2230 Type Card**, **QCNFA364A**, are as follows. Report No.: FA782332 | | _ | Highest SAR Summary | Highest Simultaneous | | | |--------------------|------------------|---------------------|----------------------|---------------|--| | Equipment
Class | Frequency Band | | Body | Transmission | | | Ciass | | | 1g SAR (W/kg) | 1g SAR (W/kg) | | | DTS | WLAN | 2.4GHz WLAN | 0.63 | 0.99 | | | NII | WLAIN | 5GHz WLAN | 0.58 | 1.10 | | | DSS | 2.4GHz Band | Bluetooth | 0.02 | 1.10 | | | | Date of Testing: | 2017/9/22 - | - 2017/9/25 | | | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications ## 2. Administration Data Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. **Report No. : FA782332** | Testing Laboratory | | | | | | |--------------------------------------|--|--|--|--|--| | Test Site SPORTON INTERNATIONAL INC. | | | | | | | Test Site Location | No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978 | | | | | | Applicant Applicant | | | | | | |---|--|--|--|--|--| | Company Name Qualcomm Atheros, Inc. | | | | | | | Address 1700 Technology Drive, San Jose, CA 95110 | | | | | | | Manufacturer Manufacturer | | | | | | | |-------------------------------------|--|--|--|--|--|--| | Company Name Qualcomm Atheros, Inc. | | | | | | | | Address | | | | | | | ## 3. Guidance Applied The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 - FCC KDB 616217 D04 SAR for laptop and tablets v01r02 ## 4. Equipment Under Test (EUT) Information ## 4.1 General Information | Product Feature & Specification | | | | | | |--|--|--|--|--|--| | Equipment Name | 802.11a/b/g/n/ac + BT 4.1 M.2 2230 Type Card | | | | | | Brand Name | Qualcomm Atheros, Inc. | | | | | | Model Name | QCNFA364A | | | | | | FCC ID | PPD-QCNFA364AH | | | | | | Wireless Technology
and Frequency Range | WLAN 2.4GHz Band: 2412 MHz ~ 2472 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz RFID: 13.56 MHz | | | | | | Mode | WLAN 2.4GHz: 802.11b/g/n/ac HT20/HT40/VHT20/VHT40 WLAN 5GHz: 802.11a/n/ac HT20/HT40/VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE RFID: ASK | | | | | | EUT Stage | Identical Prototype | | | | | **Report No.: FA782332** | Host Information | | | | | | | |--|------|--|--|--|--|--| | Equipment Name Portable Notebook/Tablet Computer | | | | | | | | Brand Name | DELL | | | | | | | Model Name P29S | | | | | | | ### Remark: - 1. This device uses two alternative battery models and two alternative antenna manufacturers. For details, see tables below titled Battery Information and WLAN Antenna Information. - 2. Alternative batteries and antennas were tested for SAR according to the following procedure: - (a) Primary testing performed on host using Hong Bo brand antenna with Battery 1. - (b) Worst case channel/modulation for each band was spot checked using Battery 2. - (c) Worst case channel/modulation for each band was spot checked for WNC antenna using worst-case battery determined from previous measurements. SPORTON INTERNATIONAL INC. FCC ID : PPD-QCNFA364AH Page 6 of 41 Form version. : 170509 ## SPORTON LAB. FCC SAR Test Report | Battery Information | | | | | | | |----------------------------|--------------|---------------|------------|--------|--|--| | Brand Name DELL Model Name | | | | | | | | Battery 1 | Power Rating | 7.6Vdc, 60Wh | Туре | Li-ion | | | | Battery 2 | Brand Name | DELL | Model Name | 71TG4 | | | | Batter y 2 | Power Rating | 11.4Vdc, 45Wh | Туре | Li-ion | | | **Report No. : FA782332** | | WLAN Antenna Information (Hong-Bo) | | | | | | | | | | | | |-----------|------------------------------------|-----------------|-----------------|---------|-----------|----------------|-----------|-----------------|---------|--|--|--| | | NB mode | | | | NB mode | | | | NB mode | | | | | | Ant. Type | PIFA | Manufacturer | Hong-Bo | | Ant. Type | PIFA | Manufacturer | Hong-Bo | | | | | | Model No. | 260-24 | 1167 (DC330021I | N2L) | | Model No. | 260-24 | 167 (DC330021i | N2L) | | | | | Antenna 1 | | Peak Gain (dBi) | | | Antenna 2 | | Peak Gair | n (dBi) | | | | | | | 2400~2483.5MHz | 1.31 | 5470~5725MHz | 1.25 | | 2400~2483.5MHz | -1.87 | 5470~5725MHz | -0.27 | | | | | | 5150~5250MHz | 1.66 | 5725~5850MHz | -0.26 | | 5150~5250MHz | 1.00 | 5725~5850MHz | -0.27 | | | | | | 5250~5350MHz | 1.66 | | | | 5250~5350MHz | 1.00 | | | | | | | | | Tablet m | node | | | | Tablet m | node | | | | | | | Ant. Type | PIFA | Manufacturer | Hong-Bo | | Ant. Type | PIFA | Manufacturer | Hong-Bo | | | | | | Model No. 260-24 | | 1167 (DC330021I | N2L) | | Model No. | 260-24 | 1167 (DC330021I | N2L) | | | | | Antenna 1 | Peak Gain (dBi) | | | | Antenna 2 | | Peak Gair | n (dBi) | | | | | | | 2400~2483.5MHz | -5.65 | 5470~5725MHz | 1.09 | | 2400~2483.5MHz | -2.55 | 5470~5725MHz | -2.66 | | | | | | 5150~5250MHz | -0.61 | 5725~5850MHz | 1.35 | | 5150~5250MHz | -1.57 | 5725~5850MHz | -1.69 | | | | | | 5250~5350MHz | -0.61 | | • | | 5250~5350MHz | -1.57 | | | | | | | | WLAN Antenna Information (WNC) | | | | | | | | | |-----------|--------------------------------|---------|----------------|--------|-----------|----------------|-----------|----------------|-------| | NB mode | | | NB mode | | | | NB mo | de | | | | Ant. Type | PIFA | Manufacturer | WNC | C
 Ant. Type | PIFA | Manufacturer | WNC | | | Model No. | 81EAA51 | 5.G56 (DC33002 | :0W2L) | | Model No. | 81EAA51 | 5.G56 (DC33002 | 0W2L) | | Antenna 1 | Peak Gain (dBi) | | | | Antenna 2 | | Peak Gair | n (dBi) | | | | 2400~2483.5MHz | 1.18 | 5470~5725MHz | -0.5 | | 2400~2483.5MHz | -0.4 | 5470~5725MHz | 0.25 | | | 5150~5250MHz | 1.43 | 5725~5850MHz | -1.11 | | 5150~5250MHz | 0.20 | 5725~5850MHz | -1.5 | | | 5250~5350MHz | 1.43 | | | | 5250~5350MHz | 0.20 | | | | | Tablet mode | | | | | | Tablet m | node | | | | Ant. Type | PIFA | Manufacturer | WNC | | Ant. Type | PIFA | Manufacturer | WNC | | | Model No. | 81EAA51 | 5.G56 (DC33002 | :0W2L) | | Model No. | 81EAA51 | 5.G56 (DC33002 | 0W2L) | | Antenna 1 | Peak Gain (dBi) | | | | Antenna 2 | | Peak Gair | n (dBi) | | | | 2400~2483.5MHz | -0.42 | 5470~5725MHz | 1.65 | | 2400~2483.5MHz | -1.28 | 5470~5725MHz | 0.81 | | | 5150~5250MHz | 1.37 | 5725~5850MHz | 0.88 | | 5150~5250MHz | 1.61 | 5725~5850MHz | 0.03 | | | 5250~5350MHz | 1.37 | | | | 5250~5350MHz | 1.61 | | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 7 of 41 ## 5. RF Exposure Limits ### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. **Report No.: FA782332** ### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. ### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Body Partial-Body Hands, Wrists, Feet a | | |------------|---|------| | 0.4 | 8.0 | 20.0 | ### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. ## 6. Specific Absorption Rate (SAR) ### 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. **Report No.: FA782332** ### 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version.: 170509 FCC ID: PPD-QCNFA364AH Page 9 of 41 ## 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: Report No.: FA782332 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. ## 7.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. ### <ES3DV3 Probe> | Construction | Symmetric design with triangular core
Interleaved sensors
Built-in shielding against static charges
PEEK enclosure material (resistant to organic
solvents, e.g., DGBE) | | |---------------|---|-----| | Frequency | 10 MHz – 4 GHz;
Linearity: ±0.2 dB (30 MHz – 4 GHz) | | | Directivity | ±0.2 dB in TSL (rotation around probe axis)
±0.3 dB in TSL (rotation normal to probe axis) | | | Dynamic Range | 5 μW/g – >100 mW/g;
Linearity: ±0.2 dB | | | Dimensions | Overall length: 337 mm (tip: 20 mm) Tip diameter: 3.9 mm (body: 12 mm) Distance from probe tip to dipole centers: 3.0 mm | A S | **Report No. : FA782332** ### <EX3DV4 Probe> | Construction | Symmetric design with triangular core | |---------------|--| | | Built-in shielding against static charges | | | PEEK enclosure material (resistant to organic | | | solvents, e.g., DGBE) | | Frequency | 10 MHz – >6 GHz | | | Linearity: ±0.2 dB (30 MHz – 6 GHz) | | Directivity | ±0.3 dB in TSL (rotation around probe axis) | | | ±0.5 dB in TSL (rotation normal to probe axis) | | Dynamic Range | 10 μW/g – >100 mW/g | | | Linearity: ±0.2 dB (noise: typically <1 µW/g) | | Dimensions | Overall length: 337 mm (tip: 20 mm) | | | Tip diameter: 2.5 mm (body: 12 mm) | | | Typical distance from probe tip to dipole centers: 1 | | | mm | ### 7.2 <u>Data Acquisition Electronics (DAE)</u> The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Page 11 of 41 Fig 5.1 Photo of DAE SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PPD-QCNFA364AH Issued Date: Oct. 13, 2017 Form version. : 170509 ## 7.3 Phantom ### <SAM Twin Phantom> | Shell Thickness | 2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm | | |-------------------|---|-----| | Filling Volume | Approx. 25 liters | * | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | 7 5 | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | Report No.: FA782332 The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. ### <ELI Phantom> | VEET I Halltonia | | | |------------------|--|--| | Shell Thickness | 2 ± 0.2 mm (sagging:
<1%) | | | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. SPORTON INTERNATIONAL INC. ### 7.4 Device Holder ### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. **Report No. : FA782332** Mounting Device Adaptor for Wide-Phones ### <Mounting Device for Laptops and other Body-Worn Transmitters> Mounting Device for Hand-Held Transmitters The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops Page 13 of 41 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PPD-QCNFA364AH Issued Date: Oct. 13, 2017 Form version.: 170509 ## 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA782332 - Read the WWAN RF power level from the base station simulator. - For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power ### <SAR measurement> - Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power - Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - Measure SAR results for the highest power channel on each testing position. - Find out the largest SAR result on these testing positions of each band (e) - Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - Power reference measurement (a) - (b) Area scan - (c) Zoom scan - Power drift measurement ### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - Extraction of the measured data (grid and values) from the Zoom Scan - Calculation of the SAR value at every measurement point based on all stored data (A/D values and (b) measurement parameters) - Generation of a high-resolution mesh within the measured volume (c) - Interpolation of all measured values form the measurement grid to the high-resolution grid (d) - Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface (e) - Calculation of the averaged SAR within masses of 1g and 10g SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 Page 14 of 41 ### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. ### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | | | |--|---|--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device. | | | | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PPD-QCNFA364AH Issued Date: Oct. 13, 2017 Form version.: 170509 **Report No.: FA782332** Page 15 of 41 ### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA782332 Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | |--|----------------|---|--|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | uniform | grid: $\Delta z_{Zoom}(n)$ | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | | graded
grid | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | | Δz _{Zoom} (n>1):
between subsequent
points | $\leq 1.5 \cdot \Delta z_{Z_{00m}}(n-1)$ | | | Minimum zoom scan
volume | x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. ### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR,
the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. ### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. FCC ID : PPD-QCNFA364AH Page 16 of 41 Form version. : 170509 When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 9. Test Equipment List | Manageratura | Name of Employment | T /841 -1 | Serial Number | Calib | Calibration | | | |---------------|---------------------------------|--------------------------|---------------|---------------|---------------|--|--| | Manufacturer | Name of Equipment | Equipment Type/Model Ser | | Last Cal. | Due Date | | | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 735 | Dec. 23, 2016 | Dec. 22, 2017 | | | | SPEAG | 5GHz System Validation Kit | D5GHzV2 | 1171 | Jul. 18, 2017 | Jul. 17, 2018 | | | | SPEAG | Data Acquisition Electronics | DAE4 | 1424 | Feb. 16, 2017 | Feb. 15, 2018 | | | | SPEAG | Data Acquisition Electronics | DAE4 | 916 | Dec. 15, 2016 | Dec. 14, 2017 | | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3976 | Feb. 21, 2017 | Feb. 20, 2018 | | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3873 | Aug. 25, 2017 | Aug. 24, 2018 | | | | WonDer | Thermometer | WD-5016 | TM642-2 | Mar. 17, 2017 | Mar. 16, 2018 | | | | WonDer | Thermometer | WD-5016 | TM281-1 | Mar. 17, 2017 | Mar. 16, 2018 | | | | R&S | BT Base Station | CBT32 | 100522 | Mar. 14, 2017 | Mar. 13, 2018 | | | | SPEAG | Device Holder | N/A | N/A | N/A | N/A | | | | Anritsu | Signal Generator | MG3710A | 6201502524 | Dec. 09, 2016 | Dec. 08, 2017 | | | | Agilent | ENA Network Analyzer | E5071C | MY46316648 | Jan. 04, 2017 | Jan. 03, 2018 | | | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1146 | Jul. 18, 2017 | Jul. 17, 2018 | | | | Anritsu | Power Meter | ML2495A | 1438002 | Dec. 06, 2016 | Dec. 05, 2017 | | | | Anritsu | Power Meter | ML2495A | 1419002 | May. 15, 2017 | May. 14, 2018 | | | | Anritsu | Power Sensor | MA2411B | 1339195 | Dec. 06, 2016 | Dec. 05, 2017 | | | | Anritsu | Power Sensor | MA2411B | 1339124 | May. 15, 2017 | May. 14, 2018 | | | | Agilent | Spectrum Analyzer | E4408B | MY44211028 | Aug. 23, 2017 | Aug. 22, 2018 | | | | Anritsu | Spectrum Analyzer | MS2830A | 6201396378 | Jun. 26, 2017 | Jun. 25, 2018 | | | | Mini-Circuits | Power Amplifier | ZVE-8G+ | D120604 | Mar. 09, 2017 | Mar. 08, 2018 | | | | Mini-Circuits | Power Amplifier | ZHL-42W+ | QA1344002 | Mar. 09, 2017 | Mar. 08, 2018 | | | | ATM | Dual Directional Coupler | C122H-10 | P610410z-02 | No | te 1 | | | | Woken | Attenuator 1 | WK0602-XX | N/A | No | te 1 | | | | PE | Attenuator 2 | PE7005-10 | N/A | No | te 1 | | | | PE | Attenuator 3 | PE7005- 3 | N/A | No | te 1 | | | Report No.: FA782332 ### **General Note:** Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version.: 170509 FCC ID: PPD-QCNFA364AH Page 17 of 41 ## 10. System Verification ## 10.1 Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2. **Report No.: FA782332** Fig 10.2 Photo of Liquid Height for Body SAR TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PPD-QCNFA364AH Page 18 of 41 Issued Date : Oct. 13, 2017 Form version. : 170509 ## 10.2 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. **Report No. : FA782332** | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity (σ) | Permittivity
(εr) | | | | | |--------------------|--------------|--------------|------------------|-------------|------------------|-------------|------------------|----------------------|--|--|--|--| | | For Head | | | | | | | | | | | | | 750 | 41.1 | 57.0 | 0.2 | 1.4 | 0.2 | 0 | 0.89 | 41.9 | | | | | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | | | | | 900 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.97 | 41.5 | | | | | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | | | | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | | | | 2600 | 54.8 | 0 | 0 | 0.1 | 0 | 45.1 | 1.96 | 39.0 | | | | | | | | | | For Body | | | | | | | | | | 750 | 51.7 | 47.2 | 0 | 0.9 | 0.1 | 0 | 0.96 | 55.5 | | | | | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | | | | | 900 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 1.05 | 55.0 | | | | | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | | | | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | | | | | 2600 | 68.1 | 0 | 0 | 0.1 | 0 | 31.8 | 2.16 | 52.5 | | | | | Simulating Liquid for 5GHz, Manufactured by SPEAG | Ingredients | (% by weight) | | | |--------------------|---------------|--|--| | Water | 64~78% | | | | Mineral oil | 11~18% | | | | Emulsifiers | 9~15% | | | | Additives and Salt | 2~3% | | | ## <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(°C) | Conductivity
(σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------|-------------------------|---------------------|--------------------------------|----------------------------|--|------------------|--------------------------------|-----------|-----------| | 2450 | MSL | 22.4 | 2.027 | 53.968 | 1.95 | 52.70 | 3.95 | 2.41 | ±5 | 2017/9/22 | | 2450 | MSL | 22.4 | 2.027 | 53.968 | 1.95 | 52.70 | 3.95 | 2.41 | ±5 | 2017/9/22 | | 5250 | MSL | 22.3 | 5.349 | 47.692 | 5.36 | 48.95 | -0.21 | -2.57 | ±5 | 2017/9/25 | | 5600 | MSL | 22.3 | 5.793 | 47.101 | 5.77 | 48.50 | 0.40 | -2.88 | ±5 | 2017/9/25 | | 5750 | MSL | 22.3 | 5.995 | 46.834 | 5.94 | 48.28 | 0.93 | -3.00 | ±5 | 2017/9/25 | ### 10.3 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Tissue
Type | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |-----------|--------------------|----------------|------------------------|---------------|-----------------|-------------|------------------------------|------------------------------|--------------------------------|------------------| | 2017/9/22 | 2450 | MSL | 250 | D2450V2-735 | EX3DV4 - SN3873 | DAE4 Sn916 | 13.00 | 50.60 | 52.00 | 2.77 | | 2017/9/22 | 2450 | MSL | 250 | D2450V2-735 | EX3DV4 - SN3976 | DAE4 Sn1424 | 13.10 | 50.60 | 52.40 | 3.56 | | 2017/9/25 | 5250 | MSL | 100 | D5GHzV2-1171 | EX3DV4 - SN3976 | DAE4 Sn1424 | 8.21 | 78.10 | 82.10 | 5.12 | | 2017/9/25 | 5600 | MSL | 100 | D5GHzV2-1171 | EX3DV4 - SN3976 | DAE4 Sn1424 | 8.77 | 81.00 | 87.70 | 8.27 | | 2017/9/25 | 5750 | MSL | 100 | D5GHzV2-1171 | EX3DV4 - SN3976 | DAE4 Sn1424 | 7.87 | 78.70 | 78.70 | 0.00 | **Report No. : FA782332** Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo ## 11. RF Exposure Positions ### 11.1 SAR Testing for Tablet This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017
Form version.: 170509 FCC ID: PPD-QCNFA364AH Page 20 of 41 ## 12. Conducted RF Output Power (Unit: dBm) ### <WLAN Conducted Power> #### **General Note:** For each antenna, transmit power in SISO operation is larger than (or equal to) the power in MIMO operation, RF exposure compliance of MIMO mode can be deduced from the compliance simultaneous transmission of antennas operating in SISO mode. Report No.: FA782332 - 2. Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6W/kg and SAR peak to location ratio ≤ 0.04, no additional SAR measurements for MIMO. - Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions. - For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s). - 5. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/q/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band. - DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is 6. measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following: - When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. - When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH ### <2.4GHz WLAN ANT 1> | | Mode | Channel | Frequency
(MHz) | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|---------------------|------------------|--------------| | | | 1 | 2412 | 18.48 | 18.50 | | | | | 6 | 2437 | 18.30 | 18.50 | | | | 802.11b 1Mbps | 11 | 2462 | 17.98 | 18.00 | 100.00 | | | | 12 | 2467 | 17.86 | 18.00 | | | | | 13 | 2472 | 11.23 | 12.00 | | | | | 1 | 2412 | 16.33 | 16.50 | | | | | 6 | 2437 | 16.30 | 16.50 | | | | 802.11g 6Mbps | 11 | 2462 | 12.77 | 13.00 | 94.85 | | | | 12 | 2467 | 12.46 | 13.00 | | | | | 13 | 2472 | 2.20 | 2.50 | | | | 802.11n-HT20 MCS0 | 1 | 2412 | 16.42 | 16.50 | | | | | 6 | 2437 | 17.49 | 17.50 | 94.53 | | | | 11 | 2462 | 12.77 | 13.00 | | | 2.4GHz WLAN | | 12 | 2467 | 12.67 | 13.00 | | | | | 13 | 2472 | 2.30 | 2.50 | | | | | 3 | 2422 | 12.47 | 12.50 | 88.72 | | | | 6 | 2437 | 16.47 | 16.50 | | | | 802.11n-HT40 MCS0 | 9 | 2452 | 11.48 | 11.50 | | | | | 10 | 2457 | 11.34 | 11.50 | | | | | 11 | 2462 | 3.10 | 3.50 | | | | | 1 | 2412 | 16.41 | 16.50 | | | | | 6 | 2437 | 17.21 | 17.50 | | | | 802.11ac-VHT20
MCS0 | 11 | 2462 | 12.73 | 13.00 | 93.75 | | | WOOO | 12 | 2467 | 12.69 | 13.00 | | | | | 13 | 2472 | 2.10 | 2.50 | | | | | 3 | 2422 | 12.45 | 12.50 | | | | | 6 | 2437 | 16.44 | 16.50 | | | | 802.11ac-VHT40
MCS0 | 9 | 2452 | 11.47 | 11.50 | 88.81 | | | Wicoo | 10 | 2457 | 11.20 | 11.50 | | | | | 11 | 2462 | 3.30 | 3.50 | | **Report No. : FA782332** TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 22 of 41 ## <2.4GHz WLAN ANT 2> | | Mode | Channel | Frequency
(MHz) | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|---------------------|------------------|--------------| | | | 1 | 2412 | 18.28 | 18.50 | | | | | 6 | 2437 | 18.25 | 18.50 | | | | 802.11b 1Mbps | 11 | 2462 | 17.88 | 18.00 | 100.00 | | | | 12 | 2467 | 17.79 | 18.00 | | | | | 13 | 2472 | 11.64 | 12.00 | | | | | 1 | 2412 | 16.32 | 16.50 | | | | | 6 | 2437 | 16.31 | 16.50 | | | | 802.11g 6Mbps | 11 | 2462 | 12.76 | 13.00 | 94.16 | | | | 12 | 2467 | 12.68 | 13.00 | | | | | 13 | 2472 | 2.22 | 2.50 | | | | 802.11n-HT20 MCS0 | 1 | 2412 | 16.18 | 16.50 | | | | | 6 | 2437 | 17.29 | 17.50 | 93.75 | | | | 11 | 2462 | 12.76 | 13.00 | | | 2.4GHz WLAN | | 12 | 2467 | 12.68 | 13.00 | | | | | 13 | 2472 | 2.31 | 2.50 | | | | | 3 | 2422 | 12.30 | 12.50 | 89.06 | | | | 6 | 2437 | 16.20 | 16.50 | | | | 802.11n-HT40 MCS0 | 9 | 2452 | 11.20 | 11.50 | | | | | 10 | 2457 | 11.11 | 11.50 | | | | | 11 | 2462 | 3.18 | 3.50 | | | | | 1 | 2412 | 16.13 | 16.50 | | | | | 6 | 2437 | 17.28 | 17.50 | | | | 802.11ac-VHT20
MCS0 | 11 | 2462 | 12.75 | 13.00 | 93.75 | | | WOOO | 12 | 2467 | 12.61 | 13.00 | | | | | 13 | 2472 | 1.96 | 2.50 | | | | | 3 | 2422 | 12.22 | 12.50 | | | | | 6 | 2437 | 16.17 | 16.50 | | | | 802.11ac-VHT40
MCS0 | 9 | 2452 | 11.12 | 11.50 | 88.81 | | | | 10 | 2457 | 10.94 | 11.50 | | | | | 11 | 2462 | 3.12 | 3.50 | | Report No.: FA782332 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH ## <2.4GHz WLAN ANT 1+2> | | Mode | Channel | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|------------------------|------------------|--------------| | | | 1 | 2412 | 21.32 | 21.50 | | | | | 6 | 2437 | 21.28 | 21.50 | | | | 802.11b 1Mbps | 11 | 2462 | 20.71 | 21.00 | 100.00 | | | | 12 | 2467 | 20.54 | 21.00 | | | | | 13 | 2472 | 14.44 | 15.00 | | | | | 1 | 2412 | 19.47 | 19.50 | | | | | 6 | 2437 | 19.21 | 19.50 | | | | 802.11g 6Mbps | 11 | 2462 | 15.70 | 16.00 | 94.16 | | | | 12 | 2467 | 15.34 | 16.00 | | | | | 13 | 2472 | 4.96 | 5.50 | | | | 802.11n-HT20 MCS0 | 1 | 2412 | 19.36 | 19.50 | | | | | 6 | 2437 | 20.34 | 20.50 | 94.49 | | | | 11 | 2462 | 15.94 | 16.00 | | | 2.4GHz WLAN | | 12 | 2467 | 15.67 | 16.00 | | | | | 13 | 2472 | 4.98 | 5.50 | | | | | 3 | 2422 | 15.44 | 15.50 | 89.39 | | | | 6 | 2437 | 19.34 | 19.50 | | | | 802.11n-HT40 MCS0 | 9 | 2452 | 14.45 | 14.50 | | | | | 10 | 2457 | 14.13 | 14.50 | | | | | 11 | 2462 | 5.96 | 6.50 | | | | | 1 | 2412 | 19.32 | 19.50 | | | | | 6 | 2437 | 20.33 | 20.50 | | | | 802.11ac-VHT20
MCS0 | 11 | 2462 | 15.88 | 16.00 | 93.80 | | | WOOD | 12 | 2467 | 15.71 | 16.00 | | | | | 13 | 2472 | 4.92 | 5.50 | | | | | 3 | 2422 | 15.42 | 15.50 | | | | | 6 | 2437 | 19.31 | 19.50 | | | | 802.11ac-VHT40
MCS0 | 9 | 2452 | 14.43 | 14.50 | 89.47 | | | | 10 | 2457 | 14.13 | 14.50 | | | | | 11 | 2462 | 5.89 | 6.50 | | **Report No. : FA782332** TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 24 of 41 ### <5GHz WLAN ANT1> | | Mode | Channel | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|------------------------|------------------|--------------| | | | 36 | 5180 | 12.98 | 13.00 | | | | 902 11a 6Mbpa | 40 | 5200 | 12.90 | 13.00 | 94.85 | | | 802.11a 6Mbps | 44 | 5220 | 12.83 | 13.00 | 94.00 | | | | 48 | 5240 | 12.63 | 13.00 | | | | | 36 | 5180 | 12.81 | 13.00 | | | | 802.11n-HT20 MCS0 | 40 | 5200 | 12.79 | 13.00 | 94.14 | | | | 44 | 5220 |
12.76 | 13.00 | | | 5.2GHz WLAN | | 48 | 5240 | 12.56 | 13.00 | | | | 802.11n-HT40 MCS0 | 38 | 5190 | 12.95 | 13.00 | 90.08 | | | | 46 | 5230 | 12.85 | 13.00 | | | | | 36 | 5180 | 12.78 | 13.00 | | | | 802.11ac-VHT20 | 40 | 5200 | 12.75 | 13.00 | 02.80 | | | MCS0 | 44 | 5220 | 12.73 | 13.00 | 93.80 | | | | 48 | 5240 | 12.53 | 13.00 | | | | 802.11ac-VHT40 | 38 | 5190 | 12.94 | 13.00 | 90.20 | | | MCS0 | 46 | 5230 | 12.81 | 13.00 | 89.39 | | | 802.11ac-VHT80
MCS0 | 42 | 5210 | 12.73 | 13.00 | 86.53 | **Report No. : FA782332** | | Mode | Channel | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|------------------------|------------------|--------------| | | | 52 | 5260 | 12.74 | 13.00 | | | | 802.11a 6Mbps | 56 | 5280 | 12.76 | 13.00 | 94.85 | | | 602.11a divibps | 60 | 5300 | 12.90 | 13.00 | 94.03 | | | | 64 | 5320 | 12.93 | 13.00 | | | | | 52 | 5260 | 12.66 | 13.00 | | | | 802.11n-HT20 MCS0 | 56 | 5280 | 12.70 | 13.00 | 94.14 | | | | 60 | 5300 | 12.78 | 13.00 | | | 5.3GHz WLAN | | 64 | 5320 | 12.79 | 13.00 | | | | 802.11n-HT40 MCS0 | 54 | 5270 | 12.90 | 13.00 | 90.08 | | | 602.1111-H140 WC30 | 62 | 5310 | 12.80 | 13.00 | | | | | 52 | 5260 | 12.58 | 13.00 | | | | 802.11ac-VHT20 | 56 | 5280 | 12.60 | 13.00 | 02.80 | | | MCS0 | 60 | 5300 | 12.62 | 13.00 | 93.80 | | | | 64 | 5320 | 12.76 | 13.00 | | | | 802.11ac-VHT40 | 54 | 5270 | 12.89 | 13.00 | 80.30 | | | MCS0 | 62 | 5310 | 12.74 | 13.00 | 89.39 | | | 802.11ac-VHT80
MCS0 | 58 | 5290 | 12.68 | 13.00 | 86.53 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 25 of 41 **Report No. : FA782332** | | Mode | Channel | Frequency
(MHz) | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|---------------------|------------------|--------------| | | | 100 | 5500 | 12.92 | 13.00 | | | | | 116 | 5580 | 12.88 | 13.00 | | | | 802.11a 6Mbps | 124 | 5620 | 12.85 | 13.00 | 94.85 | | | | 132 | 5660 | 12.70 | 13.00 | | | | | 144 | 5720 | 12.61 | 13.00 | | | | | 100 | 5500 | 12.77 | 13.00 | | | | | 116 | 5580 | 12.74 | 13.00 | | | | 802.11n-HT20 MCS0 | 124 | 5620 | 12.73 | 13.00 | 94.14 | | | | 132 | 5660 | 12.70 | 13.00 | | | | | 144 | 5720 | 12.64 | 13.00 | | | | 802.11n-HT40 MCS0 | 102 | 5510 | 12.93 | 13.00 | 90.08 | | | | 110 | 5550 | 12.92 | 13.00 | | | 5.5GHz WLAN | | 126 | 5630 | 12.80 | 13.00 | | | | | 134 | 5670 | 12.84 | 13.00 | | | | | 142 | 5710 | 12.65 | 13.00 | | | | | 100 | 5500 | 12.74 | 13.00 | | | | 000 44 \// IT00 | 116 | 5580 | 12.69 | 13.00 | | | | 802.11ac-VHT20
MCS0 | 124 | 5620 | 12.65 | 13.00 | 93.80 | | | Wicco | 132 | 5660 | 12.60 | 13.00 | | | | | 144 | 5720 | 12.56 | 13.00 | | | | | 102 | 5510 | 12.76 | 13.00 | | | | 000 44 \// UT40 | 110 | 5550 | 12.68 | 13.00 | | | | 802.11ac-VHT40
MCS0 | 126 | 5630 | 12.66 | 13.00 | 89.39 | | | WOOO | 134 | 5670 | 12.64 | 13.00 | | | | | 142 | 5710 | 12.59 | 13.00 | | | | 000 44 \/UT00 | 106 | 5530 | 12.71 | 13.00 | | | | 802.11ac-VHT80
MCS0 | 122 | 5610 | 12.68 | 13.00 | 86.53 | | | WOOD | 138 | 5690 | 12.65 | 13.00 | | | | Mode | Channel | Frequency
(MHz) | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|---------------------|------------------|--------------| | | | 149 | 5745 | 12.97 | 13.00 | | | | 802.11a MCS0 | 157 | 5785 | 12.87 | 13.00 | 94.85 | | | | 165 | 5825 | 12.60 | 13.00 | | | | | 149 | 5745 | 12.79 | 13.00 | | | | 802.11n-HT20 MCS0 | 157 | 5785 | 12.71 | 13.00 | 94.14 | | 5.8GHz WLAN | | 165 | 5825 | 12.56 | 13.00 | | | | 802.11n-HT40 MCS0 | 151 | 5755 | 12.66 | 13.00 | 90.08 | | | 002.1111-F1140 WC30 | 159 | 5795 | 12.55 | 13.00 | | | | 000 44 \\ | 149 | 5745 | 12.68 | 13.00 | | | | 802.11ac-VHT20
MCS0 | 157 | 5785 | 12.58 | 13.00 | 93.80 | | | IVICOU | 165 | 5825 | 12.53 | 13.00 | | | | 802.11ac-VHT40 | 151 | 5755 | 12.64 | 13.00 | 90.30 | | | MCS0 | 159 | 5795 | 12.53 | 13.00 | 89.39 | | | 802.11ac-VHT80
MCS0 | 155 | 5775 | 12.76 | 13.00 | 86.53 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 26 of 41 ### <5GHz WLAN ANT2> | | Mode | Channel | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|------------------------|------------------|--------------| | | | 36 | 5180 | 12.91 | 13.00 | | | | 902 11a 6Mbna | 40 | 5200 | 12.80 | 13.00 | 94.85 | | | 802.11a 6Mbps | 44 | 5220 | 12.76 | 13.00 | 94.00 | | | | 48 | 5240 | 12.57 | 13.00 | | | | | 36 | 5180 | 12.79 | 13.00 | | | | 802.11n-HT20 MCS0 | 40 | 5200 | 12.76 | 13.00 | 93.75 | | | | 44 | 5220 | 12.68 | 13.00 | | | 5.2GHz WLAN | | 48 | 5240 | 12.53 | 13.00 | | | | 802.11n-HT40 MCS0 | 38 | 5190 | 12.90 | 13.00 | 90.15 | | | | 46 | 5230 | 12.75 | 13.00 | | | | | 36 | 5180 | 12.75 | 13.00 | | | | 802.11ac-VHT20 | 40 | 5200 | 12.70 | 13.00 | 02.80 | | | MCS0 | 44 | 5220 | 12.63 | 13.00 | 93.80 | | | | 48 | 5240 | 12.51 | 13.00 | | | | 802.11ac-VHT40 | 38 | 5190 | 12.88 | 13.00 | 00.15 | | | MCS0 | 46 | 5230 | 12.74 | 13.00 | 90.15 | | | 802.11ac-VHT80
MCS0 | 42 | 5210 | 12.68 | 13.00 | 86.53 | **Report No. : FA782332** | | Mode | Channel | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|------------------------|------------------|--------------| | | | 52 | 5260 | 12.66 | 13.00 | | | | 802.11a 6Mbps | 56 | 5280 | 12.73 | 13.00 | 94.85 | | | 602.11a divibps | 60 | 5300 | 12.89 | 13.00 | 94.03 | | | | 64 | 5320 | 12.90 | 13.00 | | | | | 52 | 5260 | 12.55 | 13.00 | | | | 802.11n-HT20 MCS0 | 56 | 5280 | 12.65 | 13.00 | 93.75 | | | | 60 | 5300 | 12.76 | 13.00 | | | 5.3GHz WLAN | | 64 | 5320 | 12.78 | 13.00 | | | | 802.11n-HT40 MCS0 | 54 | 5270 | 12.88 | 13.00 | 90.15 | | | 602.1111-H140 MC30 | 62 | 5310 | 12.85 | 13.00 | | | | | 52 | 5260 | 12.53 | 13.00 | | | | 802.11ac-VHT20 | 56 | 5280 | 12.60 | 13.00 | 02.80 | | | MCS0 | 60 | 5300 | 12.73 | 13.00 | 93.80 | | | | 64 | 5320 | 12.74 | 13.00 | | | | 802.11ac-VHT40 | 54 | 5270 | 12.83 | 13.00 | 00.15 | | | MCS0 | 62 | 5310 | 12.79 | 13.00 | 90.15 | | | 802.11ac-VHT80
MCS0 | 58 | 5290 | 12.65 | 13.00 | 86.53 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 27 of 41 | | Mode | Channel | Frequency
(MHz) | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|---------------------|------------------|--------------| | | | 100 | 5500 | 12.77 | 13.00 | | | | | 116 | 5580 | 12.73 | 13.00 | | | | 802.11a 6Mbps | 124 | 5620 | 12.70 | 13.00 | 94.85 | | | | 132 | 5660 | 12.65 | 13.00 | | | | | 144 | 5720 | 12.56 | 13.00 | | | | | 100 | 5500 | 12.68 | 13.00 | | | | | 116 | 5580 | 12.65 | 13.00 | | | | 802.11n-HT20 MCS0 | 124 | 5620 | 12.64 | 13.00 | 93.75 | | | | 132 | 5660 | 12.62 | 13.00 | | | | | 144 | 5720 | 12.61 | 13.00 | | | | | 102 | 5510 | 12.83 | 13.00 | | | | | 110 | 5550 | 12.77 | 13.00 | | | 5.5GHz WLAN | 802.11n-HT40 MCS0 | 126 | 5630 | 12.68 | 13.00 | 90.15 | | | | 134 | 5670 | 12.65 | 13.00 | | | | | 142 | 5710 | 12.60 | 13.00 | | | | | 100 | 5500 | 12.66 | 13.00 | | | | | 116 | 5580 | 12.58 | 13.00 | | | | 802.11ac-VHT20
MCS0 | 124 | 5620 | 12.57 | 13.00 | 93.80 | | | IVICSO | 132 | 5660 | 12.55 | 13.00 | | | | | 144 | 5720 | 12.52 | 13.00 | | | | | 102 | 5510 | 12.80 | 13.00 | | | | | 110 | 5550 | 12.75 | 13.00 | | | | 802.11ac-VHT40
MCS0 | 126 | 5630 | 12.60 | 13.00 | 90.15 | | | WICOU | 134 | 5670 | 12.55 | 13.00 | | | | | 142 | 5710 | 12.53 | 13.00 | | | | | 106 | 5530 | 12.67 | 13.00 | | | | 802.11ac-VHT80
MCS0 | 122 | 5610 | 12.63 | 13.00 | 86.53 | | | IVICOU | 138 | 5690 | 12.61 | 13.00 | | Report No.: FA782332 | | Mode | Channel | Frequency
(MHz) | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|---------------------|------------------|--------------| | | | 149 | 5745 | 12.75 | 13.00 | | | | 802.11a MCS0 | 157 | 5785 | 12.68 | 13.00 | 94.85 | | | | 165 | 5825 | 12.53 | 13.00 | | | | | 149 | 5745 | 12.69 | 13.00 | | | | 802.11n-HT20 MCS0 | 157 | 5785 | 12.68 | 13.00 | 93.75 | | 5.8GHz WLAN | | 165 | 5825 | 12.53 | 13.00 | | | | 802.11n-HT40 MCS0 | 151 | 5755 | 12.65 | 13.00 | 00.15 | | | 602.1111-H140 WC30 | 159 | 5795 | 12.53 | 13.00 | 90.15 | | | | 149 | 5745 | 12.63 | 13.00 | | | | 802.11ac-VHT20
MCS0 | 157 | 5785 | 12.61 | 13.00 | 93.80 | | | | 165 | 5825 | 12.52 | 13.00 | | | | 802.11ac-VHT40 | 151 | 5755 | 12.55 | 13.00 | 00.15 | | | MCS0 | 159 | 5795 | 12.52 | 13.00 | 90.15 | | | 802.11ac-VHT80
MCS0 | 155 | 5775 | 12.64 | 13.00 | 86.53 | 5690 12.61 13.00 138 TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 28 of 41 ## <5GHz WLAN ANT1+2> | | Mode | Channel | Frequency
(MHz) | Average power
(dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|------------------------|------------------|--------------| | | | 36 | 5180 | 15.96 | 16.00 | | | | 902 11a 6Mbna | 40 | 5200 | 15.94 | 16.00 | 94.16 | | | 802.11a 6Mbps | 44 | 5220 | 15.91 | 16.00 | 94.10 | | | | 48 | 5240 | 15.72 | 16.00 | | | | | 36 | 5180 | 15.87 | 16.00 | | | | 802.11n-HT20 MCS0 | 40 | 5200 | 15.85 | 16.00 | 93.75 | | | | 44 | 5220 | 15.81 | 16.00 | | | 5.2GHz WLAN | | 48 | 5240 | 15.79 | 16.00 | | | | 802.11n-HT40 MCS0 | 38 | 5190 | 15.96 | 16.00 | - 88.81 | | | | 46 | 5230 | 15.93 | 16.00 | | | | | 36 | 5180 | 15.85 | 16.00 | | | | 802.11ac-VHT20 | 40 | 5200 | 15.83 | 16.00 | 93.75 | | | MCS0 | 44 | 5220 | 15.77 | 16.00 | 95.75
 | | | 48 | 5240 | 15.75 | 16.00 | | | | 802.11ac-VHT40 | 38 | 5190 | 15.89 | 16.00 | 90.20 | | | MCS0 | 46 | 5230 | 15.87 | 16.00 | 89.39 | | | 802.11ac-VHT80
MCS0 | 42 | 5210 | 15.71 | 16.00 | 87.14 | Report No.: FA782332 | | Mode | Channel | Frequency
(MHz) | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|---------------------|------------------|--------------| | | | 52 | 5260 | 15.76 | 16.00 | | | | 802.11a 6Mbps | 56 | 5280 | 15.77 | 16.00 | 94.16 | | | 602.11a 61VIDPS | 60 | 5300 | 15.79 | 16.00 | 94.10 | | | | 64 | 5320 | 15.95 | 16.00 | | | | | 52 | 5260 | 15.68 | 16.00 | | | | 802.11n-HT20 MCS0 | 56 | 5280 | 15.74 | 16.00 | 93.75 | | | 802.11n-H120 MCS0 | 60 | 5300 | 15.77 | 16.00 | 93.75 | | 5.3GHz WLAN | | 64 | 5320 | 15.85 | 16.00 | | | | 802.11n-HT40 MCS0 | 54 | 5270 | 15.97 | 16.00 | 88.81 | | | | 62 | 5310 | 15.63 | 16.00 | 00.01 | | | | 52 | 5260 | 15.67 | 16.00 | | | | 802.11ac-VHT20 | 56 | 5280 | 15.73 | 16.00 | 93.75 | | | MCS0 | 60 | 5300 | 15.76 | 16.00 | 95.75 | | | | 64 | 5320 | 15.84 | 16.00 | | | | 802.11ac-VHT40 | 54 | 5270 | 15.76 | 16.00 | 89.39 | | | MCS0 | 62 | 5310 | 15.60 | 16.00 | 09.39 | | | 802.11ac-VHT80
MCS0 | 58 | 5290 | 15.66 | 16.00 | 87.14 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 29 of 41 **Report No. : FA782332** | | Mode | Channel | Frequency
(MHz) | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|----------------------------|---------|--------------------|---------------------|------------------|--------------| | | | 100 | 5500 | 15.98 | 16.00 | | | | | 116 | 5580 | 15.94 | 16.00 | | | | 802.11a 6Mbps | 124 | 5620 | 15.93 | 16.00 | 94.16 | | | | 132 | 5660 | 15.91 | 16.00 | | | | | 144 | 5720 | 15.90 | 16.00 | | | | | 100 | 5500 | 15.84 | 16.00 | | | | | 116 | 5580 | 15.80 | 16.00 | | | | 802.11n-HT20 MCS0 | 124 | 5620 | 15.79 | 16.00 | 93.75 | | | | 132 | 5660 | 15.77 | 16.00 | | | | | 144 | 5720 | 15.58 | 16.00 | | | | GHz WLAN 802.11n-HT40 MCS0 | 102 | 5510 | 15.69 | 16.00 | | | | | 110 | 5550 | 15.67 | 16.00 | | | 5.5GHz WLAN | | 126 | 5630 | 15.65 | 16.00 | 88.81 | | | | 134 | 5670 | 15.62 | 16.00 | | | | | 142 | 5710 | 15.59 | 16.00 | | | | | 100 | 5500 | 15.71 | 16.00 | | | | 000 44 \// IT00 | 116 | 5580 | 15.63 | 16.00 | | | | 802.11ac-VHT20
MCS0 | 124 | 5620 | 15.62 | 16.00 | 93.75 | | | Wiooo | 132 | 5660 | 15.60 | 16.00 | | | | | 144 | 5720 | 15.54 | 16.00 | | | | | 102 | 5510 | 15.61 | 16.00 | | | | 000 44 \// UT40 | 110 | 5550 | 15.58 | 16.00 | | | | 802.11ac-VHT40
MCS0 | 126 | 5630 | 15.56 | 16.00 | 89.39 | | | IVIOOU | 134 | 5670 | 15.57 | 16.00 | | | | | 142 | 5710 | 15.55 | 16.00 | | | | 000 44 \// ITCC | 106 | 5530 | 15.63 | 16.00 | | | | 802.11ac-VHT80
MCS0 | 122 | 5610 | 15.56 | 16.00 | 87.14 | | | IVIOOU | 138 | 5690 | 15.52 | 16.00 | | | | Mode | Channel | Frequency
(MHz) | Average power (dBm) | Tune-Up
Limit | Duty Cycle % | |-------------|------------------------|---------|--------------------|---------------------|------------------|--------------| | | | 149 | 5745 | 15.80 | 16.00 | | | | 802.11a MCS0 | 157 | 5785 | 15.74 | 16.00 | 94.16 | | | | 165 | 5825 | 15.63 | 16.00 | | | | | 149 | 5745 | 15.76 | 16.00 | | | | 802.11n-HT20 MCS0 | 157 | 5785 | 15.71 | 16.00 | 93.75 | | 5.8GHz WLAN | | 165 | 5825 | 15.65 | 16.00 | | | 0.001.21121 | 802.11n-HT40 MCS0 | 151 | 5755 | 15.90 | 16.00 | 88.81 | | | 002.1111-F1140 WC30 | 159 | 5795 | 15.84 | 16.00 | 00.01 | | | 000 44 \\ | 149 | 5745 | 15.72 | 16.00 | | | | 802.11ac-VHT20
MCS0 | 157 | 5785 | 15.67 | 16.00 | 93.75 | | | IVICOU | 165 | 5825 | 15.63 | 16.00 | | | | 802.11ac-VHT40 | 151 | 5755 | 15.85 | 16.00 | 90.20 | | | MCS0 | 159 | 5795 | 15.80 | 16.00 | 89.39 | | | 802.11ac-VHT80
MCS0 | 155 | 5775 | 15.94 | 16.00 | 87.14 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 30 of 41 ### <2.4GHz Bluetooth> | Mode | Channel | Frequency | Average power (dBm) | | | | | | | |----------|---------------|-----------|---------------------|-------|-------|--|--|--|--| | Mode | Chamer | (MHz) | 1Mbps | 2Mbps | 3Mbps | | | | | | | CH 00 | 2402 | 5.37 | 4.99 | 5.01 | | | | | | BR / EDR | CH 39 | 2441 | 6.46 | 6.09 | 6.10 | | | | | | | CH 78 | 2480 | 6.99 | 6.74 | 6.75 | | | | | | | Tune-up Limit | | 7 | 7 | 7 | | | | | **Report No. : FA782332** | Mode | Channal | Frequency | Average power (dBm) | |------|---------------|-----------|---------------------| | Mode | Channel (MHz) | | GFSK | | | CH 00 | 2402 | 1.92 | | LE | CH 19 | 2440 | 2.38 | | | CH 39 | 2480 | 2.55 | | | Tune-up Limit | | 4.5 | ### **General Note:** - For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power. 1. - 2. The Bluetooth duty cycle is 76.6 % as following figure, according to 2016 Oct. TCB workshop for Bluetooth SAR scaling need further consideration and the theoretical duty cycle is 83.3%, therefore the actual duty cycle will be scaled up to the theoretical value of Bluetooth reported SAR calculation TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 FCC ID: PPD-QCNFA364AH Form version.: 170509 Page 31 of 41 ## 13. Antenna Location ### < Tablet Mode > Edge1 Edge4 Display screen Edge2 WLAN Ant 1 / WLAN Ant 2 / BT > Edge3 **Front View** **Report No. : FA782332** The separation distance for antenna to edge: | Antenna | To Edge1 | To Edge2 | To Edge3 | To Edge4 | |------------------------------|----------|----------|----------|----------| | | (mm) | (mm) | (mm) | (mm) | | WLAN Ant 1 / WLAN Ant 2 / BT | 185 | 135 | < 5 | 55 | TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 32 of 41 ### < Laptop Mode > <Side View> **Report No. : FA782332** TEL: 886-3-327-3456 / FAX: 886-3-328-4978 FCC ID: PPD-QCNFA364AH Issued Date: Oct. 13, 2017 Form version.: 170509 Page 33 of 41 ### <SAR test exclusion table> #### **General Note:** 1. The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW" Report No.: FA782332 - 2. Maximum power is the source-based time-average power and represents the maximum RF output power among production units - 3. Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user. - 4. Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation distance is < 5mm, 5mm is used to determine SAR exclusion threshold. - 5. Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison - 6. Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) 10] mW at > 1500 MHz and ≤ 6 GHz | | Wireless Interface | ВТ | 2.4GHz WLAN
ANT 1 | 2.4GHz WLAN
ANT 2 | 5GHz WLAN
ANT 1 | 5GHz WLAN
ANT 2 | |-------------------|-------------------------|---------|----------------------|----------------------|--------------------|--------------------| | Exposure Position | Calculated Frequency | 2480MHz | 2472MHz | 2472MHz | 5825MHz | 5825MHz | | · | Maximum power (dBm) | 7.5 | 18.5 | 18.5 | 13 | 13 | | | Maximum rated power(mW) | 6.0 | 71.0 | 71.0 | 20.0 | 20.0 | | | Separation distance(mm) | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | | Bottom Face | exclusion threshold | 22.3 | 22.3 | 22.3 | 9.7 | 9.7 | | | Testing required? | Yes | Yes | Yes | Yes | Yes | | | Separation distance(mm) | 185.0 | 185.0 | 185.0 | 185.0 | 185.0 | | Edge 1 | exclusion threshold | 1445.0 | 1446.0 | 1446.0 | 1412.0 | 1412.0 | | | Testing required? | No | No | No | No | No | | | Separation distance(mm) | 135.0 | 135.0 | 135.0 | 135.0 | 130.0 | | Edge 2 | exclusion threshold | 945.0 | 946.0 | 946.0 | 912.0 | 862.0 | | | Testing required? | No | No | No | No | No | | | Separation distance(mm) | 5.0 | 5.0 | 5.0 | 5.0 | 5.0 | | Edge 3 | exclusion threshold | 22.3 | 22.3 | 22.3 | 9.7 | 9.7 | | | Testing required? | Yes | Yes | Yes | Yes | Yes | | | Separation distance(mm) | 55.0 | 55.0 | 55.0 | 55.0 | 55.0 | | Edge 4 | exclusion threshold | 145.0 | 146.0 | 146.0 | 112.0 | 112.0 | | | Testing required? | No | No | No | No | No | | | Separation distance(mm) | 15.8 | 15.8 | 15.8 | 15.8 | 15.8 | | Bottom of Laptop | exclusion threshold | 0.6 | 7.1 | 7.1 | 3.1 | 3.1 | | | Testing required? | No | Yes | Yes | Yes | Yes | ## 14. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. **Report No.: FA782332** - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor - 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band
is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. #### **WLAN Note:** - 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. - 2. Per KDB 248227 D01v02r02, U-NII-1 SAR testing is not required when the U-NII-2A band highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band. - 3. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - 4. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. - 5. For WLAN SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode. - 6. Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6W/kg and SAR peak to location ratio ≤ 0.04, no additional SAR measurements for MIMO.</p> - 7. For QCNFA364A, channel #12 and #13 SAR testing are not necessary, due to the maximum power is equal to other channels, the maximum power please refer to WLAN conducted power table. - 8. During SAR testing the WLAN transmission was verified using a spectrum analyzer. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 FCC ID: PPD-QCNFA364AH Page 35 of 41 Form version.: 170509 ## 14.1 Body SAR ### <WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Antenna | Antenna
Vendor | Battery | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------|---------------------|------------------|-------------|---------|-------------------|-----------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0mm | Ant 1 | НВ | Battery 1 | 1 | 2412 | 18.48 | 18.50 | 1.005 | 100 | 1.000 | -0.01 | 0.272 | 0.273 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 3 | 0mm | Ant 1 | HB | Battery 1 | 1 | 2412 | 18.48 | 18.50 | 1.005 | 100 | 1.000 | -0.11 | 0.334 | 0.336 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 3 | 0mm | Ant 1 | HB | Battery 2 | 1 | 2412 | 18.48 | 18.50 | 1.005 | 100 | 1.000 | -0.04 | 0.297 | 0.298 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 3 | 0mm | Ant 1 | WNC | Battery 1 | 1 | 2412 | 18.48 | 18.50 | 1.005 | 100 | 1.000 | 0.01 | 0.300 | 0.301 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom of Laptop | 0mm | Ant 1 | HB | Battery 1 | 1 | 2412 | 18.48 | 18.50 | 1.005 | 100 | 1.000 | 0.17 | 0.036 | 0.036 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom Face | 0mm | Ant 2 | HB | Battery 1 | 1 | 2412 | 18.28 | 18.50 | 1.052 | 100 | 1.000 | 0.07 | 0.377 | 0.397 | | 01 | WLAN2.4GHz | 802.11b 1Mbps | Edge 3 | 0mm | Ant 2 | HB | Battery 1 | 1 | 2412 | 18.28 | 18.50 | 1.052 | 100 | 1.000 | -0.18 | 0.599 | 0.630 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 3 | 0mm | Ant 2 | HB | Battery 1 | 6 | 2437 | 18.25 | 18.50 | 1.059 | 100 | 1.000 | -0.13 | 0.526 | 0.557 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 3 | 0mm | Ant 2 | HB | Battery 1 | 11 | 2462 | 17.88 | 18.00 | 1.028 | 100 | 1.000 | 0.05 | 0.392 | 0.403 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 3 | 0mm | Ant 2 | HB | Battery 2 | 1 | 2412 | 18.28 | 18.50 | 1.052 | 100 | 1.000 | -0.13 | 0.513 | 0.540 | | | WLAN2.4GHz | 802.11b 1Mbps | Edge 3 | 0mm | Ant 2 | WNC | Battery 1 | 1 | 2412 | 18.28 | 18.50 | 1.052 | 100 | 1.000 | 0.11 | 0.463 | 0.487 | | | WLAN2.4GHz | 802.11b 1Mbps | Bottom of Laptop | 0mm | Ant 2 | HB | Battery 1 | 1 | 2412 | 18.28 | 18.50 | 1.052 | 100 | 1.000 | 0.06 | 0.063 | 0.066 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom Face | 0mm | Ant 1 | HB | Battery 1 | 58 | 5290 | 12.68 | 13.00 | 1.077 | 86.53 | 1.156 | -0.14 | 0.212 | 0.264 | | 02 | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 1 | HB | Battery 1 | 58 | 5290 | 12.68 | 13.00 | 1.077 | 86.53 | 1.156 | -0.09 | 0.292 | 0.363 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 1 | HB | Battery 2 | 58 | 5290 | 12.68 | 13.00 | 1.077 | 86.53 | 1.156 | -0.09 | 0.264 | 0.329 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 1 | WNC | Battery 1 | 58 | 5290 | 12.68 | 13.00 | 1.077 | 86.53 | 1.156 | -0.15 | 0.228 | 0.284 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom of Laptop | 0mm | Ant 1 | HB | Battery 1 | 58 | 5290 | 12.68 | 13.00 | 1.077 | 86.53 | 1.156 | -0.02 | 0.049 | 0.061 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom Face | 0mm | Ant 2 | HB | Battery 1 | 58 | 5290 | 12.65 | 13.00 | 1.084 | 86.53 | 1.156 | 0.04 | 0.088 | 0.110 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 2 | HB | Battery 1 | 58 | 5290 | 12.65 | 13.00 | 1.084 | 86.53 | 1.156 | 0.03 | 0.289 | 0.362 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 2 | HB | Battery 2 | 58 | 5290 | 12.65 | 13.00 | 1.084 | 86.53 | 1.156 | 0.06 | 0.282 | 0.353 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 2 | WNC | Battery 1 | 58 | 5290 | 12.65 | 13.00 | 1.084 | 86.53 | 1.156 | 0.01 | 0.277 | 0.347 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom of Laptop | 0mm | Ant 2 | HB | Battery 1 | 58 | 5290 | 12.65 | 13.00 | 1.084 | 86.53 | 1.156 | 0.07 | 0.084 | 0.105 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom Face | 0mm | Ant 1 | НВ | Battery 1 | 106 | 5530 | 12.71 | 13.00 | 1.069 | 86.53 | 1.156 | -0.07 | 0.168 | 0.208 | | 03 | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 1 | HB | Battery 1 | 106 | 5530 | 12.71 | 13.00 | 1.069 | 86.53 | 1.156 | 0.01 | 0.468 | 0.579 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 1 | HB | Battery 1 | 122 | 5610 | 12.68 | 13.00 | 1.077 | 86.53 | 1.156 | 0.06 | 0.459 | 0.571 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 1 | HB | Battery 1 | 138 | 5690 | 12.65 | 13.00 | 1.084 | 86.53 | 1.156 | 0.07 | 0.456 | 0.572 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 1 | HB | Battery 2 | 106 | 5530 | 12.71 | 13.00 | 1.069 | 86.53 | 1.156 | -0.01 | 0.460 | 0.569 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 1 | WNC | Battery 1 | 106 | 5530 | 12.71 | 13.00 | 1.069 | 86.53 | 1.156 | 0.01 | 0.438 | 0.541 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom of Laptop | 0mm | Ant 1 | HB | Battery 1 | 106 | 5530 | 12.71 | 13.00 | 1.069 | 86.53 | 1.156 | 0.11 | 0.058 | 0.072 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom Face | 0mm | Ant 2 | НВ | Battery 1 | 106 | 5530 | 12.67 | 13.00 | 1.079 | 86.53 | 1.156 | -0.05 | 0.126 | 0.157 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 2 | HB | Battery 1 | 106 | 5530 | 12.67 | 13.00 | 1.079 | 86.53 | 1.156 | 0.06 | 0.401 | 0.500 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 2 | HB | Battery 2 | 106 | 5530 | 12.67 | 13.00 | 1.079 | 86.53 | 1.156 | 0.13 | 0.395 | 0.493 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 2 | WNC | Battery 1 | 106 | 5530 | 12.67 | 13.00 | 1.079 | 86.53 | 1.156 | 0.16 | 0.394 | 0.492 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom of Laptop | 0mm | Ant 2 | HB | Battery 1 | 106 | 5530 | 12.67 | 13.00 | 1.079 | 86.53 | 1.156 | 0.07 | 0.099 | 0.124 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom Face | 0mm | Ant 1 | HB | Battery 1 | 155 | 5775 | 12.76 | 13.00 | 1.057 | 86.53 | 1.156 | 0.07 | 0.186 | 0.227 | | 04 | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 1 | НВ | Battery 1 | 155 | 5775 | 12.76 | 13.00 | 1.057 | 86.53 | 1.156 | 0.03 | 0.279 | 0.341 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 1 | НВ | Battery 2 | 155 | 5775 | 12.76 | 13.00 | 1.057 | 86.53 | 1.156 | 0.06 | 0.276 | 0.337 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 1 | WNC | Battery 1 | 155 | 5775 | 12.76 | 13.00 | 1.057 | 86.53 | 1.156 | 0.04 | 0.275 | 0.336 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom of Laptop | 0mm | Ant 1 | НВ | Battery 1 | 155 | 5775 | 12.76 | 13.00 | 1.057 | 86.53 | 1.156 | 0.08 | 0.059 | 0.072 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom Face | 0mm | Ant 2 | НВ | Battery 1 | 155 | 5775 | 12.64 | 13.00 | 1.087 | 86.53 | 1.156 | 0.03 | 0.149 | 0.187 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 2 | НВ | Battery 1 | 155 | 5775 | 12.64 | 13.00 | 1.087 | 86.53 | 1.156 | 0.04 | 0.212 | 0.266 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 2 | НВ | Battery 2 | 155 | 5775 | 12.64 | 13.00 | 1.087 | 86.53 | 1.156 | 0.1 | 0.211 | 0.265 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Edge 3 | 0mm | Ant 2
| WNC | Battery 1 | 155 | 5775 | 12.64 | 13.00 | 1.087 | 86.53 | 1.156 | 0.17 | 0.202 | 0.254 | | | WLAN5GHz | 802.11ac-VHT80 MCS0 | Bottom of Laptop | 0mm | Ant 2 | НВ | Battery 1 | 155 | 5775 | 12.64 | 13.00 | 1.087 | 86.53 | 1.156 | 0.07 | 0.100 | 0.126 | **Report No. : FA782332** TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 36 of 41 ## FCC SAR Test Report ### < Bluetooth SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Antenna
Vendor | Battery | Ch. | Freq.
(MHz) | Average
Power
(dBm) | | Tune-up
Scaling
Factor | Cycle | | Drift | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-----------|-------|------------------|-------------|-------------------|-----------|-----|----------------|---------------------------|------|------------------------------|-------|-------|-------|------------------------------|------------------------------| | | Bluetooth | 1Mbps | Bottom Face | 0mm | НВ | Battery 1 | 78 | 2480 | 6.99 | 7.00 | 1.002 | 76.6 | 1.087 | 0.04 | 0.013 | 0.014 | | 05 | Bluetooth | 1Mbps | Edge 3 | 0mm | НВ | Battery 1 | 78 | 2480 | 6.99 | 7.00 | 1.002 | 76.6 | 1.087 | 0.13 | 0.022 | 0.024 | | | Bluetooth | 1Mbps | Edge 3 | 0mm | HB | Battery 1 | 0 | 2402 | 5.37 | 7.00 | 1.457 | 76.6 | 1.087 | 0.02 | 0.013 | 0.021 | | | Bluetooth | 1Mbps | Edge 3 | 0mm | HB | Battery 1 | 39 | 2441 | 6.46 | 7.00 | 1.134 | 76.6 | 1.087 | 0.12 | 0.018 | 0.022 | | | Bluetooth | 1Mbps | Edge 3 | 0mm | НВ | Battery 2 | 78 | 2480 | 6.99 | 7.00 | 1.002 | 76.6 | 1.087 | 0.04 | 0.021 | 0.023 | | | Bluetooth | 1Mbps | Edge 3 | 0mm | WNC | Battery 1 | 78 | 2480 | 6.99 | 7.00 | 1.002 | 76.6 | 1.087 | 0.08 | 0.020 | 0.022 | **Report No.: FA782332** ### 15. Simultaneous Transmission Analysis | NO. | Simultaneous Transmission Configurations | Body | |-----|--|------| | 1. | WLAN 2.4GHz + BT | Yes | | 2. | WLAN 5GHz + BT | Yes | #### **General Note:** - 1. For SAR testing was performed on single antenna RF power in SISO mode is larger or equal to the single antenna RF power in MIMO mode, and for RF exposure assessment of MIMO mode simultaneous transmission exclusion analysis was performed with SAR test results of each antenna in SISO mode. - 2. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, 2.4GHz WLAN and 5GHz WLAN will not operate simultaneously at any moment. - 3. The worst case WLAN SAR was used for SAR summation. Therefore, the following summations represent the absolute worst cases for simultaneous transmission with WLAN. - 4. The Scaled SAR summation is calculated based on the same configuration and test position. - 5. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. ### 15.1 Body Exposure Conditions | | 1 | 2 | 3 | 4 | 5 | 1+2+5 | 3+4+5 | |-------------------------|----------------------|----------------------|--------------------|--------------------|------------------|------------------|----------------------------| | Exposure Position | 2.4GHz WLAN
Ant 1 | 2.4GHz WLAN
Ant 2 | 5GHz WLAN
Ant 1 | 5GHz WLAN
Ant 2 | Bluetooth | Summed
1g SAR | Summed
1g SAR
(W/kg) | | | 1g SAR
(W/kg) | (W/kg) | | | Bottom Face at 0mm | 0.273 | 0.397 | 0.264 | 0.187 | 0.014 | 0.684 | 0.465 | | Edge 3 at 0mm | 0.336 | 0.630 | 0.579 | 0.500 | 0.024 | 0.990 | 1.103 | | Bottom of Laptop at 0mm | 0.036 | 0.066 | 0.072 | 0.126 | | 0.102 | 0.198 | Test Engineer: Poa Pan Mood Huang and Nick Yu SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 FCC ID : PPD-QCNFA364AH Page 37 of 41 Form version. : 170509 ## 16. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. Report No.: FA782332 A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below. | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor ### **Standard Uncertainty for Assumed Distribution** The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. ## SPORTON LAB. FCC SAR Test Report | Error Description | Uncertainty
Value
(±%) | Probability | Divisor | (Ci)
1g | (Ci)
10g | Standard
Uncertainty
(1g) (±%) | Standard
Uncertainty
(10g) (±%) | |-----------------------------------|------------------------------|-------------|---------|------------|-------------|--------------------------------------|---------------------------------------| | Measurement System | | | | | | | | | Probe Calibration | 6.00 | N | 1 | 1 | 1 | 6.0 | 6.0 | | Axial Isotropy | 4.70 | R | 1.732 | 0.7 | 0.7 | 1.9 | 1.9 | | Hemispherical Isotropy | 9.60 | R | 1.732 | 0.7 | 0.7 | 3.9 | 3.9 | | Boundary Effects | 1.00 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | Linearity | 4.70 | R | 1.732 | 1 | 1 | 2.7 | 2.7 | | System Detection Limits | 1.00 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | Modulation Response | 4.68 | R | 1.732 | 1 | 1 | 2.7 | 2.7 | | Readout Electronics | 0.30 | N | 1 | 1 | 1 | 0.3 | 0.3 | | Response Time | 0.00 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Integration Time | 2.60 | R | 1.732 | 1 | 1 | 1.5 | 1.5 | | RF Ambient Noise | 3.00 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | RF Ambient Reflections | 3.00 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | Probe Positioner | 0.40 | R | 1.732 | 1 | 1 | 0.2 | 0.2 | | Probe Positioning | 2.90 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | Max. SAR Eval. | 2.00 | R | 1.732 | 1 | 1 | 1.2 | 1.2 | | Test Sample Related | | | | | | | | | Device Positioning | 3.03 | Ν | 1 | 1 | 1 | 3.0 | 3.0 | | Device Holder | 3.60 | N | 1 | 1 | 1 | 3.6 | 3.6 | | Power Drift | 5.00 | R | 1.732 | 1 | 1 | 2.9 | 2.9 | | Power Scaling | 0.00 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 6.10 | R | 1.732 | 1 | 1 | 3.5 | 3.5 | | SAR correction | 0.00 | R | 1.732 | 1 | 0.84 | 0.0 | 0.0 | | Liquid Conductivity Repeatability | 0.03 | N | 1 | 0.78 | 0.71 | 0.0 | 0.0 | | Liquid Conductivity (target) | 5.00 | R | 1.732 | 0.78 | 0.71 | 2.3 | 2.0 | | Liquid Conductivity (mea.) | 2.50 | R | 1.732 | 0.78 | 0.71 | 1.1 | 1.0 | | Temp. unc Conductivity | 3.68 | R | 1.732 | 0.78 | 0.71 | 1.7 | 1.5 | | Liquid Permittivity Repeatability | 0.02 | N | 1 | 0.23 | 0.26 | 0.0 | 0.0 | | Liquid Permittivity (target) | 5.00 | R | 1.732 | 0.23 | 0.26 | 0.7 | 0.8 | | Liquid Permittivity (mea.) | 2.50 | R | 1.732 | 0.23 | 0.26 | 0.3 | 0.4 | | Temp. unc Permittivity | 0.84 | R | 1.732 | 0.23 | 0.26 | 0.1 | 0.1 | | Combined Std. Uncertainty | | | | | | | 11.6% | | Coverage Factor for 95 % | | | | | | | K=2 | | Exp | 23.2% | 23.1% | | | | | |
Report No.: FA782332 Uncertainty Budget for frequency range 300 MHz to 3 GHz TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 39 of 41 ## SPORTON LAB. FCC SAR Test Report | Error Description | Uncertainty
Value
(±%) | Probability | Divisor | (Ci)
1g | (Ci)
10g | Standard
Uncertainty
(1g) (±%) | Standard
Uncertainty
(10g) (±%) | |-----------------------------------|------------------------------|-------------|---------|------------|-------------|--------------------------------------|---------------------------------------| | Measurement System | | | | | | | | | Probe Calibration | 6.55 | N | 1 | 1 | 1 | 6.6 | 6.6 | | Axial Isotropy | 4.70 | R | 1.732 | 0.7 | 0.7 | 1.9 | 1.9 | | Hemispherical Isotropy | 9.60 | R | 1.732 | 0.7 | 0.7 | 3.9 | 3.9 | | Boundary Effects | 2.00 | R | 1.732 | 1 | 1 | 1.2 | 1.2 | | Linearity | 4.70 | R | 1.732 | 1 | 1 | 2.7 | 2.7 | | System Detection Limits | 1.00 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | Modulation Response | 4.68 | R | 1.732 | 1 | 1 | 2.7 | 2.7 | | Readout Electronics | 0.30 | N | 1 | 1 | 1 | 0.3 | 0.3 | | Response Time | 0.00 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Integration Time | 2.60 | R | 1.732 | 1 | 1 | 1.5 | 1.5 | | RF Ambient Noise | 3.00 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | RF Ambient Reflections | 3.00 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | Probe Positioner | 0.40 | R | 1.732 | 1 | 1 | 0.2 | 0.2 | | Probe Positioning | 6.70 | R | 1.732 | 1 | 1 | 3.9 | 3.9 | | Max. SAR Eval. | 4.00 | R | 1.732 | 1 | 1 | 2.3 | 2.3 | | Test Sample Related | | | | | | | | | Device Positioning | 3.03 | N | 1 | 1 | 1 | 3.0 | 3.0 | | Device Holder | 3.60 | N | 1 | 1 | 1 | 3.6 | 3.6 | | Power Drift | 5.00 | R | 1.732 | 1 | 1 | 2.9 | 2.9 | | Power Scaling | 0.00 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 6.60 | R | 1.732 | 1 | 1 | 3.8 | 3.8 | | SAR correction | 0.00 | R | 1.732 | 1 | 0.84 | 0.0 | 0.0 | | Liquid Conductivity Repeatability | 0.03 | N | 1 | 0.78 | 0.71 | 0.0 | 0.0 | | Liquid Conductivity (target) | 5.00 | R | 1.732 | 0.78 | 0.71 | 2.3 | 2.0 | | Liquid Conductivity (mea.) | 2.50 | R | 1.732 | 0.78 | 0.71 | 1.1 | 1.0 | | Temp. unc Conductivity | 3.68 | R | 1.732 | 0.78 | 0.71 | 1.7 | 1.5 | | Liquid Permittivity Repeatability | 0.02 | N | 1 | 0.23 | 0.26 | 0.0 | 0.0 | | Liquid Permittivity (target) | 5.00 | R | 1.732 | 0.23 | 0.26 | 0.7 | 0.8 | | Liquid Permittivity (mea.) | 2.50 | R | 1.732 | 0.23 | 0.26 | 0.3 | 0.4 | | Temp. unc Permittivity | 0.84 | R | 1.732 | 0.23 | 0.26 | 0.1 | 0.1 | | Combined Std. Uncertainty | | | | | | | 12.6% | | Coverage Factor for 95 % | | | | | | | K=2 | | Exp | 25.4% | 25.3% | | | | | | Report No.: FA782332 Uncertainty Budget for frequency range 3 GHz to 6 GHz TEL: 886-3-327-3456 / FAX: 886-3-328-4978 Issued Date: Oct. 13, 2017 Form version. : 170509 FCC ID: PPD-QCNFA364AH Page 40 of 41 ## 17. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" Report No.: FA782332 - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015. - [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [7] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015 - [8] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015. - [9] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.