Report Number: 68.950.18.0087.01

FCC - TEST REPORT

Report Number	: 68.950.18.00	087.01	Date of Issue:	February 22, 2018
Model	: R2B, R2P			
Product Type	: Laser Distan	ce Meter		
Applicant	: Shenzhen M	ileseey Tech	nology Co., Ltd	
Address	: F/6, Building	9, Zhonggua	an Honghualing Ind	dustrial, South Park II,
	: 1213 Liuxian Ave, Taoyuan Street, Nanshan District			
	: 518055 She	nzhen, PEOF	PLE'S REPUBLIC	OF CHINA
Manufacturer	: Shenzhen M	lileseey Tech	nology Co., Ltd	
Address	: F/6, Building	9, Zhonggua	an Honghualing Ind	dustrial, South Park II,
	: 1213 Liuxian Ave, Taoyuan Street, Nanshan District			
	: 518055 She	nzhen, PEOF	PLE'S REPUBLIC	OF CHINA
Test Result	: Positive	□ Negat	ive	
Total pages including Appendices	: 27			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	3
3	Description of the Equipment Under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems test configuration	9
9	Technical Requirement	10
9.	1 Conducted peak output power	10
9.	2 Power spectral density	12
9.		
9.	4 Spurious RF conducted emissions	16
9.	5 Band edge	21
9.	6 Spurious radiated emissions for transmitter	22
10	List of Test Instruments	26
11	System Measurement Uncertainty	27

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch
	Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District
	Shenzhen 518052
	P.R. China
T . I I	

Telephone:86 755 8828 6998Fax:86 755 828 5299

FCC Registration 502708 No.:

3 Description of the Equipment Under Test

Product:	Laser Distance Meter
Model no.:	R2B
FCC ID:	2AEOGMC180001
Options and accessories:	USB Cable
Rating:	5VDC through USB port or 3.6VDC by rechargeable batteries (size AAA 1.2V x 3) or 4.5VDC by non-rechargeable batteries (size AAA 1.5V x 3)
RF Transmission	2402MHz-2480MHz
Frequency: No. of Operated Channel:	40
Modulation:	GFSK
Antenna Type:	Internal Antenna
Antenna Gain:	0dBi
Description of the EUT:	The Equipment Under Test (EUT) is Laser Distance Meter supports BLE function.

4 Summary of Test Standards

	Test Standards
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES
10-1-2016 Edition	Subpart C - Intentional Radiators

All the test methods were according to KDB558074 D01 DTS Meas Guidance v04 and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements				
FCC Part 15 Sub	part C			
Test Condition	-	Pages	Test Result	
§15.207	Conducted emission AC power port		N/A	
§15.247(b)(1)	Conducted peak output power	10	Pass	
§15.247(e)	Power spectral density	12	Pass	
§15.247(a)(2)	6dB bandwidth	14	Pass	
§15.247(a)(1)	20dB bandwidth and 99% Occupied Bandwidth	14	Pass	
§15.247(a)(1)	Carrier frequency separation		N/A	
§15.247(a)(1)(iii)	Number of hopping frequencies		N/A	
§15.247(a)(1)(iii)	Dwell Time		N/A	
§15.247(d)	Spurious RF conducted emissions	16	Pass	
§15.247(d)	Band edge	21	Pass	
§15.247(d) & §15.209 &	Spurious radiated emissions for transmitter	22	Pass	
§15.203	Antenna requirement	See note 1	Pass	

Note 1: N/A=Not Applicable.

Note 2: The EUT uses a Chip antenna, which gain is 0dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

This submittal(s) (test report) is intended for FCC ID: 2AEOGMC180001 complies with Section 15.205, 15.209, 15.247 of the FCC Part 15, Subpart C rules.

Modes R2B and R2P are identical except for the model name and color of appearance. therefore test were applied on model R2B, other models are deemed to fulfill relevant requirement without further testing.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment Under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:

5 February 2018

6 February 2018

Testing Start Date:

Testing End Date:

9 February 2018

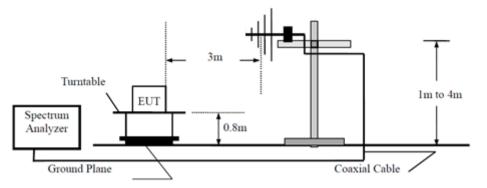
- Jiangsu TÜV Product Service Ltd. – Shenzhen Branch -

Reviewed by:

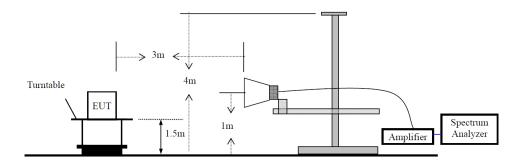
Prepared by:

Trevor You Section Project Engineer

Ricky Yin EMC Project Engineer


Tested by:

Tree them


Tree Zhan EMC Test Engineer

7 Test Setups

7.1 Below 1GHz

Above 1GHz

7.2 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Notebook	Lenovo	X220	

9 Technical Requirement

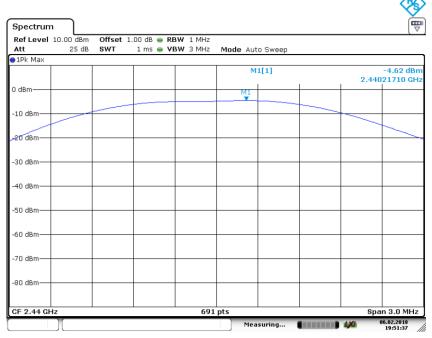
9.1 Conducted peak output power

Test result as below table

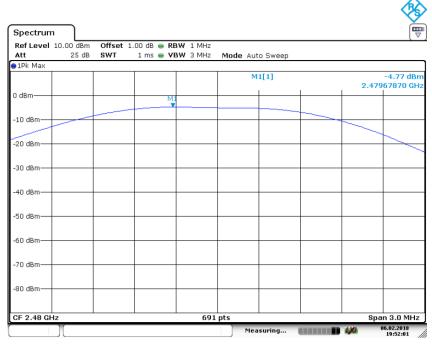
Frequency MHz	Conducted Peak Output Power dBm	Result
Bottom channel	-4.49	Pass
0	-4.62	Pass
Тор	-4.77	Pass

SWT 1 ms 🖷 V	BW 3 MHz MI	ode Auto Swee	p	
		M1[1]		-4.49 dBi 2.40220410 GH
		M1	_	
		Offset 1.00 dB RBW 1 MHz SWT 1 ms VBW 3 MHz Mr	SWT 1 ms • VBW 3 MHz Mode Auto Swee	SWT 1 ms VBW 3 MHz Mode Auto Sweep M1[1] M1 M1 </td

Low channel 2402MHz


Date: 6.FEB.2018 19:50:43

EMC_SZ_FR_21.00 FCC Release 2017-05-17 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299


Page 10 of 27

Middle channel 2440MHz

Date: 6.FEB.2018 19:51:37

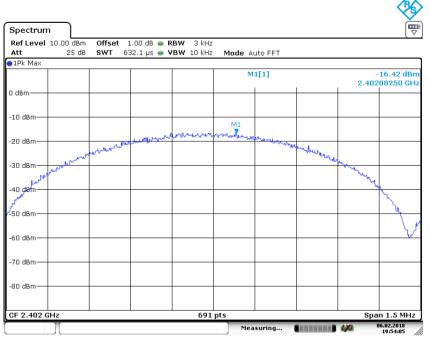
High channel 2480MHz

Date: 6.FEB.2018 19:52:00

EMC_SZ_FR_21.00 FCC Release 2017-05-17 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 11 of 27

9.2 Power spectral density

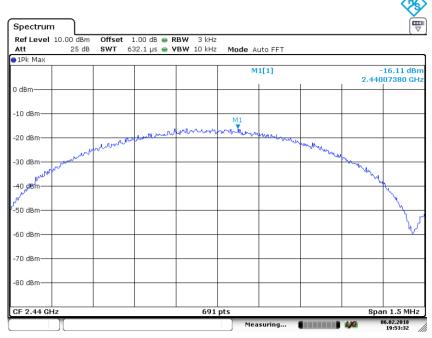

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.

otherfrequenciesd.

Test result

	Power spectral	
Frequency	density	Result
MHz	dBm	
Top channel 2402MHz	-16.42	Pass
Middle channel 2440MHz	-16.11	Pass
Bottom channel 2480MHz	-16.27	Pass


Low channel 2402MHz

Date: 6.FEB.2018 19:54:06

EMC_SZ_FR_21.00 FCC Release 2017-05-17

Middle channel 2440MHz

Date: 6.FEB.2018 19:53:32

High channel 2480MHz

Date: 6.FEB.2018 19:52:46

EMC_SZ_FR_21.00 FCC Release 2017-05-17

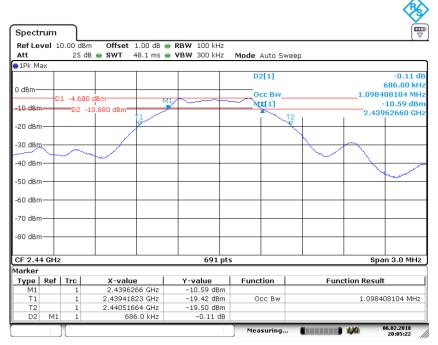
9.3 6 dB Bandwidth and 99% Occupied Bandwidth

Test Method

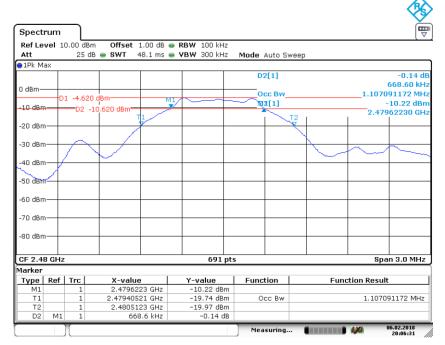
1. Use the following spectrum analyzer settings:

RBW=100K, VBW \geq 3RBW, Sweep = auto, Detector function = peak, Trace = max hold 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

3. Allow the trace to stabilize, record the X dB Bandwidth value.


Limit

st result Frequ	-					
Frequ			≥500)		
M	iency Hz		andwidth (Hz	99%	bandwidth kHz	Result
Bottom chan	nel 2402MHz	6	77.3		1102.7	Pass
Middle chanr		6	86.0		1085.4	Pass
Top channe	el 2480MHz		86.0		1098.4	Pass
		620 dBm 2 -10,620 dBm	M1	D2[1]	686.00 1.102749638 -10.44 2.40163100	MHz dBm
	-20 dBm					
	-30 dBm					
	-40 dBm	\sim				
	-50 dBm					
	-60 dBm					
	-70 dBm					
	-80 dBm					
	-80 0811					
	CF 2.402 GHz		691 pts	·	Span 3.0	MHz
	Marker _Type Ref Trc	X-value	Y-value	Function	Function Result	
	M1 1	. 2.401631 GHz	-10.44 dBm			
	T1 1 T2 1		-19.67 dBm -19.51 dBm	Occ Bw	1.102749638	MHZ
	D2 M1 1		-0.42 dB			


Date: 6.FEB.2018 20:04:15

Middle channel 2440MHz

Date: 6.FEB.2018 20:05:22

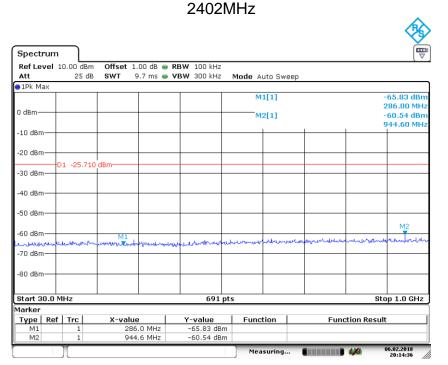
High channel 2480MHz

Date: 6.FEB.2018 20:06:30

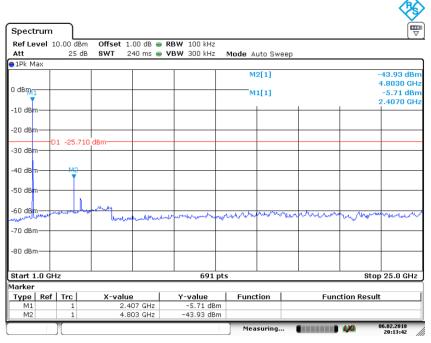
EMC_SZ_FR_21.00 FCC Release 2017-05-17

9.4 Spurious RF conducted emissions

Test Method


- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.

otherfrequenciesd.


Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

Spurious RF conducted emissions

Date: 6.FEB.2018 20:14:36

Date: 6.FEB.2018 20:13:41

EMC_SZ_FR_21.00 FCC Release 2017-05-17

~

2440MHz

Ref Leve Att	10.00 dBm 25 dB		 RBW 100 kHz VBW 300 kHz 	Mode A	uto Sweep			
1Pk Max				Houd He	10 01000			
				M	1[1]			-61.87 dBn
0 dBm				M	2[1]			978.20 MH -62.80 dBn
				1912	2[1]			575.00 MH
-10 dBm—						+		
-20 dBm—	D1 -25.010) dBm						
-30 dBm—	01 -25.010	ubin						
-40 dBm—								
-50 dBm—								
-60 dBm—					M2			M1
	mourant	and where where the second	uninternet	nound	yneman	womenut	within	mentreal
-70 dBm—								
-80 dBm—								
Start 30.	D MHz		691 p	ots			Sto	op 1.0 GHz
Marker Type R	ef Trc	X-value	Y-value	Funct	ion	Eup	tion Result	•
M1	1	978.2 MHz	-61.87 dBr			Fund	AIOH KESUI	
M2	1	675.0 MHz						

Date: 6.FEB.2018 20:16:10

	_					2
Spectrum						
Ref Level 1	.0.00 dBr	m Offset 1.00 dB 👄	RBW 100 kHz			
Att	25 d	B SWT 240 ms 👄	VBW 300 kHz	Mode Auto Sw	эер	
∋1Pk Max						
				M2[1]		-45.91 dBn
						4.8730 GH: -5.01 dBn
Y				M1[1]		2.4410 GH
-10 dBm						+
-20 dBm-+						
	1 -25.01	LO dBm				
-30 dB n						
-40 dBm	M2					
-50 dBm						
-30 08 11						
-60 dBm		month				
mulun	Mun Colo	how we want	en hand markened	my how we have	- Julia - Contor - All	mannen
-70 dBm						
-80 dBm						
Start 1.0 GF	lz		691 pt:	5		Stop 25.0 GHz
Marker						
Type Ref		X-value	Y-value	Function	Fun	ction Result
M1	1	2.441 GHz	-5.01 dBm			
M2	1	4.873 GHz	-45.91 dBm			
	I			Measuring.		06.02.2018 20:15:43

Date: 6.FEB.2018 20:15:43

EMC_SZ_FR_21.00 FCC Release 2017-05-17 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

~

~

2480MHz

Spect									
Ref Le Att	vel 10	1.00 dBm 25 dB			RBW 100 kHz VBW 300 kHz	Mode A	uto Swa	an an	
1Pk M	ах	20 00			TBH SOURIE	HOUE A	010 3 98	² P	
						М	1[1]		-61.65 dBi
0 dBm—									944.60 MH
						M	2[1]		-61.80 dBr 746.60 MH
-10 dBm									
-20 dBm	·—								
-30 dBm		-25.810	dBm						
-40 dBm									
-50 dBm	<u> </u>				_				
-60 dBm								м2	M1
Union	mu	Male Marken	manandoler	mulder	amplementer	walnutener	marther	en monterent re	proven the million
-70 dBm	-								
-80 dBm	<u> </u>				_				
Start 3	0.0 MI	Ηz			691 p	ts			Stop 1.0 GHz
Marker Type	Ref	Trc	X-value	. 1	Y-value	Func	tion	Fue	ction Result
M1	Kel	1		.6 MHz	-61.65 dBm			Fun	LION RESult
M2		1	746	.6 MHz	-61.80 dBm	1			

Date: 6.FEB.2018 20:17:29

Spectrum						
Ref Level 1 Att	10.00 dBm 25 dB	Offset 1.00 dB SWT 240 ms	RBW 100 kHz VBW 300 kHz	Mode Auto S	weep	x
●1Pk Max						
				M2[1]		-47.71 dBm 4.9770 GHz
0 dBm				M1[1]		4.9770 GH2 -5.81 dBm 2.4760 GHz
-10 dBm						
-20 dBm						
-30 dBm	01 -25.810					
-40 dBm	M2					
-50 dBm		a sub				
-60 dBn	Marnaldia	human	an man man	www.	mandulan	Weahling and an and the word
-70 dBm						
-80 dBm						
Start 1.0 G	Hz		691 pt	s		Stop 25.0 GHz
Marker	1 - 1	X			1 5	- the second second
Type Ref M1 M2	1 1	X-value 2.476 GHz 4.977 GHz	Y-value -5.81 dBm -47.71 dBm	Function	Fun	nction Result
][]			Measurin	g (06.02.2018 20:17:08

Date: 6.FEB.2018 20:17:08

EMC_SZ_FR_21.00 FCC Release 2017-05-17 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

2402MHz

Att	30 dB	3 SWT 1.1 ms 👄	VBW 300 kHz	Mode Auto Swee	ер
●1Pk Max					
10 dBm				M1[1]	-5.39 d 2.401910 (
0 dBm				M2[1]	-41.39 d 2.400000
-10 dBm					
-20 dBm					
-30 dBm	D1 -25.39	0 dBm			
-40 dBm					Maj
-50 dBm					M3 AND AND
-60\dBpilw	Maranal w		www.www.www.www.	washe and the second second	mad low derethy with when the
-70 dBm					
-80 dBm					
CF 2.3575	GHz	· •	691 pt:	5	Span 95.0 M
1arker Type Ref	Trc	X-value	Y-value	Function	Function Result
M1	1	2.40191 GHz	-5.39 dBm		
M2 M3	1	2.4 GHz 2.39 GHz	-41.39 dBm -55.03 dBm		

Date: 21.NOV.2017 10:19:08

9.5 Band edge

Test Method

- 1 Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW \geq RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

_

Limit:

Frequency·Range¤	Limit·(<u>dBc</u>)¤
MHz¤	¤
30-25000¤	-20¤

2402MHz

Spectru	m]				(प
	l 10.00 dBn				•
Att	25 dB	8 SWT 246.5 μs	😑 VBW 300 kHz	Mode Auto FF	Т
1Pk Max					
				M1[1]	-4.83 dB
) dBm—				M2[1]	2.402180 GF -38.06 de
				M2[1]	-38.06 da 2.400000 Gl
10 dBm—					2.40000 G
20 dBm—					
30 dBm-	D1 -24.83	U dBm			
SU UBIII-					MŹ
40 dBm-					M
					Man Martin Martin
-50 dBm—					MA M3AL
					TT
-60 dBm—					when we we have been a start of the start of
and shere	mar and	4 monte market and the second se	we have been and	farmer and the second	
-70 dBm—					
-80 dBm—					
oo abiii					
Start 2.2	935 GHz		691 pts	;	Stop 2.405 GH:
1arker	11-1				
Type R M1	er Irc	X-value 2.40218 GHz	Y-value -4.83 dBm	Function	Function Result
M1 M2	1	2.40218 GHz 2.4 GHz	-4.83 dBm -38.06 dBm		
M3	1	2.39 GHz	-55.05 dBm		
M4	1	2.38201 GHz	-56.45 dBm		

Date: 6.FEB.2018 20:11:52

2480MHz

						^
						<₽
Spectrum						The second secon
Ref Level	10.00 dBr	m Offset 1.00 dB	RBW 100 kHz			(
Att	25 d		VBW 300 kHz	Mode Auto FF1		
1Pk Max				Hous Hats III		
				M4[1]		-47.86 dB
						2.4880080 GH
dBm M1				M1[1]		-4.62 dBi
10 dBm						2.4796980 GH
	01 -24.62	20 dBm				
30.dBm						
211	M					
0 dBm	<u>hal</u>					
	- VV Y	M4				
50 dBm		VMA JA Wat				
		- Awad	MAMMAN	N 100 10	мв	www.
i0 dBm			· · · · · · · · · · · · · · · · · · ·	www.how	W. Warden	AND ADD ADD ADD ADD ADD ADD ADD ADD ADD
						I
70 dBm						
10 dBm						
tart 2.477	GHz		691 p	its		Stop 2.51 GHz
arker						
ſype∣ Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.479698 GH				
M2	1	2.4835 GH				
MЗ	1	2.5 GH				
M4	1	2.488008 GH	z -47.86 dBr	1		
	1			Measuring.		06.02.2018

Date: 6.FEB.2018 20:10:05

EMC_SZ_FR_21.00 FCC Release 2017-05-17

9.6 Spurious radiated emissions for transmitter

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.

2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.

3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle).

4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at requencyabove1GHz

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
			ÔB
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

Remark: According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit. **Transmitting spurious emission test result as below:**

Low channel 2402MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Factor	Margin	Result
Danu	MHz	dBuV/m		dBµV/m		dB	dBuV/m	
30-	288.88	31.00	Н	46	QP	-22.3	15.00	Pass
1000MHz	288.88	35.35	V	46	QP	-22.0	10.65	Pass
	10164.84	41.76	Н	74	PK	2.5	32.24	Pass
1000-			Н	54	AV			Pass
25000MHz	10008.28	40.78	V	74	PK	9.8	32.22	Pass
			V	54	AV			Pass

Middle channel 2440MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Factor	Margin	Result
Danu	MHz	dBuV/m		dBµV/m		dB	dBuV/m	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
	4879.22	42.47	Н	74	PK	2.5	31.53	Pass
1000-			Н	54	AV			Pass
25000MHz	8784.84	40.71	V	74	PK	8.9	33.29	Pass
			V	54	AV			Pass

High channel 2480MHz Test Result

Frequency Band	Frequency	Emission Level	Polarization	Limit	Detector	Factor	Margin	Result
Danu	MHz	dBuV/m		dBµV/m		dB	dBuV/m	
30-			Н	43.5	QP			Pass
1000MHz			Н	46	QP			Pass
	10096.40	41.97	Н	74	PK	9.6	32.03	Pass
1000-			Н	54	AV			Pass
25000MHz	8757.19	41.46	V	74	PK	8.9	32.54	Pass
			V	54	AV			Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 10dB below the permissible limits or the field strength is too small to be measured.
- QP Emission Level= Antenna Factor +Cable Loss + Reading PK Emission Level= Antenna Factor +Cable Loss - Amp. factor + Reading AV Emission Level= PK Emission Level+20log(dutycycle)

10 List of Test Instruments

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2018-7-14
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2018-7-14
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2018-8-2
Horn Antenna	Rohde & Schwarz	HF907	102294	2018-7-14
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2018-7-14
3m Semi-anechoic chamber	TDK	9X6X6		2019-5-29
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2018-7-14
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2018-8-2
Horn Antenna	Rohde & Schwarz	HF907	102294	2018-7-14
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2018-7-14
LISN	Rohde & Schwarz	ENV4200	100249	2018-7-14
LISN	Rohde & Schwarz	ENV216	100326	2018-7-14
ISN	Rohde & Schwarz	ENY81	100177	2018-7-14
ISN	Rohde & Schwarz	ENY81-CA6	101664	2018-7-14
High Voltage Probe	Rohde & Schwarz	TK9420(VT94 20)	9420-58	2018-7-14
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2018-7-14

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- Power spectral density*
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty			
Test Items	Extended Uncertainty		
Uncertainty for Radiated Spurious Emission 25MHz-3000MHz	Horizontal: 4.98dB; Vertical: 5.06dB;		
Uncertainty for Radiated Spurious Emission 3000MHz-18000MHz	Horizontal: 4.95dB; Vertical: 4.94dB;		
Uncertainty for Radiated Spurious Emission 18000MHz-40000MHz	Horizontal: 5.14dB; Vertical: 5.12dB;		
Uncertainty for Conducted RF test with TS 8997	Power level test involved: 2.06dB Frequency test involved: 1.16×10 ⁻⁷		