

TEST REPORT

Applicant	YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD.
Address	309, 3rd Floor, No.16, Yun Ding North Road, Huli District, Xiamen City, Fujian, P.R. China

Manufacturer or Supplier	YEALINK(XIAMEN) NETWOR	IK TECHNOLOGY CO.,LTD.	
Address	309, 3rd Floor, No.16, Yun Ding North Road, Huli District, Xiamen City, Fujian, P.R. China		
Product Name	Video Conferencing Endpoint		
Brand Name	YEALINK		
Model	MeetingEye 400		
Additional Model & Model Difference	PVT940		
FCC ID	T2C-ME400		
Date of tests	Apr. 21, 2020 ~ Jun. 17, 2020		
the tests have been	carried out according to the rec	uirements of the following standard:	
	02 UNII DFS Compliance Pro	ocedures New Rules v02 ar Detection New Rules v01r02	
KDB 905462 D0 KDB 905462 D0	03 UNII Clients Without Rad		
KDB 905462 DO KDB 905462 DO CONCLUSION: The Teste	3 UNII Clients Without Rad	ar Detection New Rules v01r02 d to <u>COMPLY</u> with the test requirement Approved by Glyn He	
KDB 905462 DO KDB 905462 DO CONCLUSION: The Teste	3 UNII Clients Without Rad	ar Detection New Rules v01r02 d to <u>COMPLY</u> with the test requirement	
KDB 905462 DO KDB 905462 DO CONCLUSION: The Teste Project Engin	3 UNII Clients Without Rad	ar Detection New Rules v01r02 d to <u>COMPLY</u> with the test requirement Approved by Glyn He	
KDB 905462 DO KDB 905462 DO CONCLUSION: The Teste Project Engir	O3 UNII Clients Without Rad submitted sample was found ed by Andy Zhu heer / EMC Department	ar Detection New Rules v01r02 d to <u>COMPLY</u> with the test requirement Approved by Glyn He	

Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.

TABLE OF CONTENTS

R	ELE	ASE CONTROL RECORD	4
1	E	UT INFORMATION	5
	1.1	OPERATING FREQUENCY BANDS AND MODE OF EUT	5
	1.2	EUT SOFTWARE AND FIRMWARE VERSION	5
	1.3	DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT	5
	1.4	TRANSMIT POWER CONTROL (TPC)	6
	1.5	STATEMENT OF MAUNFACTURER	6
2	U	J-NII DFS RULE REQUIREMENTS	7
	2.1	WORKING MODES AND REQUIRED TEST ITEMS	7
	2.2	TEST LIMITS AND RADAR SIGNAL PARAMETERS	8
3	Т	EST & SUPPORT EQUIPMENT LIST	.11
	3.1	TEST INSTRUMENTS	.11
	3.2	DESCRIPTION OF SUPPORT UNITS	.11
4	Т	EST PROCEDURE	12
	4.1	BVADT DFS MEASUREMENT SYSTEM:	12
	4.2	CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:	13
	4.3	DEVIATION FROM TEST STANDARD	14
	4.4	CONDUCTED TEST SETUP CONFIGURATION	14
	4	.4.1 CLIENT WITHOUT RADAR DETECTION MODE	14
5	Т	EST RESULTS	15
	5.1	SUMMARY OF TEST RESULTS	15
	5.2	DETAILED TEST RESULTS	15
	5	2.1 TEST MODE: DEVICE OPERATING IN CLIENT WITHOUT RADAR DETECTION MODE	15
	5	2.2 DFS DETECTION THRESHOLD	16
	5	2.3 CHANNEL LOADING	17
	5	2.4 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME	18
	5	2.5 NON- OCCUPANCY PERIOD	19
	5	2.6 NON-ASSOCIATED TEST	21
	5	2.7 NON- CO-CHANNEL TEST	21

No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.

6	APPENDIX A - MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES	TO THE
	EUT BY THE LAB	

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF200421N040-5	Original release.	Jun. 23, 2020

1 EUT INFORMATION

1.1 OPERATING FREQUENCY BANDS AND MODE OF EUT

TABLE 1: OPERATING FREQUENCY BANDS AND MODE OF EUT

OPERATIONAL MODE	OPERATING FREQUENCY RANGE		
OPERATIONAL MODE	5250~5350MHz	5470~5725MHz	
Client without radar detection and ad hoc function	V	V	

1.2 EUT SOFTWARE AND FIRMWARE VERSION

NO.	PRODUCT	MODEL NO.	SOFTWARE/ HARDWARE VERSION
1	Video Conferencing Endpoint	MeetingEye 400	120.43.0.5

1.3 DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT

TABLE 3: ANTENNA LIST

ANT.	BRAND	MODEL	CONNECTOR TYPE	ANT TYPE	FREQUENCY RANGE (MHZ TO MHZ)	NET GAIN(dBi)	CABLE LOSS(dBi)
1	N/A	N/A	i-pex	PCB	5250 - 5350	3	0
	1 1/73	11/74	, bey	100	5470 - 5725	3	0

1.4 TRANSMIT POWER CONTROL (TPC)

U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an EIRP of less than 500 mW.

Maximum EIRP of this device is less than 500mW which less than 500mW, therefore it's not require TPC function.

1.5 STATEMENT OF MAUNFACTURER

This device (Client) is without radar detection, then the manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user. And the device doesn't have Ad Hoc mode on DFS frequency band.

2 U-NII DFS RULE REQUIREMENTS

2.1 WORKING MODES AND REQUIRED TEST ITEMS

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

	OPERATIONAL MODE			
REQUIREMENT	MASTER	CLIENT WITHOUT RADAR DETECTION	CLIENT WITH RADAR DETECTION	
Non-Occupancy Period	\checkmark	\checkmark	\checkmark	
DFS Detection Threshold	\checkmark	Not required	\checkmark	
Channel Availability Check Time	\checkmark	Not required	Not required	
Uniform Spreading	\checkmark	Not required	Not required	
U-NII Detection Bandwidth	\checkmark	Not required	\checkmark	

APPLICABILITY OF DFS REQUIREMENTS PRIOR TO USE A CHANNEL

APPLICABILITY OF DFS REQUIREMENTS DURING NORMAL OPERATION

	OPERATIONAL MODE			
REQUIREMENT	MASTER	CLIENT WITHOUT RADAR DETECTION	CLIENT WITH RADAR DETECTION	
DFS Detection Threshold	\checkmark	Not required	\checkmark	
Channel Closing Transmission Time	\checkmark	\checkmark	\checkmark	
Channel Move Time	\checkmark	\checkmark	\checkmark	
U-NII Detection Bandwidth	\checkmark	Not required	\checkmark	

2.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS

DETECTION THRESHOLD VALUES

DFS DETECTION THRESHOLDS FOR MASTER DEVICES AND CLIENT DEVICES WITH RADAR DETECTION

MAXIMUM TRANSMIT POWER	VALUE (SEE Note 1 and 2)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

DFS RESPONSE REQUIREMENT VALUES

PARAMETER	VALUE
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60
	milliseconds over remaining 10 second period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	100% of the UNII transmission power bandwidth.
	See Note 3.

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

• For the Short Pulse Radar Test Signals this instant is the end of the Burst.

• For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.

• For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

PARAMETERS OF DFS TEST SIGNALS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar Type	Pulse Width (μsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials		
0	1	1428	18	See Note 1	See Note 1		
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A	Roundup $\left(\begin{array}{c} 1\\ 360 \end{array} \right) \cdot \left(\begin{array}{c} 1\\ 360 \end{array} \right) \cdot \left(\begin{array}{c} 19 \cdot 10^6 \\ PRI_ssec \end{array} \right) \right)$	60%	30		
2	1-5	150-230	23-29	60%	30		
3	6-10	200-500	16-18	60%	30		
4	11-20	200-500	12-16	60%	30		
	Aggrega	80%	120				
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.							

Short Pulse Radar Test Waveforms

RADAR TYPE	PULSE WIDTH (µsec)	CHIRP WIDTH (MHz)	PRI (µsec)	NUMBER OF PULSES PER BURST	NUMBER OF BURSTS	MINIMUM PERCENTAGE OF SUCCESSFUL DETECTION	MINIMUM NUMBER OF TRIALS
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

LONG PULSE RADAR TEST WAVEFORM

FREQUENCY HOPPING RADAR TEST WAVEFORM

radar Type	PULSE WIDTH (µsec)	PRI (µsec)	PULSES PER HOP	HOPPING RATE (kHz)	HOPPING SEQUENCE LENGTH (msec)	MINIMUM PERCENTAGE OF SUCCESSFUL DETECTION	MINIMUM NUMBER OF TRIALS
6	1	333	9	0.333	300	70%	30

3 TEST & SUPPORT EQUIPMENT LIST

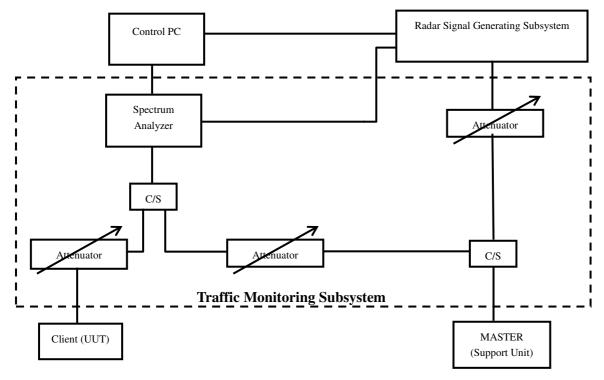
3.1 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	BRAND	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer	N9020A	MY55400499	Mar. 21,20	Mar. 20,21
R&S Spectrum	FSV7	R&S	Nov 25, 19	Nov. 24, 20
MXG-B RF Vector Signal Generator	N5182B	MY56200288	Jan. 02,20	Jan. 01,21
Signal generator	8645A	Agilent	Sep.01, 19	Aug. 31, 20

3.2 DESCRIPTION OF SUPPORT UNITS

NO.	PRODUCT	BRAND	MODEL NO.	FCC ID	SOFTWARE/FIRMW ARE VERSION
1	wireless router	LINKSYS	WRT-3200ACM	Q87-WRT3200A CM	1.0.0.174361
2	Monitor	DELL	E1916HVf	/	/
3	Smart Business Phone	Yealink	MP56	1	/

NOTE: The wireless router was functioned as a Master Slave device during the DFS test.



4 TEST PROCEDURE

4.1 BVADT DFS MEASUREMENT SYSTEM:

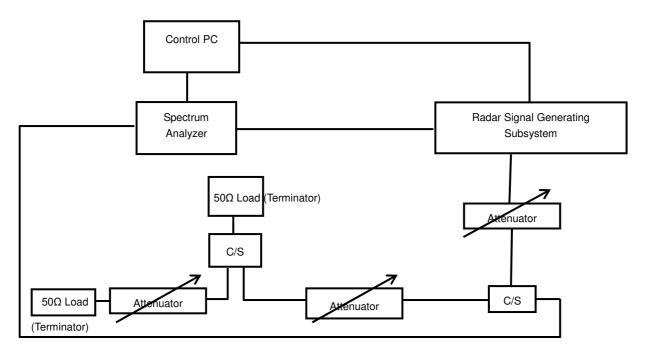
A complete DFS Measurement System consists of Radar signal generate system to generating the radar waveforms in Table 10, 11 and 12. The traffic monitoring system is specified to the type of unit under test (UUT).

Conducted setup configuration of DFS Measurement System

Channel Loading

System testing will be performed with channel-loading using means appropriate to the data types that are used by the unlicensed device. The following requirements apply:

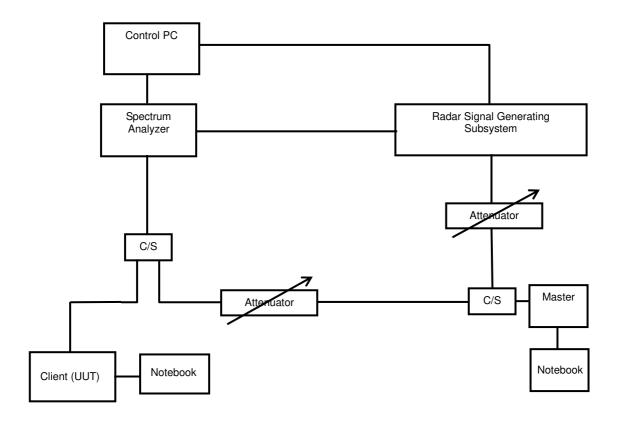
a)	The data file must be of a type that is typical for the device (i.e., MPEG-2, MPEG-4, WAV, MP3, MP4, AVI, etc.) and must generally be transmitting in a streaming mode.	
b)	Software to ping the client is permitted to simulate data transfer but must have random ping intervals.	
c)	Timing plots are required with calculations demonstrating a minimum channel loading of approximately 17% or greater.	\checkmark
d)	Unicast or Multicast protocols are preferable but other protocols may be used. The appropriate protocol used must be described in the test procedures.	


No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.

4.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:

The measured channel are 5300MHz and 5500 MHz in 20MHz Bandwidth, 5290MHz and 5530MHz in 80MHz Bandwidth. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time. The Master maximum transmit power was more than 200mW. The Master antenna gain is 3dBi and required detection threshold is -61dBm (=-64+3)dBm.

Conducted setup configuration of calibration of DFS detection threshold level:



4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 CONDUCTED TEST SETUP CONFIGURATION

4.4.1 CLIENT WITHOUT RADAR DETECTION MODE

The UUT is a U-NII Device operating in Client mode without radar detection. The radar test signals are injected into the Master Device.

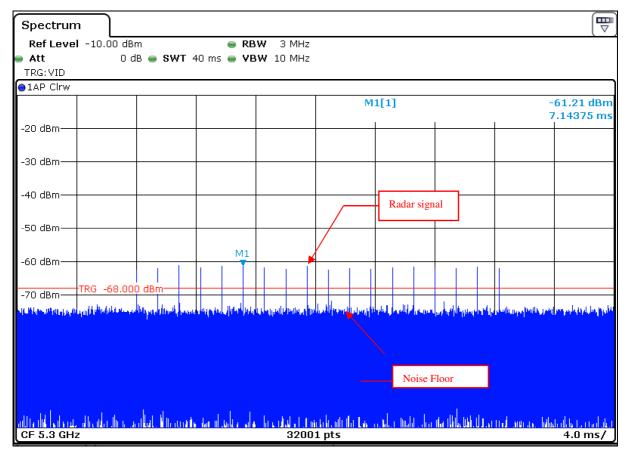
5 TEST RESULTS

5.1 SUMMARY OF TEST RESULTS

CLAUSE	TEST PARAMETER	REMARKS	PASS/FAIL
15.407	DFS Detection Threshold	Not Applicable	N/A
15.407	Channel Availability Check Time	Not Applicable	N/A
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non- Occupancy Period	Applicable	Pass
15.407	Uniform Spreading	Not Applicable	N/A
15.407	U-NII Detection Bandwidth	Not Applicable	N/A
15.407	Non-associated test	Applicable	Pass
15.407	Non-Co-Channel test	Applicable	Pass

Note: Test procedure from KDB 905462.

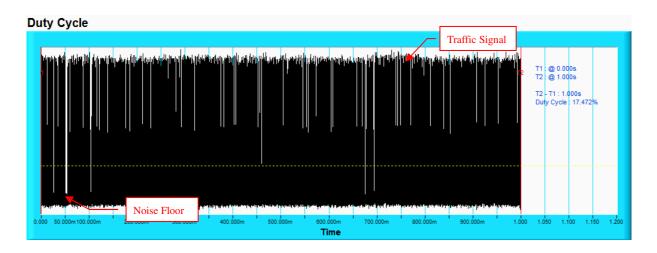
5.2 DETAILED TEST RESULTS


5.2.1 TEST MODE: DEVICE OPERATING IN CLIENT WITHOUT RADAR DETECTION MODE

The radar test signals are injected into the Master Device. This test was investigated for different bandwidth (20MHz, 40MHz, 80MHz). The following plots was done on 80MHz as a representative

5.2.2 DFS DETECTION THRESHOLD

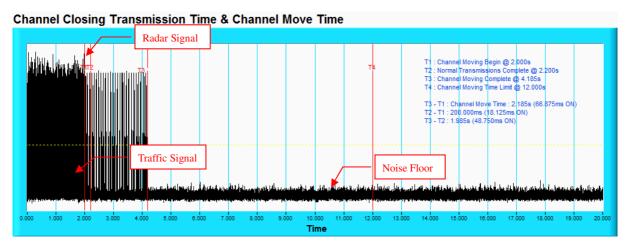
The Required detection threshold is -61.00dBm = -64 + 3dBi. The conducted radar burst level is set to -61.21dBm.



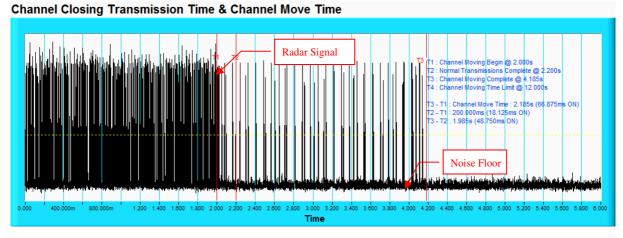
Radar Signal (Type 0)

5.2.3 CHANNEL LOADING

The measured channel are 5300MHz and 5500MHz in 20MHz Bandwidth and 5290MHz and 5530MHz in 80MHz Bandwidth. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) with radar signal, measured the channel shutdown. The slave transmitted the test data to master, the transmitted duty cycle is 17.472%.


NOTE: T1 denotes the start of duty cycle period is 0th second. T2 denotes the end of duty cycle period is 1th second. T2 – T1= 1 seconds. Duty Cycle = 17.472%.

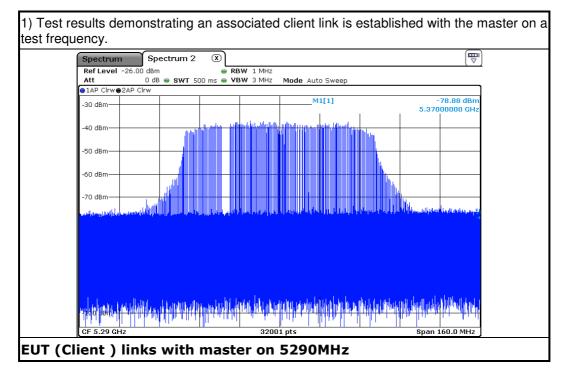
Note: Traffic signal: from slave transmit to master.

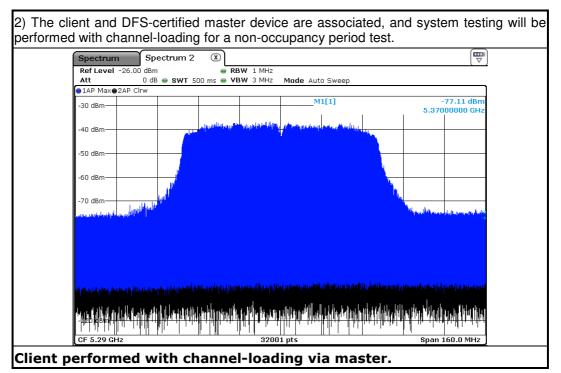


5.2.4 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME

Radar Signal 0 802.11ac VHT80

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time.T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

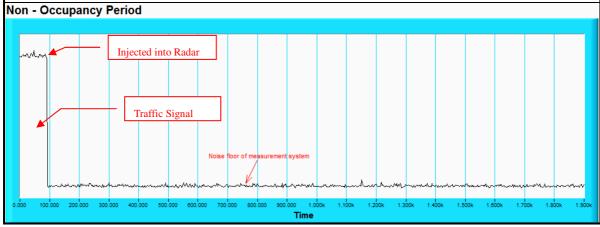

NOTE: An expanded plot for the device vacates the channel in the required 5000ms.


No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.

5.2.5 NON- OCCUPANCY PERIOD

ASSOCIATED TEST

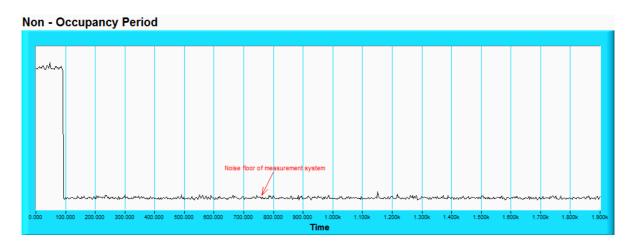
Bureau Veritas Shenzhen Co., Ltd. Dongguan Branch No. 96, Guantai Road (Houjie Section), Houjie Town, Dongguan City, Guangdong Province. 523942. People's Republic of China.



 The test frequency has been monitored to ensure no transmission of any type has occurred for 30 minutes;

Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear;

5)An analyzer plot that contains a single 30-minute sweep on the original test frequency.



5.2.6 NON-ASSOCIATED TEST

Master was off.

During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after UUT power up.

5.2.7 NON- CO-CHANNEL TEST

The UUT was investigated after radar was detected the channel and made sure no co-channel operation with radars.

6 APPENDIX A - Modifications recorders for engineering changes to the EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----