# **FCC Test Report** Report No.: RF190614C18-1 FCC ID: NDD9532311904 Test Model: IC-3231GOP Series Model: IC-S200WD (refer to item 3.1 for more details) Received Date: Jun. 21, 2019 **Test Date:** Jul. 10, 2019 ~ Jun. 17, 2020 **Issued Date:** Jun. 18, 2020 Applicant: EDIMAX TECHNOLOGY CO., LTD. Address: No. 3, Wuquan 3rd Rd., Wugu Dist., New Taipei City 248, Taiwan (R.O.C.) Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN FCC Registration / 788550 / TW0003 **Designation Number:** This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies. Report No.: RF190624C18-1 Page No. 1 / 39 Report Format Version: 6.1.1 # **Table of Contents** | R | Release Control Record4 | | | | | | |---|-------------------------|---------------------------------------------------------------------------------------------|-----|--|--|--| | 1 | ( | Certificate of Conformity | . 5 | | | | | 2 | 5 | Summary of Test Results | . 6 | | | | | | 2.1 | Measurement Uncertainty | . 6 | | | | | | 2.2 | Modification Record | . 6 | | | | | 3 | ( | General Information | . 7 | | | | | | 3.1 | General Description of EUT | . 7 | | | | | | 3.2 | Description of Test Modes | . 8 | | | | | | 3.2.1 | Test Mode Applicability and Tested Channel Detail | | | | | | | 3.3 | Duty Cycle of Test Signal | | | | | | | 3.4 | Description of Support Units | | | | | | | 3.4.1<br>3.5 | Configuration of System under Test General Description of Applied Standards and References | | | | | | | | · | | | | | | 4 | | Test Types and Results | | | | | | | 4.1 | Radiated Emission and Bandedge Measurement | | | | | | | | Limits of Radiated Emission and Bandedge Measurement | | | | | | | | Test Instruments Test Procedures | | | | | | | | Deviation from Test Standard | | | | | | | | Test Setup | | | | | | | | EUT Operating Conditions. | | | | | | | | Test Results | | | | | | | 4.2 | Conducted Emission Measurement | | | | | | | | Limits of Conducted Emission Measurement | | | | | | | | Test Instruments | | | | | | | | Test Procedures Deviation from Test Standard | | | | | | | | Test Setup | | | | | | | | EUT Operating Conditions | | | | | | | | Test Results | | | | | | | 4.3 | 6dB Bandwidth Measurement | | | | | | | | Limits of 6dB Bandwidth Measurement | | | | | | | | Test Setup | | | | | | | | Test Instruments | | | | | | | | Test Procedure Deviation fromTest Standard | | | | | | | | EUT Operating Conditions | | | | | | | | Test Result | | | | | | | 4.4 | Conducted Output Power Measurement | | | | | | | | Limits of Conducted Output Power Measurement | | | | | | | | Test Setup | | | | | | | | Test Instruments | | | | | | | | Test Procedures Deviation from Test Standard | | | | | | | | EUT Operating Conditions | | | | | | | | Test Results | | | | | | | 4.5 | Power Spectral Density Measurement | | | | | | | | Limits of Power Spectral Density Measurement | 33 | | | | | | | Test Setup | | | | | | | | Test Instruments | | | | | | | | Test Procedure | | | | | | | | Deviation from Test Standard EUT Operating Condition | | | | | | | ┯.IJ.U | Lot operating condition | JJ | | | | | 4.5.7 Test Results | 34 | | | | |------------------------------------------------------------|----|--|--|--| | 4.6 Conducted Out of Band Emission Measurement | 35 | | | | | 4.6.1 Limits of Conducted Out of Band Emission Measurement | 35 | | | | | 4.6.2 Test Setup | 35 | | | | | 4.6.3 Test Instruments | | | | | | 4.6.4 Test Procedure | | | | | | 4.6.5 Deviation from Test Standard | | | | | | 4.6.6 EUT Operating Condition | 35 | | | | | 4.6.7 Test Results | 35 | | | | | 5 Pictures of Test Arrangements | 37 | | | | | Annex A- Band Edge Measurement | | | | | | Annondix Information of the Tecting Laboratories | | | | | | Appendix – Information of the Testing Laboratories | | | | | # **Release Control Record** | Issue No. | Description | Date Issued | |---------------|------------------|---------------| | RF190614C18-1 | Original release | Jun. 18, 2020 | # **Certificate of Conformity** Product: 2MP WI-FI Bullet Cammera **Brand:** EDIMAX Test Model: IC-3231GOP **Series Model:** IC-S200WD (refer to item 3.1 for more details) Sample Status: Engineering sample Applicant: EDIMAX TECHNOLOGY CO., LTD. **Test Date:** Jul. 10, 2019 ~ Jun. 17, 2020 **Standards:** 47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10:2013 The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report. Polly Chien / Specialist Date: Approved by : Bruce Chen / Senior Project Engineer # 2 Summary of Test Results | 47 CFR FCC Part 15, Subpart C (Section 15.247) | | | | | | | | |-----------------------------------------------------------------------------------|---------------------------------|--------|----------------------------------------------------------------------------------|--|--|--|--| | FCC<br>Clause | Test Item | Result | Remarks | | | | | | 15.207 | AC Power Conducted Emission | Pass | Meet the requirement of limit. Minimum passing margin is -12.66dB at 0.63000MHz. | | | | | | 15.205 /<br>15.209 /<br>15.247(d) Radiated Emissions and Band Edge<br>Measurement | | Pass | Meet the requirement of limit. Minimum passing margin is -5.1dB at 164.96MHz. | | | | | | 15.247(d) | 15.247(d) Antenna Port Emission | | Meet the requirement of limit. | | | | | | 15.247(a)(2) | 6dB bandwidth | Pass | Meet the requirement of limit. | | | | | | 15.247(b) | Conducted power | Pass | Meet the requirement of limit. | | | | | | 15.247(e) | Power Spectral Density | Pass | Meet the requirement of limit. | | | | | | 15.203 | Antenna Requirement | Pass | Antenna connector is i-pex(MHF) not a standard connector. | | | | | #### Note: - 1. For 2.4G band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A. Test Procedures refer to report 4.1.3. - 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. # 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |------------------------------------|-----------------|--------------------------------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 2.79 dB | | | 9kHz ~ 30MHz | 3.04 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 200MHz | 3.59 dB | | | 200MHz ~1000MHz | 3.60 dB | | Radiated Emissions above 1 GHz | 1GHz ~ 18GHz | 2.29 dB | | Radiated Emissions above 1 GHZ | 18GHz ~ 40GHz | 2.29 dB | # 2.2 Modification Record There were no modifications required for compliance. # 3 General Information # 3.1 General Description of EUT | Product | 2MP WI-FI Bullet Cammera | | | | |---------------------|--------------------------------------------------|--|--|--| | Brand | EDIMAX | | | | | Test Model | IC-3231GOP | | | | | Series Model | IC-S200WD | | | | | Model Difference | Refer to note | | | | | Sample Status | Engineering sample | | | | | Power Supply Rating | 12Vdc from adapter | | | | | Modulation Type | GFSK | | | | | Transfer Rate | 1Mbps | | | | | Operating Frequency | 2402 ~ 2480MHz | | | | | Number of Channel | 40 | | | | | Channel Spacing | 2MHz | | | | | Output Power | 2.286mW | | | | | Antenna Type | PCB antenna with 2dBi gain | | | | | Antenna Connector | i-pex(MHF) | | | | | Accessory Device | Adapter, antenna | | | | | Cable Supplied | 1.5m shielded cable without core attached on EUT | | | | # Note: ## 1. All models are listed as below. | Brand | Model | Description | |----------|------------|---------------------------------------------------------------------| | EDIMAX | IC-3231GOP | All models are electrically identical in RF and hardware, different | | EDIIVIAA | IC-S200WB | model names are for marketing purpose only. | <sup>\*</sup> The model of the IC-3231GOP was chosen for final test. # 2. The EUT consumes power from the following adapters. | Adapter 1 | | | | | | |--------------|------------------------------------------------------|--|--|--|--| | Brand | AMIGO | | | | | | Model | AMS159A-1201000FU | | | | | | Input Power | 100-240Vac, 50/60Hz, 0.5A | | | | | | Output Power | 12Vdc, 1A | | | | | | Power Line | 1.5m DC power cable without core attached on adapter | | | | | | Adapter 2 | | | | | | |--------------|-------------------------------------------------------|--|--|--|--| | Brand | DVE | | | | | | Model | DSA-12PFT-12 FUS 120100 | | | | | | Input Power | 100-240Vac, 50/60Hz, 0.5A | | | | | | Output Power | 12Vdc, 1A | | | | | | Power Line | 1.45m DC power cable without core attached on adapter | | | | | | Adapter 3 | | | | | | |--------------|------------------------------------------------------|--|--|--|--| | Brand | DEE VAN ENTERPRISE CO., LTD | | | | | | Model | DSA-12PF09-12FUS 120100 | | | | | | Input Power | 100-240Vac, 50/60Hz, 0.5A | | | | | | Output Power | 12Vdc, 1A | | | | | | Power Line | 1.5m DC power cable without core attached on adapter | | | | | <sup>\*</sup>After the evaluation of the above adapters, adapter 1 and adapter 3 were chosen for final test. # 3.2 Description of Test Modes 40 channels are provided to this EUT: | Channel | Freq. (MHz) | |---------|-------------|---------|-------------|---------|-------------|---------|-------------| | 0 | 2402 | 10 | 2422 | 20 | 2442 | 30 | 2462 | | 1 | 2404 | 11 | 2424 | 21 | 2444 | 31 | 2464 | | 2 | 2406 | 12 | 2426 | 22 | 2446 | 32 | 2466 | | 3 | 2408 | 13 | 2428 | 23 | 2448 | 33 | 2468 | | 4 | 2410 | 14 | 2430 | 24 | 2450 | 34 | 2470 | | 5 | 2412 | 15 | 2432 | 25 | 2452 | 35 | 2472 | | 6 | 2414 | 16 | 2434 | 26 | 2454 | 36 | 2474 | | 7 | 2416 | 17 | 2436 | 27 | 2456 | 37 | 2476 | | 8 | 2418 | 18 | 2438 | 28 | 2458 | 38 | 2478 | | 9 | 2420 | 19 | 2440 | 29 | 2460 | 39 | 2480 | <sup>3.</sup> WLAN and BT LE technology cannot transmit simultaneously. ### 3.2.1 Test Mode Applicability and Tested Channel Detail | EUT Configure | | Applic | able to | | Description | | |---------------|-------|----------|--------------|------|----------------------|--| | Mode | RE≥1G | RE<1G | PLC | APCM | | | | Α | V | V | $\checkmark$ | √ | Power from adapter 1 | | | В | - | <b>V</b> | <b>√</b> | - | Power from adapter 2 | | Where RE≥1G: Radiated Emission above 1GHz & Bandedge RE<1G: Radiated Emission below 1GHz Measurement PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement #### Note: 1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane. "-"means no effect. ## Radiated Emission Test (Above 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure Mode | Available Channel | Tested Channel | Modulation Type | Data Rate (Mbps) | |--------------------|-------------------|----------------|-----------------|------------------| | Α | 0 to 39 | 0, 19, 39 | GFSK | 1 | ### **Radiated Emission Test (Below 1GHz):** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure Mode | Available Channel | Tested Channel | Modulation Type | Data Rate (Mbps) | |--------------------|-------------------|----------------|-----------------|------------------| | A, B | 0 to 39 | 39 | GFSK | 1 | ## **Power Line Conducted Emission Test:** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT Configure Mode | Available Channel | Tested Channel | Modulation Type | Data Rate (Mbps) | |--------------------|-------------------|----------------|-----------------|------------------| | A, B | 0 to 39 | 39 | GFSK | 1 | ## **Antenna Port Conducted Measurement:** - This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode. - Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | <b>EUT Configure Mode</b> | Available Channel | Tested Channel | Modulation Type | Data Rate (Mbps) | |---------------------------|-------------------|----------------|-----------------|------------------| | A | 0 to 39 | 0, 19, 39 | GFSK | 1 | # **Test Condition:** | Applicable to | Applicable to Environmental Conditions | | Tested by | |--------------------------------|-------------------------------------------------------------|--------------|------------------------| | <b>RE≥1G</b> 22 deg. C, 68% RH | | 120Vac, 60Hz | Greg Lin | | RE<1G | 22 deg. C, 66% RH<br>22 deg. C, 68% RH | 120Vac, 60Hz | Han Wu,<br>Greg lin | | PLC | 25 deg. C, 75% RH<br>25 deg. C, 75% RH<br>23 deg. C, 66% RH | 120Vac, 60Hz | Greg Lin,<br>Titan Hsu | | APCM | 25 deg. C, 60% RH | 120Vac, 60Hz | Ted Chang | # 3.3 Duty Cycle of Test Signal Duty cycle of test signal is < 98%, duty factor is required. <u>Duty cycle = 0.390/0.624 = 0.625, Duty factor = 10 \* log (1/0.625) = 2.04</u> ## 3.4 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|----------|-------|-----------|------------|------------------|---------| | Α. | Notebook | DELL | E5420 | BPQ7MQ1 | FCC DoC Approved | - | #### Note: - 1. All power cords of the above support units are non-shielded (1.8m). - 2. Item A acted as communication partner to transfer data. | ID | Descriptions | Qty. | Length (m) | Shielding<br>(Yes/No) | Cores (Qty.) | Remarks | |----|----------------------|------|------------|-----------------------|--------------|--------------------| | 1. | Wi-Fi test USB cable | 1 | 1 | N | 0 | Provided by client | ### 3.4.1 Configuration of System under Test # 3.5 General Description of Applied Standards and References The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references: # Test standard: **FCC Part 15, Subpart C (15.247)** ANSI C63.10:2013 All test items have been performed and recorded as per the above standards. # **References Test Guidance:** KDB 558074 D01 15.247 Meas Guidance v05r02 All test items have been performed as a reference to the above KDB test guidance. ## 4 Test Types and Results # 4.1 Radiated Emission and Bandedge Measurement # 4.1.1 Limits of Radiated Emission and Bandedge Measurement Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power: | Frequencies<br>(MHz) | Field Strength<br>(microvolts/meter) | Measurement Distance<br>(meters) | |----------------------|--------------------------------------|----------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | ### Note: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. ### 4.1.2 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |-------------------------------------------|------------------------------|-----------------------------------------------------|--------------------------------|--------------------------------| | Test Receiver<br>KEYSIGHT | N9038A | MY55420137 | Apr. 15, 2019<br>Apr. 16, 2020 | Apr. 14, 2020<br>Apr. 15, 2021 | | Spectrum Analyzer | FSP40 | 100040 | Sep. 23, 2019 | Sep. 22, 2020 | | ROHDE & SCHWARZ BILOG Antenna SCHWARZBECK | VULB9168 | 9168-160 | Nov. 21, 2018<br>Nov. 07, 2019 | Nov. 20, 2019<br>Nov. 06, 2020 | | HORN Antenna<br>SCHWARZBECK | BBHA 9120 D | 9120D-1169 | Nov. 25, 2018<br>Nov. 24, 2019 | Nov. 24, 2019<br>Nov. 23, 2020 | | HORN Antenna<br>SCHWARZBECK | BBHA 9170 | BBHA9170241 | Nov. 25, 2018<br>Nov. 24, 2019 | Nov. 24, 2019<br>Nov. 23, 2020 | | Loop Antenna<br>TESEQ | HLA 6121 | 45745 | Jul. 01, 2019 | Jun. 30, 2020 | | Preamplifier<br>Agilent | 8447D | 2944A10638 | Aug. 08, 2018 | Aug. 07, 2019 | | (Below 1GHz) | | | Jul. 11, 2019 | Jul. 10, 2020 | | Preamplifier | 0440D | 7,000,4,000,7 | Feb. 19, 2019 | Feb. 18, 2020 | | Agilent<br>(Above 1GHz) | 8449B | 3008A02367 | Feb. 18, 2020 | Feb. 17, 2021 | | RF signal cable | | | Jan. 19, 2019 | Jan. 18, 2020 | | HUBER+SUHNER&EMCI | 00 | (248780+171006) | Jan. 18, 2020 | Jan. 17, 2021 | | RF signal cable | SUCOFLEX 104 | CABLE-CH9-(250795/4) | Aug. 08, 2018 | Aug. 07, 2019 | | HUBER+SUHNER | 00001227(101 | 0.10 (200.00.1) | Jul. 11, 2019 | Jul. 10, 2020 | | RF signal cable<br>Woken | 8D-FB | Cable-CH9-01 | Jul. 30, 2019 | Jul. 29, 2020 | | Software<br>BV ADT | ADT_Radiated_<br>V7.6.15.9.5 | NA | NA | NA | | Antenna Tower EMCO | 2070/2080 | 512.835.4684 | NA | NA | | Turn Table<br>EMCO | 2087-2.03 | NA | NA | NA | | Antenna Tower &Turn BV ADT | AT100 | AT93021705 | NA | NA | | Turn Table<br>BV ADT | TT100 | TT93021705 | NA | NA | | Turn Table Controller BV ADT | SC100 | SC93021705 | NA | NA | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | | USB Wideband Power Sensor<br>KEYSIGHT | U2021XA | MY55050005/MY55190<br>004/MY55190007/MY55<br>210005 | Jul. 15, 2019 | Jul. 14, 2020 | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. <sup>2.</sup> The test was performed in HwaYa Chamber 9. #### 4.1.3 Test Procedures #### For Radiated emission below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. #### Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. #### For Radiated emission above 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. #### Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. #### 4.1.4 Deviation from Test Standard No deviation. # 4.1.5 Test Setup # For Radiated emission below 30MHz ## For Radiated emission 30MHz to 1GHz # For Radiated emission above 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). # 4.1.6 EUT Operating Conditions - a. Placed the EUT on the testing table. - b. The EUT connected with notebook via a cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency. - c. The necessary accessories enable the system in full functions. ### 4.1.7 Test Results # Above 1 GHz Data: | CHANNEL | TX Channel 0 | DETECTOR FUNCTION | Peak (PK) | |-----------------|--------------|-------------------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | DETECTOR FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------|--| | NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) | | | 1 | 2390.00 | 58.2 PK | 74.0 | -15.8 | 1.80 H | 287 | 26.4 | 31.8 | | | 2 | 2390.00 | 46.4 AV | 54.0 | -7.6 | 1.80 H | 287 | 14.6 | 31.8 | | | 3 | *2402.00 | 91.4 PK | | | 1.83 H | 293 | 59.6 | 31.8 | | | 4 | *2402.00 | 87.9 AV | | | 1.83 H | 293 | 56.1 | 31.8 | | | 5 | 4804.00 | 53.8 PK | 74.0 | -20.2 | 1.83 H | 125 | 50.1 | 3.7 | | | 6 | 4804.00 | 47.0 AV | 54.0 | -7.0 | 1.83 H | 125 | 43.3 | 3.7 | | | | | ANTENI | NA POLARIT | Y & TEST DI | STANCE: VE | RTICAL AT | 3 M | | | | NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) | | | 1 | 2390.00 | 57.0 PK | 74.0 | -17.0 | 1.81 V | 237 | 25.2 | 31.8 | | | 2 | 2390.00 | 45.0 AV | 54.0 | -9.0 | 1.81 V | 237 | 13.2 | 31.8 | | | 3 | *2402.00 | 91.0 PK | | | 1.85 V | 230 | 59.2 | 31.8 | | | 4 | *2402.00 | 87.5 AV | | | 1.85 V | 230 | 55.7 | 31.8 | | | 5 | 4804.00 | 52.0 PK | 74.0 | -22.0 | 2.37 V | 284 | 48.3 | 3.7 | | | 6 | 4804.00 | 44.9 AV | 54.0 | -9.1 | 2.37 V | 284 | 41.2 | 3.7 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m). - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB). - 3. Margin value = Emission Level Limit value. - 4. The other emission levels were very low against the limit. - 5. " \* ": Fundamental frequency. | CHANNEL | TX Channel 19 | DETECTOR FINICITOR T | Peak (PK) | |-----------------|---------------|----------------------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | DETECTOR FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------| | NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) | | 1 | *2440.00 | 91.9 PK | | | 1.87 H | 291 | 60.1 | 31.8 | | 2 | *2440.00 | 88.4 AV | | | 1.87 H | 291 | 56.6 | 31.8 | | 3 | 4880.00 | 53.9 PK | 74.0 | -20.1 | 1.73 H | 118 | 50.4 | 3.5 | | 4 | 4880.00 | 47.0 AV | 54.0 | -7.0 | 1.73 H | 118 | 43.5 | 3.5 | | | | ANTENI | NA POLARIT | Y & TEST DI | STANCE: VE | RTICAL AT | 3 M | | | NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) | | 1 | *2440.00 | 91.5 PK | | | 1.81 V | 234 | 59.7 | 31.8 | | 2 | *2440.00 | 88.0 AV | | | 1.81 V | 234 | 56.2 | 31.8 | | 3 | 4880.00 | 52.1 PK | 74.0 | -21.9 | 2.41 V | 288 | 48.6 | 3.5 | | 4 | 4880.00 | 45.0 AV | 54.0 | -9.0 | 2.41 V | 288 | 41.5 | 3.5 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m). - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB). - 3. Margin value = Emission Level Limit value. - 4. The other emission levels were very low against the limit. - 5. " \* ": Fundamental frequency. | CHANNEL | TX Channel 39 | DETECTOR FUNCTION | Peak (PK) | |-----------------|---------------|-------------------|--------------| | FREQUENCY RANGE | 1GHz ~ 25GHz | DETECTOR FUNCTION | Average (AV) | | | | ANTENNA | <u> POLARITY</u> | & TEST DIS | TANCE: HOR | RIZONTAL A | <u>Г 3 М</u> | | |-----|-------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|-----------------------------| | NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) | | 1 | *2480.00 | 90.2 PK | | | 1.80 H | 295 | 58.4 | 31.8 | | 2 | *2480.00 | 86.7 AV | | | 1.80 H | 295 | 54.9 | 31.8 | | 3 | 2483.50 | 58.2 PK | 74.0 | -15.8 | 1.75 H | 287 | 26.4 | 31.8 | | 4 | 2483.50 | 45.2 AV | 54.0 | -8.8 | 1.75 H | 287 | 13.4 | 31.8 | | 5 | 4960.00 | 53.5 PK | 74.0 | -20.5 | 1.71 H | 134 | 49.7 | 3.8 | | 6 | 4960.00 | 46.9 AV | 54.0 | -7.1 | 1.71 H | 134 | 43.1 | 3.8 | | | | ANTENI | NA POLARIT | Y & TEST DI | STANCE: VE | RTICAL AT | 3 M | | | NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR (dB/m) | | 1 | *2480.00 | 89.7 PK | | | 1.82 V | 233 | 57.9 | 31.8 | | 2 | *2480.00 | 86.2 AV | | | 1.82 V | 233 | 54.4 | 31.8 | | 3 | 2483.50 | 57.1 PK | 74.0 | -16.9 | 1.76 V | 224 | 25.3 | 31.8 | | 4 | 2483.50 | 44.5 AV | 54.0 | -9.5 | 1.76 V | 224 | 12.7 | 31.8 | | 5 | 4960.00 | 51.9 PK | 74.0 | -22.1 | 2.42 V | 275 | 48.1 | 3.8 | | 6 | 4960.00 | 44.8 AV | 54.0 | -9.2 | 2.42 V | 275 | 41.0 | 3.8 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m). - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB). - 3. Margin value = Emission Level Limit value. - 4. The other emission levels were very low against the limit. - 5. " \* ": Fundamental frequency. ### Below 1GHz worst-case data: | CHANNEL | LLX Channel 39 | DETECTOR<br>FUNCTION | Quasi-Peak (QP) | |-----------------|----------------|----------------------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | TEST MODE | A | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------| | NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) | | 1 | 101.70 | 33.4 QP | 43.5 | -10.1 | 1.49 H | 210 | 46.8 | -13.4 | | 2 | 143.87 | 34.2 QP | 43.5 | -9.3 | 1.49 H | 108 | 43.8 | -9.6 | | 3 | 164.96 | 38.4 QP | 43.5 | -5.1 | 1.49 H | 98 | 47.8 | -9.4 | | 4 | 232.43 | 35.6 QP | 46.0 | -10.4 | 1.49 H | 54 | 46.3 | -10.7 | | 5 | 335.06 | 33.4 QP | 46.0 | -12.6 | 1.00 H | 53 | 40.6 | -7.2 | | 6 | 439.09 | 34.1 QP | 46.0 | -11.9 | 1.00 H | 45 | 39.6 | -5.5 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m). - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB). - 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz. - 4. Margin value = Emission Level Limit value. - 5. The emission levels were very low against the limit of frequency range $9kHz \sim 30MHz$ : the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. | CHANNEL | LLX Channel 39 | DETECTOR<br>FUNCTION | Quasi-Peak (QP) | |-----------------|----------------|----------------------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | TEST MODE | A | | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | |-----|---------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------| | NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) | | 1 | 98.88 | 33.3 QP | 43.5 | -10.2 | 1.01 V | 214 | 47.2 | -13.9 | | 2 | 143.87 | 33.0 QP | 43.5 | -10.5 | 1.01 V | 191 | 42.6 | -9.6 | | 3 | 166.36 | 34.3 QP | 43.5 | -9.2 | 1.01 V | 233 | 43.7 | -9.4 | | 4 | 232.43 | 28.4 QP | 46.0 | -17.6 | 1.01 V | 222 | 39.1 | -10.7 | | 5 | 299.91 | 29.7 QP | 46.0 | -16.3 | 1.50 V | 159 | 37.6 | -7.9 | | 6 | 335.06 | 28.3 QP | 46.0 | -17.7 | 1.50 V | 187 | 35.5 | -7.2 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m). - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB). - 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz. - 4. Margin value = Emission Level Limit value. - 5. The emission levels were very low against the limit of frequency range $9kHz \sim 30MHz$ : the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. | CHANNEL | LLX Channel 39 | DETECTOR<br>FUNCTION | Quasi-Peak (QP) | |-----------------|----------------|----------------------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | TEST MODE | В | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------| | NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) | | 1 | 31.94 | 24.8 QP | 40.0 | -15.2 | 1.50 H | 227 | 36.2 | -11.4 | | 2 | 70.74 | 24.9 QP | 40.0 | -15.1 | 1.25 H | 212 | 36.5 | -11.6 | | 3 | 132.82 | 28.1 QP | 43.5 | -15.4 | 1.25 H | 208 | 38.5 | -10.4 | | 4 | 171.62 | 30.4 QP | 43.5 | -13.1 | 1.00 H | 44 | 40.0 | -9.6 | | 5 | 722.58 | 34.4 QP | 46.0 | -11.6 | 1.50 H | 243 | 34.6 | -0.2 | | 6 | 982.54 | 36.2 QP | 54.0 | -17.8 | 1.50 H | 294 | 31.2 | 5.0 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m). - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB). - 3. The other emission levels were very low against the limit of frequency range $30 MHz \sim 1000 MHz$ . - 4. Margin value = Emission Level Limit value. - 5. The emission levels were very low against the limit of frequency range $9kHz \sim 30MHz$ : the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. | CHANNEL | LLX Channel 39 | DETECTOR<br>FUNCTION | Quasi-Peak (QP) | |-----------------|----------------|----------------------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | TEST MODE | В | | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | |-----|---------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------| | NO. | FREQ. (MHz) | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) | | 1 | 33.88 | 26.2 QP | 40.0 | -13.8 | 1.25 V | 100 | 37.5 | -11.3 | | 2 | 101.78 | 32.7 QP | 43.5 | -10.8 | 1.00 V | 178 | 46.3 | -13.6 | | 3 | 152.22 | 27.8 QP | 43.5 | -15.7 | 1.50 V | 343 | 37.0 | -9.2 | | 4 | 452.92 | 27.5 QP | 46.0 | -18.5 | 1.25 V | 59 | 31.8 | -4.3 | | 5 | 771.08 | 33.6 QP | 46.0 | -12.4 | 1.00 V | 138 | 32.3 | 1.3 | | 6 | 914.64 | 35.1 QP | 46.0 | -10.9 | 1.50 V | 185 | 31.2 | 3.9 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m). - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB). - 3. The other emission levels were very low against the limit of frequency range $30 MHz \sim 1000 MHz$ . - 4. Margin value = Emission Level Limit value. - 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report. # 4.2 Conducted Emission Measurement ### 4.2.1 Limits of Conducted Emission Measurement | Frequency (MHz) | Conducted Limit (dBuV) | | | | | |-----------------|------------------------|---------|--|--|--| | Frequency (MH2) | Quasi-peak | Average | | | | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | | | | 0.50 - 5.0 | 56 | 46 | | | | | 5.0 - 30.0 | 60 | 50 | | | | Note: 1. The lower limit shall apply at the transition frequencies. # 4.2.2 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |----------------------------|--------------------------|--------------------|---------------|---------------| | Test Receiver | ESCI | 100613 | Dec. 10, 2018 | Dec. 09, 2019 | | ROHDE & SCHWARZ | | | Dec. 11, 2019 | Dec. 10, 2020 | | RF signal cable | 5D FD | Cable cond1 01 | Sep. 05, 2018 | Sep. 04, 2019 | | Woken | 5D-FB | -FB Cable-cond1-01 | Sep. 05, 2019 | Sep. 04, 2020 | | LISN<br>ROHDE & SCHWARZ | ENV216 | 101826 | Feb. 21, 2019 | Feb. 20, 2020 | | (EUT) | | | Feb. 20, 2020 | Feb. 19, 2021 | | LISN<br>ROHDE & SCHWARZ | ESH3-Z5 | 100311 | Aug. 19, 2018 | Aug. 18, 2019 | | (Peripheral) | | | Aug. 22, 2019 | Aug. 21, 2020 | | Software<br>ADT | BV ADT_Cond_<br>V7.3.7.4 | NA | NA | NA | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in HwaYa Shielded Room 1 (Conduction 1). - 3. The VCCI Site Registration No. is C-12040. <sup>2.</sup> The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. #### 4.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded. Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz. ### 4.2.4 Deviation from Test Standard No deviation. ### 4.2.5 Test Setup Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 4.2.6 EUT Operating Conditions Same as 4.1.6. ### 4.2.7 Test Results | Phase | Line (L) | Detector Function | Quasi-Peak (QP) /<br>Average (AV) | |-----------|----------|-------------------|-----------------------------------| | Test Mode | A | | | | | Erog | Corr. | Readin | g Value | Emissic | n Level | Lir | nit | Mai | rgin | |----|----------|--------|--------|---------|---------|---------|-------|-------|--------|--------| | No | Freq. | Factor | [dB | (uV)] | [dB | (uV)] | [dB ( | (uV)] | (d | B) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.16173 | 9.69 | 31.63 | 15.12 | 41.32 | 24.81 | 65.37 | 55.37 | -24.05 | -30.56 | | 2 | 0.20474 | 9.68 | 27.69 | 14.54 | 37.37 | 24.22 | 63.42 | 53.42 | -26.05 | -29.20 | | 3 | 0.41979 | 9.68 | 24.90 | 20.33 | 34.58 | 30.01 | 57.45 | 47.45 | -22.87 | -17.44 | | 4 | 3.83322 | 9.75 | 17.23 | 9.08 | 26.98 | 18.83 | 56.00 | 46.00 | -29.02 | -27.17 | | 5 | 7.75104 | 9.83 | 23.76 | 17.72 | 33.59 | 27.55 | 60.00 | 50.00 | -26.41 | -22.45 | | 6 | 12.83795 | 9.89 | 16.53 | 8.95 | 26.42 | 18.84 | 60.00 | 50.00 | -33.58 | -31.16 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | Phase | Neutral (N) | I DETECTOR FUNCTION | Quasi-Peak (QP) /<br>Average (AV) | |-----------|-------------|---------------------|-----------------------------------| | Test Mode | A | | | | | Frog | Corr. | Readin | g Value | Emissio | n Level | Lir | nit | Mai | rgin | |----|----------|--------|--------|---------|---------|---------|-------|-------|--------|--------| | No | Freq. | Factor | [dB ( | (uV)] | [dB ( | (uV)] | [dB ( | (uV)] | (d | B) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15782 | 9.66 | 32.61 | 18.38 | 42.27 | 28.04 | 65.58 | 55.58 | -23.31 | -27.54 | | 2 | 0.18519 | 9.66 | 30.10 | 15.52 | 39.76 | 25.18 | 64.25 | 54.25 | -24.49 | -29.07 | | 3 | 0.41588 | 9.65 | 28.95 | 22.15 | 38.60 | 31.80 | 57.53 | 47.53 | -18.93 | -15.73 | | 4 | 3.86059 | 9.72 | 18.39 | 11.07 | 28.11 | 20.79 | 56.00 | 46.00 | -27.89 | -25.21 | | 5 | 7.62983 | 9.80 | 24.67 | 18.20 | 34.47 | 28.00 | 60.00 | 50.00 | -25.53 | -22.00 | | 6 | 12.80661 | 9.89 | 17.03 | 10.17 | 26.92 | 20.06 | 60.00 | 50.00 | -33.08 | -29.94 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | Phase | Line (L) | LI Jefector Flinction | Quasi-Peak (QP) /<br>Average (AV) | |-----------|----------|-----------------------|-----------------------------------| | Test Mode | В | | | | | From | Corr. | Readin | g Value | Emissio | n Level | Lir | nit | Ма | rgin | |----|----------|--------|--------|---------|---------|---------|-------|-------|--------|--------| | No | Freq. | Factor | [dB ( | (uV)] | [dB ( | (uV)] | [dB | (uV)] | (d | B) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15400 | 9.80 | 27.56 | 16.26 | 37.36 | 26.06 | 65.78 | 55.78 | -28.42 | -29.72 | | 2 | 0.17800 | 9.81 | 24.80 | 14.23 | 34.61 | 24.04 | 64.58 | 54.58 | -29.97 | -30.54 | | 3 | 0.63000 | 9.88 | 27.93 | 23.46 | 37.81 | 33.34 | 56.00 | 46.00 | -18.19 | -12.66 | | 4 | 1.78600 | 9.96 | 16.92 | 11.76 | 26.88 | 21.72 | 56.00 | 46.00 | -29.12 | -24.28 | | 5 | 3.65400 | 10.04 | 17.04 | 8.24 | 27.08 | 18.28 | 56.00 | 46.00 | -28.92 | -27.72 | | 6 | 23.96200 | 10.25 | 27.02 | 8.50 | 37.27 | 18.75 | 60.00 | 50.00 | -22.73 | -31.25 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) /<br>Average (AV) | |-----------|-------------|-------------------|-----------------------------------| | Test Mode | В | | | | | F== == | Corr. | Readin | g Value | Emissio | n Level | Lir | nit | Mai | rgin | |----|----------|--------|--------|---------|---------|---------|-------|-------|--------|--------| | No | Freq. | Factor | [dB ( | (uV)] | [dB ( | (uV)] | [dB ( | (uV)] | (d | B) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.15400 | 9.82 | 27.74 | 14.52 | 37.56 | 24.34 | 65.78 | 55.78 | -28.22 | -31.44 | | 2 | 0.18200 | 9.81 | 25.52 | 12.79 | 35.33 | 22.60 | 64.39 | 54.39 | -29.06 | -31.79 | | 3 | 0.19800 | 9.81 | 23.04 | 10.77 | 32.85 | 20.58 | 63.69 | 53.69 | -30.84 | -33.11 | | 4 | 0.63000 | 9.91 | 23.18 | 18.06 | 33.09 | 27.97 | 56.00 | 46.00 | -22.91 | -18.03 | | 5 | 4.67400 | 10.10 | 21.30 | 8.09 | 31.40 | 18.19 | 56.00 | 46.00 | -24.60 | -27.81 | | 6 | 24.01000 | 10.38 | 29.70 | 14.11 | 40.08 | 24.49 | 60.00 | 50.00 | -19.92 | -25.51 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. #### 4.3 6dB Bandwidth Measurement #### 4.3.1 Limits of 6dB Bandwidth Measurement The minimum of 6dB Bandwidth Measurement is 0.5 MHz. # 4.3.2 Test Setup #### 4.3.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.3.4 Test Procedure - a. Set resolution bandwidth (RBW) = 100kHz. - b. Set the video bandwidth (VBW) $\geq$ 3 x RBW, Detector = peak. - c. Trace mode = max hold. - d. Sweep = auto couple. - e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. ### 4.3.5 Deviation fromTest Standard No deviation. ## 4.3.6 EUT Operating Conditions The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually. ### 4.3.7 Test Result | Channel | Frequency (MHz) | 6dB Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass / Fail | |---------|-----------------|------------------------|------------------------|-------------| | 0 | 2402 | 0.72 | 0.5 | Pass | | 19 | 2440 | 0.72 | 0.5 | Pass | | 39 | 2480 | 0.73 | 0.5 | Pass | ## 4.4 Conducted Output Power Measurement # 4.4.1 Limits of Conducted Output Power Measurement For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (20dBm) ### 4.4.2 Test Setup #### 4.4.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.4.4 Test Procedures For Peak Power A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level. ### For Average Power Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value. #### 4.4.5 Deviation from Test Standard No deviation. # 4.4.6 EUT Operating Conditions Same as item 4.3.6. ### 4.4.7 Test Results For Peak Power | Channel | Frequency (MHz) | Peak Power (mW) | Peak Power (dBm) | Limit (dBm) | Pass/Fail | |---------|-----------------|-----------------|------------------|-------------|-----------| | 0 | 2402 | 2.018 | 3.05 | 30.00 | Pass | | 19 | 2440 | 2.228 | 3.48 | 30.00 | Pass | | 39 | 2480 | 2.286 | 3.59 | 30.00 | Pass | ### For Average Power | Channel | Frequency (MHz) | Average Power (mW) | Average Power (dBm) | |---------|-----------------|--------------------|---------------------| | 0 | 2402 | 1.570 | 1.96 | | 19 | 2440 | 1.714 | 2.34 | | 39 | 2480 | 1.762 | 2.46 | Report No.: RF190624C18-1 Page No. 32 / 39 Report Format Version: 6.1.1 # 4.5 Power Spectral Density Measurement # 4.5.1 Limits of Power Spectral Density Measurement The Maximum of Power Spectral Density Measurement is 8dBm per 3kHz. ### 4.5.2 Test Setup #### 4.5.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.5.4 Test Procedure - a. Measure the duty cycle (x). - b. Set instrument center frequency to DTS channel center frequency. - c. Set span to at least 1.5 times the OBW. - d. Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$ . - e. Set VBW ≥3 x RBW. - f. Detector = power averaging (RMS) or sample detector (when RMS not available). - g. Ensure that the number of measurement points in the sweep $\ge 2 x \text{ span/RBW}$ . - h. Sweep time = auto couple. - i. Do not use sweep triggering. Allow sweep to "free run". - j. Employ trace averaging (RMS) mode over a minimum of 100 traces. - k. Use the peak marker function to determine the maximum amplitude level. - I. Add 10 $\log (1/x)$ , where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time. #### 4.5.5 Deviation from Test Standard No deviation. # 4.5.6 EUT Operating Condition Same as item 4.3.6 ### 4.5.7 Test Results | Channel | Frequency<br>(MHz) | PSD<br>w/o Duty Factor<br>(dBm/3kHz) | Duty Factor<br>(dB) | Total PSD<br>With Duty Factor<br>(dBm/3kHz) | Limit<br>(dBm/3kHz) | Pass /<br>Fail | |---------|--------------------|--------------------------------------|---------------------|---------------------------------------------|---------------------|----------------| | 0 | 2402 | -10.43 | 2.04 | -8.39 | 8.00 | Pass | | 19 | 2440 | -8.68 | 2.04 | -6.64 | 8.00 | Pass | | 39 | 2480 | -8.43 | 2.04 | -6.39 | 8.00 | Pass | #### 4.6 Conducted Out of Band Emission Measurement ### 4.6.1 Limits of Conducted Out of Band Emission Measurement Below -20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth). ### 4.6.2 Test Setup #### 4.6.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. #### 4.6.4 Test Procedure #### **MEASUREMENT PROCEDURE REF** - a. Set the RBW = 100 kHz. - b. Set the VBW ≥ 300 kHz. - c. Detector = peak. - d. Sweep time = auto couple. - e. Trace mode = max hold. - f. Allow trace to fully stabilize. - g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental FBW. ### **MEASUREMENT PROCEDURE OOBE** - a. Set RBW = 100 kHz. - b. Set VBW ≥ 300 kHz. - c. Detector = peak. - d. Sweep = auto couple. - e. Trace Mode = max hold. - f. Allow trace to fully stabilize. - g. Use the peak marker function to determine the maximum amplitude level. #### 4.6.5 Deviation from Test Standard No deviation. ### 4.6.6 EUT Operating Condition Same as item 4.3.6 #### 4.6.7 Test Results The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement. | 5 Pictures of Test Arrangements | | | | | | | | | |-------------------------------------------------------|--|--|--|--|--|--|--|--| | Please refer to the attached file (Test Setup Photo). | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | # **Annex A- Band Edge Measurement** # Appendix - Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025. If you have any comments, please feel free to contact us at the following: Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: <a href="mailto:service.adt@tw.bureauveritas.com">service.adt@tw.bureauveritas.com</a> Web Site: <a href="mailto:www.bureauveritas-adt.com">www.bureauveritas-adt.com</a> The address and road map of all our labs can be found in our web site also. --- END ---